1
|
Kubelick K, Kim J, Kim M, Huang X, Wang C, Song S, Xia Y, Emelianov SY. In Vivo Ultrasound and Photoacoustic Imaging of Nanoparticle-Engineered T Cells and Post-Treatment Assessment to Guide Adoptive Cell Immunotherapy. ACS NANO 2025; 19:6079-6094. [PMID: 39908484 PMCID: PMC11841050 DOI: 10.1021/acsnano.4c12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Despite great promise, adoptive cell therapy (ACT) continues to fail at treating a majority of cancers, especially solid tumors. To inform development and expedite the translation of more potent cellular immunotherapies, advanced immunoimaging tools are needed to better understand the in vivo requirements for generating a robust immune response. Even methods to evaluate the delivery, location, and status of transferred T cells at the tumor target are lacking. Therefore, a real-time, safe, noninvasive, longitudinal imaging method is critically needed to 1) monitor adoptive T cell location and status and 2) assess treatment progression and response through imaging biomarkers. Here, we developed a combined ultrasound (US) and photoacoustic (PA) imaging approach to enable T cell tracking following adoptive transfer for cancer immunotherapy. Our approach leverages highly photostable gold nanorods and cell surface engineering to tag the T cells without impacting effector functions, as well as generate PA contrast for imaging post-transfer. Our in vivo US/PA imaging approach detected nanoparticle-labeled T cell accumulation at the tumor, visualized changes in tumor volume, and conveyed accompanying changes in blood biomarkers. US/PA data also showed different trends according to a positive or negative antitumor response to T cell therapy over 7 days. Results highlight the potential of the approach and motivate future development to expand the platform for advanced, theranostic immunoimaging.
Collapse
Affiliation(s)
- Kelsey
P. Kubelick
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jinhwan Kim
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Myeongsoo Kim
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Xinyue Huang
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Seoyoon Song
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Younan Xia
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stanislav Y. Emelianov
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Zhang Y, Li Z, Zhang C, Shao C, Duan Y, Zheng G, Cai Y, Ge M, Xu J. Recent advances of photodiagnosis and treatment for head and neck squamous cell carcinoma. Neoplasia 2025; 60:101118. [PMID: 39721461 PMCID: PMC11732236 DOI: 10.1016/j.neo.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are the most common type of head and neck tumor that severely threatens human health due to its highly aggressive nature and susceptibility to distant metastasis. The diagnosis of HNSCC currently relies on biopsy and histopathological examination of suspicious lesions. However, the early mucosal changes are subtle and difficult to detect by conventional oral examination. As for treatment, surgery is still the primary treatment modality. Due to the complex anatomy and the lack of intraoperative modalities to accurately determine the incision margins, surgeons are in a dilemma between extensive tumor removal and improving the quality of patient survival. As more knowledge is gained about HNSCC, the increasing recognition of the value of optical imaging has been emphasized. Optical technology offers distinctive possibilities for early preoperative diagnosis, intraoperative real-time visualization of tumor margins, sentinel lymph node biopsies, phototherapy. Fluorescence imaging, narrow-band imaging, Raman spectroscopy, optical coherence tomography, hyperspectral imaging, and photoacoustic imaging have been reported for imaging HNSCC. This article provides a comprehensive overview of the fundamental principles and clinical applications of optical imaging in the diagnosis and treatment of HNSCC, focusing on identifying its strengths and limitations to facilitate advancements in this field.
Collapse
Affiliation(s)
- Yining Zhang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhenfang Li
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Chengchi Zhang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Zhejiang University of Technology, Hangzhou 310023, China
| | - Chengying Shao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanting Duan
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Guowan Zheng
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Yu Cai
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
3
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
4
|
Becker C, Hardarson J, Hoelzer A, Geisler A, Schulz T, Reichl C, Burton NC, Schuler T, Kohl P, Zgierski-Johnston C. Evaluation of cervical lymph nodes using multispectral optoacoustic tomography: a proof-of-concept study. Eur Arch Otorhinolaryngol 2023; 280:4657-4664. [PMID: 37354339 PMCID: PMC10477228 DOI: 10.1007/s00405-023-08073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES Examination of lymph nodes is one of the most common indications for imaging in the head and neck region. The purpose of this study is to evaluate whether multispectral optoacoustic tomography can be used to observe chromophore differences between benign and malignant neck lymph nodes. MATERIALS AND METHODS Proof-of-concept ex vivo study of resected cervical lymph nodes from 11 patients. The examination of lymph nodes included imaging with hybrid ultrasound and multispectral tomography system followed by spectral unmixing to separate signals from the endogenous chromophores water, lipid, hemoglobin and oxygenated hemoglobin; calculation of semi-quantitative parameters (total hemoglobin and relative oxygenation of hemoglobin). Comparison of the results from the hybrid measurement with the histopathological results. RESULTS Most patients suffered from squamous cell carcinoma (n = 7), also metastasis from salivary gland adenocarcinoma and papillary thyroid carcinoma, were included. The comparison between benign cervical lymph nodes and metastases showed significant differences for the absorbers water, lipid, hemoglobin and oxygenated hemoglobin and total hemoglobin. CONCLUSIONS Our ex vivo study suggests that multispectral optoacoustic tomography can be used to detect differences between reactive lymph nodes and metastases. The measurement of endogenous chromophores can be used for this purpose. The examinations are non-invasively and thus potentially improve diagnostic prediction. However, potential influences from the ex vivo setting must be considered.
Collapse
Affiliation(s)
- Christoph Becker
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| | - Johannes Hardarson
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Andrea Hoelzer
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Antje Geisler
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Tobias Schulz
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Centre Freiburg, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | | | | | - Tobias Schuler
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Callum Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Wang T, Chen C, Shen K, Liu W, Tian C. Streak artifact suppressed back projection for sparse-view photoacoustic computed tomography. APPLIED OPTICS 2023; 62:3917-3925. [PMID: 37706701 DOI: 10.1364/ao.487957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/21/2023] [Indexed: 09/15/2023]
Abstract
The development of fast and accurate image reconstruction algorithms under constrained data acquisition conditions is important for photoacoustic computed tomography (PACT). Sparse-view measurements have been used to accelerate data acquisition and reduce system complexity; however, reconstructed images suffer from sparsity-induced streak artifacts. In this paper, a modified back-projection (BP) method termed anti-streak BP is proposed to suppress streak artifacts in sparse-view PACT reconstruction. During the reconstruction process, the anti-streak BP finds the back-projection terms contaminated by high-intensity sources with an outlier detection method. Then, the weights of the contaminated back-projection terms are adaptively adjusted to eliminate the effects of high-intensity sources. The proposed anti-streak BP method is compared with the conventional BP method on both simulation and in vivo data. The anti-streak BP method shows substantially fewer artifacts in the reconstructed images, and the streak index is 54% and 20% lower than that of the conventional BP method on simulation and in vivo data, when the transducer number N=128. The anti-streak BP method is a powerful improvement of the BP method with the ability of artifact suppression.
Collapse
|
6
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
7
|
Wang T, He M, Shen K, Liu W, Tian C. Learned regularization for image reconstruction in sparse-view photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5721-5737. [PMID: 36733736 PMCID: PMC9872879 DOI: 10.1364/boe.469460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 10/01/2022] [Indexed: 06/18/2023]
Abstract
Constrained data acquisitions, such as sparse view measurements, are sometimes used in photoacoustic computed tomography (PACT) to accelerate data acquisition. However, it is challenging to reconstruct high-quality images under such scenarios. Iterative image reconstruction with regularization is a typical choice to solve this problem but it suffers from image artifacts. In this paper, we present a learned regularization method to suppress image artifacts in model-based iterative reconstruction in sparse view PACT. A lightweight dual-path network is designed to learn regularization features from both the data and the image domains. The network is trained and tested on both simulation and in vivo datasets and compared with other methods such as Tikhonov regularization, total variation regularization, and a U-Net based post-processing approach. Results show that although the learned regularization network possesses a size of only 0.15% of a U-Net, it outperforms other methods and converges after as few as five iterations, which takes less than one-third of the time of conventional methods. Moreover, the proposed reconstruction method incorporates the physical model of photoacoustic imaging and explores structural information from training datasets. The integration of deep learning with a physical model can potentially achieve improved imaging performance in practice.
Collapse
Affiliation(s)
- Tong Wang
- School of Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Menghui He
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China
| | - Kang Shen
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen Liu
- School of Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao Tian
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Zare A, Shamshiripour P, Lotfi S, Shahin M, Rad VF, Moradi AR, Hajiahmadi F, Ahmadvand D. Clinical theranostics applications of photo-acoustic imaging as a future prospect for cancer. J Control Release 2022; 351:805-833. [DOI: 10.1016/j.jconrel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
|
9
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
10
|
Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:070901. [PMID: 36451698 PMCID: PMC9307281 DOI: 10.1117/1.jbo.27.7.070901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 05/19/2023]
Abstract
Significance Deep tissue noninvasive high-resolution imaging with light is challenging due to the high degree of light absorption and scattering in biological tissue. Photoacoustic imaging (PAI) can overcome some of the challenges of pure optical or ultrasound imaging to provide high-resolution deep tissue imaging. However, label-free PAI signals from light absorbing chromophores within the tissue are nonspecific. The use of exogeneous contrast agents (probes) not only enhances the imaging contrast (and imaging depth) but also increases the specificity of PAI by binding only to targeted molecules and often providing signals distinct from the background. Aim We aim to review the current development and future progression of photoacoustic molecular probes/contrast agents. Approach First, PAI and the need for using contrast agents are briefly introduced. Then, the recent development of contrast agents in terms of materials used to construct them is discussed. Then, various probes are discussed based on targeting mechanisms, in vivo molecular imaging applications, multimodal uses, and use in theranostic applications. Results Material combinations are being used to develop highly specific contrast agents. In addition to passive accumulation, probes utilizing activation mechanisms show promise for greater controllability. Several probes also enable concurrent multimodal use with fluorescence, ultrasound, Raman, magnetic resonance imaging, and computed tomography. Finally, targeted probes are also shown to aid localized and molecularly specific photo-induced therapy. Conclusions The development of contrast agents provides a promising prospect for increased contrast, higher imaging depth, and molecularly specific information. Of note are agents that allow for controlled activation, explore other optical windows, and enable multimodal use to overcome some of the shortcomings of label-free PAI.
Collapse
Affiliation(s)
- Xie Hui
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Mohammad O. A. Malik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| |
Collapse
|
11
|
Lawrence DJ, Bayer CL. Photoacoustic imaging provides an in vivo assessment of the preeclamptic placenta remodeling and function in response to therapy. Placenta 2022; 126:46-53. [PMID: 35764022 PMCID: PMC10236486 DOI: 10.1016/j.placenta.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/16/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION There is a lack of effective therapeutic interventions for preeclampsia. A central factor in the etiology of the disease is the development of placental hypoxia due to abnormal vascular remodeling. However, methods to assess the impact of potential therapies on placental growth and remodeling are currently lacking. Here, we develop and validate ultrasound-guided photoacoustic imaging methods to monitor the placental response to therapeutic intervention. Establishing non-invasive tools to image placental function opens up previously unachievable understandings of placental therapeutic response. METHODS Studies were performed in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. Preclinical research has identified tempol, a superoxide dismutase mimetic, and the phosphodiesterase inhibitor sildenafil as potential therapeutics for preeclampsia, as both improve in vivo maternal outcomes. PA images of the placental environment were acquired in RUPP rats receiving tempol (n = 8) or sildenafil (n = 8) to assess the longitudinal effects of treatment on placental oxygenation and vascular remodeling. Imaging measurements were validated with ex vivo histological analysis. RESULTS Spectral photoacoustic imaging non-invasively measured placental hypoxia and impaired vascular growth two days after the RUPP procedure was implemented. Sildenafil significantly improved (p < 0.05) placental oxygenation and promoted vascular remodeling in RUPP animals, while RUPP animals treated with tempol had a diminished placental therapeutic response. DISCUSSION We demonstrate that photoacoustic imaging provides in vivo measures of placental oxygenation and vascular remodeling, a previously unobtainable assessment of preeclamptic therapeutic response. These imaging tools have tremendous potential to accelerate the search for effective therapies for preeclampsia.
Collapse
Affiliation(s)
- Dylan J Lawrence
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA.
| |
Collapse
|
12
|
Vonk J, Kukačka J, Steinkamp P, de Wit J, Voskuil F, Hooghiemstra W, Bader M, Jüstel D, Ntziachristos V, van Dam G, Witjes M. Multispectral optoacoustic tomography for in vivo detection of lymph node metastases in oral cancer patients using an EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept study. PHOTOACOUSTICS 2022; 26:100362. [PMID: 35541024 PMCID: PMC9079001 DOI: 10.1016/j.pacs.2022.100362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 05/09/2023]
Abstract
Oral cancer patients undergo diagnostic surgeries to detect occult lymph node metastases missed by preoperative structural imaging techniques. Reducing these invasive procedures that are associated with considerable morbidity, requires better preoperative detection. Multispectral optoacoustic tomography (MSOT) is a rapidly evolving imaging technique that may improve preoperative detection of (early-stage) lymph node metastases, enabling the identification of molecular changes that often precede structural changes in tumorigenesis. Here, we characterize the optoacoustic properties of cetuximab-800CW, a tumor-specific fluorescent tracer showing several photophysical properties that benefit optoacoustic signal generation. In this first clinical proof-of-concept study, we explore its use as optoacoustic to differentiate between malignant and benign lymph nodes. We characterize the appearance of malignant lymph nodes and show differences in the distribution of intrinsic chromophores compared to benign lymph nodes. In addition, we suggest several approaches to improve the efficiency of follow-up studies.
Collapse
Affiliation(s)
- J. Vonk
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - J. Kukačka
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - P.J. Steinkamp
- Department of Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - J.G. de Wit
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - F.J. Voskuil
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - W.T.R. Hooghiemstra
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M. Bader
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - D. Jüstel
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - V. Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - G.M. van Dam
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- AxelaRx / TRACER B.V., Groningen, the Netherlands
| | - M.J.H. Witjes
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, the Netherlands
- Correspondence to: Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
13
|
Kubelick KP, Mehrmohammadi M. Magnetic particles in motion: magneto-motive imaging and sensing. Theranostics 2022; 12:1783-1799. [PMID: 35198073 PMCID: PMC8825589 DOI: 10.7150/thno.54056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/22/2021] [Indexed: 11/05/2022] Open
Abstract
Superparamagnetic nanoparticles have become an important tool in biomedicine. Their biocompatibility, controllable small size, and magnetic properties allow manipulation with an external magnetic field for a variety of diagnostic and therapeutic applications. Recently, the magnetically-induced motion of superparamagnetic nanoparticles has been investigated as a new source of imaging contrast. In magneto-motive imaging, an external, time-varying magnetic field is applied to move a magnetically labeled subject, such as labeled cells or tissue. Several major imaging modalities such as ultrasound, photoacoustic imaging, optical coherence tomography, and laser speckle tracking can utilize magneto-motive contrast to monitor biological events at smaller scales with enhanced contrast and sensitivity. In this review article, an overview of magneto-motive imaging techniques is presented, including synthesis of superparamagnetic nanoparticles, fundamental principles of magneto-motive force and its utility to excite labeled tissue within a viscoelastic medium, current capabilities of magneto-motive imaging modalities, and a discussion of the challenges and future outlook in the magneto-motive imaging domain.
Collapse
Affiliation(s)
- Kelsey P. Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Georgia, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Georgia, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Michigan, USA
- Barbara Ann Karmanos Cancer Institute, Michigan, USA
| |
Collapse
|
14
|
Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. JOURNAL OF BIOPHOTONICS 2022; 15:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Collapse
Affiliation(s)
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry А Vorontsov
- State Budgetary Institution of Health Care of Nizhny Novgorod "Nizhny Novgorod Regional Clinical Oncological Dispensary", Nizhny Novgorod, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
15
|
Punnoose J, Nachman H, Ashkenazi S. Oxygen Imaging for Non-Invasive Metastasis Detection. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010237. [PMID: 35009780 PMCID: PMC8749708 DOI: 10.3390/s22010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 05/16/2023]
Abstract
Sentinel lymph node (SLN) biopsy is an integral part of treatment planning for a variety of cancers as it evaluates whether a tumor has metastasized, an event that significantly reduces survival probability. However, this invasive procedure is associated with patient morbidity, and misses small metastatic deposits, resulting in the removal of additional nodes for tumors with high metastatic probability despite a negative SLN biopsy. To prevent this over-treatment and its associated morbidities for patients that were truly negative, we propose a tissue oxygen imaging method called Photoacoustic Lifetime Imaging (PALI) as an alternative or supplementary tool for SLN biopsy. As the hyper-metabolic state of cancer cells significantly depresses tissue oxygenation compared to normal tissue even for small metastatic deposits, we hypothesize that PALI can sensitively and specifically detect metastases. Before this hypothesis is tested, however, PALI's maximum imaging depth must be evaluated to determine the cancer types for which it is best suited. To evaluate imaging depth, we developed and simulated a phantom composed of tubing in a tissue-mimicking, optically scattering liquid. Our simulation and experimental results both show that PALI's maximum imaging depth is 16 mm. As most lymph nodes are deeper than 16 mm, ways to improve imaging depth, such as directly delivering light to the node using penetrating optical fibers, must be explored.
Collapse
Affiliation(s)
- Joshua Punnoose
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Henry Nachman
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Shai Ashkenazi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
16
|
Theragnostic Glycol Chitosan-Conjugated Gold Nanoparticles for Photoacoustic Imaging of Regional Lymph Nodes and Delivering Tumor Antigen to Lymph Nodes. NANOMATERIALS 2021; 11:nano11071700. [PMID: 34203541 PMCID: PMC8307152 DOI: 10.3390/nano11071700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Lymph node mapping is important in cancer immunotherapy because the morphology of lymph nodes is one of the crucial evaluation criteria of immune responses. We developed new theragnostic glycol-chitosan-coated gold nanoparticles (GC-AuNPs), which highlighted lymph nodes in ultrasound-guided photoacoustic (US/PA) imaging. Moreover, the ovalbumin epitope was conjugated GC-AuNPs (OVA-GC-AuNPs) for delivering tumor antigen to lymph node resident macrophage. In vitro studies proved the vigorous endocytosis activity of J774A.1 macrophage and consequent strong photoacoustic signals from them. The macrophages also presented a tumor antigen when OVA-GC-AuNPs were used for cellular uptake. After the lingual injection of GC-AuNPs into healthy mice, cervical lymph nodes were visible in a US/PA imaging system with high contrast. Three-dimensional analysis of lymph nodes revealed that the accumulation of GC-AuNPs in the lymph node increased as the post-injection time passed. Histological analysis showed GC-AuNPs or OVA-GC-AuNPs located in subcapsular and medullar sinuses where macrophages are abundant. Our new theragnostic GC-AuNPs present a superior performance in US/PA imaging of lymph nodes without targeting moieties or complex surface modification. Simultaneously, GC-AuNPs were able to deliver tumor antigens to cause macrophages to present the OVA epitope at targeted lymph nodes, which would be valuable for cancer immunotherapy.
Collapse
|
17
|
Towards Transabdominal Functional Photoacoustic Imaging of the Placenta: Improvement in Imaging Depth Through Optimization of Light Delivery. Ann Biomed Eng 2021; 49:1861-1873. [PMID: 33909192 PMCID: PMC8373763 DOI: 10.1007/s10439-021-02777-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Functional photoacoustic imaging of the placenta could provide an innovative tool to diagnose preeclampsia, monitor fetal growth restriction, and determine the developmental impacts of gestational diabetes. However, transabdominal photoacoustic imaging is limited in imaging depth due to the tissue's scattering and absorption of light. The aim of this paper was to investigate the impact of geometry and wavelength on transabdominal light delivery. Our methods included the development of a multilayer model of the abdominal tissue and simulation of the light propagation using Monte Carlo methods. A bifurcated light source with varying incident angle of light, distance between light beams, and beam area was simulated to analyze the effect of light delivery geometry on the fluence distribution at depth. The impact of wavelength and the effects of variable thicknesses of adipose tissue and muscle were also studied. Our results showed that the beam area plays a major role in improving the delivery of light to deep tissue, in comparison to light incidence angle or distance between the bifurcated fibers. Longer wavelengths, with incident fluence at the maximum permissible exposure limit, also increases fluence within deeper tissue. We validated our simulations using a commercially available light delivery system and ex vivo human placental tissue. Additionally, we compared our optimized light delivery to a commercially available light delivery system, and conclude that our optimized geometry could improve imaging depth more than 1.6×, bringing the imaging depth to within the needed range for transabdominal imaging of the human placenta.
Collapse
|
18
|
Zhang J, Ning L, Zeng Z, Pu K. Development of Second Near-Infrared Photoacoustic Imaging Agents. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Cardinell K, Gupta N, Koivisto BD, Kumaradas JC, Zhou X, Irving H, Luciani P, Yücel YH. A novel photoacoustic-fluorescent contrast agent for quantitative imaging of lymphatic drainage. PHOTOACOUSTICS 2021; 21:100239. [PMID: 33520651 PMCID: PMC7820935 DOI: 10.1016/j.pacs.2021.100239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 05/21/2023]
Abstract
In vivo near-infrared (NIR) photoacoustic imaging (PAI) studies using novel contrast agents require validation, often via fluorescence imaging. Bioconjugation of NIR dyes to proteins is a versatile platform to obtain contrast agents for specific biomedical applications. Nonfluorescent NIR dyes with higher photostability present advantages for quantitative PAI, compared to most fluorescent NIR dyes. However, they don't provide a fluorescence signal required for fluorescence imaging. Here, we designed a hybrid PA-fluorescent contrast agent by conjugating albumin with a NIR nonfluorescent dye (QC-1) and a visible spectrum fluorescent dye, a BODIPY derivative. The new hybrid tracer QC-1/BSA/BODIPY (QBB) had a low minimum detectable concentration (2.5μM), a steep linear range (2.4-54.4 μM; slope 3.39 E -5), and high photostability. Tracer signal was measured in vivo using PAI to quantify its drainage from eye to the neck and its localization in the neck lymph node was validated with postmortem fluorescence imaging.
Collapse
Affiliation(s)
- Kirsten Cardinell
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
- Glaucoma Unit, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Bryan D. Koivisto
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - J. Carl Kumaradas
- Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Xun Zhou
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Hyacinth Irving
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Paola Luciani
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Yeni H. Yücel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
- Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), St. Michael’s Hospital, Ryerson University, Toronto, Ontario, Canada
- Department of Mechanical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Ontario, Canada
- Corresponding author at: Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, 30 Bond Street, 209 LKSKI Room 409, Toronto, Ontario M5B 1W8, Canada.
| |
Collapse
|
20
|
Huda K, Wu C, Sider JG, Bayer CL. Spherical-view photoacoustic tomography for monitoring in vivo placental function. PHOTOACOUSTICS 2020; 20:100209. [PMID: 33101927 PMCID: PMC7569225 DOI: 10.1016/j.pacs.2020.100209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/04/2023]
Abstract
Photoacoustic tomography has great potential to image dynamic functional changes in vivo. Many tomographic systems are built with a circular view geometry, necessitating a linear translation along one axis of the subject to obtain a three-dimensional volume. In this work, we evaluated a prototype spherical view photoacoustic tomographic system which acquires a 3D volume in a single scan, without linear translation. We simultaneously measured relative hemoglobin oxygen saturation in multiple placentas of pregnant mice under oxygen challenge. We also synthesized a folate-conjugated indocyanine green (ICG) contrast agent to image folate kinetics in the placenta. Photoacoustic tomography performed at the wavelength of peak optical absorption of our contrast agent revealed increased ICG signal over time. Through these phantom and in vivo studies, we have demonstrated that the spherical view 3D photoacoustic tomographic system achieves high sensitivity and fast image acquisition, enabling in vivo experiments to assess physiological and molecular dynamics.
Collapse
|
21
|
Wang S, Zhao Y, Xu Y. Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology. Vis Comput Ind Biomed Art 2020; 3:24. [PMID: 33083889 PMCID: PMC7575676 DOI: 10.1186/s42492-020-00061-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Photoacoustic imaging (PAI) is often performed simultaneously with ultrasound imaging and can provide functional and cellular information regarding the tissues in the anatomical markers of the imaging. This paper describes in detail the basic principles of photoacoustic/ultrasound (PA/US) imaging and its application in recent years. It includes near-infrared-region PA, photothermal, photodynamic, and multimode imaging techniques. Particular attention is given to the relationship between PAI and ultrasonic imaging; the latest high-frequency PA/US imaging of small animals, which involves not only B-mode, but also color Doppler mode, power Doppler mode, and nonlinear imaging mode; the ultrasonic model combined with PAI, including the formation of multimodal imaging; the preclinical imaging methods; and the most effective detection methods for clinical research for the future.
Collapse
Affiliation(s)
- Shanshan Wang
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Beijing, 100026, China.
| | - Yunfeng Zhao
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Shanghai, 200120, China
| | - Ye Xu
- VisualSonics Business Department, FUJIFILM (China) Investment Co. Ltd., Shanghai, 200120, China
| |
Collapse
|
22
|
Quantitative analysis of breast tumours aided by three-dimensional photoacoustic/ultrasound functional imaging. Sci Rep 2020; 10:8047. [PMID: 32415203 PMCID: PMC7229157 DOI: 10.1038/s41598-020-64966-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
In this pilot study, we explored a quantitative method to analyse characteristics of breast tumours using 3D volumetric data obtained from a three-dimensional (3D) photoacoustic/ultrasound (PA/US) functional imaging system. Imaging results from 24 Asian patients with maximum tumour diameters less than 2 cm, including 8 benign tumours, 16 T1 stage invasive breast cancers (IBCs), and 22 normal breasts, were analysed. We found that the volumetric mean oxygenation saturation (SO2) in tumour regions of T1 stage IBCs was 7.7% lower than that of benign tumours (P = 0.016) and 3.9% lower than that of healthy breasts (P = 0.010). The volumetric mean SO2 in tumour surrounding regions of T1 stage IBCs was 4.9% lower than that of benign tumours (P = 0.009). For differentiating T1 stage IBCs and benign tumours, with a cut-off SO2 value of 78.2% inside tumours, we obtained a sensitivity of 100%, a specificity of 62.5%, and an AUC of 0.81; with a cut-off SO2 value of 77.9% in regions surrounding tumours, we obtained a sensitivity of 100%, a specificity of 75% and an AUC of 0.84. Our preliminary results demonstrate that 3D PA/US functional imaging has the potential to provide valuable quantitative physiological information that may be useful for the detection and evaluation of breast tumours.
Collapse
|
23
|
Zhang J, Duan F, Liu Y, Nie L. High-Resolution Photoacoustic Tomography for Early-Stage Cancer Detection and Its Clinical Translation. Radiol Imaging Cancer 2020; 2:e190030. [PMID: 33778711 PMCID: PMC7983802 DOI: 10.1148/rycan.2020190030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 04/22/2023]
Abstract
Diagnosing cancer during early stages can substantially increase the cure rate, decrease the recurrence rate, and reduce health care costs. Over the past few decades, the continual development of new medical imaging modalities has been an important factor for diagnosing cancer, selecting therapies, and monitoring response to treatment. Photoacoustic tomography (PAT) is a hybrid imaging modality combining optical contrast from absorption of light with the outstanding spatiotemporal resolution of US imaging, providing biomedical morphologic and functional information of early-stage cancer. In this review, the basics and modalities of PAT, as well as a summary of its state-of-art applications in early-stage cancer (breast cancer, melanoma, and prostate cancer) detection and treatment guidance will be introduced. The potential clinical translation in cancer detection of PAT and prospects for the possibilities to lead to further clinical breakthroughs will also be discussed. Keywords: Molecular Imaging-Cancer, Photoacoustic Imaging © RSNA, 2020.
Collapse
|
24
|
Lin Y, Sun L, Zeng F, Wu S. An Unsymmetrical Squaraine-Based Activatable Probe for Imaging Lymphatic Metastasis by Responding to Tumor Hypoxia with MSOT and Aggregation-Enhanced Fluorescent Imaging. Chemistry 2019; 25:16740-16747. [PMID: 31674063 DOI: 10.1002/chem.201904675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Optoacoustic imaging has great potential for preclinical research and clinical practice, and designing robust activatable optoacoustic probes for specific diseases is beneficial for its further development. Herein, an activatable probe has been developed for tumor hypoxia imaging. For this probe, indole and quinoline were linked on each side of an oxocyclobutenolate core to form an unsymmetrical squaraine. A triarylamine group was incorporated to endow the molecule with the aggregation enhanced emission (AEE) properties. In aqueous media, the squaraine chromophore aggregates into the nanoprobe, which specifically responds to nitroreductase and produces strong optoacoustic signals due to its high extinction coefficient, as well as prominent fluorescence emission as a result of its AEE feature. The nanoprobe was used to image tumor metastasis via the lymphatic system both optoacoustically and fluorescently. Moreover, both the fluorescence signals and three-dimensional multispectral optoacoustic tomography signals from the activated nanoprobe allow us to locate the tumor site and to map the metastatic route.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
25
|
Li D, He S, Wu Y, Liu J, Liu Q, Chang B, Zhang Q, Xiang Z, Yuan Y, Jian C, Yu A, Cheng Z. Excretable Lanthanide Nanoparticle for Biomedical Imaging and Surgical Navigation in the Second Near-Infrared Window. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902042. [PMID: 31832325 PMCID: PMC6891904 DOI: 10.1002/advs.201902042] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/15/2019] [Indexed: 04/14/2023]
Abstract
Recently, various second near-infrared window (NIR-II, 1000-1700 nm) fluorophores have been synthesized for in vivo imaging with nonradiation, high resolution, and low autofluorescence. However, most of the NIR-II fluorophores, especially inorganic nanoprobes, are mainly retained in the reticuloendothelial system (RES) such as the liver and spleen, leading to long-term safety concerns. Herein, a type of lanthanide-based excretable NIR-II nanoparticle, RENPs@Lips, which can be quickly cleared out of body after intravenous administration with half-lives of 23.0 h for the liver and 14.9 h for the spleen, is reported. Interestingly, over 90% of RENPs@Lips can be excreted through a hepatobiliary system within 72 h postinjection. The moderate blood half-time (T 1/2 = 17.96 min) allows for multifunctional applications in delineating the hemodynamics of vascular disorders (artery thrombosis, ischemia, and tumor angiogenesis) and monitoring blood perfusion in response to acute ischemia. In addition, RENPs@Lips exhibit high performance in identifying orthotopic tumor vessels intraoperatively and embolization surgery under NIR-II imaging navigation. Moreover, excellent signal-to-background ratio (SBR) is successfully achieved to facilitate sentinel lymph nodes biopsy (SLNB) with tumor-bearing mice. The high biocompatibility, favorable excretability, and outstanding optical properties warrant RENPs@Lips as novel promising NIR-II nanoparticles for future applications and translation into an interdisciplinary amalgamation of research in diverse fields.
Collapse
Affiliation(s)
- Daifeng Li
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Shuqing He
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
- Academy for Advanced Interdisciplinary Studies and Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Yifan Wu
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Jianqiang Liu
- Department of OrthopedicsThe Fourth Hospital of JinanJinanShandong250031China
| | - Qiang Liu
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Baisong Chang
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Qing Zhang
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Zhanhong Xiang
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| | - Ying Yuan
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Chao Jian
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Aixi Yu
- Department of Orthopedics Trauma and MicrosurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)Bio‐X Program and Department of RadiologyCanary Center at Stanford for Cancer Early DetectionStanford UniversityStanfordCA94305‐5344USA
| |
Collapse
|
26
|
Liu S, Wang H, Zhang C, Dong J, Liu S, Xu R, Tian C. In Vivo Photoacoustic Sentinel Lymph Node Imaging Using Clinically-Approved Carbon Nanoparticles. IEEE Trans Biomed Eng 2019; 67:2033-2042. [PMID: 31751215 DOI: 10.1109/tbme.2019.2953743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Breast cancer is the most common type of invasive cancer and one of the leading causes of cancer death in women worldwide. Correct staging of breast cancer is critical to the survival rate of the patients. Sentinel lymph node (SLN) biopsy (SLNB), currently the gold standard technique for breast cancer staging, requires preoperative and intraoperative image guidance for noninvasive SLN identification and minimal surgical invasion. However, existing image guidance techniques suffer from a variety of limitations, such as ionizing radiation, high cost, and poor imaging depth. To address the clinical challenges, new methodology has to be developed. METHODS We developed a photoacoustic (PA) imaging procedure for noninvasive and nonradioactive SLN identification and biopsy guidance enhanced with a clinically-approved lymphatic tracer, i.e., carbon nanoparticles (CNPs) suspension injection. RESULTS In vivo experiments show that the proposed procedure could sensitively identify the SLN and provide high-contrast image guidance for fine-needle aspiration simulation. In addition, we demonstrated that CNPs have significantly better performance than other commonly-used contrast agents, such as methylene blue and indocyanine green. CONCLUSION PA imaging technique using clinically-approved CNPs as the contrast agent is capable for noninvasive and nonradioactive SLN identification and high-contrast biopsy guidance, and should be considered as a new tool for assisting SLNB in breast cancer staging. SIGNIFICANCE The proposed CNPs-enhanced PA imaging technique provides a practical way for SLN identification and biopsy guidance for breast cancer patients and paves the way for clinical translation of PA SLN imaging.
Collapse
|
27
|
Zhan C, Huang Y, Lin G, Huang S, Zeng F, Wu S. A Gold Nanocage/Cluster Hybrid Structure for Whole-Body Multispectral Optoacoustic Tomography Imaging, EGFR Inhibitor Delivery, and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900309. [PMID: 31245925 DOI: 10.1002/smll.201900309] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Gold nanocages (AuNCs) and gold nanoclusters (AuClusters) are two classes of advantageous nanostructures with special optical properties, and many other attractive properties. Integrating them into one nanosystem may achieve greater and smarter performance. Herein, a hybrid gold nanostructure for fluorescent and optoacoustic tomography imaging, controlled release of drugs, and photothermal therapy (PTT) is demonstrated. For this nanodrug (EA-AB), an epidermal growth factor receptor (EGFR) inhibitor erlotinib (EB) is loaded into AuNCs, which are then capped and functionalized by biocompatible AuCluster@BSA (BSA = bovine serum albumin) conjugates via electrostatic interaction. Upon cell internalization, the lysosomal proteases and low pH cause the release of EB from EA-AB, and also induce fluorescence restoration of the AuCluster for imaging. Irradiation with near-infrared light further promotes the drug release and affords a PTT effect as well. The AuNC-based nanodrug is optoacoustically active, and its biodistribution and metabolic process have been successfully monitored by whole-body and 3D multispectral optoacoustic tomography imaging. Owing to the combined actions of PTT and EGFR pathway blockage, EA-AB exhibits marked tumor inhibition efficacy in vivo.
Collapse
Affiliation(s)
- Chenyue Zhan
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Yong Huang
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Guifang Lin
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Shuailing Huang
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| |
Collapse
|
28
|
Yoon H, Zhu YI, Yarmoska SK, Emelianov SY. Design and Demonstration of a Configurable Imaging Platform for Combined Laser, Ultrasound, and Elasticity Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1622-1632. [PMID: 30596572 PMCID: PMC7286075 DOI: 10.1109/tmi.2018.2889736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This paper introduces a configurable combined laser, ultrasound, and elasticity (CLUE) imaging platform. The CLUE platform enables imaging sequences capable of simultaneously providing quantitative acoustic, optical, and mechanical contrast for comprehensive diagnosis and monitoring of complex diseases, such as cancer. The CLUE imaging platform was developed on a Verasonics ultrasound scanner integrated with a pulsed laser, and it was designed to be modular and scalable to allow researchers to create their own specific imaging sequences efficiently. The CLUE imaging platform and sequence were demonstrated in a tissue-mimicking phantom containing a stiff inclusion labeled with optically-activated nanodroplets and in an ex vivo mouse spleen. We have shown that CLUE imaging can simultaneously capture multi-functional imaging signals providing quantitative information on tissue.
Collapse
|
29
|
Dumani DS, Sun IC, Emelianov SY. Ultrasound-guided immunofunctional photoacoustic imaging for diagnosis of lymph node metastases. NANOSCALE 2019; 11:11649-11659. [PMID: 31173038 PMCID: PMC6586492 DOI: 10.1039/c9nr02920f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metastases, rather than primary tumors, determine mortality in the majority of cancer patients. A non-invasive immunofunctional imaging method was developed to detect sentinel lymph node (SLN) metastases using ultrasound-guided photoacoustic (USPA) imaging combined with glycol-chitosan-coated gold nanoparticles (GC-AuNPs) as an imaging contrast agent. GC-AuNPs, injected peritumorally into breast tumor-bearing mice, were taken up by immune cells, and subsequently transported to the SLN. Two-dimensional and three-dimensional USPA imaging was used to isolate the signal from GC-AuNP-tagged cells. Volumetric analysis was used to quantify GC-AuNP accumulation in the SLN after cellular uptake and transport by immune cells. The results show that the spatio-temporal distribution of GC-AuNPs in the SLN was affected by the presence of metastases. The parameter describing the spatial distribution of GC-AuNP-tagged cells within the SLN was more than 2-fold lower in metastatic lymph nodes compared with non-metastatic controls. Histological analysis confirmed that the distribution of GC-AuNP-tagged immune cells is changed by the presence of metastatic cells. The USPA immunofunctional imaging successfully distinguished metastatic from non-metastatic lymph nodes using biocompatible nanoparticles. This method could aid physicians in the detection of micrometastases, thus guiding SLN biopsy and avoiding unnecessary biopsy procedures.
Collapse
|
30
|
Hai P, Imai T, Xu S, Zhang R, Aft RL, Zou J, Wang LV. High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity. Nat Biomed Eng 2019; 3:381-391. [PMID: 30936431 PMCID: PMC6544054 DOI: 10.1038/s41551-019-0376-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
Intratumoral heterogeneity, which is manifested in almost all of the hallmarks of cancer, including the significantly altered metabolic profiles of cancer cells, represents a challenge to effective cancer therapy. High-throughput measurements of the metabolism of individual cancer cells would allow direct visualization and quantification of intratumoral metabolic heterogeneity, yet the throughputs of current measurement techniques are limited to about 120 cells per hour. Here, we show that single-cell photoacoustic microscopy can reach throughputs of approximately 12,000 cells per hour by trapping single cells with blood in an oxygen-diffusion-limited high-density microwell array and by using photoacoustic imaging to measure the haemoglobin oxygen change (that is, the oxygen consumption rate) in the microwells. We demonstrate the capability of this label-free technique by performing high-throughput single-cell oxygen-consumption-rate measurements of cultured cells and by imaging intratumoral metabolic heterogeneity in specimens from patients with breast cancer. High-throughput single-cell photoacoustic microscopy of oxygen consumption rates should enable the faster characterization of intratumoral metabolic heterogeneity.
Collapse
Affiliation(s)
- Pengfei Hai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Toru Imai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Song Xu
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ruiying Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca L Aft
- Department of Surgery, School of Medicine, Washington University, St. Louis, MO, USA
- John Cochran Veterans Hospital, St. Louis, MO, USA
| | - Jun Zou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
31
|
Gargiulo S, Albanese S, Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5080267. [PMID: 31182936 PMCID: PMC6515147 DOI: 10.1155/2019/5080267] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Sandra Albanese
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| |
Collapse
|
32
|
Moore C, Jokerst JV. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019; 9:1550-1571. [PMID: 31037123 PMCID: PMC6485201 DOI: 10.7150/thno.32362] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic imaging is a rapidly maturing imaging modality in biological research and medicine. This modality uses the photoacoustic effect ("light in, sound out") to combine the contrast and specificity of optical imaging with the high temporal resolution of ultrasound. The primary goal of image-guided therapy, and theranostics in general, is to transition from conventional medicine to precision strategies that combine diagnosis with therapy. Photoacoustic imaging is well-suited for noninvasive guidance of many therapies and applications currently being pursued in three broad areas. These include the image-guided resection of diseased tissue, monitoring of disease states, and drug delivery. In this review, we examine the progress and strategies for development of photoacoustics in these three key areas with an emphasis on the value photoacoustics has for image-guided therapy.
Collapse
Affiliation(s)
| | - Jesse V. Jokerst
- Department of NanoEngineering
- Materials Science and Engineering Program
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093. United States
| |
Collapse
|
33
|
Wu Y, Chen J, Sun L, Zeng F, Wu S. A Nanoprobe for Diagnosing and Mapping Lymphatic Metastasis of Tumor Using 3D Multispectral Optoacoustic Tomography Owing to Aggregation/Deaggregation Induced Spectral Change. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201807960] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/27/2024]
Abstract
AbstractLymphatic metastasis of tumor is one of leading causes of cancer‐related death, and diagnosing lymphatic metastasis is of significance in terms of optimal disease management and possible better outcomes for patients. Herein a turn‐on optoacoustic nanoprobe is reported for noninvasively diagnosing and locating lymphatic metastasis in vivo. A positively charged tricyanofuran‐containing polyene chromophore (TCHM) with high extinction coefficient is designed, synthesized, and allowed to form the nanoprobe with a negatively charged hyaluronan. The TCHMs take an aggregated state within the nanoprobe and exhibit weak absorption at 882 nm, the overexpressed hyaluronidase in cancer cells specifically degrades hyaluronan into small fragments and disaggregates TCHMs, thereby greatly enhancing the absorption at 882 nm and generating prominent optoacoustic signals. For multispectral optoacoustic tomography (MSOT) imaging in vivo, mice models with subcutaneous tumor and orthotopic bladder tumor are imaged first to demonstrate the nanoprobe's capability for detecting HAase‐overexpressing tumors. A mouse model of lymphatic metastasis of tumor is then established and the lymphatic metastasis is successfully imaged and tracked optoacoustically. The imaging results were verified using multiple biochemical assays. Moreover, 3D MSOT renderings are obtained for precisely locating and tracking the metastasis of tumor in lymphatic system in a spatiotemporal manner.
Collapse
Affiliation(s)
- Yinglong Wu
- State Key Laboratory of Luminescent Materials and Devices College of Materials Science and Engineering South China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices College of Materials Science and Engineering South China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices College of Materials Science and Engineering South China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices College of Materials Science and Engineering South China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices College of Materials Science and Engineering South China University of Technology Wushan Road 381 Guangzhou 510640 China
| |
Collapse
|
34
|
Etiology and Measurement of Peri-Implant Crestal Bone Loss (CBL). J Clin Med 2019; 8:jcm8020166. [PMID: 30717189 PMCID: PMC6406263 DOI: 10.3390/jcm8020166] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
The etiology of peri-implant crestal bone loss is today better understood and certain factors proposed in the past have turned out to not be of concern. Regardless, the incidence of crestal bone loss remains higher than necessary and this paper reviews current theory on the etiology with a special emphasis on traditional and innovative methods to assess the level of crestal bone around dental implants that will enable greater sensitivity and specificity and significantly reduce variability in bone loss measurement.
Collapse
|
35
|
Lawrence DJ, Escott ME, Myers L, Intapad S, Lindsey SH, Bayer CL. Spectral photoacoustic imaging to estimate in vivo placental oxygenation during preeclampsia. Sci Rep 2019; 9:558. [PMID: 30679723 PMCID: PMC6345947 DOI: 10.1038/s41598-018-37310-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia is a pregnancy-related hypertensive disorder accounting for 14% of global maternal deaths annually. Preeclampsia - maternal hypertension and proteinuria - is promoted by placental ischemia resulting from reduced uteroplacental perfusion. Here, we assess longitudinal changes in placental oxygenation during preeclampsia using spectral photoacoustic imaging. Spectral photoacoustic images were acquired of the placenta of normal pregnant (NP) and preeclamptic reduced uterine perfusion pressure (RUPP) Sprague Dawley rats on gestational days (GD) 14, 16, and 18, corresponding to mid- to late gestation (n = 10 per cohort). Two days after implementation of the RUPP surgical model, placental oxygen saturation decreased 12% in comparison with NP. Proteinuria was determined from a 24-hour urine collection prior to imaging on GD18. Blood pressure measurements were obtained on GD18 after imaging. Placental hypoxia in the RUPP was confirmed with histological staining for hypoxia-inducible factor (HIF)-1α, a cellular transcription regulator which responds to local oxygen levels. Using in vivo, longitudinal imaging methods we determined that the placenta in the reduced uterine perfusion pressure rat model of preeclampsia is hypoxic, and that this hypoxia is maintained through late gestation. Future work will utilize these methods to assess the impact of novel therapeutics on placental ischemia and the progression of preeclampsia.
Collapse
Affiliation(s)
- Dylan J Lawrence
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA
| | - Megan E Escott
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA
| | - Leann Myers
- School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St #2400, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- School of Medicine, Tulane University, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Sarah H Lindsey
- School of Medicine, Tulane University, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA.
| |
Collapse
|
36
|
Tsuchimochi M, Yamaguchi H, Hayama K, Okada Y, Kawase T, Suzuki T, Tsubokawa N, Wada N, Ochiai A, Fujii S, Fujii H. Imaging of Metastatic Cancer Cells in Sentinel Lymph Nodes using Affibody Probes and Possibility of a Theranostic Approach. Int J Mol Sci 2019; 20:E427. [PMID: 30669481 PMCID: PMC6359136 DOI: 10.3390/ijms20020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
The accurate detection of lymph node metastases is essential for treatment success in early-stage malignant cancer. Sentinel lymph node (SLN) biopsy is the most effective procedure for detecting small or micrometastases that are undetectable by conventional imaging modalities. To demonstrate a new approach for developing a more efficient SLN biopsy procedure, we reported a two-stage imaging method combining lymphoscintigraphy and near-infrared (NIR) fluorescence imaging to depict metastatic cancer cells in SLNs in vivo. Furthermore, the theranostic potential of the combined procedure was examined by cell culture and xenograft mouse model. Anti-HER2 and anti-epidermal growth factor receptor (EGFR) affibody probes were used for NIR fluorescence imaging. Strong NIR fluorescence signal intensity of the anti-EGFR affibody probe was observed in SAS cells (EGFR positive). Radioactivity in the SLNs was clearly observed in the in vivo studies. High anti-EGFR affibody NIR fluorescence intensity was observed in the metastatic lymph nodes in mice. The addition of the IR700-conjugated anti-EGFR affibody to the culture medium decreased the proliferation of SAS cells. Decreased proliferation was shown in Ki-67 immunohistochemistry in xenograft tumors. Our data suggest that a two-stage combined imaging method using lymphoscintigraphy and affibody probes may offer the direct visualization of metastatic lymph nodes as an easily applied technique in SLN biopsy. Although further animal studies are required to assess the effect of treating lymphatic metastasis in this approach, our study results provide a foundation for the further development of this promising imaging and treatment strategy for earlier lymph node metastasis detection and treatment.
Collapse
Affiliation(s)
- Makoto Tsuchimochi
- Emeritus Professor, The Nippon Dental University, Tokyo, Japan, formerly of the Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | - Haruka Yamaguchi
- Department of Life Science Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
- Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan.
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Road Woodville South, SA 5011, Australia.
| | - Kazuhide Hayama
- Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan.
| | - Yasuo Okada
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan.
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Division of Oral Bioengineering, Department of Tissue Regeneration and Reconstitution, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8541, Japan.
| | - Takamasa Suzuki
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan.
| | - Norio Tsubokawa
- Faculty of Engineering, Niigata University, Niigata 950-2181, Japan.
| | - Noriaki Wada
- Department of General Surgery, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba 272-8513, Japan.
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
37
|
Evaluation of renal oxygen saturation using photoacoustic imaging for the early prediction of chronic renal function in a model of ischemia-induced acute kidney injury. PLoS One 2018; 13:e0206461. [PMID: 30557371 PMCID: PMC6296502 DOI: 10.1371/journal.pone.0206461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To evaluate the utility of photoacoustic imaging in measuring changes in renal oxygen saturation after ischemia-induced acute kidney injury, and to compare these measurements with histological findings and serum levels of kidney function. MATERIAL AND METHODS Acute kidney injury was induced by clamping the left renal pedicle in C57Bl/6 mice, with a 35-min ischemic period used to induce mild renal injury (14 mice) and a 50-min period for severe injury (13 mice). The oxygen saturation was measured before induction, and at 5 time-points over the first 48 h after induction, starting at 4 h after induction. Oxygen saturation, histological score, kidney volume, and the 24 h creatinine clearance rate and serum blood urea nitrogen were also measured on day 28. Between-group differences were evaluated using a Mann-Whitney U-test and Dunn's multiple comparisons. The association between oxygen saturation and measured variables was evaluated using Spearman's correlation. A receiver operator characteristic curve was constructed from oxygen saturation values at 24 h after heminephrectomy to predict chronic renal function. RESULTS The oxygen saturation was higher in the mild than severe renal injury group at 24 h after induction (73.7% and 66.9%, respectively, P<0.05). Between-group comparison on day 28 revealed a higher kidney volume (P = 0.007), lower tubular injury (P<0.001), lower serum level of blood urea nitrogen level (P = 0.016), and lower 24 h creatinine clearance rate (P = 0.042) in the mild compared with the severe injury group. The oxygen saturation at 24 h correlated with the 24 h creatinine clearance rate (P = 0.036) and serum blood urea nitrogen (P<0.001) on day 28, with an area under the receiver operating curve of 0.825. CONCLUSION Oxygen saturation, measured by photoacoustic imaging at 24 h after acute kidney injury can predict the extent of subsequent histological alterations in the kidney early after injury.
Collapse
|
38
|
Yoon H, Luke GP, Emelianov SY. Impact of depth-dependent optical attenuation on wavelength selection for spectroscopic photoacoustic imaging. PHOTOACOUSTICS 2018; 12:46-54. [PMID: 30364441 PMCID: PMC6197329 DOI: 10.1016/j.pacs.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 05/02/2023]
Abstract
An optical wavelength selection method based on the stability of the absorption cross-section matrix to improve spectroscopic photoacoustic (sPA) imaging was recently introduced. However, spatially-varying chromophore concentrations cause the wavelength- and depth-dependent variations of the optical fluence, which degrades the accuracy of quantitative sPA imaging. This study introduces a depth-optimized method that determines an optimal wavelength set minimizing an inverse of the multiplication of absorption cross-section matrix and fluence matrix to minimize the errors in concentration estimation. This method assumes that the optical fluence distribution is known or can be attained otherwise. We used a Monte Carlo simulation of light propagation in tissue with various depths and concentrations of deoxy-/oxy-hemoglobin. We quantitatively compared the developed and current approaches, indicating that the choice of wavelength is critical and our approach is effective especially when quantifying deeper imaging targets.
Collapse
Affiliation(s)
- Heechul Yoon
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Geoffrey P. Luke
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States
| | - Stanislav Y. Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, United States
| |
Collapse
|
39
|
Li C, Torres VC, Tichauer KM. Noninvasive detection of cancer spread to lymph nodes: A review of molecular imaging principles and protocols. J Surg Oncol 2018; 118:301-314. [PMID: 30196532 DOI: 10.1002/jso.25124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
Identification of cancer spread to tumor-draining lymph nodes offers critical information for guiding treatment in many cancer types. Current clinical methods of nodal staging are invasive and can have substantial negative side effects. Molecular imaging protocols have long been proposed as a less invasive means of nodal staging, having the potential to enable highly sensitive and specific evaluations. This review article summarizes the current status and future perspectives for molecular targeted nodal staging.
Collapse
Affiliation(s)
- Chengyue Li
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Veronica C Torres
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
40
|
Roberts S, Andreou C, Choi C, Donabedian P, Jayaraman M, Pratt EC, Tang J, Pérez-Medina C, Jason de la Cruz M, Mulder WJM, Grimm J, Kircher M, Reiner T. Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chem Sci 2018; 9:5646-5657. [PMID: 30061998 PMCID: PMC6049522 DOI: 10.1039/c8sc01706a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Optoacoustic imaging offers the promise of high spatial resolution and, at the same time, penetration depths well beyond the conventional optical imaging technologies, advantages that would be favorable for a variety of clinical applications. However, similar to optical fluorescence imaging, exogenous contrast agents, known as sonophores, need to be developed for molecularly targeted optoacoustic imaging. Despite numerous optoacoustic contrast agents that have been reported, there is a need for more rational design of sonophores. Here, using a library screening approach, we systematically identified and evaluated twelve commercially available near-infrared (690-900 nm) and highly absorbing dyes for multi-spectral optoacoustic tomography (MSOT). In order to achieve more accurate spectral deconvolution and precise data quantification, we sought five practical mathematical methods, namely direct classical least squares based on UV-Vis (UV/Vis-DCLS) or optoacoustic (OA-DCLS) spectra, non-negative LS (NN-LS), independent component analysis (ICA) and principal component analysis (PCA). We found that OA-DCLS is the most suitable method, allowing easy implementation and sufficient accuracy for routine analysis. Here, we demonstrate for the first time that our biocompatible nanoemulsions (NEs), in combination with near-infrared and highly absorbing dyes, enable non-invasive in vivo MSOT detection of tumors. Specifically, we found that NE-IRDye QC1 offers excellent optoacoustic performance and detection compared to related near-infrared NEs. We demonstrate that when loaded with low fluorescent or dark quencher dyes, NEs represent a flexible and new class of exogenous sonophores suitable for non-invasive pre-clinical optoacoustic imaging.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Chrysafis Andreou
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Crystal Choi
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Patrick Donabedian
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Madhumitha Jayaraman
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
| | - Edwin C Pratt
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
| | - Jun Tang
- Cancer Research Institute (CRI) , 29 Broadway , New York , NY 10006 , USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
| | - M Jason de la Cruz
- Structural Biology Program , Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , USA
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute , Department of Radiology , Mount Sinai School of Medicine , New York , NY 10029 , USA
- Department of Medical Biochemistry , Academic Medical Center , Amsterdam , The Netherlands
| | - Jan Grimm
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
- Pharmacology Program , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Moritz Kircher
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Molecular Pharmacology , Memorial Sloan Kettering Cancer Center , New York , NY 10054 , USA
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| | - Thomas Reiner
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA .
- Department of Radiology , Weill Cornell Medical College , New York , NY 10065 , USA
| |
Collapse
|
41
|
Kim H, Chang JH. Multimodal photoacoustic imaging as a tool for sentinel lymph node identification and biopsy guidance. Biomed Eng Lett 2018; 8:183-191. [PMID: 30603202 PMCID: PMC6208518 DOI: 10.1007/s13534-018-0068-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
As a minimally invasive method, sentinel lymph node biopsy (SLNB) in conjunction with guidance methods is the standard method to determine cancer metastasis in breast. The desired guidance methods for SLNB should be capable of precise SLN localization for accurate diagnosis of micro-metastases at an early stage of cancer progression and thus facilitate reducing the number of SLN biopsies for minimal surgical complications. For this, high sensitivity to the administered dyes, high spatial and contrast resolutions, deep imaging depth, and real-time imaging capability are pivotal requirements. Currently, various methods have been used for SLNB guidance, each with their own advantages and disadvantages, but no methods meet the requirements. In this review, we discuss the conventional SLNB guidance methods in this perspective. In addition, we focus on the role of the PA imaging modality on real-time SLN identification and biopsy guidance. In particular, PA-based hybrid imaging methods for precise SLN identification and efficient biopsy guidance are introduced, and their unique features, advantages, and disadvantages are discussed.
Collapse
Affiliation(s)
- Haemin Kim
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 South Korea
| | - Jin Ho Chang
- Department of Biomedical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 South Korea
- Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 South Korea
| |
Collapse
|
42
|
Bendinger AL, Glowa C, Peter J, Karger CP. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29560625 DOI: 10.1117/1.jbo.23.3.036009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity.
Collapse
Affiliation(s)
- Alina L Bendinger
- German Cancer Research Center, Department of Medical Physics in Radiology, Heidelberg, Germany
- University of Heidelberg, Faculty of Biosciences, Heidelberg, Germany
| | - Christin Glowa
- German Cancer Research Center, Department of Medical Physics in Radiation Oncology, Heidelberg, Germany
- University Hospital Heidelberg, Department of Radiation Oncology and Radiotherapy, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, Hei, Germany
| | - Jörg Peter
- German Cancer Research Center, Department of Medical Physics in Radiology, Heidelberg, Germany
| | - Christian P Karger
- German Cancer Research Center, Department of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, Hei, Germany
| |
Collapse
|
43
|
Rich LJ, Sexton S, Curtin L, Seshadri M. Spatiotemporal Optoacoustic Mapping of Tumor Hemodynamics in a Clinically Relevant Orthotopic Rabbit Model of Head and Neck Cancer. Transl Oncol 2017; 10:839-845. [PMID: 28866260 PMCID: PMC5582377 DOI: 10.1016/j.tranon.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to investigate the usefulness of photoacoustic imaging (PAI) for spatiotemporal mapping of tumor hemodynamics in a rabbit model of head and neck carcinoma. Shope cottontail rabbit papilloma virus associated VX2 carcinomas were established in adult male New Zealand White rabbits (n = 9) by surgical transplantation of tumor tissue in the neck. Noninvasive PAI with co-registered ultrasound (US) was performed to longitudinally monitor tumor growth, oxygen saturation (%sO2), and hemoglobin concentration (HbT). PAI findings were validated with Doppler sonography measures of percent vascularity (PV). Differences in tumor volumes, %sO2, HbT, and PV values over time were analyzed using repeated-measures analysis of variance with multiple comparisons. Two-tailed Spearman correlation analysis was performed to determine the correlation coefficient (r) for comparisons between %sO2, HbT, and tumor volume. US revealed a significant (P < .0001) increase in tumor volume over the 3-week period from 549 ± 260 mm3 on day 7 to 5055 ± 438 mm3 at 21 days postimplantation. Consistent with this aggressive tumor growth, PAI revealed a significant (P < .05) and progressive reduction in %sO2 from day 7 (37.6 ± 7.4%) to day 21 (9.5 ± 2.1%). Corresponding Doppler images also showed a decrease in PV over time. PAI revealed considerable intratumoral spatial heterogeneity with the tumor rim showing two- to three-fold higher %sO2 values compared to the core. Noninvasive PAI based on endogenous contrast provides a label-free method for longitudinal monitoring of temporal changes and spatial heterogeneity in thick head and neck tumors.
Collapse
Affiliation(s)
- Laurie J Rich
- Laboratory for Translational Imaging, Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Leslie Curtin
- Laboratory Animal Shared Resource, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Mukund Seshadri
- Laboratory for Translational Imaging, Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; Department of Oral Medicine/Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY 14263.
| |
Collapse
|
44
|
Yoon H, Yarmoska SK, Hannah AS, Yoon C, Hallam KA, Emelianov SY. Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets. Med Phys 2017; 44:3444-3449. [PMID: 28391597 PMCID: PMC5503159 DOI: 10.1002/mp.12269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study introduces a real-time contrast-enhanced ultrasound imaging method with recently developed laser-activated nanodroplets (LANDs), a new class of phase-change nanometer-scale contrast agents that provides perceptible, sustained high-contrast with ultrasound. METHODS In response to pulsed laser irradiation, the LANDs-, which contain liquid perfluorohexane and optical fuses-blink (vaporize and recondense). That is, they change their state from liquid nanodroplets to gas microbubbles, and then back to liquid nanodroplets. In their gaseous microbubble state, the LANDs provide high-contrast ultrasound, but the microbubbles formed in situ typically recondense in tens of milliseconds. As a result, LAND visualization by standard, real-time ultrasound is limited. However, the periodic optical triggering of LANDs allows us to observe corresponding transient, periodic changes in ultrasound contrast. This study formulates a probability function that measures how ultrasound temporal signals vary in periodicity. Then, the estimated probability is mapped onto a B-scan image to construct a LAND-localized, contrast-enhanced image. We verified our method through phantom and in vivo experiments using an ultrasound system (Vevo 2100, FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) operating with a 40-MHz linear array and interfaced with a 10 Hz Nd:YAG laser (Phocus, Opotek Inc., Carlsbad, CA, USA) operating at the fundamental 1064 nm wavelength. RESULTS From the phantom study, the results showed improvements in the contrast-to-noise ratio of our approach over conventional ultrasound ranging from 129% to 267%, with corresponding execution times of 0.10 to 0.29 s, meaning that the developed method is computationally efficient while yielding high-contrast ultrasound. Furthermore, in vivo sentinel lymph node (SLN) imaging results demonstrated that our technique could accurately identify the SLN. CONCLUSIONS The results indicate that our approach enables efficient and robust LAND localization in real time with substantially improved contrast, which is essential for the successful translation of this contrast agent platform to clinical settings.
Collapse
Affiliation(s)
- Heechul Yoon
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
| | - Steven K. Yarmoska
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
| | - Alexander S. Hannah
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
- Applied Physics LaboratoryCenter for Industrial and Medical UltrasoundUniversity of WashingtonSeattleWashington98105USA
| | - Changhan Yoon
- Department of Biomedical EngineeringInje UniversityGimhaeGyeongnam621‐749Korea
| | - Kristina A. Hallam
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
| | - Stanislav Y. Emelianov
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia30332USA
| |
Collapse
|
45
|
Wilson KE, Bachawal SV, Abou-Elkacem L, Jensen K, Machtaler S, Tian L, Willmann JK. Spectroscopic Photoacoustic Molecular Imaging of Breast Cancer using a B7-H3-targeted ICG Contrast Agent. Am J Cancer Res 2017; 7:1463-1476. [PMID: 28529630 PMCID: PMC5436506 DOI: 10.7150/thno.18217] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022] Open
Abstract
Purpose: Breast cancer imaging methods lack diagnostic accuracy, in particular for patients with dense breast tissue, and improved techniques are critically needed. The purpose of this study was to evaluate antibody-indocyanine green (ICG) conjugates, which undergo dynamic absorption spectrum shifts after cellular endocytosis and degradation, and spectroscopic photoacoustic (sPA) imaging to differentiate normal breast tissue from breast cancer by imaging B7-H3, a novel breast cancer associated molecular target. Methods: Quantitative immunohistochemical staining of endothelial and epithelial B7-H3 expression was assessed in 279 human breast tissue samples, including normal (n=53), benign lesions (11 subtypes, n=129), and breast cancers (4 subtypes, n=97). After absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control-ICG (Iso-ICG) were characterized, sPA imaging in a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was performed and compared to imaging of control conditions [B7-H3-ICG in tumor negative animals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)] and validated with ex vivo histological analysis. Results: Immunostaining showed differential B7-H3 expression on both the endothelium and tumor epithelium in human breast cancer with an area under the ROC curve of 0.93 to differentiate breast cancer vs non-cancer. Combined in vitro/in vivo imaging showed that sPA allowed specific B7-H3-ICG detection down to the 13 nM concentration and differentiation from Iso-ICG. sPA molecular imaging of B7-H3-ICG showed a 3.01-fold (P<0.01) increase in molecular B7-H3-ICG signal in tumors compared to control conditions. Conclusions: B7-H3 is a promising target for both vascular and epithelial sPA imaging of breast cancer. Leveraging antibody-ICG contrast agents and their dynamic optical absorption spectra allows for highly specific sPA imaging of breast cancer.
Collapse
|
46
|
Hai P, Zhou Y, Zhang R, Ma J, Li Y, Shao JY, Wang LV. Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41004. [PMID: 27832253 PMCID: PMC5995136 DOI: 10.1117/1.jbo.22.4.041004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/19/2016] [Indexed: 05/04/2023]
Abstract
Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification <italic<in vivo</italic<. The feasibility was first demonstrated by imaging CTC cluster <italic<ex vivo</italic<. The relationship between the contrast-to-noise ratios (CNRs) and the number of cells in melanoma tumor cell clusters was investigated and verified. Melanoma CTC clusters with a minimum of four cells could be detected, and the number of cells could be computed from the CNR. Finally, we demonstrated imaging of injected melanoma CTC clusters in rats <italic<in vivo</italic<. Similarly, the number of cells in the melanoma CTC clusters could be quantified. The data showed that larger CTC clusters had faster clearance rates in the bloodstream, which agreed with the literature. The results demonstrated the capability of LA-PAT to detect and quantify melanoma CTC clusters <italic<in vivo</italic< and showed its potential for tumor metastasis study and cancer therapy.
Collapse
Affiliation(s)
- Pengfei Hai
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Ruiying Zhang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Jun Ma
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yang Li
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Jin-Yu Shao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
47
|
Bayer CL, Wlodarczyk BJ, Finnell RH, Emelianov SY. Ultrasound-guided spectral photoacoustic imaging of hemoglobin oxygenation during development. BIOMEDICAL OPTICS EXPRESS 2017; 8:757-763. [PMID: 28270982 PMCID: PMC5330552 DOI: 10.1364/boe.8.000757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 05/06/2023]
Abstract
Few technologies are capable of imaging in vivo function during development. In this study, we have implemented spectral photoacoustic imaging to estimate tissue oxygenation longitudinally in pregnant mice. We used the spectral photoacoustic signal to estimate hemoglobin oxygen saturation within intact, in vivo mouse concepti from developmental day (E) 8.5 to E16.5-a first step towards functional imaging of the maternal-fetal environment. Future work will apply these methods to compare longitudinal functional changes during normal vs abnormal development of embryos, fetuses, and placentas.
Collapse
Affiliation(s)
- Carolyn L. Bayer
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
- Currently with the Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA 70118, USA
| | - Bogdan J. Wlodarczyk
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | - Richard H. Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX 78712, USA
- Currently with the School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
48
|
Valluru KS, Wilson KE, Willmann JK. Photoacoustic Imaging in Oncology: Translational Preclinical and Early Clinical Experience. Radiology 2016; 280:332-49. [PMID: 27429141 PMCID: PMC4976462 DOI: 10.1148/radiol.16151414] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoacoustic imaging has evolved into a clinically translatable platform with the potential to complement existing imaging techniques for the management of cancer, including detection, characterization, prognosis, and treatment monitoring. In photoacoustic imaging, tissue is optically excited to produce ultrasonographic images that represent a spatial map of optical absorption of endogenous constituents such as hemoglobin, fat, melanin, and water or exogenous contrast agents such as dyes and nanoparticles. It can therefore provide functional and molecular information that allows noninvasive soft-tissue characterization. Photoacoustic imaging has matured over the years and is currently being translated into the clinic with various clinical studies underway. In this review, the current state of photoacoustic imaging is presented, including techniques and instrumentation, followed by a discussion of potential clinical applications of this technique for the detection and management of cancer. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Keerthi S. Valluru
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Katheryne E. Wilson
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| | - Jürgen K. Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305-5621
| |
Collapse
|
49
|
Zhang M, Kim HS, Jin T, Yi A, Moon WK. Ultrasound-guided photoacoustic imaging for the selective detection of EGFR-expressing breast cancer and lymph node metastases. BIOMEDICAL OPTICS EXPRESS 2016; 7:1920-31. [PMID: 27231631 PMCID: PMC4871091 DOI: 10.1364/boe.7.001920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 05/21/2023]
Abstract
We assessed the use of ultrasound (US)-guided photoacoustic imaging (PAI) and anti-EGFR antibody-conjugated gold nanorods (anti-EGFR-GNs) to non-invasively detect EGFR-expressing primary tumor masses and regional lymph node (LN) metastases in breast tumor mice generated by injecting MCF-7 (EGFR-negative) or MDA-MB-231 (EGFR-positive) human breast cells using a preclinical Vevo 2100 LAZR Imaging system. Anti-EGFR-GNs provided a significant enhancement in the PA signal in MDA-MB-231 tumor and the axillary LN metastases relative to MCF-7 tumor and non-LN metastases. We demonstrated that US-guided PAI using anti-EGFR-GNs is highly sensitive for the selective visualization of EGFR-expressing breast primary tumors as well as LN micrometastases.
Collapse
Affiliation(s)
- Meihua Zhang
- Department of Science and Radiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea; Contributed equally
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea; Contributed equally
| | - Tiefeng Jin
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Ann Yi
- Seoul National University Hospital HealthCare System Gangnam Center, 152 Teheran-ro, Gangnam-gu, Seoul 06236, South Korea;
| | - Woo Kyung Moon
- Department of Science and Radiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea; Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea;
| |
Collapse
|
50
|
Mezrich R. Science to Practice: What Light through Yonder Tumor Breaks: Noninvasive Staging of Cancer--Shining a Light on Disease. Radiology 2015; 277:311-3. [PMID: 26492017 DOI: 10.1148/radiol.2015151024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photoacoustic imaging imparts the ability to distinguish materials according to their differences in optical absorption (ie, their color) with the high spatial and temporal resolution of ultrasonography (US). Experiments in rats show the advantages this approach would have in the clinically important noninvasive determination of the presence of tumor in the lymph nodes draining a tumor, providing the ability to achieve the results of total axillary lymph node dissection without the risks of surgery or even percutaneous sentinel node biopsy. The coupling of this technique to a conventional US imaging system gives the promise of rapid translation to clinical use.
Collapse
Affiliation(s)
- Reuben Mezrich
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland School of Medicine 22 S Greene St Baltimore, MD 21201
| |
Collapse
|