1
|
Li M, Liu J, Weng J, Dong G, Chen X, Cui Y, Ren X, Shen S, Jiang H, Zhang X, Zhao X, Li M, Wang X, Ren H, Li Q, Zhang Y, Cheng Q, Yu Y, Lin S. Unveiling hierarchy and spatial distribution of O 6-methylguanine-DNA methyltransferase promoter methylation in World Health Organization grade 2-3 gliomas. Cancer Sci 2024; 115:3403-3414. [PMID: 39101880 PMCID: PMC11447971 DOI: 10.1111/cas.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
This study investigated the role of O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation hierarchy and heterogeneity in grade 2-3 gliomas, focusing on variations in chemotherapy benefits and resection dependency. A cohort of 668 newly diagnosed grade 2-3 gliomas, with comprehensive clinical, radiological, and molecular data, formed the basis of this analysis. The extent of resection was categorized into gross total resection (GTR ≥100%), subtotal resection (STR >90%), and partial resection (PR ≤90%). MGMTp methylation levels were examined using quantitative pyrosequencing. Our findings highlighted the critical role of GTR in improving the prognosis for astrocytomas (IDH1/2-mutant and 1p/19q non-codeleted), contrasting with its lesser significance for oligodendrogliomas (IDH1/2 mutation and 1p/19q codeletion). Oligodendrogliomas demonstrated the highest average MGMTp methylation levels (median: 28%), with a predominant percentage of methylated cases (average methylation levels >20%). Astrocytomas were more common in the low-methylated group (10%-20%), while IDH wild-type gliomas were mostly unmethylated (<10%). Spatial distribution analysis revealed a decrement in frontal lobe involvement from methylated, low-methylated to unmethylated cases (72.8%, 59.3%, and 47.8%, respectively). In contrast, low-methylated and unmethylated cases were more likely to invade the temporal-insular region (19.7%, 34.3%, and 40.4%, respectively). Astrocytomas with intermediate MGMTp methylation were notably associated with temporal-insular involvement, potentially indicating a moderate response to temozolomide and underscoring the importance of aggressive resection strategies. In conclusion, our study elucidates the complex interplay of MGMTp methylation hierarchy and heterogeneity among grade 2-3 gliomas, providing insights into why astrocytomas and IDH wild-type lower-grade glioma might derive less benefit from chemotherapy.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hongxiang Ren
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Schubert MC, Soyka SJ, Tamimi A, Maus E, Schroers J, Wißmann N, Reyhan E, Tetzlaff SK, Yang Y, Denninger R, Peretzke R, Beretta C, Drumm M, Heuer A, Buchert V, Steffens A, Walshon J, McCortney K, Heiland S, Bendszus M, Neher P, Golebiewska A, Wick W, Winkler F, Breckwoldt MO, Kreshuk A, Kuner T, Horbinski C, Kurz FT, Prevedel R, Venkataramani V. Deep intravital brain tumor imaging enabled by tailored three-photon microscopy and analysis. Nat Commun 2024; 15:7383. [PMID: 39256378 PMCID: PMC11387418 DOI: 10.1038/s41467-024-51432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Intravital 2P-microscopy enables the longitudinal study of brain tumor biology in superficial mouse cortex layers. Intravital microscopy of the white matter, an important route of glioblastoma invasion and recurrence, has not been feasible, due to low signal-to-noise ratios and insufficient spatiotemporal resolution. Here, we present an intravital microscopy and artificial intelligence-based analysis workflow (Deep3P) that enables longitudinal deep imaging of glioblastoma up to a depth of 1.2 mm. We find that perivascular invasion is the preferred invasion route into the corpus callosum and uncover two vascular mechanisms of glioblastoma migration in the white matter. Furthermore, we observe morphological changes after white matter infiltration, a potential basis of an imaging biomarker during early glioblastoma colonization. Taken together, Deep3P allows for a non-invasive intravital investigation of brain tumor biology and its tumor microenvironment at subcortical depths explored, opening up opportunities for studying the neuroscience of brain tumors and other model systems.
Collapse
Affiliation(s)
- Marc Cicero Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella Judith Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amr Tamimi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Svenja Kristin Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Yang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Denninger
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Robin Peretzke
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlo Beretta
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Michael Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Alicia Steffens
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Jordain Walshon
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Neher
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Felix Tobias Kurz
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany.
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Hwa JC, Wong AMC, Jung SM, Wu CT. Pediatric-type diffuse low-grade glioma with T2-FLAIR mismatch sign: a case report and literature review. Childs Nerv Syst 2024; 40:2271-2278. [PMID: 38884778 DOI: 10.1007/s00381-024-06487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Pediatric-type diffuse low-grade gliomas are a new entity that was introduced in the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System, which was published in 2021. Notably, the information regarding the radiophenotypes of this new entity is limited. OBJECTIVE T2-FLAIR mismatch sign has been mostly studied in adult-type diffuse gliomas so far. We aimed to present more pediatric cases for future research about T2-FLAIR mismatch signs in pediatric-type diffuse low-grade gliomas. CASE PRESENTATION The current study presents a case of a 2-year-old boy who has a subcortical tumor at the right precentral frontal region. This tumor exhibited a T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign that was identified as specific for isocitrate dehydrogenase (IDH)-mutant 1p/19q non-co-deleted astrocytomas. The tumor was pathologically identified as pediatric-type diffuse low-grade gliomas, and it tested negative for IDH-1 immunohistochemistry. The whole-exome sequencing of tumor tissue revealed negative results for IDH mutation, 1p/19q co-deletion, MYB rearrangement, and all other potential pathogenic mutations. CONCLUSION The T2-FLAIR mismatch sign may not be 100% specific for IDH-mutant gliomas, especially in children, and researchers must further investigate the pathophysiology of the T2-FLAIR mismatch sign in brain tumors and the radiophenotypes of entities of pediatric brain tumors.
Collapse
Affiliation(s)
- Jia-Ching Hwa
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Alex Mun-Ching Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung and Linkou, Chang Gung University College of Medicine, Keelung and Linkou, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Linkou, Taiwan
| | - Chieh-Tsai Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Linkou, Taiwan.
| |
Collapse
|
4
|
Li L, Xiao F, Wang S, Kuang S, Li Z, Zhong Y, Xu D, Cai Y, Li S, Chen J, Liu Y, Li J, Li H, Xu H. Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis. Sci Rep 2024; 14:16031. [PMID: 38992201 PMCID: PMC11239670 DOI: 10.1038/s41598-024-66653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) has been demonstrated to be an important prognostic and predictive marker in glioblastoma (GBM). To establish a reliable radiomics model based on MRI data to predict the MGMT promoter methylation status of GBM. A total of 183 patients with glioblastoma were included in this retrospective study. The visually accessible Rembrandt images (VASARI) features were extracted for each patient, and a total of 14676 multi-region features were extracted from enhanced, necrotic, "non-enhanced, and edematous" areas on their multiparametric MRI. Twelve individual radiomics models were constructed based on the radiomics features from different subregions and different sequences. Four single-sequence models, three single-region models and the combined radiomics model combining all individual models were constructed. Finally, the predictive performance of adding clinical factors and VASARI characteristics was evaluated. The ComRad model combining all individual radiomics models exhibited the best performance in test set 1 and test set 2, with the area under the receiver operating characteristic curve (AUC) of 0.839 (0.709-0.963) and 0.739 (0.581-0.897), respectively. The results indicated that the radiomics model combining multi-region and multi-parametric MRI features has exhibited promising performance in predicting MGMT methylation status in GBM. The Modeling scheme that combining all individual radiomics models showed best performance among all constructed moels.
Collapse
Affiliation(s)
- Lanqing Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shouchao Wang
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengyu Kuang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery&Brain Glioma Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Wuhan GE Healthcare, Wuhan, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Zhou S, Wu S, Li Z, Wang X. Construction and Validation of Nomograms for Predicting Overall Survival and Cancer-Specific Survival in Patients with Primary Anaplastic Oligodendroglioma. World Neurosurg 2024; 187:e472-e484. [PMID: 38677647 DOI: 10.1016/j.wneu.2024.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE Anaplastic oligodendroglioma (AOD) is a rare high-grade central nervous system tumor. The current research on prognostic prediction of AOD remains limited. This study aimed to identify prognostic factors and establish the nomograms to predict overall survival (OS) and cancer-specific survival (CSS) for patients with AOD. METHODS Patients diagnosed with AOD between 1992 and 2020 were extracted from the Surveillance, Epidemiology, and End Result database. We performed univariate and multivariate Cox regression analyses to identify independent prognostic factors based on the training group. Kaplan-Meier survival curves were used to compare the impact of various independent factors on patient prognosis. For OS and CSS, the nomograms were constructed and verified by the validation group. Harrell''s concordance index, receiver operating characteristic curves, calibration curves, and decision curve analyses were used to assess the discrimination, consistency, and clinical value of the nomograms. RESULTS A total of 1202 AOD patients were enrolled, being randomly divided into training (n = 841) and validation (n = 361) groups (7:3 ratio). Univariate and multivariate Cox analysis identified 4 significant independent factors (tumor site, age, surgery, and chemotherapy). For OS and CSS, Harrell''s concordance index were 0.731 (0.705-0.757) and 0.728 (0.701-0.754) in the training group, 0.688 (0.646-0.731) and 0.684 (0.639-0.729) in the validation group, respectively. Receiver operating characteristic curves and Calibration curves showed good discrimination and consistency, respectively. In addition, the decision curve analyses curves showed the nomograms have good clinical benefits. CONCLUSIONS We successfully established the nomograms to predict the OS and CSS for AOD patients. The nomograms showed good performance in prognostic prediction, assisting clinicians in evaluating patient prognosis and personalizing treatment plans.
Collapse
Affiliation(s)
- Shuoming Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuaishuai Wu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhaoming Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Yuan J, Siakallis L, Li HB, Brandner S, Zhang J, Li C, Mancini L, Bisdas S. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. BMC Med Imaging 2024; 24:104. [PMID: 38702613 PMCID: PMC11067215 DOI: 10.1186/s12880-024-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The role of isocitrate dehydrogenase (IDH) mutation status for glioma stratification and prognosis is established. While structural magnetic resonance image (MRI) is a promising biomarker, it may not be sufficient for non-invasive characterisation of IDH mutation status. We investigated the diagnostic value of combined diffusion tensor imaging (DTI) and structural MRI enhanced by a deep radiomics approach based on convolutional neural networks (CNNs) and support vector machine (SVM), to determine the IDH mutation status in Central Nervous System World Health Organization (CNS WHO) grade 2-4 gliomas. METHODS This retrospective study analyzed the DTI-derived fractional anisotropy (FA) and mean diffusivity (MD) images and structural images including fluid attenuated inversion recovery (FLAIR), non-enhanced T1-, and T2-weighted images of 206 treatment-naïve gliomas, including 146 IDH mutant and 60 IDH-wildtype ones. The lesions were manually segmented by experienced neuroradiologists and the masks were applied to the FA and MD maps. Deep radiomics features were extracted from each subject by applying a pre-trained CNN and statistical description. An SVM classifier was applied to predict IDH status using imaging features in combination with demographic data. RESULTS We comparatively assessed the CNN-SVM classifier performance in predicting IDH mutation status using standalone and combined structural and DTI-based imaging features. Combined imaging features surpassed stand-alone modalities for the prediction of IDH mutation status [area under the curve (AUC) = 0.846; sensitivity = 0.925; and specificity = 0.567]. Importantly, optimal model performance was noted following the addition of demographic data (patients' age) to structural and DTI imaging features [area under the curve (AUC) = 0.847; sensitivity = 0.911; and specificity = 0.617]. CONCLUSIONS Imaging features derived from DTI-based FA and MD maps combined with structural MRI, have superior diagnostic value to that provided by standalone structural or DTI sequences. In combination with demographic information, this CNN-SVM model offers a further enhanced non-invasive prediction of IDH mutation status in gliomas.
Collapse
Affiliation(s)
- Jialin Yuan
- Department of Radiology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Queen Square Institute of Neurology, University College London, London, UK
| | - Loizos Siakallis
- Queen Square Institute of Neurology, University College London, London, UK
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Munich, Germany
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Sebastian Brandner
- Division of Neuropathology, Queen Square Institute of Neurology, University College London, London, UK
| | - Jianguo Zhang
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chenming Li
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Laura Mancini
- Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sotirios Bisdas
- Queen Square Institute of Neurology, University College London, London, UK.
- Lysholm Department of Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Zhang J, Wang Y, Yang Y, Han Y, Yu Y, Hu Y, Liang S, Sun Q, Shang D, Bi J, Cui G, Yan L. Noninvasive Isocitrate Dehydrogenase 1 Status Prediction in Grade II/III Glioma Based on Magnetic Resonance Images: A Transfer Learning Strategy. J Comput Assist Tomogr 2024; 48:449-458. [PMID: 38271541 DOI: 10.1097/rct.0000000000001575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate transfer learning combined with various convolutional neural networks (TL-CNNs) in predicting isocitrate dehydrogenase 1 ( IDH1 ) status of grade II/III gliomas. METHODS Grade II/III glioma patients diagnosed at the Tangdu Hospital (August 2009 to May 2017) were retrospectively enrolled, including 54 patients with IDH1 mutant and 56 patients with wild-type IDH1 . Convolutional neural networks, AlexNet, GoogLeNet, ResNet, and VGGNet were fine-tuned with T2-weighted imaging (T2WI), fluid attenuation inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (T1CE) images. The single-modal networks were integrated with averaged sigmoid probabilities, logistic regression, and support vector machine. FLAIR-T1CE-fusion (FC-fusion), T2WI-T1CE-fusion (TC-fusion), and FLAIR-T2WI-T1CE-fusion (FTC-fusion) were used for fine-tuning TL-CNNs. RESULTS IDH1 -mutant prediction accuracies using AlexNet, GoogLeNet, ResNet, and VGGNet achieved 70.0% (AUC = 0.660), 65.0% (AUC = 0.600), 70.0% (AUC = 0.700), and 80.0% (AUC = 0.730) for T2WI images, 70.0% (AUC = 0.660), 70.0% (AUC = 0.620), 70.0% (AUC = 0.710), and 80.0% (AUC = 0.720) for FLAIR images, and 73.7% (AUC = 0.744), 73.7% (AUC = 0.656), 73.7% (AUC = 0.633), and 73.7% (AUC = 0.700) for T1CE images, respectively. The highest AUC (0.800) was achieved using VGGNet and FC-fusion images. CONCLUSIONS TL-CNNs (especially VGGNet) had a potential predictive value for IDH1 -mutant status of grade II/III gliomas.
Collapse
Affiliation(s)
- Jin Zhang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yuyao Wang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yang Yang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yu Han
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Ying Yu
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Yuchuan Hu
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Shouheng Liang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Qian Sun
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Danting Shang
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Jiajun Bi
- College of Basic Medicine, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi, China
| | - Guangbin Cui
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| | - Linfeng Yan
- From the Department of Radiology and Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital
| |
Collapse
|
8
|
Gao E, Wang P, Bai J, Ma X, Gao Y, Qi J, Zhao K, Zhang H, Yan X, Yang G, Zhao G, Cheng J. Radiomics Analysis of Diffusion Kurtosis Imaging: Distinguishing Between Glioblastoma and Single Brain Metastasis. Acad Radiol 2024; 31:1036-1043. [PMID: 37690885 DOI: 10.1016/j.acra.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to assess the value of diffusion kurtosis imaging (DKI)-based radiomics models in differentiating glioblastoma (GB) from single brain metastasis (SBM) and compare their diagnostic performance with that of routine magnetic resonance imaging (MRI) models. MATERIALS AND METHODS A total of 110 patients who underwent DKI and were pathologically diagnosed with GB (n = 58) or SBM (n = 52) were enrolled in this study. Radiomics features were extracted from the manually delineated region of interest of the lesion. A training set for model development was constructed from the images of 88 random patients, and 22 patients were reserved for independent validation. Seven single-DKI-parametric models and a multi-DKI-parametric model were constructed using six classifiers, whereas four single-routine-sequence models (based on T2 weighted imaging, apparent diffusion coefficient, T2-dark-fluid, and contrast-enhanced T1 magnetization prepared rapid gradient echo) and a multisequence routine MRI model were constructed for comparison. Receiver operating characteristic curve analysis was conducted to assess the diagnostic performance. The areas under the curve (AUCs) of different models were compared using the DeLong test. RESULTS The AUCs of the single-DKI-parametric models ranged from 0.800 to 0.933 (mean kurtosis [MK] model). The multi-DKI-parametric model had a slightly higher AUC (0.958) than the MK model; however, the difference was not statistically significant (P = 0.688). In comparison, the AUCs of the routine MRI models ranged from 0.633 to 0.733 (multisequence routine MRI model). The AUC of the multi-DKI-parametric model was significantly higher than that of the multisequence routine MRI model (P = 0.042). CONCLUSION The multi-DKI-parametric radiomics model exhibited better performance than that of the single-DKI-parametric models and routine MRI models in distinguishing GB from SBM.
Collapse
Affiliation(s)
- Eryuan Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Peipei Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Jie Bai
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Yufei Gao
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, Henan, China (Y.G.)
| | - Jinbo Qi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Kai Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers China, Shanghai, China (H.Z., X.Y.)
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthineers China, Shanghai, China (H.Z., X.Y.)
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China (G.Y.)
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.)
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.); Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, Henan, China (E.G., P.W., J.B., X.M., J.Q., K.Z., G.Z., J.C.).
| |
Collapse
|
9
|
Yu Y, Liu Q, Ran Q, Cao F. Overexpression of PPM1B inhibited chemoresistance to temozolomide and proliferation in glioma cells. Cell Biol Int 2024; 48:143-153. [PMID: 37798941 DOI: 10.1002/cbin.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
Protein phosphatase magnesium-dependent 1B (PPM1B) functions as IKKβ phosphatases to terminate nuclear factor kappa B (NF-κB) signaling. NF-κB signaling was constitutively activated in glioma cells. At present, little is known about the role of PPM1B in glioma. In the current study, we found that the expression of PPM1B was reduced in glioma tissues and cells, and decreased expression of PPM1B was related to poor overall survival of patients. Overexpression of PPM1B inhibited the proliferation and promoted apoptosis of glioma cells. Moreover, PPM1B overexpression reduced the phosphorylation of IKKβ and inhibited the nuclear localization of NF-κBp65. PDTC, an inhibitor of NF-κB signaling, reversed PPM1B-knockdown-induced cell proliferation. Furthermore, overexpression of PPM1B enhanced the sensitivity of glioma cells to temozolomide. In vivo experiments showed that overexpression of PPM1B could inhibit tumor growth, improve the survival rate of nude mice, and enhance the sensitivity to temozolomide. In conclusion, PPM1B suppressed glioma cell proliferation and the IKKβ-NF-κB signaling pathway, and enhanced temozolomide sensitivity of glioma cells.
Collapse
Affiliation(s)
- Yunhu Yu
- Neurosurgery Department, People's Hospital of Honghuagang District of Zunyi, Zunyi, China
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Liu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qishan Ran
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fang Cao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Setyawan NH, Choridah L, Nugroho HA, Malueka RG, Dwianingsih EK. Beyond invasive biopsies: using VASARI MRI features to predict grade and molecular parameters in gliomas. Cancer Imaging 2024; 24:3. [PMID: 38167551 PMCID: PMC10759759 DOI: 10.1186/s40644-023-00638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gliomas present a significant economic burden and patient management challenge. The 2021 WHO classification incorporates molecular parameters, which guide treatment decisions. However, acquiring these molecular data involves invasive biopsies, prompting a need for non-invasive diagnostic methods. This study aims to assess the potential of Visually AcceSAble Rembrandt Images (VASARI) MRI features to predict glioma characteristics such as grade, IDH mutation, and MGMT methylation status. METHODS This study enrolled 107 glioma patients treated between 2017 and 2022, meeting specific criteria including the absence of prior chemotherapy/radiation therapy, and the presence of molecular and MRI data. Images were assessed using the 27 VASARI MRI features by two blinded radiologists. Pathological and molecular assessments were conducted according to WHO 2021 CNS Tumor classification. Cross-validation Least Absolute Shrinkage and Selection Operator (CV-LASSO) logistic regression was applied for statistical analysis to identify significant VASARI features in determining glioma grade, IDH mutation, and MGMT methylation status. RESULTS The study demonstrated substantial observer agreement in VASARI feature evaluation (inter- and intra-observer κ = 0.714 - 0.831 and 0.910, respectively). Patient imaging characteristics varied significantly with glioma grade, IDH mutation, and MGMT methylation. A predictive model was established using VASARI features for glioma grade prediction, exhibiting an AUC of 0.995 (95% CI = 0.986 - 0.998), 100% sensitivity, and 92.86% specificity. IDH mutation status was predicted with AUC 0.930 (95% CI = 0.882 - 0.977), and improved slightly to 0.933 with 'age-at-diagnosis' added. A model predicting MGMT methylation had a satisfactory performance (AUC 0.757, 95% CI = 0.645 - 0.868), improving to 0.791 when 'age-at-diagnosis' was added. CONCLUSIONS The T1/FLAIR ratio, enhancement quality, hemorrhage, and proportion enhancing predict glioma grade with excellent accuracy. The proportion enhancing, thickness of enhancing margin, and T1/FLAIR ratio are significant predictors for IDH mutation status. Lastly, MGMT methylation is related to the longest diameter of the lesion, edema crossing the midline, and the proportion of the non-enhancing lesion. VASARI MRI features offer non-invasive and accurate predictive models for glioma grade, IDH mutation, and MGMT methylation status, enhancing glioma patient management.
Collapse
Affiliation(s)
- Nurhuda Hendra Setyawan
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jl. Farmako, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia.
| | - Lina Choridah
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jl. Farmako, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Hanung Adi Nugroho
- Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No.2, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jl. Farmako, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jl. Farmako, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
11
|
Doniselli FM, Pascuzzo R, Agrò M, Aquino D, Anghileri E, Farinotti M, Pollo B, Paterra R, Cuccarini V, Moscatelli M, DiMeco F, Sconfienza LM. Development of A Radiomic Model for MGMT Promoter Methylation Detection in Glioblastoma Using Conventional MRI. Int J Mol Sci 2023; 25:138. [PMID: 38203308 PMCID: PMC10778771 DOI: 10.3390/ijms25010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a molecular marker associated with a better response to chemotherapy in patients with glioblastoma (GB). Standard pre-operative magnetic resonance imaging (MRI) analysis is not adequate to detect MGMT promoter methylation. This study aims to evaluate whether the radiomic features extracted from multiple tumor subregions using multiparametric MRI can predict MGMT promoter methylation status in GB patients. This retrospective single-institution study included a cohort of 277 GB patients whose 3D post-contrast T1-weighted images and 3D fluid-attenuated inversion recovery (FLAIR) images were acquired using two MRI scanners. Three separate regions of interest (ROIs) showing tumor enhancement, necrosis, and FLAIR hyperintensities were manually segmented for each patient. Two machine learning algorithms (support vector machine (SVM) and random forest) were built for MGMT promoter methylation prediction from a training cohort (196 patients) and tested on a separate validation cohort (81 patients), based on a set of automatically selected radiomic features, with and without demographic variables (i.e., patients' age and sex). In the training set, SVM based on the selected radiomic features of the three separate ROIs achieved the best performances, with an average of 83.0% (standard deviation: 5.7%) for accuracy and 0.894 (0.056) for the area under the curve (AUC) computed through cross-validation. In the test set, all classification performances dropped: the best was obtained by SVM based on the selected features extracted from the whole tumor lesion constructed by merging the three ROIs, with 64.2% (95% confidence interval: 52.8-74.6%) accuracy and 0.572 (0.439-0.705) for AUC. The performances did not change when the patients' age and sex were included with the radiomic features into the models. Our study confirms the presence of a subtle association between imaging characteristics and MGMT promoter methylation status. However, further verification of the strength of this association is needed, as the low diagnostic performance obtained in this validation cohort is not sufficiently robust to allow clinically meaningful predictions.
Collapse
Affiliation(s)
- Fabio M. Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Massimiliano Agrò
- Post-Graduate School in Radiodiagnostics, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Elena Anghileri
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.)
| | - Mariangela Farinotti
- Neuroepidemiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Rosina Paterra
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.)
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Department of Oncology and Hematology-Oncology, Università Degli Studi di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
- Radiology Unit, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| |
Collapse
|
12
|
Nakhate V, Gonzalez Castro LN. Artificial intelligence in neuro-oncology. Front Neurosci 2023; 17:1217629. [PMID: 38161802 PMCID: PMC10755952 DOI: 10.3389/fnins.2023.1217629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Artificial intelligence (AI) describes the application of computer algorithms to the solution of problems that have traditionally required human intelligence. Although formal work in AI has been slowly advancing for almost 70 years, developments in the last decade, and particularly in the last year, have led to an explosion of AI applications in multiple fields. Neuro-oncology has not escaped this trend. Given the expected integration of AI-based methods to neuro-oncology practice over the coming years, we set to provide an overview of existing technologies as they are applied to the neuropathology and neuroradiology of brain tumors. We highlight current benefits and limitations of these technologies and offer recommendations on how to appraise novel AI-tools as they undergo consideration for integration into clinical workflows.
Collapse
Affiliation(s)
- Vihang Nakhate
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - L. Nicolas Gonzalez Castro
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- The Center for Neuro-Oncology, Dana–Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
13
|
Pemberton HG, Wu J, Kommers I, Müller DMJ, Hu Y, Goodkin O, Vos SB, Bisdas S, Robe PA, Ardon H, Bello L, Rossi M, Sciortino T, Nibali MC, Berger MS, Hervey-Jumper SL, Bouwknegt W, Van den Brink WA, Furtner J, Han SJ, Idema AJS, Kiesel B, Widhalm G, Kloet A, Wagemakers M, Zwinderman AH, Krieg SM, Mandonnet E, Prados F, de Witt Hamer P, Barkhof F, Eijgelaar RS. Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms. Sci Rep 2023; 13:18911. [PMID: 37919354 PMCID: PMC10622563 DOI: 10.1038/s41598-023-44794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitals' data. All models' median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74-0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring.
Collapse
Affiliation(s)
- Hugh G Pemberton
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jiaming Wu
- Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Ivar Kommers
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Domenique M J Müller
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Yipeng Hu
- Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Olivia Goodkin
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sjoerd B Vos
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sotirios Bisdas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Pierre A Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilko Ardon
- Department of Neurosurgery, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Wim Bouwknegt
- Department of Neurosurgery, Medical Center Slotervaart, Amsterdam, The Netherlands
| | | | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Seunggu J Han
- Department of Neurological Surgery, Stanford University, Stanford, USA
| | - Albert J S Idema
- Department of Neurosurgery, Northwest Clinics, Alkmaar, The Netherlands
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Alfred Kloet
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
| | - Michiel Wagemakers
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Ferran Prados
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Philip de Witt Hamer
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
- Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Roelant S Eijgelaar
- Neurosurgical Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
15
|
Zhu A, Shih R, Huang RY, DeMarco JK, Bhushan C, Morris HD, Kohls G, Yeo DTB, Marinelli L, Mitra J, Hood M, Ho VB, Foo TKF. Revealing tumor microstructure with oscillating diffusion encoding MRI in pre-surgical and post-treatment glioma patients. Magn Reson Med 2023; 90:1789-1801. [PMID: 37335831 DOI: 10.1002/mrm.29758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE We hypothesized that the time-dependent diffusivity at short diffusion times, as measured by oscillating gradient spin echo (OGSE) diffusion MRI, can characterize tissue microstructures in glioma patients. THEORY AND METHODS Five adult patients with known diffuse glioma, including two pre-surgical and three with new enhancing lesions after treatment for high-grade glioma, were scanned in an ultra-high-performance gradient 3.0T MRI system. OGSE diffusion MRI at 30-100 Hz and pulsed gradient spin echo diffusion imaging (approximated as 0 Hz) were obtained. The ADC and trace-diffusion-weighted image at each acquired frequency were calculated, that is, ADC (f) and TraceDWI (f). RESULTS In pre-surgical patients, biopsy-confirmed solid enhancing tumor in a high-grade glioblastoma showed higherADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lowerTraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ (f)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , compared to that at same OGSE frequency in a low-grade astrocytoma. In post-treatment patients, the enhancing lesions of two patients who were diagnosed with tumor progression contained more voxels with highADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lowTraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\left(\mathrm{f}\right)}{\mathrm{TraceDWI}\left(0\ \mathrm{Hz}\right)} $$ , compared to the enhancing lesions of a patient who was diagnosed with treatment effect. Non-enhancing T2 signal abnormality lesions in both the pre-surgical high-grade glioblastoma and post-treatment tumor progressions showed regions with highADC ( f ) ADC ( 0 Hz ) $$ \frac{\mathrm{ADC}\ (f)}{\mathrm{ADC}\ \left(0\ \mathrm{Hz}\right)} $$ and lowTraceDWI ( f ) TraceDWI ( 0 Hz ) $$ \frac{\mathrm{TraceDWI}\ \left(\mathrm{f}\right)}{\mathrm{TraceDWI}\ \left(0\ \mathrm{Hz}\right)} $$ , consistent with infiltrative tumor. The solid tumor of the glioblastoma, the enhancing lesions of post-treatment tumor progressions, and the suspected infiltrative tumors showed high diffusion time-dependency from 30 to 100 Hz, consistent with high intra-tumoral volume fraction (cellular density). CONCLUSION Different characteristics of OGSE-based time-dependent diffusivity can reveal heterogenous tissue microstructures that indicate cellular density in glioma patients.
Collapse
Affiliation(s)
- Ante Zhu
- GE Research, Niskayuna, New York, USA
| | - Robert Shih
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - J Kevin DeMarco
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | - H Douglas Morris
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Gail Kohls
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | | | | | - Maureen Hood
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Vincent B Ho
- Uniformed Services University, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Thomas K F Foo
- GE Research, Niskayuna, New York, USA
- Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Guo J, Sun D, Zhang J, Guo J, Wu Z, Chen Y, Xu Y, Zhou D, Cui Y, Mo Q, Li Y, Zhao T, You Q. The E3 ubiquitin ligase RBCK1: Implications in the tumor immune microenvironment and antiangiogenic therapy of glioma. Comput Struct Biotechnol J 2023; 21:5212-5227. [PMID: 37928949 PMCID: PMC10624590 DOI: 10.1016/j.csbj.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
E3 ubiquitin ligases (E3s) play a pivotal role in regulating the specificity of protein ubiquitination, and their significant functions as regulators of immune responses against tumors are attracting considerable interest. RBCK1-an RBR E3 ligase-is involved in immune regulation and tumor development. However, the potential effect of RBCK1 on glioma remains enigmatic. In the present study, we performed comprehensive analyses of multilevel data, which disclosed distribution characteristics of RBCK1 in pan-cancer, especially in glioma. Functional roles of RBCK1 were further confirmed using immunohistochemistry, cell biological assays, and xenograft experiments. Aberrant ascending of RBCK1 in multiple types of cancer was found to remodel the immunosuppressive microenvironment of glioma by regulating immunomodulators, cancer immunity cycles, and immune cell infiltration. Notably, the MES-like/RBCK1High cell population, a unique subset of cells in the microenvironment, suppressed T cell-mediated cell killing in glioma. Elevated expression levels of RBCK1 suggested a glioma subtype characterized by immunosuppression and hypo-responsiveness to immunotherapy but manifesting surprisingly increased responses to anti-angiogenic therapy. In conclusion, anti-RBCK1 target therapy might be beneficial for glioma treatment. Moreover, RBCK1 assisted in predicting molecular subtypes of glioma and response rates of patients to different clinical treatments, which could guide personalized therapy.
Collapse
Affiliation(s)
- Jing Guo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Junwei Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jie Guo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Zhenpeng Wu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yongzhen Chen
- Department of Biotherapy, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Desheng Zhou
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yachao Cui
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Qi Mo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Qiang You
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou 510095, China
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China
- Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
- Department of Biotherapy, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
17
|
Pan T, Su CQ, Tang WT, Lin J, Lu SS, Hong XN. Combined texture analysis of dynamic contrast-enhanced MRI with histogram analysis of diffusion kurtosis imaging for predicting IDH mutational status in gliomas. Acta Radiol 2023; 64:2552-2560. [PMID: 37331987 DOI: 10.1177/02841851231180291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Non-invasive detection of isocitrate dehydrogenase (IDH) mutational status in gliomas is clinically meaningful for molecular stratification of glioma; however, it remains challenging. PURPOSE To investigate the usefulness of texture analysis (TA) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and histogram analysis of diffusion kurtosis imaging (DKI) maps for evaluating IDH mutational status in gliomas. MATERIAL AND METHODS This retrospective study enrolled 84 patients with histologically confirmed gliomas, comprising IDH-mutant (n = 34) and IDH-wildtype (n = 50). TA was performed for the quantitative parameters derived by DCE-MRI. Histogram analysis was performed for the quantitative parameters derived by DKI. Unpaired Student's t-test was used to identify IDH-mutant and IDH-wildtype gliomas. Logistic regression and receiver operating characteristic (ROC) curve analyses were used to compare the diagnostic performance of each parameter and their combination for predicting the IDH mutational status in gliomas. RESULTS Significant statistical differences in the TA of DCE-MRI and histogram analysis of DKI were observed between IDH-mutant and IDH-wildtype gliomas (all P < 0.05). Using multivariable logistic regression, the entropy of Ktrans, skewness of Ve, and Kapp-90th had higher prediction potential for IDH mutations with areas under the ROC curve (AUC) of 0.915, 0.735, and 0.830, respectively. A combination of these analyses for the identification of IDH mutation improved the AUC to 0.978, with a sensitivity and specificity of 94.1% and 96.0%, respectively, which was higher than the single analysis (P < 0.05). CONCLUSION Integrating the TA of DCE-MRI and histogram analysis of DKI may help to predict the IDH mutational status.
Collapse
Affiliation(s)
- Ting Pan
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, PR China
| | - Chun-Qiu Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wen-Tian Tang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Lin
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shan-Shan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xun-Ning Hong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
18
|
Lee SJ, Park JE, Park SY, Kim YH, Hong CK, Kim JH, Kim HS. Imaging-Based Versus Pathologic Survival Stratifications of Diffuse Glioma According to the 2021 WHO Classification System. Korean J Radiol 2023; 24:772-783. [PMID: 37500578 PMCID: PMC10400365 DOI: 10.3348/kjr.2022.0919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/05/2023] [Accepted: 05/20/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE Imaging-based survival stratification of patients with gliomas is important for their management, and the 2021 WHO classification system must be clinically tested. The aim of this study was to compare integrative imaging- and pathology-based methods for survival stratification of patients with diffuse glioma. MATERIALS AND METHODS This study included diffuse glioma cases from The Cancer Genome Atlas (training set: 141 patients) and Asan Medical Center (validation set: 131 patients). Two neuroradiologists analyzed presurgical CT and MRI to assign gliomas to five imaging-based risk subgroups (1 to 5) according to well-known imaging phenotypes (e.g., T2/FLAIR mismatch) and recategorized them into three imaging-based risk groups, according to the 2021 WHO classification: group 1 (corresponding to risk subgroup 1, indicating oligodendroglioma, isocitrate dehydrogenase [IDH]-mutant, and 1p19q-co-deleted), group 2 (risk subgroups 2 and 3, indicating astrocytoma, IDH-mutant), and group 3 (risk subgroups 4 and 5, indicating glioblastoma, IDHwt). The progression-free survival (PFS) and overall survival (OS) were estimated for each imaging risk group, subgroup, and pathological diagnosis. Time-dependent area-under-the receiver operating characteristic analysis (AUC) was used to compare the performance between imaging-based and pathology-based survival model. RESULTS Both OS and PFS were stratified according to the five imaging-based risk subgroups (P < 0.001) and three imaging-based risk groups (P < 0.001). The three imaging-based groups showed high performance in predicting PFS at one-year (AUC, 0.787) and five-years (AUC, 0.823), which was similar to that of the pathology-based prediction of PFS (AUC of 0.785 and 0.837). Combined with clinical predictors, the performance of the imaging-based survival model for 1- and 3-year PFS (AUC 0.813 and 0.921) was similar to that of the pathology-based survival model (AUC 0.839 and 0.889). CONCLUSION Imaging-based survival stratification according to the 2021 WHO classification demonstrated a performance similar to that of pathology-based survival stratification, especially in predicting PFS.
Collapse
Affiliation(s)
- So Jeong Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Seo Young Park
- Deparment of Statistics and Data Science, Korea National Open University, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Ki Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Zhou H, Chen B, Zhang L, Li C. Machine learning-based identification of lower grade glioma stemness subtypes discriminates patient prognosis and drug response. Comput Struct Biotechnol J 2023; 21:3827-3840. [PMID: 37560125 PMCID: PMC10407594 DOI: 10.1016/j.csbj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Glioma stem cells (GSCs) remodel their tumor microenvironment to sustain a supportive niche. Identification and stratification of stemness related characteristics in patients with glioma might aid in the diagnosis and treatment of the disease. In this study, we calculated the mRNA stemness index in bulk and single-cell RNA-sequencing datasets using machine learning methods and investigated the correlation between stemness and clinicopathological characteristics. A glioma stemness-associated score (GSScore) was constructed using multivariate Cox regression analysis. We also generated a GSC cell line derived from a patient diagnosed with glioma and used glioma cell lines to validate the performance of the GSScore in predicting chemotherapeutic responses. Differentially expressed genes (DEGs) between GSCs with high and low GSScores were used to cluster lower-grade glioma (LGG) samples into three stemness subtypes. Differences in clinicopathological characteristics, including survival, copy number variations, mutations, tumor microenvironment, and immune and chemotherapeutic responses, among the three LGG stemness-associated subtypes were identified. Using machine learning methods, we further identified genes as subtype predictors and validated their performance using the CGGA datasets. In the current study, we identified a GSScore that correlated with LGG chemotherapeutic response. Through the score, we also identified a novel classification of the LGG subtype and associated subtype predictors, which might facilitate the development of precision therapy.
Collapse
Affiliation(s)
- Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
20
|
Arzanforoosh F, van der Voort SR, Incekara F, Vincent A, Van den Bent M, Kros JM, Smits M, Warnert EAH. Microvasculature Features Derived from Hybrid EPI MRI in Non-Enhancing Adult-Type Diffuse Glioma Subtypes. Cancers (Basel) 2023; 15:cancers15072135. [PMID: 37046796 PMCID: PMC10093697 DOI: 10.3390/cancers15072135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
In this study, we used the vessel size imaging (VSI) MRI technique to characterize the microvasculature features of three subtypes of adult-type diffuse glioma lacking enhancement. Thirty-eight patients with confirmed non-enhancing glioma were categorized into three subtypes: Oligo (IDH-mut&1p/19q-codeleted), Astro (IDH-mut), and GBM (IDH-wt). The VSI technique provided quantitative maps of cerebral blood volume (CBV), microvasculature (µCBV), and vessel size for each patient. Additionally, tissue samples of 21 patients were histopathologically analyzed, and microvasculature features were quantified. Both MRI- and histology-derived features were compared across the three glioma subtypes with ANOVA or Kruskal–Wallis tests. Group averages of CBV, μCBV, and vessel size were significantly different between the three glioma subtypes (p < 0.01). Astro (IDH-mut) had a significantly lower CBV and µCBV compared to Oligo (IDH-mut&1p/19q-codeleted) (p = 0.004 and p = 0.001, respectively), and a higher average vessel size compared to GBM (IDH-wt) (p = 0.01). The histopathological analysis showed that GBM (IDH-wt) possessed vessels with more irregular shapes than the two other subtypes (p < 0.05). VSI provides a good insight into the microvasculature characteristics of the three adult-type glioma subtypes even when lacking enhancement. Further investigations into the specificity of VSI to differentiate glioma subtypes are thus warranted.
Collapse
Affiliation(s)
- Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Sebastian R. van der Voort
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Fatih Incekara
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Neurosurgery, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Arnaud Vincent
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Neurosurgery, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Martin Van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Johan M. Kros
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC, 3000 CB Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Medical Delta, 2629 JH Delft, The Netherlands
| | - Esther A. H. Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
21
|
Lu B, Nie XH, Yin R, Ding P, Su ZZ, Qiu S, Qian YF. PGAM4 silencing inhibited glycolysis and chemoresistance to temozolomide in glioma cells. Cell Biol Int 2023; 47:776-786. [PMID: 36576012 DOI: 10.1002/cbin.11983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Gliomas account for about 80% of malignant brain tumors. The incidence of a new brain tumor is 6.4 per 100,000 persons per year with an overall 5-year survival rate of 33.4%. Regardless of the great advances that have been made in recent years, the causes and pathogenesis of glioma remain unclear. Here we study how phosphoglycerate mutase 4 (PGAM4) contributes to glioma. Using a variety of methods to examine glioma cell viability, proliferation, apoptosis, glycolysis, as well as ChIP coanalysis with modified histone H3, we showed that PGAM4 was significantly upregulated in patients with glioma and associated with poor survival. Silencing PGAM4 attenuated cell viability, proliferation, and glycolysis in T98G cells and suppressed tumor growth in vivo, while overexpressing PGAM4 promoted cell viability, proliferation, and glycolysis in U251 cells via regulating glycolysis pathway. Study also revealed that PGAM4 was regulated by EP300-mediated modifications of H3K27ac. PGAM4 silencing inhibited cell viability and proliferation, suppressed tumor growth, and decreased chemoresistance to temozolomide in glioma cells through suppressing glycolysis.
Collapse
Affiliation(s)
- Bin Lu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, China
| | - Xiao-Hu Nie
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, China
| | - Rui Yin
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, China
| | - Peng Ding
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhong-Zhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, China
| | - Ya-Fang Qian
- Department of orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, China
| |
Collapse
|
22
|
Liu S, Deng Y, Yu Y, Xia X. Knock-down of PGM1 inhibits cell viability, glycolysis, and oxidative phosphorylation in glioma under low glucose condition via the Myc signaling pathway. Biochem Biophys Res Commun 2023; 656:38-45. [PMID: 36947965 DOI: 10.1016/j.bbrc.2023.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
PGM1 is an essential enzyme for glucose metabolism and is involved in cell viability, proliferation, and metabolism. However, the regulatory role of PGMI in glioma progression and the relation between gliomas and PGM1 expression are still unclear. This study aimed to explore the role of PGM1 in glycolysis and oxidative phosphorylation in glioma. Correlation and enrichment analyses of PGM1 in glioma cells were explored in TCGA database and two hospital cohorts. The cell viability, glycolysis, and oxidative phosphorylation were investigated in PGM1 knock-down and overexpression situations. Higher PGM1 expression in glioma patients was associated with a poor survival rate. However, knock-down of PGM1 reduced glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition. Moreover, it suppressed tumor growth in vivo. On the other hand, PGM1 overexpression promoted glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition by a Myc positive feedback loop. Glioma patients with higher PGM1 expression were associated with poor survival rates. Additionally, PGM1 could promote glioma cell viability, glycolysis, and oxidative phosphorylation under low glucose condition via a myc-positive feedback loop, suggesting PGM1 could be a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Shenghua Liu
- Department of Neurosurgery, Santai Affiliated Hospital of North Sichuan Medical College, Mianyang, 621100, China
| | - Yuanyin Deng
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, 310015, China
| | - Yunhu Yu
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
23
|
Waqar M, Roncaroli F, Djoukhadar I, Akkari L, O'Leary C, Hewitt L, Forte G, Jackson R, Hessen E, Withington L, Beasley W, Richardson J, Golby C, Whitehurst P, Colaco R, Bailey M, Karabatsou K, D'Urso PI, McBain C, Coope DJ, Borst GR. Study protocol: PreOperative Brain Irradiation in Glioblastoma (POBIG) - A phase I trial. Clin Transl Radiat Oncol 2023; 39:100585. [PMID: 36845633 PMCID: PMC9947330 DOI: 10.1016/j.ctro.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Background Glioblastoma is a high-grade aggressive neoplasm whose outcomes have not changed in decades. In the current treatment pathway, tumour growth continues and remains untreated for several weeks post-diagnosis. Intensified upfront therapy could target otherwise untreated tumour cells and improve the treatment outcome. POBIG will evaluate the safety and feasibility of single-fraction preoperative radiotherapy for newly diagnosed glioblastoma, assessed by the maximum tolerated dose (MTD) and maximum tolerated irradiation volume (MTIV). Methods POBIG is an open-label, dual-centre phase I dose and volume escalation trial that has received ethical approval. Patients with a new radiological diagnosis of glioblastoma will be screened for eligibility. This is deemed sufficient due to the high accuracy of imaging and to avoid treatment delay. Eligible patients will receive a single fraction of preoperative radiotherapy ranging from 6 to 14 Gy followed by their standard of care treatment comprising maximal safe resection and postoperative chemoradiotherapy (60 Gy/30 fr) with concurrent and adjuvant temozolomide). Preoperative radiotherapy will be directed to the part of the tumour that is highest risk for remaining as postoperative residual disease (hot spot). Part of the tumour will remain unirradiated (cold spot) and sampled separately for diagnostic purposes. Dose/volume escalation will be guided by a Continual Reassessment Method (CRM) model. Translational opportunities will be afforded through comparison of irradiated and unirradiated primary glioblastoma tissue. Discussion POBIG will help establish the role of radiotherapy in preoperative modalities for glioblastoma. Trial registration NCT03582514 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Federico Roncaroli
- Department of Neuropathology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Ibrahim Djoukhadar
- Department of Neuroradiology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Claire O'Leary
- Department of Neuropathology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Lauren Hewitt
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
| | - Gabriella Forte
- Department of Neuropathology, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Richard Jackson
- Department of Statistics, Liverpool Clinical Trials Unit, University of Liverpool, United Kingdom
| | - Eline Hessen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Withington
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - William Beasley
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jenny Richardson
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Christopher Golby
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Philip Whitehurst
- Department of Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Rovel Colaco
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Matthew Bailey
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Konstantina Karabatsou
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Pietro I. D'Urso
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Catherine McBain
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - David J. Coope
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences & Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, United Kingdom
| | - Gerben R. Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, United Kingdom
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
24
|
Guo D, Jiang B. Noninvasively evaluating the grade and IDH mutation status of gliomas by using mono-exponential, bi-exponential diffusion-weighted imaging and three-dimensional pseudo-continuous arterial spin labeling. Eur J Radiol 2023; 160:110721. [PMID: 36738600 DOI: 10.1016/j.ejrad.2023.110721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To noninvasively assess the diagnostic performance of diffusion-weighted imaging (DWI), bi-exponential intravoxel incoherent motion imaging (IVIM) and three-dimensional pseudo-continuous arterial spin labeling (3D pCASL) in differentiating lower-grade gliomas (LGGs) from high-grade gliomas (HGGs), and predicting the isocitrate dehydrogenase (IDH) mutation status. MATERIALS AND METHODS Ninety-five patients with pathologically confirmed grade 2-4 gliomas with preoperative DWI, IVIM and 3D pCASL were enrolled in this study. The Student's t test and Mann-Whitney U test were used to evaluate differences in parameters of DWI, IVIM and 3D pCASL between LGG and HGG as well as between mutant and wild-type IDH in grade 2 and 3 diffusion astrocytoma; receiver operator characteristic (ROC) analysis was used to assess the diagnostic performance. RESULTS The value of ADCmean, ADCmin, Dmean and Dmin in HGGs were lower than in LGGs, while the value of CBFmean and CBFmax in HGGs were higher than in LGGs. In ROC analysis, the AUC values of Dmean, Dmin and CBFmax were 0.827, 0.878 and 0.839, respectively. The combination of CBFmax and Dmin displayed the highest diagnostic performance to distinguish LGGs from HGGs, with AUC 0.906, sensitivity 82.4 %, and specificity 86.4 %. In grades 2 and 3 diffusion astrocytoma patients, ADCmin, Dmean, Dmin, CBFmean and CBFmax showed significant differences between IDHmut and IDHwt group (p < 0.05, 0.001, 0.001, 0.01 and 0.001, respectively) and the AUC values were 0. 709, 0.849, 0.919, 0.755 and 0.873, respectively. Similarly, the combination of CBFmax and Dmin demonstrated the highest AUC value (0.938) in prediction IDH mutation status, with sensitivity 92.9 %, and specificity 95.5 %. CONCLUSION The combination of IVIM and 3D pCASL can be used in prediction histologic grade and IDH mutation status of glioma noninvasively.
Collapse
Affiliation(s)
- Da Guo
- Department of Radiology, The Sixth People's Hospital of Nanchong, Sichuan Province, People's Republic of China
| | - Binghu Jiang
- Department of Radiology, Nanchong Central Hospital, Sichuan Province, People's Republic of China.
| |
Collapse
|
25
|
Lechpammer M, Mahammedi A, Pomeranz Krummel DA, Sengupta S. Lessons learned from evolving frameworks in adult glioblastoma. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:131-140. [PMID: 36796938 DOI: 10.1016/b978-0-323-85538-9.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant adult brain tumor. Significant effort has been directed to achieve a molecular subtyping of GBM to impact treatment. The discovery of new unique molecular alterations has resulted in a more effective classification of tumors and has opened the door to subtype-specific therapeutic targets. Morphologically identical GBM may have different genetic, epigenetic, and transcriptomic alterations and therefore different progression trajectories and response to treatments. With a transition to molecularly guided diagnosis, there is now a potential to personalize and successfully manage this tumor type to improve outcomes. The steps to achieve subtype-specific molecular signatures can be extrapolated to other neuroproliferative as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abdelkader Mahammedi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
26
|
Kihira S, Derakhshani A, Leung M, Mahmoudi K, Bauer A, Zhang H, Polson J, Arnold C, Tsankova NM, Hormigo A, Salehi B, Pham N, Ellingson BM, Cloughesy TF, Nael K. Multi-Parametric Radiomic Model to Predict 1p/19q Co-Deletion in Patients with IDH-1 Mutant Glioma: Added Value to the T2-FLAIR Mismatch Sign. Cancers (Basel) 2023; 15:cancers15041037. [PMID: 36831380 PMCID: PMC9954034 DOI: 10.3390/cancers15041037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
PURPOSE The T2-FLAIR mismatch sign has shown promise in determining IDH mutant 1p/19q non-co-deleted gliomas with a high specificity and modest sensitivity. To develop a multi-parametric radiomic model using MRI to predict 1p/19q co-deletion status in patients with newly diagnosed IDH1 mutant glioma and to perform a comparative analysis to T2-FLAIR mismatch sign+. METHODS In this retrospective study, patients with diagnosis of IDH1 mutant gliomas with known 1p/19q status who had preoperative MRI were included. T2-FLAIR mismatch was evaluated independently by two board-certified neuroradiologists. Texture features were extracted from glioma segmentation of FLAIR images. eXtremeGradient Boosting (XGboost) classifiers were used for model development. Leave-one-out-cross-validation (LOOCV) and external validation performances were reported for both the training and external validation sets. RESULTS A total of 103 patients were included for model development and 18 patients for external testing validation. The diagnostic performance (sensitivity/specificity/accuracy) in the determination of the 1p/19q co-deletion status was 59%/83%/67% (training) and 62.5%/70.0%/66.3% (testing) for the T2-FLAIR mismatch sign. This was significantly improved (p = 0.04) using the radiomics model to 77.9%/82.8%/80.3% (training) and 87.5%/89.9%/88.8% (testing), respectively. The addition of radiomics as a computer-assisted tool resulted in significant (p = 0.02) improvement in the performance of the neuroradiologist with 13 additional corrected cases in comparison to just using the T2-FLAIR mismatch sign. CONCLUSION The proposed radiomic model provides much needed sensitivity to the highly specific T2-FLAIR mismatch sign in the determination of the 1p/19q non-co-deletion status and improves the overall diagnostic performance of neuroradiologists when used as an assistive tool.
Collapse
Affiliation(s)
- Shingo Kihira
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Ahrya Derakhshani
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Michael Leung
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Keon Mahmoudi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Adam Bauer
- Department of Radiology, Kaiser Permanente Fontana Medical Center, Fontana, CA 92335, USA
| | - Haoyue Zhang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Polson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Corey Arnold
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nadejda M. Tsankova
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adilia Hormigo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Banafsheh Salehi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Nancy Pham
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
| | - Benjamin M. Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy F. Cloughesy
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kambiz Nael
- Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-267-5932
| |
Collapse
|
27
|
Kamble AN, Agrawal NK, Koundal S, Bhargava S, Kamble AN, Joyner DA, Kalelioglu T, Patel SH, Jain R. Imaging-based stratification of adult gliomas prognosticates survival and correlates with the 2021 WHO classification. Neuroradiology 2023; 65:41-54. [PMID: 35876874 DOI: 10.1007/s00234-022-03015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/08/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Because of the lack of global accessibility, delay, and cost-effectiveness of genetic testing, there is a clinical need for an imaging-based stratification of gliomas that can prognosticate survival and correlate with the 2021-WHO classification. METHODS In this retrospective study, adult primary glioma patients with pre-surgery/pre-treatment MRI brain images having T2, FLAIR, T1, T1 post-contrast, DWI sequences, and survival information were included in TCIA training-dataset (n = 275) and independent validation-dataset (n = 200). A flowchart for imaging-based stratification of adult gliomas(IBGS) was created in consensus by three authors to encompass all adult glioma types. Diagnostic features used were T2-FLAIR mismatch sign, central necrosis with peripheral enhancement, diffusion restriction, and continuous cortex sign. Roman numerals (I, II, and III) denote IBGS types. Two independent teams of three and two radiologists, blinded to genetic, histology, and survival information, manually read MRI into three types based on the flowchart. Overall survival-analysis was done using age-adjusted Cox-regression analysis, which provided both hazard-ratio (HR) and area-under-curve (AUC) for each stratification system(IBGS and 2021-WHO). The sensitivity and specificity of each IBSG type were analyzed with cross-table to identify the corresponding 2021-WHO genotype. RESULTS Imaging-based stratification was statistically significant in predicting survival in both datasets with good inter-observer agreement (age-adjusted Cox-regression, AUC > 0.5, k > 0.6, p < 0.001). IBGS type-I, type-II, and type-III gliomas had good specificity in identifying IDHmut 1p19q-codel oligodendroglioma (training - 97%, validation - 85%); IDHmut 1p19q non-codel astrocytoma (training - 80%, validation - 85.9%); and IDHwt glioblastoma (training - 76.5%, validation- 87.3%) respectively (p-value < 0.01). CONCLUSIONS Imaging-based stratification of adult diffuse gliomas predicted patient survival and correlated well with 2021-WHO glioma classification.
Collapse
Affiliation(s)
- Akshaykumar N Kamble
- University Hospitals Coventry & Warwickshire, Coventry, UK.
- Deep Learning Institute of Radiological Sciences (DeLoRIS), Mumbai, India.
| | - Nidhi K Agrawal
- Deep Learning Institute of Radiological Sciences (DeLoRIS), Mumbai, India
- Max Super-Specialty Hospital, Mohali, India
| | - Surabhi Koundal
- Department of Radiology, Institute of Nuclear Medicine & Allied Sciences (INMAS), New Delhi, India
| | | | | | - David A Joyner
- Department of Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Tuba Kalelioglu
- Department of Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Sohil H Patel
- Department of Radiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
28
|
Sahu A, Patnam NG, Goda JS, Epari S, Sahay A, Mathew R, Choudhari AK, Desai SM, Dasgupta A, Chatterjee A, Pratishad P, Shetty P, Moiyadi AA, Gupta T. Multiparametric Magnetic Resonance Imaging Correlates of Isocitrate Dehydrogenase Mutation in WHO high-Grade Astrocytomas. J Pers Med 2022; 13:jpm13010072. [PMID: 36675733 PMCID: PMC9865247 DOI: 10.3390/jpm13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose and background: Isocitrate dehydrogenase (IDH) mutation and O-6 methyl guanine methyl transferase (MGMT) methylation are surrogate biomarkers of improved survival in gliomas. This study aims at studying the ability of semantic magnetic resonance imaging (MRI) features to predict the IDH mutation status confirmed by the gold standard molecular tests. Methods: The MRI of 148 patients were reviewed for various imaging parameters based on the Visually AcceSAble Rembrandt Images (VASARI) study. Their IDH status was determined using immunohistochemistry (IHC). Fisher’s exact or chi-square tests for univariate and logistic regression for multivariate analysis were used. Results: Parameters such as mild and patchy enhancement, minimal edema, necrosis < 25%, presence of cysts, and less rCBV (relative cerebral blood volume) correlated with IDH mutation. The median age of IDH-mutant and IDH-wild patients were 34 years (IQR: 29−43) and 52 years (IQR: 45−59), respectively. Mild to moderate enhancement was observed in 15/19 IDH-mutant patients (79%), while 99/129 IDH-wildtype (77%) had severe enhancement (p-value <0.001). The volume of edema with respect to tumor volume distinguished IDH-mutants from wild phenotypes (peritumoral edema volume < tumor volume was associated with higher IDH-mutant phenotypes; p-value < 0.025). IDH-mutant patients had a median rCBV value of 1.8 (IQR: 1.4−2.0), while for IDH-wild phenotypes, it was 2.6 (IQR: 1.9−3.5) {p-value = 0.001}. On multivariate analysis, a cut-off of 25% necrosis was able to differentiate IDH-mutant from IDH-wildtype (p-value < 0.001), and a cut-off rCBV of 2.0 could differentiate IDH-mutant from IDH-wild phenotypes (p-value < 0.007). Conclusion: Semantic imaging features could reliably predict the IDH mutation status in high-grade gliomas. Presurgical prediction of IDH mutation status could help the treating oncologist to tailor the adjuvant therapy or use novel IDH inhibitors.
Collapse
Affiliation(s)
- Arpita Sahu
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Correspondence: (A.S.); (J.S.G.); Tel.: +91-7049000101 (A.S.); +91-22-24177000 (ext. 7027) (J.S.G.); Fax: +91-22-24146937 (A.S.); +91-22-24146937 (J.S.G.)
| | - Nandakumar G. Patnam
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
| | - Jayant Sastri Goda
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai 400012, India
- Correspondence: (A.S.); (J.S.G.); Tel.: +91-7049000101 (A.S.); +91-22-24177000 (ext. 7027) (J.S.G.); Fax: +91-22-24146937 (A.S.); +91-22-24146937 (J.S.G.)
| | - Sridhar Epari
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Pathology, Tata Memorial Centre, Mumbai 400012, India
| | - Ayushi Sahay
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Pathology, Tata Memorial Centre, Mumbai 400012, India
| | - Ronny Mathew
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
| | - Amit Kumar Choudhari
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
| | - Subhash M. Desai
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
| | - Archya Dasgupta
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - Abhishek Chatterjee
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai 400012, India
| | - Pallavi Pratishad
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Biostatistics, Tata Memorial Centre, Mumbai 400012, India
| | - Prakash Shetty
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India
| | - Ali Asgar Moiyadi
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India
| | - Tejpal Gupta
- Neuro-Oncology Disease Management Group, Tata Memorial Centre, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400012, India
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India
| |
Collapse
|
29
|
Li M, Wang J, Chen X, Dong G, Zhang W, Shen S, Jiang H, Yang C, Zhang X, Zhao X, Zhu Q, Li M, Cui Y, Ren X, Lin S. The sinuous, wave-like intratumoral-wall sign is a sensitive and specific radiological biomarker for oligodendrogliomas. Eur Radiol 2022; 33:4440-4452. [PMID: 36520179 DOI: 10.1007/s00330-022-09314-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the clinical utility of the sinuous, wave-like intratumoral-wall (SWITW) sign on T2WI in diagnosing isocitrate dehydrogenase (IDH) mutant and 1p/19q codeleted (IDHmut-Codel) oligodendrogliomas, for which a relatively conservative resection strategy might be sufficient due to a better response to chemoradiotherapy and favorable prognosis. METHODS Imaging data from consecutive adult patients with diffuse lower-grade gliomas (LGGs, histological grades 2-3) in Beijing Tiantan Hospital (December 1, 2013, to October 31, 2021, BTH set, n = 711) and the Cancer Imaging Archive (TCIA) LGGs set (n = 117) were used to develop and validate our findings. Two independent observers assessed the SWITW sign and some well-reported discriminative radiological features to establish a practical diagnostic strategy. RESULTS The SWITW sign showed satisfying sensitivity (0.684 and 0.722 for BTH and TCIA sets) and specificity (0.938 and 0.914 for BTH and TCIA sets) in defining IDHmut-Codels, and the interobserver agreement was substantial (κ 0.718 and 0.756 for BTH and TCIA sets). Compared to calcification, the SWITW sign improved the sensitivity by 0.28 (0.404 to 0.684) in the BTH set, and 81.0% (277/342) of IDHmut-Codel cases demonstrated SWITW and/ or calcification positivity. Combining the SWITW sign, calcification, low ADC values, and other discriminative features, we established a concise and reliable diagnostic protocol for IDHmut-Codels. CONCLUSIONS The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codels. The integrated protocol provided an explicable, efficient, and reproducible method for precise preoperative diagnosis, which was essential to guide individualized surgical plan-making. KEY POINTS • The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codel oligodendrogliomas. • The SWITW sign was more sensitive than calcification and an integrated strategy could improve diagnostic sensitivity for IDHmut-Codel oligodendrogliomas. • Combining SWITW, calcification, low ADC values, and other discriminative features could make a precise preoperative diagnosis for IDHmut-Codel oligodendrogliomas.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jincheng Wang
- Department of Radiology, Peking University Cancer Hospital, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiwei Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Center of Brain Tumor, Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Brain Tumor, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
| |
Collapse
|
30
|
Xu Q, Xu QQ, Shi N, Dong LN, Zhu H, Xu K. A multitask classification framework based on vision transformer for predicting molecular expressions of glioma. Eur J Radiol 2022; 157:110560. [DOI: 10.1016/j.ejrad.2022.110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
31
|
Byun YH, Park CK. Classification and Diagnosis of Adult Glioma: A Scoping Review. BRAIN & NEUROREHABILITATION 2022; 15:e23. [PMID: 36742083 PMCID: PMC9833487 DOI: 10.12786/bn.2022.15.e23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Gliomas are primary central nervous system tumors that arise from glial progenitor cells. Gliomas have been classically classified morphologically based on their histopathological characteristics. However, with recent advances in cancer genomics, molecular profiles have now been integrated into the classification and diagnosis of gliomas. In this review article, we discuss the clinical features, imaging findings, and molecular profiles of adult-type diffuse gliomas based on the new 2021 World Health Organization Classifications of Tumors of the central nervous system.
Collapse
Affiliation(s)
- Yoon Hwan Byun
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
32
|
Jang EB, Kim HS, Park JE, Park SY, Nam YK, Nam SJ, Kim YH, Kim JH. Diffuse glioma, not otherwise specified: imaging-based risk stratification achieves histomolecular-level prognostication. Eur Radiol 2022; 32:7780-7788. [PMID: 35587830 DOI: 10.1007/s00330-022-08850-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To determine whether imaging-based risk stratification enables prognostication in diffuse glioma, NOS (not otherwise specified). METHODS Data from 220 patients classified as diffuse glioma, NOS, between January 2011 and December 2020 were retrospectively included. Two neuroradiologists analyzed pre-surgical CT and MRI to assign gliomas to the three imaging-based risk types considering well-known imaging phenotypes (e.g., T2/FLAIR mismatch). According to the 2021 World Health Organization classification, the three risk types included (1) low-risk, expecting oligodendroglioma, isocitrate dehydrogenase (IDH)-mutant, and 1p/19q-codeleted; (2) intermediate-risk, expecting astrocytoma, IDH-mutant; and (3) high-risk, expecting glioblastoma, IDH-wildtype. Progression-free survival (PFS) and overall survival (OS) were estimated for each risk type. Time-dependent receiver operating characteristic analysis using 10-fold cross-validation with 100-fold bootstrapping was used to compare the performance of an imaging-based survival model with that of a historical molecular-based survival model published in 2015, created using The Cancer Genome Archive data. RESULTS Prognostication according to the three imaging-based risk types was achieved for both PFS and OS (log-rank test, p < 0.001). The imaging-based survival model showed high prognostic value, with areas under the curves (AUCs) of 0.772 and 0.650 for 1-year PFS and OS, respectively, similar to the historical molecular-based survival model (AUC = 0.74 for PFS and 0.87 for OS). The imaging-based survival model achieved high long-term performance in both 3-year PFS (AUC = 0.806) and 5-year OS (AUC = 0.812). CONCLUSION Imaging-based risk stratification achieved histomolecular-level prognostication in diffuse glioma, NOS, and could aid in guiding patient referral for insufficient or unsuccessful molecular diagnosis. KEY POINTS • Three imaging-based risk types enable distinct prognostication in diffuse glioma, NOS (not otherwise specified). • The imaging-based survival model achieved similar prognostic performance as a historical molecular-based survival model. • For long-term prognostication of 3 and 5 years, the imaging-based survival model showed high performance.
Collapse
Affiliation(s)
- Eun Bee Jang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Republic of Korea
| | - Yeo Kyung Nam
- Department of Radiology, Shinchon Yonsei Hospital, Seoul, Republic of Korea
| | - Soo Jung Nam
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
33
|
Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge. Cancers (Basel) 2022; 14:cancers14194827. [PMID: 36230750 PMCID: PMC9562637 DOI: 10.3390/cancers14194827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary O6-methylguanine-DNA methyl transferase (MGMT) methylation in glioblastoma is an important prognostic and predictive factor that requires an invasive surgical procedure for identification. In several recent studies, MGMT methylation prediction models were developed using MR images, and good diagnostic performance was achieved, which seems to indicate a promising future for radiogenomics. However, the diagnostic performance was not reproducible for numerous research teams when using a larger dataset in the RSNA-MICCAI Brain Tumor Radiogenomic Classification 2021 challenge. To our knowledge, there has been no study regarding the external validation of MGMT prediction models using large-scale multicenter datasets. We tested recent CNN architectures via extensive experiments to investigate whether MGMT methylation in gliomas can be predicted using MRI. With unexpected negative results, approximately 80% of the developed models showed no significant difference with the chance level of 50% in terms of external validation accuracy. In conclusion, MGMT methylation status of gliomas may not be predictable with preoperative MRI, even using deep learning. Abstract O6-methylguanine-DNA methyl transferase (MGMT) methylation prediction models were developed using only small datasets without proper external validation and achieved good diagnostic performance, which seems to indicate a promising future for radiogenomics. However, the diagnostic performance was not reproducible for numerous research teams when using a larger dataset in the RSNA-MICCAI Brain Tumor Radiogenomic Classification 2021 challenge. To our knowledge, there has been no study regarding the external validation of MGMT prediction models using large-scale multicenter datasets. We tested recent CNN architectures via extensive experiments to investigate whether MGMT methylation in gliomas can be predicted using MR images. Specifically, prediction models were developed and validated with different training datasets: (1) the merged (SNUH + BraTS) (n = 985); (2) SNUH (n = 400); and (3) BraTS datasets (n = 585). A total of 420 training and validation experiments were performed on combinations of datasets, convolutional neural network (CNN) architectures, MRI sequences, and random seed numbers. The first-place solution of the RSNA-MICCAI radiogenomic challenge was also validated using the external test set (SNUH). For model evaluation, the area under the receiver operating characteristic curve (AUROC), accuracy, precision, and recall were obtained. With unexpected negative results, 80.2% (337/420) and 60.0% (252/420) of the 420 developed models showed no significant difference with a chance level of 50% in terms of test accuracy and test AUROC, respectively. The test AUROC and accuracy of the first-place solution of the BraTS 2021 challenge were 56.2% and 54.8%, respectively, as validated on the SNUH dataset. In conclusion, MGMT methylation status of gliomas may not be predictable with preoperative MR images even using deep learning.
Collapse
|
34
|
Chen B, Zhou X, Yang L, Zhou H, Meng M, Wu H, Liu Z, Zhang L, Li C. Glioma stem cell signature predicts the prognosis and the response to tumor treating fields treatment. CNS Neurosci Ther 2022; 28:2148-2162. [PMID: 36070228 PMCID: PMC9627385 DOI: 10.1111/cns.13956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Glioma stem cells (GSCs) play an important role in glioma recurrence and chemo-radiotherapy (CRT) resistance. Currently, there is a lack of efficient treatment approaches targeting GSCs. This study aimed to explore the potential personalized treatment of patients with GSC-enriched gliomas. METHODS Single-cell RNA sequencing (scRNA-seq) was used to identify the GSC-related genes. Then, machine learning methods were applied for clustering and validation. The least absolute shrinkage and selection operator (LASSO) and COX regression were used to construct the risk scores. Survival analysis was performed. Additionally, the incidence of chemo-radiotherapy resistance, immunotherapy status, and tumor treating field (TTF) therapy response were evaluated in high- and low-risk scores groups. RESULTS Two GSC clusters exhibited significantly different stemness indices, immune microenvironments, and genomic alterations. Based on GSC clusters, 11-gene GSC risk scores were constructed, which exhibited a high predictive value for prognosis. In terms of therapy, patients with high GSC risk scores had a higher risk of resistance to chemotherapy. TTF therapy can comprehensively inhibit the malignant biological characteristics of the high GSC-risk-score gliomas. CONCLUSION Our study constructed a GSC signature consisting of 11 GSC-specific genes and identified its prognostic value in gliomas. TTF is a promising therapeutic approach for patients with GSC-enriched glioma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ming Meng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Wu
- Department of Neurosurgery, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| | - Chuntao Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina,Hypothalamic‐Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaChina,Clinical Diagnosis and Therapy Center for Glioma, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
35
|
Qi J, Wang P, Zhao G, Gao E, Zhao K, Gao A, Bai J, Zhang H, Yang G, Zhang Y, Ma X, Cheng J. Histogram Analysis Based on Neurite Orientation Dispersion and Density MR Imaging for Differentiation Between Glioblastoma Multiforme and Solitary Brain Metastasis and Comparison of the Diagnostic Performance of Two ROI Placements. J Magn Reson Imaging 2022; 57:1464-1474. [PMID: 36066259 DOI: 10.1002/jmri.28419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preoperative differentiation of glioblastoma multiforme (GBM) and solitary brain metastasis (SBM) contributes to guide neurosurgical decision-making. PURPOSE To explore the value of histogram analysis based on neurite orientation dispersion and density imaging (NODDI) in differentiating between GBM and SBM and comparison of the diagnostic performance of two region of interest (ROI) placements. STUDY TYPE Retrospective. POPULATION In all, 109 patients with GBM (n = 57) or SBM (n = 52) were enrolled. FIELD STRENGTH/SEQUENCE A 3.0 T scanners. T2 -dark-fluid sequence, contrast-enhanced T1 magnetization-prepared rapid gradient echo sequence, and NODDI. ASSESSMENT ROIs were placed on the peritumoral edema area (ROI1) and whole tumor area (ROI2, included the cystic, necrotic, and hemorrhagic areas). Histogram parameters of each isotropic volume fraction (ISOVF), intracellular volume fraction (ICVF), and orientation dispersion index (ODI) from NODDI images for two ROIs were calculated, respectively. STATISTICAL TESTS Mann-Whitney U test, independent t-test, chi-square test, multivariate logistic regression analysis, DeLong's test. RESULTS For the ROI1 and ROI2, the ICVFmin and ODImean obtained the highest area under curve (AUC, AUC = 0.741 and 0.750, respectively) compared to other single parameters, and the AUC of the multivariate logistic regression model was 0.851 and 0.942, respectively. DeLong's test revealed significant difference in diagnostic performance between optimal single parameter and multivariate logistic regression model within the same ROI, and the multivariate logistic regression models between two different ROIs. DATA CONCLUSION The performance of multivariate logistic regression model is superior to optimal single parameter in both ROIs based on NODDI histogram analysis to distinguish SBM from GBM, and the ROI placed on the whole tumor area exhibited better diagnostic performance. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jinbo Qi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohua Zhao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Eryuan Gao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ankang Gao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Bai
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd, Wuhan, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Ma
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist. Neuroradiology 2022; 64:1919-1950. [DOI: 10.1007/s00234-022-03008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
37
|
A multimodal domain adaptive segmentation framework for IDH genotype prediction. Int J Comput Assist Radiol Surg 2022; 17:1923-1931. [PMID: 35794409 DOI: 10.1007/s11548-022-02700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE The gene mutation status of isocitrate dehydrogenase (IDH) in gliomas leads to a different prognosis. It is challenging to perform automated tumor segmentation and genotype prediction directly using label-deprived multimodal magnetic resonance (MR) images. We propose a novel framework that employs a domain adaptive mechanism to address this issue. METHODS Multimodal domain adaptive segmentation (MDAS) framework was proposed to solve the gap issue in cross dataset model transfer. Image translation was used to adaptively align the multimodal data from two domains at the image level, and segmentation consistency loss was proposed to retain more pathological information through semantic constraints. The data distribution between the labeled public dataset and label-free target dataset was learned to achieve better unsupervised segmentation results on the target dataset. Then, the segmented tumor foci were used as a mask to extract the radiomics and deep features. And the subsequent prediction of IDH gene mutation status was conducted by training a random forest classifier. The prediction model does not need any expert segmented labels. RESULTS We implemented our method on the public BraTS 2019 dataset and 110 astrocytoma cases of grade II-IV brain tumors from our hospital. We obtained a Dice score of 77.41% for unsupervised tumor segmentation, a genotype prediction accuracy (ACC) of 0.7639 and an area under curve (AUC) of 0.8600. Experimental results demonstrate that our domain adaptive approach outperforms the methods utilizing direct transfer learning. The model using hybrid features gives better results than the model using radiomics or deep features alone. CONCLUSIONS Domain adaptation enables the segmentation network to achieve better performance, and the extraction of mixed features at multiple levels on the segmented region of interest ensures effective prediction of the IDH gene mutation status.
Collapse
|
38
|
Wang P, Gao E, Qi J, Ma X, Zhao K, Bai J, Zhang Y, Zhang H, Yang G, Cheng J, Zhao G. Quantitative analysis of mean apparent propagator-magnetic resonance imaging for distinguishing glioblastoma from solitary brain metastasis. Eur J Radiol 2022; 154:110430. [DOI: 10.1016/j.ejrad.2022.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
|
39
|
Zhang HW, Liu XL, Zhang HB, Li YQ, Wang YL, Feng YN, Deng K, Lei Y, Huang B, Lin F. Differentiation of Meningiomas and Gliomas by Amide Proton Transfer Imaging: A Preliminary Study of Brain Tumour Infiltration. Front Oncol 2022; 12:886968. [PMID: 35646626 PMCID: PMC9132094 DOI: 10.3389/fonc.2022.886968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background Gliomas are more malignant and invasive than meningiomas. Objective To distinguish meningiomas from low-grade/high-grade gliomas (LGGs/HGGs) using amide proton transfer imaging (APT) combined with conventional magnetic resonance imaging (MRI) and to explore the application of APT in evaluating brain tumour invasiveness. Materials and Methods The imaging data of 50 brain tumors confirmed by pathology in patients who underwent APT scanning in our centre were retrospectively analysed. Of these tumors, 25 were meningiomas, 10 were LGGs, and 15 were HGGs. The extent of the tumour-induced range was measured on APT images, T2-weighted imaging (T2WI), and MRI enhancement; additionally, and the degree of enhancement was graded. Ratios (RAPT/T2 and RAPT/E) were obtained by dividing the range of changes observed by APT by the range of changes observed via T2WI and MR enhancement, respectively, and APTmean values were measured. The Mann–Whitney U test was used to compare the above measured values with the pathological results obtained for gliomas and meningiomas, the Kruskal-Wallis test was used to compare LGGs, HGGs and meningiomas, and Dunn’s test was used for pairwise comparisons. In addition, receiver operating characteristic (ROC) curves were drawn. Results The Mann–Whitney U test showed that APTmean (p=0.005), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) values were statistically significant in the identification of meningioma and glioma. The Kruskal-Wallis test showed that the parameters APTmean, RAPT/T2, RAPT/E and the degree of enhancement are statistically significant. Dunn’s test revealed that RAPT/T2 (p=0.004) and RAPT/E (p=0.008) could be used for the identification of LGGs and meningiomas. APTmean (p<0.001), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) could be used for the identification of HGGs and meningiomas. APTmean (p<0.001) was statistically significant in the comparison of LGGs and HGGs. ROC curves showed that RAPT/T2 (area under the curve (AUC)=0.947) and RAPT/E (AUC=0.919) could be used to distinguish gliomas from meningiomas. Conclusion APT can be used for the differential diagnosis of meningioma and glioma, but APTmean values can only be used for the differential diagnosis of HGGs and meningiomas or HGGs and LGGs. Gliomas exhibit more obvious changes than meningiomas in APT images of brain tissue; this outcome may be caused by brain infiltration.
Collapse
Affiliation(s)
- Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hong-Bo Zhang
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying-Qi Li
- Department of Radiology, Songgang People's Hospital, Shenzhen, China
| | - Yu-Li Wang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Ning Feng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Kan Deng
- Research Department, Philips Healthcare, Guangzhou, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
40
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
41
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
42
|
Pruis IJ, Koene SR, van der Voort SR, Incekara F, Vincent AJPE, van den Bent MJ, Lycklama à Nijeholt GJ, Nandoe Tewarie RDS, Veldhuijzen van Zanten SEM, Smits M. Noninvasive differentiation of molecular subtypes of adult non-enhancing glioma using MRI perfusion and diffusion parameters. Neurooncol Adv 2022; 4:vdac023. [PMID: 35300151 PMCID: PMC8923005 DOI: 10.1093/noajnl/vdac023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Nonenhancing glioma typically have a favorable outcome, but approximately 19–44% have a highly aggressive course due to a glioblastoma genetic profile. The aim of this retrospective study is to use physiological MRI parameters of both perfusion and diffusion to distinguish the molecular profiles of glioma without enhancement at presentation. Methods Ninety-nine patients with nonenhancing glioma were included, in whom molecular status (including 1p/19q codeletion status and IDH mutation) and preoperative MRI (T2w/FLAIR, dynamic susceptibility-weighted, and diffusion-weighted imaging) were available. Tumors were segmented semiautomatically using ITK-SNAP to derive whole tumor histograms of relative Cerebral Blood Volume (rCBV) and Apparent Diffusion Coefficient (ADC). Tumors were divided into three clinically relevant molecular profiles: IDH mutation (IDHmt) with (n = 40) or without (n = 41) 1p/19q codeletion, and (n = 18) IDH-wildtype (IDHwt). ANOVA, Kruskal-Wallis, and Chi-Square analyses were performed using SPSS. Results rCBV (mean, median, 75th and 85th percentile) and ADC (mean, median, 15th and 25th percentile) showed significant differences across molecular profiles (P < .01). Posthoc analyses revealed that IDHwt and IDHmt 1p/19q codeleted tumors showed significantly higher rCBV compared to IDHmt 1p/19q intact tumors: mean rCBV (mean, SD) 1.46 (0.59) and 1.35 (0.39) versus 1.08 (0.31), P < .05. Also, IDHwt tumors showed significantly lower ADC compared to IDHmt 1p/19q codeleted and IDHmt 1p/19q intact tumors: mean ADC (mean, SD) 1.13 (0.23) versus 1.27 (0.15) and 1.45 (0.20), P < .001). Conclusions A combination of low ADC and high rCBV, reflecting high cellularity and high perfusion respectively, separates IDHwt from in particular IDHmt 1p/19q intact glioma.
Collapse
Affiliation(s)
- Ilanah J Pruis
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Stephan R Koene
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Fatih Incekara
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Springer E, Cardoso PL, Strasser B, Bogner W, Preusser M, Widhalm G, Nittka M, Koerzdoerfer G, Szomolanyi P, Hangel G, Hainfellner JA, Marik W, Trattnig S. MR Fingerprinting-A Radiogenomic Marker for Diffuse Gliomas. Cancers (Basel) 2022; 14:cancers14030723. [PMID: 35158990 PMCID: PMC8833555 DOI: 10.3390/cancers14030723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Advanced MR imaging (MRI) of brain tumors is mainly based on qualitative contrast images. MR Fingerprinting (MRF) offers a novel approach. The purpose of this study was to use MRF-derived T1 and T2 relaxation maps to differentiate diffuse gliomas according to isocitrate dehydrogenase (IDH) mutation. (2) Methods: Twenty-four patients with histologically verified diffuse gliomas (14 IDH-mutant, four 1p/19q-codeleted, 10 IDH-wildtype) were enrolled. MRF T1 and T2 relaxation times were compared to apparent diffusion coefficient (ADC), relative cerebral blood volume (rCBV) within solid tumor, peritumoral edema, and normal-appearing white matter (NAWM), using contrast-enhanced MRI, diffusion-, perfusion-, and susceptibility-weighted imaging. For perfusion imaging, a T2* weighted perfusion sequence with leakage correction was used. Correlations of MRF T1 and T2 times with two established conventional sequences for T1 and T2 mapping were assessed (a fast double inversion recovery-based MR sequence ('MP2RAGE') for T1 quantification and a multi-contrast spin echo-based sequence for T2 quantification). (3) Results: MRF T1 and T2 relaxation times were significantly higher in the IDH-mutant than in IDH-wildtype gliomas within the solid part of the tumor (p = 0.024 for MRF T1, p = 0.041 for MRF T2). MRF T1 and T2 relaxation times were significantly higher in the IDH-wildtype than in IDH-mutant gliomas within peritumoral edema less than or equal to 1cm adjacent to the tumor (p = 0.038 for MRF T1 mean, p = 0.010 for MRF T2 mean). In the solid part of the tumor, there was a high correlation between MRF and conventionally measured T1 and T2 values (r = 0.913, p < 0.001 for T1, r = 0.775, p < 0.001 for T2), as well as between MRF and ADC values (r = 0.813, p < 0.001 for T2, r = 0.697, p < 0.001 for T1). The correlation was weak between the MRF and rCBV values (r = -0.374, p = 0.005 for T2, r = -0.181, p = 0.181 for T1). (4) Conclusions: MRF enables fast, single-sequence based, multi-parametric, quantitative tissue characterization of diffuse gliomas and may have the potential to differentiate IDH-mutant from IDH-wildtype gliomas.
Collapse
Affiliation(s)
- Elisabeth Springer
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (E.S.); (P.L.C.); (B.S.); (P.S.); (G.H.); (S.T.)
- Institute of Radiology, Hietzing Hospital, 1130 Vienna, Austria
| | - Pedro Lima Cardoso
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (E.S.); (P.L.C.); (B.S.); (P.S.); (G.H.); (S.T.)
| | - Bernhard Strasser
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (E.S.); (P.L.C.); (B.S.); (P.S.); (G.H.); (S.T.)
| | - Wolfgang Bogner
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (E.S.); (P.L.C.); (B.S.); (P.S.); (G.H.); (S.T.)
- Correspondence: ; Tel.: +431-40-400-64710
| | - Matthias Preusser
- Division of Oncology, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Mathias Nittka
- Siemens Healthineers, 91052 Erlangen, Germany; (M.N.); (G.K.)
| | | | - Pavol Szomolanyi
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (E.S.); (P.L.C.); (B.S.); (P.S.); (G.H.); (S.T.)
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Gilbert Hangel
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (E.S.); (P.L.C.); (B.S.); (P.S.); (G.H.); (S.T.)
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes A. Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Wolfgang Marik
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
| | - Siegfried Trattnig
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (E.S.); (P.L.C.); (B.S.); (P.S.); (G.H.); (S.T.)
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
44
|
Gao E, Gao A, Kit Kung W, Shi L, Bai J, Zhao G, Cheng J. Histogram analysis based on diffusion kurtosis imaging: Differentiating glioblastoma multiforme from single brain metastasis and comparing the diagnostic performance of two region of interest placements. Eur J Radiol 2021; 147:110104. [PMID: 34972059 DOI: 10.1016/j.ejrad.2021.110104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To assess the value of histogram analysis, using diffusion kurtosis imaging (DKI), in differentiating glioblastoma multiforme (GBM) from single brain metastasis (SBM) and to compare the diagnostic efficiency of different region of interest (ROI) placements. METHOD Sixty-seven patients with histologically confirmed GBM (n = 35) and SBM (n = 32) were recruited. Two ROIs-the contrast-enhanced area and whole-tumor area-were delineated across all slices. Eleven histogram parameters of fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) from both ROIs were calculated. All histogram parameter values were compared between GBM and SBM, using the Mann-Whitney U test. The accuracies of different histogram parameters were compared using the McNemar test. Receiver operating characteristic (ROC) analyses were conducted to assess the diagnostic performance. RESULTS In the contrast-enhanced area, FA10, FA25, FA75, FA90, FAmean, FAmedian, FAmax, MDmax, MDskewness, and MKskewness were significantly higher for GBM than for SBM. FAskewness was significantly lower for GBM than for SBM. FA25 (0.815) had the highest area under the curve (AUC). In the whole-tumor area, FA10, FA25, FA75, FA90, FASD, FAmean, FAmedian, FAmax, MDmax, MDskewness, and MKskewness were significantly higher for GBM than for SBM. FAmedian (0.805) had the highest AUC. The accuracy of FA25 in the contrast-enhanced area was significantly higher than that of the FAmedian in the whole-tumor area. CONCLUSIONS GBM and SBM can be differentiated using the DKI-based histogram analysis. Placing the ROI on the contrast-enhanced area results in better discrimination.
Collapse
Affiliation(s)
- Eryuan Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ankang Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wing Kit Kung
- Brain Now Medical Technology Limited, Hong Kong SAR, Hong Kong, 999077, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, 999077, China
| | - Jie Bai
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
45
|
Palande V, Siegal T, Detroja R, Gorohovski A, Glass R, Flueh C, Kanner AA, Laviv Y, Har-Nof S, Levy-Barda A, Viviana Karpuj M, Kurtz M, Perez S, Raviv Shay D, Frenkel-Morgenstern M. Detection of gene mutations and gene-gene fusions in circulating cell-free DNA of glioblastoma patients: an avenue for clinically relevant diagnostic analysis. Mol Oncol 2021; 16:2098-2114. [PMID: 34875133 PMCID: PMC9120899 DOI: 10.1002/1878-0261.13157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/04/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of glioma and is uniformly fatal. Currently, tumour heterogeneity and mutation acquisition are major impedances for tailoring personalized therapy. We collected blood and tumour tissue samples from 25 GBM patients and 25 blood samples from healthy controls. Cell‐free DNA (cfDNA) was extracted from the plasma of GBM patients and from healthy controls. Tumour DNA was extracted from fresh tumour samples. Extracted DNA was sequenced using a whole‐genome sequencing procedure. We also collected 180 tumour DNA datasets from GBM patients publicly available at the TCGA/PANCANCER project. These data were analysed for mutations and gene–gene fusions that could be potential druggable targets. We found that plasma cfDNA concentrations in GBM patients were significantly elevated (22.6 ± 5 ng·mL−1), as compared to healthy controls (1.4 ± 0.4 ng·mL−1) of the same average age. We identified unique mutations in the cfDNA and tumour DNA of each GBM patient, including some of the most frequently mutated genes in GBM according to the COSMIC database (TP53, 18.75%; EGFR, 37.5%; NF1, 12.5%; LRP1B, 25%; IRS4, 25%). Using our gene–gene fusion database, ChiTaRS 5.0, we identified gene–gene fusions in cfDNA and tumour DNA, such as KDR–PDGFRA and NCDN–PDGFRA, which correspond to previously reported alterations of PDGFRA in GBM (44% of all samples). Interestingly, the PDGFRA protein fusions can be targeted by tyrosine kinase inhibitors such as imatinib, sunitinib, and sorafenib. Moreover, we identified BCR–ABL1 (in 8% of patients), COL1A1–PDGFB (8%), NIN–PDGFRB (8%), and FGFR1–BCR (4%) in cfDNA of patients, which can be targeted by analogues of imatinib. ROS1 fusions (CEP85L–ROS1 and GOPC–ROS1), identified in 8% of patient cfDNA, might be targeted by crizotinib, entrectinib, or larotrectinib. Thus, our study suggests that integrated analysis of cfDNA plasma concentration, gene mutations, and gene–gene fusions can serve as a diagnostic modality for distinguishing GBM patients who may benefit from targeted therapy. These results open new avenues for precision medicine in GBM, using noninvasive liquid biopsy diagnostics to assess personalized patient profiles. Moreover, repeated detection of druggable targets over the course of the disease may provide real‐time information on the evolving molecular landscape of the tumour.
Collapse
Affiliation(s)
- Vikrant Palande
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Tali Siegal
- Neuro-Oncology Center, Rabin Medical Center, Petach Tikva, Israel and Hebrew University, 4941492, Jerusalem, Israel
| | - Rajesh Detroja
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | | | - Rainer Glass
- Department of Neurosurgery, Ludwig-Maximilians-University, 81377, Munich, Germany
| | - Charlotte Flueh
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Andrew A Kanner
- Department of Neurosurgery, Rabin Medical Center, Petach Tikva, 4941492, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoseph Laviv
- Department of Neurosurgery, Rabin Medical Center, Petach Tikva, 4941492, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sagi Har-Nof
- Department of Neurosurgery, Rabin Medical Center, Petach Tikva, 4941492, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Levy-Barda
- Department of Pathology, Rabin Medical Center, Petach Tikva, 4941492, Israel
| | | | - Marina Kurtz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Shira Perez
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Dorith Raviv Shay
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.,The Dangoor Centre For Personalized Medicine, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
46
|
|
47
|
Pasquini L, Napolitano A, Lucignani M, Tagliente E, Dellepiane F, Rossi-Espagnet MC, Ritrovato M, Vidiri A, Villani V, Ranazzi G, Stoppacciaro A, Romano A, Di Napoli A, Bozzao A. AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? Front Oncol 2021; 11:601425. [PMID: 34888226 PMCID: PMC8649764 DOI: 10.3389/fonc.2021.601425] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performance, and comparative analyses are lacking in the literature. We aimed to compare ML classifiers to predict clinically relevant tasks for HGG: overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor vIII (EGFR) amplification, and Ki-67 expression, based on radiomic features from conventional and advanced magnetic resonance imaging (MRI). Our objective was to identify the best algorithm for each task. One hundred fifty-six adult patients with pathologic diagnosis of HGG were included. Three tumoral regions were manually segmented: contrast-enhancing tumor, necrosis, and non-enhancing tumor. Radiomic features were extracted with a custom version of Pyradiomics and selected through Boruta algorithm. A Grid Search algorithm was applied when computing ten times K-fold cross-validation (K=10) to get the highest mean and lowest spread of accuracy. Model performance was assessed as AUC-ROC curve mean values with 95% confidence intervals (CI). Extreme Gradient Boosting (xGB) obtained highest accuracy for OS (74,5%), Adaboost (AB) for IDH mutation (87.5%), MGMT methylation (70,8%), Ki-67 expression (86%), and EGFR amplification (81%). Ensemble classifiers showed the best performance across tasks. High-scoring radiomic features shed light on possible correlations between MRI and tumor histology.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Francesco Dellepiane
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Matteo Ritrovato
- Unit of Health Technology Assessment (HTA), Biomedical Technology Risk Manager, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, Regina Elena National Cancer Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Veronica Villani
- Neuro-Oncology Unit, Regina Elena National Cancer Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Giulio Ranazzi
- Department of Clinical and Molecular Medicine, Surgical Pathology Units, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Surgical Pathology Units, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Radiology Department, Castelli Romani Hospital, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| |
Collapse
|
48
|
Jaberipour M, Soliman H, Sahgal A, Sadeghi-Naini A. A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning. Sci Rep 2021; 11:21620. [PMID: 34732781 PMCID: PMC8566533 DOI: 10.1038/s41598-021-01024-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
This study investigated the effectiveness of pre-treatment quantitative MRI and clinical features along with machine learning techniques to predict local failure in patients with brain metastasis treated with hypo-fractionated stereotactic radiation therapy (SRT). The predictive models were developed using the data from 100 patients (141 lesions) and evaluated on an independent test set with data from 20 patients (30 lesions). Quantitative MRI radiomic features were derived from the treatment-planning contrast-enhanced T1w and T2-FLAIR images. A multi-phase feature reduction and selection procedure was applied to construct an optimal quantitative MRI biomarker for predicting therapy outcome. The performance of standard clinical features in therapy outcome prediction was evaluated using a similar procedure. Survival analyses were conducted to compare the long-term outcome of the two patient cohorts (local control/failure) identified based on prediction at pre-treatment, and standard clinical criteria at last patient follow-up after SRT. The developed quantitative MRI biomarker consists of four features with two features quantifying heterogeneity in the edema region, one feature characterizing intra-tumour heterogeneity, and one feature describing tumour morphology. The predictive models with the radiomic and clinical feature sets yielded an AUC of 0.87 and 0.62, respectively on the independent test set. Incorporating radiomic features into the clinical predictive model improved the AUC of the model by up to 16%, relatively. A statistically significant difference was observed in survival of the two patient cohorts identified at pre-treatment using the radiomics-based predictive model, and at post-treatment using the the RANO-BM criteria. Results of this study revealed a good potential for quantitative MRI radiomic features at pre-treatment in predicting local failure in relatively large brain metastases undergoing SRT, and is a step forward towards a precision oncology paradigm for brain metastasis.
Collapse
Affiliation(s)
- Majid Jaberipour
- grid.21100.320000 0004 1936 9430Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON Canada ,grid.413104.30000 0000 9743 1587Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Hany Soliman
- grid.413104.30000 0000 9743 1587Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada ,grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| | - Arjun Sahgal
- grid.413104.30000 0000 9743 1587Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada ,grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| | - Ali Sadeghi-Naini
- grid.21100.320000 0004 1936 9430Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON Canada ,grid.413104.30000 0000 9743 1587Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada ,grid.413104.30000 0000 9743 1587Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
49
|
Wang Z, Liu Y, Mo Y, Zhang H, Dai Z, Zhang X, Ye W, Cao H, Liu Z, Cheng Q. The CXCL Family Contributes to Immunosuppressive Microenvironment in Gliomas and Assists in Gliomas Chemotherapy. Front Immunol 2021; 12:731751. [PMID: 34603309 PMCID: PMC8482424 DOI: 10.3389/fimmu.2021.731751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Gliomas are a type of malignant central nervous system tumor with poor prognosis. Molecular biomarkers of gliomas can predict glioma patient's clinical outcome, but their limitations are also emerging. C-X-C motif chemokine ligand family plays a critical role in shaping tumor immune landscape and modulating tumor progression, but its role in gliomas is elusive. In this work, samples of TCGA were treated as the training cohort, and as for validation cohort, two CGGA datasets, four datasets from GEO database, and our own clinical samples were enrolled. Consensus clustering analysis was first introduced to classify samples based on CXCL expression profile, and the support vector machine was applied to construct the cluster model in validation cohort based on training cohort. Next, the elastic net analysis was applied to calculate the risk score of each sample based on CXCL expression. High-risk samples associated with more malignant clinical features, worse survival outcome, and more complicated immune landscape than low-risk samples. Besides, higher immune checkpoint gene expression was also noticed in high-risk samples, suggesting CXCL may participate in tumor evasion from immune surveillance. Notably, high-risk samples also manifested higher chemotherapy resistance than low-risk samples. Therefore, we predicted potential compounds that target high-risk samples. Two novel drugs, LCL-161 and ADZ5582, were firstly identified as gliomas' potential compounds, and five compounds from PubChem database were filtered out. Taken together, we constructed a prognostic model based on CXCL expression, and predicted that CXCL may affect tumor progression by modulating tumor immune landscape and tumor immune escape. Novel potential compounds were also proposed, which may improve malignant glioma prognosis.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuze Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuyao Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Wang C, Dong H. Intravoxel incoherent motion magnetic resonance imaging in predicting IDH1 gene mutations in high-grade gliomas. Acta Radiol 2021; 62:1412-1417. [PMID: 33951927 DOI: 10.1177/02841851211011914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) has been applied to gliomas; however, the relationships between its parameters and isocitrate dehydrogenase 1 (IDH1) mutations in gliomas remain to be investigated. PURPOSE To investigate the value of IVIM in predicting IDH1 mutations in high-grade gliomas before surgery. MATERIAL AND METHODS A total of 72 patients with pathologically confirmed high-grade gliomas underwent conventional brain MRI and IVIM from September 2016 to May 2020. Among them, 22 cases were IDH1 mutant and 50 cases were IDH1 wild type. The independent samples t test (normal distribution and homogeneity of variance) or Mann-Whitney rank-sum test (non-normal distribution or heterogeneity of variance) was conducted, and receiver operating characteristic curves were generated to determine parameters for distinguishing IDH1-mutated from IDH1 wild-type high-grade gliomas. These parameters included apparent diffusion coefficient (ADC), true diffusivity (D), pseudo-diffusivity (D*), and perfusion fraction (f). RESULTS ADC, D, and f were significantly higher in IDH1-mutated gliomas than in IDH1 wild-type gliomas (P < 0.05 for all). There was no significant difference in the D* value between the two groups (P = 0.053). The areas under the curve of ADC, D, and f in predicting IDH1 mutations in gliomas were 0.798, 0.810, and 0.823, respectively. The specificity of ADC was highest (80.0%), and the sensitivity of the f value was the highest (100.0%). CONCLUSION IVIM can be used for the quantitative prediction of IDH1 mutations in high-grade gliomas before surgery, and the f value is the most effective.
Collapse
Affiliation(s)
- Chaochao Wang
- Department of Radiology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang, PR China
| | - Haibo Dong
- Department of Radiology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang, PR China
| |
Collapse
|