1
|
Guo S, Ren J, Meng Q, Zhang B, Jiao J, Han D, Wu P, Ma S, Zhang J, Xing N, Qin W, Kang F, Zhang J. The impact of integrating PRIMARY score or SUVmax with MRI-based risk models for the detection of clinically significant prostate cancer. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06916-2. [PMID: 39264425 DOI: 10.1007/s00259-024-06916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE An MRI-based risk calculator (RC) has been recommended for diagnosing clinically significant prostate cancer (csPCa). PSMA PET/CT can detect lesions that are not visible on MRI, and the addition of PSMA PET/CT to MRI may improve diagnostic performance. The aim of this study was to incorporate the PRIMARY score or SUVmax derived from [68Ga]Ga-PSMA-11 PET/CT into the RC and compare these models with MRI-based RC to assess whether this can further reduce unnecessary biopsies. METHODS A total of 683 consecutive biopsy-naïve men who underwent both [68Ga]Ga-PSMA-11 PET/CT and MRI before biopsy were temporally divided into a development cohort (n = 552) and a temporal validation cohort (n = 131). Three logistic regression RCs were developed and compared: MRI-RC, MRI-SUVmax-RC and MRI-PRIMARY-RC. Discrimination, calibration, and clinical utility were evaluated. The primary outcome was the clinical utility of the risk calculators for detecting csPCa and reducing the number of negative biopsies. RESULTS The prevalence of csPCa was 47.5% (262/552) in the development cohort and 41.9% (55/131) in the temporal validation cohort. In the development cohort, the AUC of MRI-PRIMARY-RC was significantly higher than that of MRI-RC (0.924 vs. 0.868, p < 0.001) and MRI-SUVmax-RC (0.924 vs. 0.904, p = 0.002). In the temporal validation cohort, MRI-PRIMARY-RC also showed the best discriminative ability with an AUC of 0.921 (95% CI: 0.873-0.969). Bootstrapped calibration curves revealed that the model fit was acceptable. MRI-PRIMARY-RC exhibited near-perfect calibration within the range of 0-40%. DCA showed that MRI-PRIMARY-RC had the greatest net benefit for detecting csPCa compared with MRI-RC and MRI-SUVmax-RC at a risk threshold of 5-40% for csPCa in both the development and validation cohorts. CONCLUSION The addition of the PRIMARY score to MRI-based multivariable model improved the accuracy of risk stratification prior to biopsy. Our novel MRI-PRIMARY prediction model is a promising approach for reducing unnecessary biopsies and improving the early detection of csPCa.
Collapse
Affiliation(s)
- Shikuan Guo
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
- Department of Urology, No.988 Hospital of Joint Logistic Support Force, Zhengzhou, Henan, 450042, China
| | - Jing Ren
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qingze Meng
- Department of Urology, No.988 Hospital of Joint Logistic Support Force, Zhengzhou, Henan, 450042, China
| | - Boyuan Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Jianhua Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Peng Wu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Shuaijun Ma
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China
| | - Jing Zhang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Nianzeng Xing
- Department of Urology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China.
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, No.127, Changle West Road, Xincheng District, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Otani T, Nakamoto R, Umeoka S, Nakamoto Y. PSMA PET/CT imaging and its application to prostate cancer treatment. Jpn J Radiol 2024:10.1007/s11604-024-01646-9. [PMID: 39225954 DOI: 10.1007/s11604-024-01646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Recognition of the importance of prostate-specific membrane antigen (PSMA) PET/CT in the diagnosis of prostate cancer has steadily increased following the publication of extensive data on its diagnostic accuracy and impact on patient management over the past decade. Several recent clinical trials and investigations regarding PSMA PET/CT have been ongoing in our country, and this examination is expected to become increasingly widespread in the future. This review explains the characteristics of PSMA PET/CT, its diagnostic capabilities and superiority over other modalities, the three proposed PSMA PET/CT interpretation criteria (the European Association of Nuclear Medicine [EANM], the Prostate Cancer Molecular Imaging Standardized Evaluation [PROMISE], and the PSMA Reporting and Data System [PSMA-RADS]), and the application of PSMA PET/CT to prostate cancer treatment (improvement of local control, irradiation of oligometastases, and salvage radiotherapy), incorporating actual clinical images and the latest findings.
Collapse
Affiliation(s)
- Tomoaki Otani
- Department of Diagnostic Radiology, Japanese Red Cross Society Wakayama Medical Center, 4-20 Komatsubara-dori, Wakayama, 640-8558, Japan.
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Ryusuke Nakamoto
- Preemptive Medicine and Lifestyle Related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Shigeaki Umeoka
- Department of Diagnostic Radiology, Japanese Red Cross Society Wakayama Medical Center, 4-20 Komatsubara-dori, Wakayama, 640-8558, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Brondani Torri G, Antune Pereira P, Piovesan Wiethan C, Mesquita Y, Mirshahvalad SA, Veit-Haibach P, Ghai S, Metser U, Altmayer S, Dias AB. Comparison of Multiparametric MRI and the Combination of PSMA Plus MRI for the Intraprostatic Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis. Clin Nucl Med 2024; 49:e375-e382. [PMID: 38776063 DOI: 10.1097/rlu.0000000000005265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE The aim of this study was to perform a head-to-head comparison of multiparametric MRI (mpMRI) and the combination of prostate-specific membrane antigen (PSMA) PET plus MRI (PSMA + MRI) for detecting intraprostatic clinically significant prostate cancer (csPCa). PATIENTS AND METHODS Relevant databases were searched through November 2023. Only studies directly comparing mpMRI and PSMA + MRI (PET/MRI or PET/CT + mpMRI) were included. A meta-analysis with a random-effects model was used to estimate pooled sensitivity, specificity, and area under the curve for each approach. RESULTS A total of 19 studies were included. On a patient-level analysis, PSMA + MRI had higher sensitivity (9 studies) than mpMRI for csPCa detection (96% [95% confidence interval (CI): 92%, 98%] vs 89% [95% CI: 81%, 94%]; P = 0.04). The patient-level specificity (4 studies) of PSMA + MRI was 55% (95% CI: 31%-76%) compared with 50% (95% CI: 44%-57%) of mpMRI ( P = 0.67). Region-level sensitivity (10 studies) was 85% (95% CI: 74%-92%) for PSMA + MRI and 71% (95% CI: 58%-82%) for mpMRI ( P = 0.09), whereas specificity (4 studies) was 87% (95% CI: 76%-94%) and 90% (95% CI: 82%-95%), respectively ( P = 0.59). Lesion-level sensitivity and specificity were similar between modalities with pooled data from less than 4 studies. CONCLUSIONS PSMA + MRI had superior pooled sensitivity and similar specificity for the detection of csPCa compared with mpMRI in this meta-analysis of head-to-head studies.
Collapse
Affiliation(s)
- Giovanni Brondani Torri
- From the Department of Radiology and Diagnostic Imaging, Hospital Universitário de Santa Maria, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul
| | - Pedro Antune Pereira
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University of Toronto
| | - Camila Piovesan Wiethan
- From the Department of Radiology and Diagnostic Imaging, Hospital Universitário de Santa Maria, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul
| | - Yasmin Mesquita
- Division of Medicine, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University of Toronto
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University of Toronto
| | - Sangeet Ghai
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University of Toronto
| | - Ur Metser
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University of Toronto
| | - Stephan Altmayer
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Adriano Basso Dias
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University of Toronto
| |
Collapse
|
4
|
Laudicella R, Comelli A, Schwyzer M, Stefano A, Konukoglu E, Messerli M, Baldari S, Eberli D, Burger IA. PSMA-positive prostatic volume prediction with deep learning based on T2-weighted MRI. LA RADIOLOGIA MEDICA 2024; 129:901-911. [PMID: 38700556 PMCID: PMC11168990 DOI: 10.1007/s11547-024-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024]
Abstract
PURPOSE High PSMA expression might be correlated with structural characteristics such as growth patterns on histopathology, not recognized by the human eye on MRI images. Deep structural image analysis might be able to detect such differences and therefore predict if a lesion would be PSMA positive. Therefore, we aimed to train a neural network based on PSMA PET/MRI scans to predict increased prostatic PSMA uptake based on the axial T2-weighted sequence alone. MATERIAL AND METHODS All patients undergoing simultaneous PSMA PET/MRI for PCa staging or biopsy guidance between April 2016 and December 2020 at our institution were selected. To increase the specificity of our model, the prostatic beds on PSMA PET scans were dichotomized in positive and negative regions using an SUV threshold greater than 4 to generate a PSMA PET map. Then, a C-ENet was trained on the T2 images of the training cohort to generate a predictive prostatic PSMA PET map. RESULTS One hundred and fifty-four PSMA PET/MRI scans were available (133 [68Ga]Ga-PSMA-11 and 21 [18F]PSMA-1007). Significant cancer was present in 127 of them. The whole dataset was divided into a training cohort (n = 124) and a test cohort (n = 30). The C-ENet was able to predict the PSMA PET map with a dice similarity coefficient of 69.5 ± 15.6%. CONCLUSION Increased prostatic PSMA uptake on PET might be estimated based on T2 MRI alone. Further investigation with larger cohorts and external validation is needed to assess whether PSMA uptake can be predicted accurately enough to help in the interpretation of mpMRI.
Collapse
Affiliation(s)
- Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zürich, University of Zurich, Zurich, Switzerland.
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy.
- Ri.MED Foundation, Palermo, Italy.
| | | | - Moritz Schwyzer
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | | | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Daniel Eberli
- Department of Urology, University Hospital of Zürich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zürich, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Cantonal Hospital Baden, Baden, Switzerland
| |
Collapse
|
5
|
Ma J, Yang Q, Ye X, Xu W, Chang Y, Chen R, Wang Y, Luo M, Lou Y, Yang X, Li D, Xu Y, He W, Cai M, Cao W, Ju G, Yin L, Wang J, Ren J, Ma Z, Zuo C, Ren S. Head-to-head comparison of prostate-specific membrane antigen PET and multiparametric MRI in the diagnosis of pretreatment patients with prostate cancer: a meta-analysis. Eur Radiol 2024; 34:4017-4037. [PMID: 37981590 DOI: 10.1007/s00330-023-10436-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES To compare prostate-specific membrane antigen (PSMA) PET with multiparametric MRI (mpMRI) in the diagnosis of pretreatment prostate cancer (PCa). METHODS Pubmed, Embase, Medline, Web of Science, and Cochrane Library were searched for eligible studies published before June 22, 2022. We assessed risk of bias and applicability by using QUADAS-2 tool. Data synthesis was performed with Stata 17.0 software, using the "midas" and "meqrlogit" packages. RESULTS We included 29 articles focusing on primary cancer detection, 18 articles about primary staging, and two articles containing them both. For PSMA PET versus mpMRI in primary PCa detection, sensitivities and specificities in the per-patient analysis were 0.90 and 0.84 (p<0.0001), and 0.66 and 0.60 (p <0.0001), and in the per-lesion analysis they were 0.79 and 0.78 (p <0.0001), and 0.84 and 0.82 (p <0.0001). For the per-patient analysis of PSMA PET versus mpMRI in primary staging, sensitivities and specificities in extracapsular extension detection were 0.59 and 0.66 (p =0.005), and 0.79 and 0.76 (p =0.0074), and in seminal vesicle infiltration (SVI) detection they were 0.51 and 0.60 (p =0.0008), and 0.93 and 0.96 (p =0.0092). For PSMA PET versus mpMRI in lymph node metastasis (LNM) detection, sensitivities and specificities in the per-patient analysis were 0.68 and 0.46 (p <0.0001), and 0.91 and 0.90 (p =0.81), and in the per-lesion analysis they were 0.67 and 0.36 (p <0.0001), and 0.99 and 0.99 (p =0.18). CONCLUSION PSMA PET has higher diagnostic value than mpMRI in the detection of primary PCa. Regarding the primary staging, mpMRI has potential advantages in SVI detection, while PSMA PET has relative advantages in LNM detection. CLINICAL RELEVANCE STATEMENT The integration of prostate-specific membrane antigen (PSMA) PET into the diagnostic pathway may be helpful for improving the accuracy of prostate cancer detection. However, further studies are needed to address the cost implications and evaluate its utility in specific patient populations or clinical scenarios. Moreover, we recommend the combination of PSMA PET and mpMRI for cancer staging. KEY POINTS • Prostate-specific membrane antigen PET has higher sensitivity and specificity for primary tumor detection in prostate cancer compared to multiparametric MRI. • Prostate-specific membrane antigen PET also has significantly better sensitivity and specificity for lymph node metastases of prostate cancer compared to multiparametric MRI. • Multiparametric MRI has better accuracy for extracapsular extension and seminal vesicle infiltration compared to ate-specific membrane antigen PET.
Collapse
Affiliation(s)
- Jianglei Ma
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Qinqin Yang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaofei Ye
- Department of Health Statistics, Naval Medical University, Shanghai, 200433, China
| | - Weidong Xu
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yifan Chang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Rui Chen
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ye Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mengting Luo
- College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yihaoyun Lou
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Xuming Yang
- Department of Urology, Hengyang Central Hospital, Hengyang, 421001, Hu'nan, China
| | - Duocai Li
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yusi Xu
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wei He
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Minglei Cai
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wanli Cao
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Guanqun Ju
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Lei Yin
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Junkai Wang
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jizhong Ren
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zifang Ma
- Department of Urology, Hengyang Central Hospital, Hengyang, 421001, Hu'nan, China.
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Shancheng Ren
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
6
|
Gammel MCM, Solari EL, Eiber M, Rauscher I, Nekolla SG. A Clinical Role of PET-MRI in Prostate Cancer? Semin Nucl Med 2024; 54:132-140. [PMID: 37652782 DOI: 10.1053/j.semnuclmed.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
PET/MRI is a relevant application field for prostate cancer management, offering advantages in early diagnosis, staging, and therapy planning. Despite drawbacks such as higher costs, longer acquisition time, and the need for skilled personnel, the technical integration of PET and MRI provides valuable information for detecting primary tumors, identifying metastases, and characterizing the disease, leading to more accurate staging and personalized treatment strategies. However, PET/MRI adoption has been slow, but ongoing technological advancements and AI integration might overcome challenges and improve clinical utility. As precision medicine gains importance in oncology, PET/MRI's multiparametric data can tailor treatment plans to individual patients, providing a comprehensive assessment of tumor biology and aggressiveness for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Michael C M Gammel
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Esteban L Solari
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Isabel Rauscher
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Gossili F, Mogensen AW, Konnerup TC, Bouchelouche K, Alberts I, Afshar-Oromieh A, Zacho HD. The diagnostic accuracy of radiolabeled PSMA-ligand PET for tumour staging in newly diagnosed prostate cancer patients compared to histopathology: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2023; 51:281-294. [PMID: 37597010 DOI: 10.1007/s00259-023-06392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE The current clinical recommendations posit the deployment of specific approved radiolabeled prostate-specific membrane antigen-ligand positron emission tomography (PSMA PET) for detecting metastatic prostate cancer during primary staging. Nevertheless, the precise efficacy of such ligands in localizing intraprostatic tumours (index tumour) and T-staging is not well established. Consequently, the objective of this inquiry is to ascertain the diagnostic accuracy of PSMA-PET in the tumour staging of newly diagnosed prostate cancer by means of a meta-analysis that integrates studies utilizing histological confirmation as the reference standard. METHODS In this study, we conducted a systematic literature search of the PubMed, Embase, Web of Science, and Cochrane Library databases using a predefined collection of search terms. These terms included 'PSMA PET', 'primary staging', and 'prostate cancer'. Subsequently, two independent reviewers evaluated all the studies based on predetermined inclusion criteria, extracted pertinent data, and assessed the quality of evidence. Any disparities were resolved by a third reviewer. A random effects Sidik-Jonkman model was applied to conduct a meta-analysis and estimate the diagnostic accuracy on a per-patient basis, along with 95% confidence intervals. Moreover, an appraisal regarding the likelihood of publication bias and the impact of small-study effects was performed utilizing both Egger's test and a graphical examination of the funnel plot. RESULTS The present analysis comprised a total of twenty-three scientific papers encompassing 969 patients and involved their analysis by both qualitative and quantitative approaches. The results of this study demonstrated that the estimated diagnostic accuracy of PSMA PET/CT and PSMA PET/MRI, for the detection of intraprostatic tumours, regardless of the type of PSMA-ligand, was 86% (95% CI: 76-96%) and 97% (95% CI: 94-100%), respectively. Furthermore, the diagnostic accuracy for the detection of extraprostatic extension (EPE) was 73% (95% CI: 64-82%) and 77% (95% CI: 69-85%), while the diagnostic accuracy for the detection of seminal vesicle involvement (SVI) was 87% (95% CI: 80-93) and 90% (95% CI: 82-99%), respectively. CONCLUSION The present investigation has demonstrated that PSMA PET/MRI surpasses currently recommended multiparametric magnetic resonance imaging (mpMRI) in terms of diagnostic accuracy as inferred from a notable data trajectory, whereas PSMA-PET/CT exhibited comparable diagnostic accuracy for intraprostatic tumour detection and T-staging compared to mpMRI. Nevertheless, the analysis has identified certain potential limitations, such as small-study effects and a potential for publication bias, which may impact the overall conclusions drawn from this study.
Collapse
Affiliation(s)
- Farid Gossili
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Anna Winther Mogensen
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Kirsten Bouchelouche
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ian Alberts
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Hoshi S, Yaginuma K, Meguro S, Onagi A, Matsuoka K, Hata J, Sato Y, Akaihata H, Kataoka M, Ogawa S, Uemura M, Kojima Y. PSMA Targeted Molecular Imaging and Radioligand Therapy for Prostate Cancer: Optimal Patient and Treatment Issues. Curr Oncol 2023; 30:7286-7302. [PMID: 37623010 PMCID: PMC10453875 DOI: 10.3390/curroncol30080529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Theranostics (therapy + diagnosis) targeting prostate-specific membrane antigen (PSMA) is an emerging therapeutic modality that could alter treatment strategies for prostate cancer. Although PSMA-targeted radioligand therapy (PSMA-RLT) has a highly therapeutic effect on PSMA-positive tumor tissue, the efficacy of PSMA-RLT depends on PSMA expression. Moreover, predictors of treatment response other than PSMA expression are under investigation. Therefore, the optimal patient population for PSMA-RLT remains unclear. This review provides an overview of the current status of theranostics for prostate cancer, focusing on PSMA ligands. In addition, we summarize various findings regarding the efficacy and problems of PSMA-RLT and discuss the optimal patient for PSMA-RLT.
Collapse
Affiliation(s)
- Seiji Hoshi
- Departments of Urology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (K.Y.); (S.M.); (A.O.); (K.M.); (J.H.); (Y.S.); (H.A.); (M.K.); (S.O.); (M.U.); (Y.K.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang G, Li L, Zhu M, Zang J, Wang J, Wang R, Yan W, Zhu L, Kung HF, Zhu Z. A prospective head-to-head comparison of [ 68Ga]Ga-P16-093 and [ 68Ga]Ga-PSMA-11 PET/CT in patients with primary prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:3126-3136. [PMID: 37233785 PMCID: PMC10213584 DOI: 10.1007/s00259-023-06283-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE We aimed to compare the diagnostic performance and biodistribution of two similar PET agents, [68Ga]Ga-P16-093 and [68Ga]Ga-PSMA-11, in the same group of primary prostate cancer (PCa) patients. METHODS Fifty patients with untreated, histologically confirmed PCa by needle biopsy were enrolled. Each patient underwent [68Ga]Ga-P16-093 and [68Ga]Ga-PSMA-11 PET/CT within a week. In addition to visual analysis, the standardized uptake value (SUV) was measured for semiquantitative comparison and correlation analysis. RESULTS [68Ga]Ga-P16-093 PET/CT detected more positive tumors than [68Ga]Ga-PSMA-11 PET/CT (202 vs. 190, P = 0.002), both for intraprostatic lesions (48 vs. 41, P = 0.016) and metastatic lesions (154 vs. 149, P = 0.125), especially for intraprostatic lesions in low- and intermediate-risk PCa patients (21/23 vs. 15/23, P = 0.031). Furthermore, [68Ga]Ga-P16-093 PET/CT exhibited a significantly higher SUVmax for most matched tumors (13.7 ± 10.2 vs. 11.4 ± 8.3, P < 0.001). For normal organs, [68Ga]Ga-P16-093 PET/CT showed significantly lower activity in the kidney (SUVmean: 20.1 ± 6.1 vs. 29.3 ± 9.1, P < 0.001) and urinary bladder (SUVmean: 6.5 ± 7.1 vs. 20.9 ± 17.4, P < 0.001), but displayed a higher uptake in the parotid gland (SUVmean: 8.7 ± 2.6 vs. 7.6 ± 2.1, P < 0.001), liver (SUVmean: 7.0 ± 1.9 vs. 3.7 ± 1.3, P < 0.001), and spleen (SUVmean: 8.2 ± 3.0 vs. 5.2 ± 2.2, P < 0.001) than [68Ga]Ga-PSMA-11 PET/CT. CONCLUSION [68Ga]Ga-P16-093 PET/CT demonstrated higher tumor uptake and better tumor detectability than [68Ga]Ga-PSMA-11 PET/CT, especially in low- and intermediate-risk PCa patients, which indicated that [68Ga]Ga-P16-093 may serve as an alternative agent for detection of PCa. TRIAL REGISTRATION 68Ga-P16-093 and 68Ga-PSMA-11 PET/CT Imaging in the Same Group of Primary Prostate Cancer Patients (NCT05324332, Registered 12 April 2022, retrospectively registered). URL OF REGISTRY: https://clinicaltrials.gov/ct2/show/NCT05324332 .
Collapse
Affiliation(s)
- Guochang Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Linlin Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Ming Zhu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Jie Zang
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jiarou Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Lin Zhu
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Zhu M, Liang Z, Feng T, Mai Z, Jin S, Wu L, Zhou H, Chen Y, Yan W. Up-to-Date Imaging and Diagnostic Techniques for Prostate Cancer: A Literature Review. Diagnostics (Basel) 2023; 13:2283. [PMID: 37443677 DOI: 10.3390/diagnostics13132283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer (PCa) faces great challenges in early diagnosis, which often leads not only to unnecessary, invasive procedures, but to over-diagnosis and treatment as well, thus highlighting the need for modern PCa diagnostic techniques. The review aims to provide an up-to-date summary of chronologically existing diagnostic approaches for PCa, as well as their potential to improve clinically significant PCa (csPCa) diagnosis and to reduce the proliferation and monitoring of PCa. Our review demonstrates the primary outcomes of the most significant studies and makes comparisons across the diagnostic efficacies of different PCa tests. Since prostate biopsy, the current mainstream PCa diagnosis, is an invasive procedure with a high risk of post-biopsy complications, it is vital we dig out specific, sensitive, and accurate diagnostic approaches in PCa and conduct more studies with milestone findings and comparable sample sizes to validate and corroborate the findings.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhen Liang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianrui Feng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhipeng Mai
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shijie Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liyi Wu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huashan Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuliang Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
11
|
Chow KM, So WZ, Lee HJ, Lee A, Yap DWT, Takwoingi Y, Tay KJ, Tuan J, Thang SP, Lam W, Yuen J, Lawrentschuk N, Hofman MS, Murphy DG, Chen K. Head-to-head Comparison of the Diagnostic Accuracy of Prostate-specific Membrane Antigen Positron Emission Tomography and Conventional Imaging Modalities for Initial Staging of Intermediate- to High-risk Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol 2023; 84:36-48. [PMID: 37032189 DOI: 10.1016/j.eururo.2023.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023]
Abstract
CONTEXT Whether prostate-specific membrane antigen positron emission tomography (PSMA-PET) should replace conventional imaging modalities (CIM) for initial staging of intermediate-high risk prostate cancer (PCa) requires definitive evidence on their relative diagnostic abilities. OBJECTIVE To perform head-to-head comparisons of PSMA-PET and CIM including multiparametric magnetic resonance imaging (mpMRI), computed tomography (CT) and bone scan (BS) for upfront staging of tumour, nodal, and bone metastasis. EVIDENCE ACQUISITION A search of the PubMed, EMBASE, CENTRAL, and Scopus databases was conducted from inception to December 2021. Only studies in which patients underwent both PSMA-PET and CIM and imaging was referenced against histopathology or composite reference standards were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) checklist and its extension for comparative reviews (QUADAS-C). Pairwise comparisons of the sensitivity and specificity of PSMA-PET versus CIM were performed by adding imaging modality as a covariate to bivariate mixed-effects meta-regression models. The likelihood ratio test was applied to determine whether statistically significant differences existed. EVIDENCE SYNTHESIS A total of 31 studies (2431 patients) were included. PSMA-PET/MRI was more sensitive than mpMRI for detection of extra-prostatic extension (78.7% versus 52.9%) and seminal vesicle invasion (66.7% versus 51.0%). For nodal staging, PSMA-PET was more sensitive and specific than mpMRI (73.7% versus 38.9%, 97.5% versus 82.6%) and CT (73.2% versus 38.5%, 97.8% versus 83.6%). For bone metastasis staging, PSMA-PET was more sensitive and specific than BS with or without single-photon emission computerised tomography (98.0% versus 73.0%, 96.2% versus 79.1%). A time interval between imaging modalities >1 month was identified as a source of heterogeneity across all nodal staging analyses. CONCLUSIONS Direct comparisons revealed that PSMA-PET significantly outperforms CIM, which suggests that PSMA-PET should be used as a first-line approach for the initial staging of PCa. PATIENT SUMMARY We reviewed direct comparisons of the ability of a scan method called PSMA-PET (prostate-specific membrane antigen positron emission tomography) and current imaging methods to detect the spread of prostate cancer outside the prostate gland. We found that PSMA-PET is more accurate for detection of the spread of prostate cancer to adjacent tissue, nearby lymph nodes, and bones.
Collapse
Affiliation(s)
- Kit Mun Chow
- YLL School of Medicine, National University of Singapore, Singapore
| | - Wei Zheng So
- YLL School of Medicine, National University of Singapore, Singapore
| | - Han Jie Lee
- Department of Urology, Singapore General Hospital, Singapore
| | - Alvin Lee
- Department of Urology, Singapore General Hospital, Singapore
| | | | - Yemisi Takwoingi
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Kae Jack Tay
- Department of Urology, Singapore General Hospital, Singapore
| | - Jeffrey Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Sue Ping Thang
- Department of Nuclear Medicine, Singapore General Hospital, Singapore
| | - Winnie Lam
- Department of Nuclear Medicine, Singapore General Hospital, Singapore
| | - John Yuen
- Department of Urology, Singapore General Hospital, Singapore
| | - Nathan Lawrentschuk
- Department of Urology and Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; EJ Whitten Prostate Cancer Research Centre at Epworth, Melbourne, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Declan G Murphy
- Department of Urology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kenneth Chen
- Department of Urology, Singapore General Hospital, Singapore.
| |
Collapse
|
12
|
Goh V. Genitourinary Imaging in 2040. Radiology 2023; 307:e230223. [PMID: 37249430 PMCID: PMC10315527 DOI: 10.1148/radiol.230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/31/2023]
Affiliation(s)
- Vicky Goh
- From the Department of Cancer Imaging, School of Biomedical
Engineering and Imaging Sciences, King’s College London, SE1 7EH,
United Kingdom; and Department of Radiology, Guy’s & St
Thomas’ NHS Foundation Trust, Level 1, Lambeth Wing, St Thomas’
Hospital, Westminster Bridge Rd, London, United Kingdom
| |
Collapse
|
13
|
Basso Dias A, Mirshahvalad SA, Ortega C, Perlis N, Berlin A, van der Kwast T, Ghai S, Jhaveri K, Metser U, Haider M, Avery L, Veit-Haibach P. The role of [ 18F]-DCFPyL PET/MRI radiomics for pathological grade group prediction in prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:2167-2176. [PMID: 36809425 DOI: 10.1007/s00259-023-06136-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To evaluate the diagnostic accuracy of [18F]-DCFPyL PET/MRI radiomics for the prediction of pathological grade group in prostate cancer (PCa) in therapy-naïve patients. METHODS Patients with confirmed or suspected PCa, who underwent [18F]-DCFPyL PET/MRI (n = 105), were included in this retrospective analysis of two prospective clinical trials. Radiomic features were extracted from the segmented volumes following the image biomarker standardization initiative (IBSI) guidelines. Histopathology obtained from systematic and targeted biopsies of the PET/MRI-detected lesions was the reference standard. Histopathology patterns were dichotomized as ISUP GG 1-2 vs. ISUP GG ≥ 3 categories. Different single-modality models were defined for feature extraction, including PET- and MRI-derived radiomic features. The clinical model included age, PSA, and lesions' PROMISE classification. Single models, as well as different combinations of them, were generated to calculate their performances. A cross-validation approach was used to evaluate the internal validity of the models. RESULTS All radiomic models outperformed the clinical models. The best model for grade group prediction was the combination of PET + ADC + T2w radiomic features, showing sensitivity, specificity, accuracy, and AUC of 0.85, 0.83, 0.84, and 0.85, respectively. The MRI-derived (ADC + T2w) features showed sensitivity, specificity, accuracy, and AUC of 0.88, 0.78, 0.83, and 0.84, respectively. PET-derived features showed 0.83, 0.68, 0.76, and 0.79, respectively. The baseline clinical model showed 0.73, 0.44, 0.60, and 0.58, respectively. The addition of the clinical model to the best radiomic model did not improve the diagnostic performance. The performances of MRI and PET/MRI radiomic models as per the cross-validation scheme yielded an accuracy of 0.80 (AUC = 0.79), whereas clinical models presented an accuracy of 0.60 (AUC = 0.60). CONCLUSION The combined [18F]-DCFPyL PET/MRI radiomic model was the best-performing model and outperformed the clinical model for pathological grade group prediction, indicating a complementary value of the hybrid PET/MRI model for non-invasive risk stratification of PCa. Further prospective studies are required to confirm the reproducibility and clinical utility of this approach.
Collapse
Affiliation(s)
- Adriano Basso Dias
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada.
| | - Seyed Ali Mirshahvalad
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Nathan Perlis
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, Princess Margaret Cancer Center, University Health Network & University of Toronto, Toronto, ON, Canada
| | | | - Sangeet Ghai
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Kartik Jhaveri
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Masoom Haider
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Lisa Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
A Systematic Review of the Variability in Performing and Reporting Intraprostatic Prostate-specific Membrane Antigen Positron Emission Tomography in Primary Staging Studies. EUR UROL SUPPL 2023; 50:91-105. [PMID: 37101769 PMCID: PMC10123424 DOI: 10.1016/j.euros.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 03/06/2023] Open
Abstract
Context Prostate cancer (PCa) remains one of the leading causes of cancer-related deaths in men worldwide. Men at risk are typically offered multiparametric magnetic resonance imaging and, if suspicious, a targeted biopsy. However, false-negative rates of magnetic resonance imaging are consistently 18%; therefore, there is growing interest in improving the diagnostic performance of imaging through novel technologies. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is being utilised for PCa staging and, more recently, for intraprostatic tumour localisation. However, significant variability has been observed in how PSMA PET is performed and reported. Objective In this review, we aim to evaluate how pervasive this variability is in trials investigating the performance of PSMA PET in primary PCa workup. Evidence acquisition Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, we performed an optimal search in five different databases. After removing duplicates, 65 studies were included in our review. Evidence synthesis Studies dated back as early as 2016, with numerous different source countries. There was variation in the reference standard for PSMA PET, with some using biopsy specimens or surgical specimens, and in some cases, a combination of the two. Similar inconsistencies were noted when studies selected histological definitions of clinically significant PCa, while some omitted their definition altogether. The most significant variations in performing PSMA PET were the radiotracer type, dose, acquisition time after injection, and the PET camera being utilised. Substantial variation in the reporting of PSMA PET was noted, with no consistency in defining what constitutes a positive intraprostatic lesion. Across 65 studies, four different definitions were used. Conclusions This systematic review has highlighted considerable variation in obtaining and performing a PSMA PET study in the context of primary PCa diagnosis. Given the discrepancy in how PSMA PET was performed and reported, it questions the homogony of studies from centre to centre. Standardisation of PSMA PET is required for this to become a consistently useful and reproducible modality in the diagnosis of PCa. Patient summary Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is being utilised for staging and localisation of prostate cancer (PCa); however, there is significant variability in performing and reporting PSMA PET. Standardisation of PSMA PET is required for results to be consistently useful and reproducible for the diagnosis of PCa.
Collapse
|
15
|
Harsini S, Wilson D, Saprunoff H, Allan H, Gleave M, Goldenberg L, Chi KN, Kim-Sing C, Tyldesley S, Bénard F. Outcome of patients with biochemical recurrence of prostate cancer after PSMA PET/CT-directed radiotherapy or surgery without systemic therapy. Cancer Imaging 2023; 23:27. [PMID: 36932416 PMCID: PMC10024380 DOI: 10.1186/s40644-023-00543-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) and surgery are potential treatment options in patients with biochemical recurrence (BCR) following primary prostate cancer treatment. This study examines the value of prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT)-informed surgery and RT in patients with BCR treated without systemic therapy. METHODS This is a post-hoc subgroup analysis of a prospective clinical trial. Inclusion criteria were: histologically proven prostate cancer at initial curative-intent treatment, BCR after primary treatment with curative intent, having five or fewer lesions identified on [18F]DCFPyL PET/CT, and treatment with either PET/CT-directed RT or surgery without systemic therapy. The biochemical progression-free survival after PSMA ligand PET/CT-directed RT and surgery was determined. Uni- and multivariate Cox regression analyses were performed for the association of patients' characteristics, tumor-specific variables, and PSMA PET/CT imaging results with biochemical progression at the last follow-up. RESULTS Fifty-eight patients (30 in surgery and 28 in radiotherapy groups) met the inclusion criteria. A total of 87 PSMA-positive lesions were detected: 16 local recurrences (18.4%), 54 regional lymph nodes (62.1%), 6 distant lymph nodes (6,8%), and 11 osseous lesions (12.7%). A total of 85.7% (24 of 28) and 70.0% (21 of 30) of patients showed a ≥ 50% decrease in prostate-specific antigen (PSA) levels after RT and surgery, respectively. At a median follow-up time of 21 months (range, 6-32 months), the median biochemical progression-free survival was 19 months (range, 4 to 23 months) in the radiotherapy group, as compared with 16.5 months (range, 4 to 28 months) in the surgery group. On multivariate Cox regression analysis, the number of PSMA positive lesions (2-5 lesions compared to one lesion), and the anatomic location of the detected lesions (distant metastasis vs. local relapse and pelvic nodal relapse) significantly correlated with biochemical progression at the last follow-up, whereas other clinical, tumor-specific, and imaging parameters did not. CONCLUSIONS This study suggests that RT or surgery based on [18F]DCFPyL PET/CT are associated with high PSA response rates. The number and site of lesions detected on the PSMA PET/CT were predictive of biochemical progression on follow-up. Further studies are needed to assess the impact of targeting these sites on patient relevant outcomes. TRIAL REGISTRATION Registered September 14, 2016; NCT02899312; https://clinicaltrials.gov/ct2/show/NCT02899312.
Collapse
Affiliation(s)
- Sara Harsini
- BC Cancer Research Institute, Vancouver, BC, Canada
| | - Don Wilson
- BC Cancer Research Institute, Vancouver, BC, Canada
- Universtity of British Columbia, Vancouver, BC, Canada
| | | | - Hayley Allan
- BC Cancer Research Institute, Vancouver, BC, Canada
| | - Martin Gleave
- Universtity of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Larry Goldenberg
- Universtity of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Kim N Chi
- BC Cancer Research Institute, Vancouver, BC, Canada
- Universtity of British Columbia, Vancouver, BC, Canada
| | - Charmaine Kim-Sing
- BC Cancer Research Institute, Vancouver, BC, Canada
- Universtity of British Columbia, Vancouver, BC, Canada
| | - Scott Tyldesley
- BC Cancer Research Institute, Vancouver, BC, Canada
- Universtity of British Columbia, Vancouver, BC, Canada
| | - François Bénard
- BC Cancer Research Institute, Vancouver, BC, Canada.
- Universtity of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Zhao Q, Dong H, Dong A, Zuo C. 68 Ga-PSMA-11 PET/CT and PET/MRI in Rectal Linitis Plastica Secondary to Prostate Adenocarcinoma. Clin Nucl Med 2023; 48:282-285. [PMID: 36327457 DOI: 10.1097/rlu.0000000000004476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACT Primary or secondary rectal linitis plastica is rare. We describe MRI, 68 Ga-PSMA-11 PET/CT, and PET/MRI findings in a case of rectal linitis plastica secondary to prostate adenocarcinoma. In this case, the rectal linitis plastica was the first manifestation of the prostatic adenocarcinoma, and the rectum was the only metastatic site of the prostate adenocarcinoma. The rectal wall showed circumferential thickening with a concentric ring pattern on MRI, and diffuse intense 68 Ga-PSMA-11 uptake on PET/CT and PET/MRI. Familiarity with the imaging findings of rectal linitis plastica secondary to prostate adenocarcinoma may be helpful for recognition of this rare entity.
Collapse
Affiliation(s)
- Qian Zhao
- From the Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia
| | - Hui Dong
- Department of Pathology, The Third Affiliated Hospital of Navy Medical University (Eastern Hepatobiliary Surgery Hospital)
| | - Aisheng Dong
- Department of Nuclear Medicine, The First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, China
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, China
| |
Collapse
|
17
|
Zhao X, Zhu X, Cheng C, Jiang L, Ye Y, Cao Y, Li Y, Zuo C, Zhang H. Protocol of the integrated boost to the dominant intraprostatic nodule in stereotactic body radiation therapy for localized prostate cancer. Future Oncol 2022; 18:4071-4078. [PMID: 36507781 DOI: 10.2217/fon-2022-0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To explore the safety and efficacy of the integrated boost to the dominant intraprostatic nodule (DIN) based on 68Ga prostate-specific membrane antigen PET/MRI in stereotactic body radiation therapy (SBRT) for patients with localized prostate cancer. Methods: SBRT regimen is employed - namely, sequential integrated boost (SIB) to the DIN based on 68Ga prostate-specific membrane antigen PET/MRI. SIB prescription dose of 36.25 Gy in five fractions to fixed prophylactic tumoricidal region is delivered, followed by 7.25 Gy in one fraction added to the DIN every other day. The primary end point of the study will be toxicity assessed by the Common Terminology Criteria for Adverse Events 5.0 grading scale. Secondary end points include biochemical progression-free survival, local progression-free survival, distant metastasis-free survival and overall survival. Discussion: This trial is to prove the safety and efficacy of sequential integrated boost to the DIN in SBRT. Clinical Trial Registration: NCT04599699 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Xianzhi Zhao
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaofei Zhu
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lingong Jiang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yusheng Ye
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangsen Cao
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuchao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
18
|
Moradi F, Duan H, Song H, Davidzon GA, Chung BI, Thong AEC, Loening AM, Ghanouni P, Sonn G, Iagaru A. 68Ga-PSMA-11 PET/MRI in Patients with Newly Diagnosed Intermediate- or High-Risk Prostate Adenocarcinoma: PET Findings Correlate with Outcomes After Definitive Treatment. J Nucl Med 2022; 63:1822-1828. [PMID: 35512996 DOI: 10.2967/jnumed.122.263897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Indexed: 01/11/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) PET offers an accuracy superior to other imaging modalities in initial staging of prostate cancer and is more likely to affect management. We examined the prognostic value of 68Ga-PSMA-11 uptake in the primary lesion and presence of metastatic disease on PET in newly diagnosed prostate cancer patients before initial therapy. Methods: In a prospective study from April 2016 to December 2020, 68Ga-PSMA-11 PET/MRI was performed in men with a new diagnosis of intermediate- or high-grade prostate cancer who were candidates for prostatectomy. Patients were followed up after initial therapy for up to 5 y. We examined the Kendall correlation between PET (intense uptake in the primary lesion and presence of metastatic disease) and clinical and pathologic findings (grade group, extraprostatic extension, nodal involvement) relevant for risk stratification, and examined the relationship between PET findings and outcome using Kaplan-Meier analysis. Results: Seventy-three men (age, 64.0 ± 6.3 y) were imaged. Seventy-two had focal uptake in the prostate, and in 20 (27%) PSMA-avid metastatic disease was identified. Uptake correlated with grade group and prostate-specific antigen (PSA). Presence of PSMA metastasis correlated with grade group and pathologic nodal stage. PSMA PET had higher per-patient positivity than nodal dissection in patients with only 5-15 nodes removed (8/41 vs. 3/41) but lower positivity if more than 15 nodes were removed (13/21 vs. 10/21). High uptake in the primary lesion (SUVmax > 12.5, P = 0.008) and presence of PSMA metastasis (P = 0.013) were associated with biochemical failure, and corresponding hazard ratios for recurrence within 2 y (4.93 and 3.95, respectively) were similar to or higher than other clinicopathologic prognostic factors. Conclusion: 68Ga-PSMA-11 PET can risk-stratify patients with intermediate- or high-grade prostate cancer before prostatectomy based on degree of uptake in the prostate and presence of metastatic disease.
Collapse
Affiliation(s)
- Farshad Moradi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California;
| | - Heying Duan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Guido A Davidzon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Benjamin I Chung
- Department of Urology, Stanford University, Stanford, California; and
| | - Alan E C Thong
- Department of Urology, Stanford University, Stanford, California; and
| | - Andreas M Loening
- Division of Body MRI, Department of Radiology, Stanford University, Stanford, California
| | - Pejman Ghanouni
- Division of Body MRI, Department of Radiology, Stanford University, Stanford, California
| | - Geoffrey Sonn
- Department of Urology, Stanford University, Stanford, California; and
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
19
|
Ferraro DA, Hötker AM, Becker AS, Mebert I, Laudicella R, Baltensperger A, Rupp NJ, Rueschoff JH, Müller J, Mortezavi A, Sapienza MT, Eberli D, Donati OF, Burger IA. 68Ga-PSMA-11 PET/MRI versus multiparametric MRI in men referred for prostate biopsy: primary tumour localization and interreader agreement. Eur J Hybrid Imaging 2022; 6:14. [PMID: 35843966 PMCID: PMC9288941 DOI: 10.1186/s41824-022-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) is recommended by the European Urology Association guidelines as the standard modality for imaging-guided biopsy. Recently positron emission tomography with prostate-specific membrane antigen (PSMA PET) has shown promising results as a tool for this purpose. The aim of this study was to compare the accuracy of positron emission tomography with prostate-specific membrane antigen/magnetic resonance imaging (PET/MRI) using the gallium-labeled prostate-specific membrane antigen (68Ga-PSMA-11) and multiparametric MRI (mpMRI) for pre-biopsy tumour localization and interreader agreement for visual and semiquantitative analysis. Semiquantitative parameters included apparent diffusion coefficient (ADC) and maximum lesion diameter for mpMRI and standardized uptake value (SUVmax) and PSMA-positive volume (PSMAvol) for PSMA PET/MRI. Results Sensitivity and specificity were 61.4% and 92.9% for mpMRI and 66.7% and 92.9% for PSMA PET/MRI for reader one, respectively. RPE was available in 23 patients and 41 of 47 quadrants with discrepant findings. Based on RPE results, the specificity for both imaging modalities increased to 98% and 99%, and the sensitivity improved to 63.9% and 72.1% for mpMRI and PSMA PET/MRI, respectively. Both modalities yielded a substantial interreader agreement for primary tumour localization (mpMRI kappa = 0.65 (0.52–0.79), PSMA PET/MRI kappa = 0.73 (0.61–0.84)). ICC for SUVmax, PSMAvol and lesion diameter were almost perfect (≥ 0.90) while for ADC it was only moderate (ICC = 0.54 (0.04–0.78)). ADC and lesion diameter did not correlate significantly with Gleason score (ρ = 0.26 and ρ = 0.16) while SUVmax and PSMAvol did (ρ = − 0.474 and ρ = − 0.468). Conclusions PSMA PET/MRI has similar accuracy and reliability to mpMRI regarding primary prostate cancer (PCa) localization. In our cohort, semiquantitative parameters from PSMA PET/MRI correlated with tumour grade and were more reliable than the ones from mpMRI. Supplementary Information The online version contains supplementary material available at 10.1186/s41824-022-00135-4.
Collapse
|
20
|
Li M, Zelchan R, Orlova A. The Performance of FDA-Approved PET Imaging Agents in the Detection of Prostate Cancer. Biomedicines 2022; 10:biomedicines10102533. [PMID: 36289795 PMCID: PMC9599369 DOI: 10.3390/biomedicines10102533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Positron emission tomography (PET) incorporated with X-ray computed tomography (PET/CT) or magnetic resonance imaging (PET/MRI) is increasingly being used as a diagnostic tool for prostate cancer (PCa). In this review, we describe and evaluate the clinical performance of some Food and Drug Administration (FDA)-approved agents used for visualizing PCa: [18F]FDG, [11C]choline, [18F]FACBC, [68Ga]Ga-PSMA-11, [18F]DCFPyL, and [18F]-NaF. We carried out a comprehensive literature search based on articles published from 1 January 2010 to 1 March 2022. We selected English language articles associated with the discovery, preclinical study, clinical study, and diagnostic performance of the imaging agents for the evaluation. Prostate-specific membrane antigen (PSMA)-targeted imaging agents demonstrated superior diagnostic performance in both primary and recurrent PCa, compared with [11C]choline and [18F]FACBC, both of which target dividing cells and are used especially in patients with low prostate-specific antigen (PSA) values. When compared to [18F]-NaF (which is suitable for the detection of bone metastases), PSMA-targeted agents were also capable of detecting lesions in the lymph nodes, soft tissues, and bone. However, a limitation of PSMA-targeted imaging was the heterogeneity of PSMA expression in PCa, and consequently, a combination of two PET tracers was proposed to overcome this obstacle. The preliminary studies indicated that the use of PSMA-targeted scanning is more cost efficient than conventional imaging modalities for high-risk PCa patients. Furthering the development of imaging agents that target PCa-associated receptors and molecules could improve PET-based diagnosis of PCa.
Collapse
Affiliation(s)
- Mei Li
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Liaoning Medical Device Test Institute, Shenyang 110171, China
| | - Roman Zelchan
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny St., 634009 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
21
|
Prostate specific membrane antigen positron emission tomography in primary prostate cancer diagnosis: First-line imaging is afoot. Cancer Lett 2022; 548:215883. [PMID: 36027998 DOI: 10.1016/j.canlet.2022.215883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Prostate specific membrane antigen positron emission tomography (PSMA PET) is an excellent molecular imaging technique for prostate cancer. Currently, PSMA PET for patients with primary prostate cancer is supplementary to conventional imaging techniques, according to guidelines. This supplementary function of PSMA PET is due to a lack of systematic review of its strengths, limitations, and potential development direction. Thus, we review PSMA ligands, detection, T, N, and M staging, treatment management, and false results of PSMA PET in clinical studies. We also discuss the strengths and challenges of PSMA PET. PSMA PET can greatly increase the detection rate of prostate cancer and accuracy of T/N/M staging, which facilitates more appropriate treatment for primary prostate cancer. Lastly, we propose that PSMA PET could become the first-line imaging modality for primary prostate cancer, and we describe its potential expanded application.
Collapse
|
22
|
Clinical Applications of PSMA PET Examination in Patients with Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153768. [PMID: 35954432 PMCID: PMC9367427 DOI: 10.3390/cancers14153768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The prostate specific membrane antigens, abbreviated as PSMAs, are type II membrane proteins that are highly ex-pressed on the surface of malignant prostate tissue in prostate cancer (PCa), particularly in aggressive, andro-gen-deprived, metastatic, and hormone-refractory PCa. Today, radionuclides that bind to these PSMA peptides are widely available for diagnostic and therapeutic purposes to specifically image and target prostate tumor cells at molec-ular level. In this descriptive review, we aimed to emphasize the usefulness of PSMA positron emission tomography (PET) examination in the management of patients with various stages of PCa. In addition, we outlined the main pitfalls and limitations of this scan to avoid misinterpretation of the results and to improve the decision making process in rela-tion to the patient’s further treatment. We concluded that PSMA PET examination in primary PCa patients has an es-sential role in the high-risk group. It is the new imaging standard in patients with in biochemical recurrence PCa and plays an important role in treatment decision. Furthermore, PSMA PET scan is a gold standard for the evaluation of PSMA targeted therapies in patients having progress of the disease. Future prospective studies, particularly on the im-pact of PSMA PET on therapy stratification, may further strengthen the role of PSMA in the treatment of PCa patients. Abstract With the progressive aging of the population in industrially developed countries, as well as advances in diagnostic and biopsy techniques and improvements in patient awareness, the incidence of prostate cancer (PCa) is continuously increasing worldwide. Therefore, PCa is currently considered as the second leading cause of tumor-related death. Early detection of the tumor and its metastasis is essential, as the rate of disease recurrence is high and occurs in 27% to 53% of all patients who underwent curative therapy with radical prostatectomy or local radiotherapy. In this regard, the prostate specific membrane antigens, abbreviated as PSMAs, are type II membrane proteins that are highly expressed on the surface of malignant prostate tissue in PCa, particularly in aggressive, androgen-deprived, metastatic, and hormone-refractory PCa, and they are inversely associated with the androgen level. Up to 95% of adenocarcinomas of the prostate express PSMA receptors on their surface. Today, radionuclides that bind to these PSMA peptides are widely accepted for diagnostic and therapeutic purposes to specifically image and target prostate tumor cells at the molecular level, a process referred to as targeted theranostics. Numerous studies have demonstrated that the integration of these peptides into diagnostic and therapeutic procedures plays a critical role in the primary staging and treatment decisions of especially high-risk PCa, expands therapeutic options for patients with advanced stage of prostate tumor, and prolongs patients’ survival rate. In this review article, we intend to briefly spotlight the latest clinical utilization of the PSMA-targeted radioligand PET imaging modality in patients with different stages of PCa. Furthermore, limitations and pitfalls of this diagnostic technique are presented.
Collapse
|
23
|
Fernandes MC, Yildirim O, Woo S, Vargas HA, Hricak H. The role of MRI in prostate cancer: current and future directions. MAGMA (NEW YORK, N.Y.) 2022; 35:503-521. [PMID: 35294642 PMCID: PMC9378354 DOI: 10.1007/s10334-022-01006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
There has been an increasing role of magnetic resonance imaging (MRI) in the management of prostate cancer. MRI already plays an essential role in the detection and staging, with the introduction of functional MRI sequences. Recent advancements in radiomics and artificial intelligence are being tested to potentially improve detection, assessment of aggressiveness, and provide usefulness as a prognostic marker. MRI can improve pretreatment risk stratification and therefore selection of and follow-up of patients for active surveillance. MRI can also assist in guiding targeted biopsy, treatment planning and follow-up after treatment to assess local recurrence. MRI has gained importance in the evaluation of metastatic disease with emerging technology including whole-body MRI and integrated positron emission tomography/MRI, allowing for not only better detection but also quantification. The main goal of this article is to review the most recent advances on MRI in prostate cancer and provide insights into its potential clinical roles from the radiologist's perspective. In each of the sections, specific roles of MRI tailored to each clinical setting are discussed along with its strengths and weakness including already established material related to MRI and the introduction of recent advancements on MRI.
Collapse
Affiliation(s)
- Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
24
|
Diagnostic Value of Magnetic Resonance Diffusion-Weighted Imaging Combined with Routine Scanning in Body Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5799815. [PMID: 35935328 PMCID: PMC9334083 DOI: 10.1155/2022/5799815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the value of whole body magnetic resonance diffusion-weighted imaging (WB-DWI) combined with routine scanning in the diagnosis of body tumors. Sixty-three patients with surgically and pathologically confirmed body tumors admitted to our hospital from October 2019 to October 2021 were scanned by WB-DWI using a 1.5TMR body coil. The images were reconstructed by a three-dimensional maximum intensity projection (3D-MIP) and black-white inversion technique. The lesions detected by WB-DWI were all plain MRI, and 35 cases were enhanced MRI. The number of lesions detected by WB-DWI and WB-DWI combined with routine scanning and the number of cases matching diagnosis were compared. The WB-DWI images of tumor lesions were analyzed, and the apparent diffusion coefficient (ADC) of the lesions was measured, and the ADC value of benign and malignant lesions was compared. There were 236 lesions in 63 patients with clinically confirmed tumors. 46 cases were diagnosed by WB-DWI, the diagnostic coincidence rate was 73.0%, and 207 lesions were detected. Fifty-eight cases were diagnosed by WB-DWI combined with routine scanning, the diagnostic coincidence rate was 92.1%, 236 lesions were detected. There were statistically significant differences in the number of lesions detected and the coincidence rate of tumor diagnosis between the two groups (P < 0.05). The average ADC value of malignant tumor ((1.04 ± 0.46) × 10−3 mm2/s) was lower than that of benign tumor ((2.53 ± 0.43) × 10−3 mm2/s), and the difference was statistically significant (P < 0.05). In conclusion, MR whole-body diffusion weighted imaging is safe, efficient, radiation-free, and highly sensitive, which is of great significance in the differential diagnosis of benign and malignant lesions. WB-DWI combined with MR routine scanning can further improve the detection rate of lesions and the coincidence rate of tumor diagnosis.
Collapse
|
25
|
Song H, Guja KE, Iagaru A. PSMA theragnostics for metastatic castration resistant prostate cancer. Transl Oncol 2022; 22:101438. [PMID: 35659674 PMCID: PMC9163091 DOI: 10.1016/j.tranon.2022.101438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/23/2023] Open
Abstract
PSMA targeted theragnostic agents have shown tremendous potential in detecting and treating metastatic prostate cancer. The PSMA small molecular inhibitor-based imaging agents achieve extraordinary tumor to background ratios and the PSMA small molecule therapeutic agents have shown impressive therapeutic index in mCRPC. The development and optimization of PSMA theragnostic agents provides invaluable information that may help guide development of future theragnostics for other solid tumors.
There has been tremendous growth in the development of theragnostics for personalized cancer diagnosis and treatment over the past two decades. In prostate cancer, the new generation of prostate specific membrane antigen (PSMA) small molecular inhibitor-based imaging agents achieve extraordinary tumor to background ratios and allow their therapeutic counterparts to deliver effective tumor doses while minimizing normal tissue toxicity. The PSMA targeted small molecule positron emission tomography (PET) agents 18F-DCFPyL (2-(3-{1-carboxy-5-((6-(18)F-fluoro-pyridine-3-carbonyl)-amino)-pentyl}-ureido)-pentanedioic acid) and Gallium-68 (68Ga)-PSMA-11 have been approved by the United States Food and Drug Administration (FDA) for newly diagnosed high risk prostate cancer patients and for patients with biochemical recurrence. More recently, the Phase III VISION trial showed that Lutetium-177 (177Lu)-PSMA-617 treatment increases progression-free survival and overall survival in patients with heavily pre-treated advanced PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). Here, we review the PSMA targeted theragnostic pairs under clinical investigation for detection and treatment of metastatic prostate cancer.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States
| | - Kip E Guja
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States.
| |
Collapse
|
26
|
Feliciani G, Celli M, Ferroni F, Menghi E, Azzali I, Caroli P, Matteucci F, Barone D, Paganelli G, Sarnelli A. Radiomics Analysis on [68Ga]Ga-PSMA-11 PET and MRI-ADC for the Prediction of Prostate Cancer ISUP Grades: Preliminary Results of the BIOPSTAGE Trial. Cancers (Basel) 2022; 14:cancers14081888. [PMID: 35454793 PMCID: PMC9028386 DOI: 10.3390/cancers14081888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Radiomics analysis is used on magnetic resonance imaging – apparent diffusion coefficient (MRI-ADC) maps and [68Ga]Ga-PSMA-11 PET uptake maps to assess unique tumor traits not visible to the naked eye and predict histology-proven ISUP grades in a cohort of 28 patients. Our study’s main goal is to report imaging features that can distinguish patients with low ISUP grades from those with higher grades (ISUP one+) by employing logistic regression statistical models based on MRI-ADC and 68Ga-PSMA data, as well as assess the features’ stability under small contouring variations. Our findings reveal that MRI-ADC and [68Ga]Ga-PSMA-11 PET imaging features-based models are equivalent and complementary for predicting low ISUP grade patients. These models can be employed in broader studies to confirm their ISUP grade prediction ability and eventually impact clinical workflow by reducing overdiagnosis of indolent, early-stage PCa. Abstract Prostate cancer (PCa) risk categorization based on clinical/PSA testing results in a substantial number of men being overdiagnosed with indolent, early-stage PCa. Clinically non-significant PCa is characterized as the presence of ISUP grade one, where PCa is found in no more than two prostate biopsy cores.MRI-ADC and [68Ga]Ga-PSMA-11 PET have been proposed as tools to predict ISUP grade one patients and consequently reduce overdiagnosis. In this study, Radiomics analysis is applied to MRI-ADC and [68Ga]Ga-PSMA-11 PET maps to quantify tumor characteristics and predict histology-proven ISUP grades. ICC was applied with a threshold of 0.6 to assess the features’ stability with variations in contouring. Logistic regression predictive models based on imaging features were trained on 31 lesions to differentiate ISUP grade one patients from ISUP two+ patients. The best model based on [68Ga]Ga-PSMA-11 PET returned a prediction efficiency of 95% in the training phase and 100% in the test phase whereas the best model based on MRI-ADC had an efficiency of 100% in both phases. Employing both imaging modalities, prediction efficiency was 100% in the training phase and 93% in the test phase. Although our patient cohort was small, it was possible to assess that both imaging modalities add information to the prediction models and show promising results for further investigations.
Collapse
Affiliation(s)
- Giacomo Feliciani
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.M.); (A.S.)
- Correspondence: ; Tel.: +39-327-4730398
| | - Monica Celli
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.C.); (F.M.); (G.P.)
| | - Fabio Ferroni
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (F.F.); (D.B.)
| | - Enrico Menghi
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.M.); (A.S.)
| | - Irene Azzali
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Paola Caroli
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.C.); (F.M.); (G.P.)
| | - Federica Matteucci
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.C.); (F.M.); (G.P.)
| | - Domenico Barone
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (F.F.); (D.B.)
| | - Giovanni Paganelli
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.C.); (F.M.); (G.P.)
| | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (E.M.); (A.S.)
| |
Collapse
|
27
|
Yadav D, Hwang H, Qiao W, Upadhyay R, Chapin BF, Tang C, Aparicio A, Lopez-Olivo MA, Kang SK, Macapinlac HA, Bathala TK, Surasi DS. 18F-Fluciclovine versus PSMA PET Imaging in Primary Tumor Detection during Initial Staging of High-Risk Prostate Cancer: A Systematic Review and Meta-Analysis. Radiol Imaging Cancer 2022; 4:e210091. [PMID: 35212559 PMCID: PMC8965534 DOI: 10.1148/rycan.210091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Purpose Fluorine 18 (18F)-fluciclovine and prostate-specific membrane antigen (PSMA) tracers are commonly used for localizing biochemical recurrence of prostate cancer, but their accuracy in primary tumor detection in the initial staging of high-risk prostate cancer has not been established. Materials and Methods A systematic review was performed of the electronic databases for original studies published between 2012 and 2020. Included studies were those in which 18F-fluciclovine or PSMA PET was used for initial staging of patients with high-risk prostate cancer. The diagnostic performance data were collected for primary tumor with histopathologic results as reference standard. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used for quality appraisal. A random-effects model was used to summarize the effect sizes and to evaluate the difference between two groups. Results Overall, 28 studies met the eligibility criteria, and 17 were included in the meta-analysis (18F-fluciclovine = 4, PSMA = 13). Of these 17 studies, 12 (70%) were judged to have high risk of bias in one of the evaluated domains, and nine studies were deemed to have applicability concerns. The pooled sensitivity, specificity, and diagnostic odds ratio for 18F-fluciclovine versus PSMA were 85% (95% CI: 73%, 92%) versus 84% (95% CI: 77%, 89%) (P = .78), 77% (95% CI: 60%, 88%) versus 83% (95% CI: 76%, 89%) (P = .40), and 18.88 (95% CI: 5.01, 71.20) versus 29.37 (95% CI: 13.35, 64.60) (P = .57), respectively, with no significant difference in diagnostic test accuracy. Conclusion 18F-fluciclovine and PSMA PET demonstrated no statistically significant difference in diagnostic accuracy in primary tumor detection during initial staging of high-risk prostate cancer. Keywords: PET, Prostate, Molecular Imaging-Cancer, Staging Supplemental material is available for this article. © RSNA, 2022.
Collapse
Affiliation(s)
- Divya Yadav
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Hyunsoo Hwang
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Wei Qiao
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Rituraj Upadhyay
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Brian F. Chapin
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Chad Tang
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Ana Aparicio
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Maria A. Lopez-Olivo
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Stella K. Kang
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Homer A. Macapinlac
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Tharakeswara K. Bathala
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Devaki Shilpa Surasi
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| |
Collapse
|
28
|
Liu FY, Sheng TW, Tseng JR, Yu KJ, Tsui KH, Pang ST, Wang LJ, Lin G. Prostate-specific membrane antigen (PSMA) fusion imaging in prostate cancer: PET-CT vs PET-MRI. Br J Radiol 2022; 95:20210728. [PMID: 34767482 PMCID: PMC8978229 DOI: 10.1259/bjr.20210728] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To investigate whether PET-CT or PET-MRI is more appropriate for imaging prostate cancer, in terms of primary tumor detection, local staging and recurrence, as well as lymph nodes and distant metastases. METHODS A systematic literature search was conducted on Embase, PubMed/MEDLINE, and the Cochrane Library database. Studies evaluating the diagnostic performance of PET-CT vs PET-MRI in prostate cancer patients were emphasized. RESULTS We reviewed 57 original research articles during the period 2016-2021: 14 articles regarding the radiotracer PSMA; 18 articles regarding the primary tumor detection, local tumor staging, managing local recurrence; 17 articles for managing lymph node metastases; and eight articles for managing bone and other distant metastases. PSMA PET could be complementary to mpMRI for primary prostate cancer localization and is particularly valuable for PI-RADS three lesions. PET-MRI is better than PET-CT in local tumor staging due to its specific benefit in predicting extracapsular extension in MRI-occult prostate cancer patients. PET-MRI is likely superior as compared with PET-CT in detecting local recurrence, and has slightly higher detection rates than PET-CT in lymph node recurrence. PET-CT and PET-MRI seem to have equivalent performance in detecting distant bony or visceral metastases. CONCLUSION In conclusion, PET-MRI is suitable for local and regional disease, either primary staging or restaging, whereas PET-CT is valuable for managing distant bony or visceral metastasis. ADVANCES IN KNOWLEDGE We reviewed the emerging applications of PET-MRI and PET-CT in clinical aspects. Readers will gain an objective overview on the strength and shortfalls of PET-MRI or PET-CT in the management of prostate cancer.
Collapse
Affiliation(s)
- Feng-Yuan Liu
- Department of Nuclear Medicine, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ting-Wen Sheng
- Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
| | - Jing-Ren Tseng
- Department of Nuclear Medicine, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hong Tsui
- Department of Urology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Se-Tong Pang
- Department of Urology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Li-Jen Wang
- Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei City, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
29
|
Vlachostergios PJ, Niaz MJ, Thomas C, Christos PJ, Osborne JR, Margolis DJA, Khani F, Bander NH, Scherr DS, Tagawa ST. Pilot study of the diagnostic utility of 89 Zr-df-IAB2M and 68 Ga-PSMA-11 PET imaging and multiparametric MRI in localized prostate cancer. Prostate 2022; 82:483-492. [PMID: 34985786 DOI: 10.1002/pros.24294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Accurate diagnosis of localized prostate cancer (PCa) is limited by inadequacy of multiparametric (mp) MRI to fully identify and differentiate localized malignant tissue from benign pathologies. Prostate-specific membrane antigen (PSMA) represents an excellent target for molecular imaging. IAB2M, an 85-kD minibody derived from a de-immunized monoclonal antibody directed at the extracellular domain of human PSMA (huJ591), and PSMA-11, a small molecule ligand have been previously tested as probes for visualization of recurrent/metastatic PCa with PET/CT. This pilot, non-randomized trial studied their diagnostic utility in patients (pts) with localized PCa. METHODS Pts planned for radical prostatectomy (RP) were enrolled and underwent mpMRI and PET/CT imaging with 89 Zr-df-IAB2M and/or 68 Ga-PSMA-PET/CT. Image results were read by a radiologist blinded to clinical information and pathology results, mapped and compared to corresponding histopathology findings from all lesions, both clinically significant and nonsignificant. The detection rates of all three imaging modalities were measured and correlated. RESULTS 20 pts with median age of 64.5 (46-79) years and PSA level of 7.5 (1.6-36.56) ng/ml were enrolled. 19 pts underwent RP and were imaged pre-operatively with 89 Zr-Df-IAB2M PET/CT and mpMRI. Nine of those were imaged using 68 Ga-PSMA-11 as well. Out of 48 intraprostatic lesions verified on surgical pathology, IAB2M PET/CT was able to detect 36 (75%). A similar proportion of pathologically confirmed, clinically significant lesions (22/29, 76%) was detected. IAB2M PET/CT was also able to identify 14/19 (74%) extraprostatic lesions. The performance of mpMRI was inferior, with 24/48 detectable lesions (50%) and 18/29 clinically significant intraprostatic lesions (62%). Compared to the current standard (mpMRI), IAB2M PET/CT had a sensitivity of 88%, specificity 38%, positive predictive value 58%, and accuracy 63%. In 9 pts who underwent Ga-PSMA-11 as well, the latter yielded a detection rate of 70% (14/20), which was also seen in clinically significant lesions (10/14, 71%). Ga-PSMA-11 PET/CT also detected 4/6 (67%) extraprostatic lesions. CONCLUSIONS In this pilot study, the performance of 89 Zr-df-IAB2M was superior to mpMRI and similar to 68 Ga-PSMA-11 PET/CT. The higher detection rate of PSMA-PET supports its use as a diagnostic tool with consequent management change implications in men with localized PCa.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Muhammad J Niaz
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Charlene Thomas
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Paul J Christos
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Joseph R Osborne
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Daniel J A Margolis
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Division of Body Imaging, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Francesca Khani
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Neil H Bander
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Douglas S Scherr
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Scott T Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
30
|
Deng F, Li X, Yang F, Sun H, Yuan J, He Q, Xu W, Yang Y, Liang D, Liu X, Mok GSP, Zheng H, Hu Z. Low-Dose 68 Ga-PSMA Prostate PET/MRI Imaging Using Deep Learning Based on MRI Priors. Front Oncol 2022; 11:818329. [PMID: 35155207 PMCID: PMC8825350 DOI: 10.3389/fonc.2021.818329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background 68 Ga-prostate-specific membrane antigen (PSMA) PET/MRI has become an effective imaging method for prostate cancer. The purpose of this study was to use deep learning methods to perform low-dose image restoration on PSMA PET/MRI and to evaluate the effect of synthesis on the images and the medical diagnosis of patients at risk of prostate cancer. Methods We reviewed the 68 Ga-PSMA PET/MRI data of 41 patients. The low-dose PET (LDPET) images of these patients were restored to full-dose PET (FDPET) images through a deep learning method based on MRI priors. The synthesized images were evaluated according to quantitative scores from nuclear medicine doctors and multiple imaging indicators, such as peak-signal noise ratio (PSNR), structural similarity (SSIM), normalization mean square error (NMSE), and relative contrast-to-noise ratio (RCNR). Results The clinical quantitative scores of the FDPET images synthesized from 25%- and 50%-dose images based on MRI priors were 3.84±0.36 and 4.03±0.17, respectively, which were higher than the scores of the target images. Correspondingly, the PSNR, SSIM, NMSE, and RCNR values of the FDPET images synthesized from 50%-dose PET images based on MRI priors were 39.88±3.83, 0.896±0.092, 0.012±0.007, and 0.996±0.080, respectively. Conclusion According to a combination of quantitative scores from nuclear medicine doctors and evaluations with multiple image indicators, the synthesis of FDPET images based on MRI priors using and 50%-dose PET images did not affect the clinical diagnosis of prostate cancer. Prostate cancer patients can undergo 68 Ga-PSMA prostate PET/MRI scans with radiation doses reduced by up to 50% through the use of deep learning methods to synthesize FDPET images.
Collapse
Affiliation(s)
- Fuquan Deng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Computer Department, North China Electric Power University, Baoding, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Xiaoyuan Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fengjiao Yang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongwei Sun
- United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Qiang He
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Weifeng Xu
- Computer Department, North China Electric Power University, Baoding, China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Xin Liu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| |
Collapse
|
31
|
Meng X, Liu H, Li H, Wang S, Sun H, Wang F, Ding J, He L, Chen X, Jin L, Dong Y, Zhu H, Yang Z. Evaluating the impact of different positron emitters on the performance of a clinical PET/MR system. Med Phys 2022; 49:2642-2651. [PMID: 35106784 DOI: 10.1002/mp.15513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The positron range and prompt gamma emission are distinctive with different positron emitters. The performance assessment of an integrated PET/MR scanner with these positron emitters is required for related applications, as the magnetic field interferes with the positron propagation. Such an assessment is to be performed on the United Imaging uPMR 790 integrated PET/MR system. METHODS The performance measurement methods were modified based on NEMA NU 2-2012, involving 18 F, 64 Cu, 68 Ga, 89 Zr, and 124 I as positron emitters. The NEMA IEC phantom was used for evaluations of image qualities. An agarose cap was wrapped around the point source for tissue-simulating spatial resolution measurement. The count rate performance was assessed with selected positron emitters. Images of a 3D-printed Derenzo phantom and representative patients were also acquired. RESULTS The image quality measurement showed that all five positron emitters were suitable for the PET/MR system studied. However, due to the magnetic field, the image of the point source showed an elongated comet-tail feature, which could be eliminated by a tissue-simulating cap. This effect is more obvious in 124 I and 68 Ga, due to their long positron ranges. The imaging ability with various positron emitters was further validated with the count rate assessment, the Derenzo phantom, and the clinical images. CONCLUSIONS Different positron emitters could be effectively imaged by the PET/MR system tested. The resolution measurement strategy proposed could be applied to measure PET spatial resolution in the magnetic field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Hui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China.,United Imaging Healthcare, Shanghai, China
| | - Hui Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China.,Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Shujing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Hongwei Sun
- Central Research Institute, United Imaging Healthcare, Beijing, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Liuchun He
- United Imaging Healthcare, Shanghai, China
| | - Xin Chen
- United Imaging Healthcare, Shanghai, China
| | - Lujia Jin
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Yun Dong
- United Imaging Healthcare, Shanghai, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
32
|
The Emerging Role of Next-Generation Imaging in Prostate Cancer. Curr Oncol Rep 2022; 24:33-42. [DOI: 10.1007/s11912-021-01156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 12/23/2022]
|
33
|
Skawran SM, Sanchez V, Ghafoor S, Hötker AM, Burger IA, Huellner MW, Eberli D, Donati OF. Primary staging in patients with intermediate- and high-risk prostate cancer: Multiparametric MRI and 68Ga-PSMA-PET/MRI - What is the value of quantitative data from multiparametric MRI alone or in conjunction with clinical information? Eur J Radiol 2021; 146:110044. [PMID: 34844173 DOI: 10.1016/j.ejrad.2021.110044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Comparing mpMRI and 68Ga-PSMA-PET/MRI in primary staging of PCa and investigating the value of quantitative mpMRI-measurements for prediction of extracapsular extension and N-metastases. METHODS Patients with PCa undergoing 68Ga-PSMA-PET/MRI and mpMRI during January 2016 to February 2019 were retrospectively included. Two readers each on 68Ga-PSMA-PET/MRI or mpMRI rated extraprostatic extension (≥T3) and regional lymph-node-metastasis (N1) on a Likert-scale. A fifth reader measured tumor volume, maximum diameter, and capsular contact length on mpMRI. Probability of lymph-node-metastasis was additionally calculated using the 2018 Briganti model. Interobserver-agreement was assessed by squared Cohen's kappa, and diagnostic accuracy was determined using radical prostatectomy (n = 35/49) as reference standard. RESULTS 49 patients (median age 66 years [IQR: 61-72 years]) were evaluated. Interobserver-agreement for mpMRI and 68Ga-PSMA-PET/MRI was: ≥T3: κ = 0.58/0.47; N1: κ = 0.55/0.92. Diagnostic accuracy for mpMRI vs 68Ga-PSMA-PET/MRI readers for ≥ T3 was AUC: 0.72, 0.62 vs 0.71, 0.72 (p > 0.38) and for N1 was AUC: 0.39, 0.55 vs 0.72, 0.78 (p < 0.01). Quantitative parameters delivered diagnostic accuracies of: AUC: 0.70-0.72 for ≥ T3. The 2018 Briganti model achieved an AUC of 0.89 for N1. CONCLUSIONS Interreader-agreement regarding ≥ T3 was similar for mpMRI and 68Ga-PSMA-PET/MRI while for N1 it was higher for 68Ga-PSMA-PET/MRI. Diagnostic accuracy was comparable for ≥ T3 while for N1 it was higher in 68Ga-PSMA-PET/MRI and the 2018 Briganti model. Combining clinical data and quantitative data from mpMRI in the 2018 Briganti model yielded the highest AUC for prediction of lymph node metastasis and may aid in selecting patients who will benefit from 68Ga-PSMA-PET/MRI for primary staging.
Collapse
Affiliation(s)
- Stephan M Skawran
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Vanessa Sanchez
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Soleen Ghafoor
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland; Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Andreas M Hötker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland; Department of Nuclear Medicine, Baden Cantonal Hospital, Baden, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Daniel Eberli
- University of Zurich, Zurich, Switzerland; Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Olivio F Donati
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Ferraro DA, Laudicella R, Zeimpekis K, Mebert I, Müller J, Maurer A, Grünig H, Donati O, Sapienza MT, Rueschoff JH, Rupp N, Eberli D, Burger IA. Hot needles can confirm accurate lesion sampling intraoperatively using [ 18F]PSMA-1007 PET/CT-guided biopsy in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 2021; 49:1721-1730. [PMID: 34725726 PMCID: PMC8560591 DOI: 10.1007/s00259-021-05599-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022]
Abstract
Purpose Prostate-specific membrane antigen (PSMA)-targeted PET is increasingly used for staging prostate cancer (PCa) with high accuracy to detect significant PCa (sigPCa). [68 Ga]PSMA-11 PET/MRI-guided biopsy showed promising results but also persisting limitation of sampling error, due to impaired image fusion. We aimed to assess the possibility of intraoperative quantification of [18F]PSMA-1007 PET/CT uptake in core biopsies as an instant confirmation for accurate lesion sampling. Methods In this IRB-approved, prospective, proof-of-concept study, we included five consecutive patients with suspected PCa. All underwent [18F]PSMA-1007 PET/CT scans followed by immediate PET/CT-guided and saturation template biopsy (3.1 ± 0.3 h after PET). The activity in biopsy cores was measured as counts per minute (cpm) in a gamma spectrometer. Pearson’s test was used to correlate counts with histopathology (WHO/ISUP), tumor length, and membranous PSMA expression on immunohistochemistry (IHC). Results In 43 of 113 needles, PCa was present. The mean cpm was overall significantly higher in needles with PCa (263 ± 396 cpm) compared to needles without PCa (73 ± 44 cpm, p < 0.001). In one patient with moderate PSMA uptake (SUVmax 8.7), 13 out of 24 needles had increased counts (100–200 cpm) but only signs of inflammation and PSMA expression in benign glands on IHC. Excluding this case, ROC analysis resulted in an AUC of 0.81, with an optimal cut-off to confirm PCa at 75 cpm (sens/spec of 65.1%/87%). In all 4 patients with PCa, the first or second PSMA PET-guided needle was positive for sigPCa with high counts (156–2079 cpm). Conclusions [18F]PSMA-1007 uptake in PCa can be used to confirm accurate lesion sampling of the dominant tumor intraoperatively. This technique could improve confidence in imaging-based biopsy guidance and reduce the need for saturation biopsy. Trial registration number NCT03187990, 15/06/2017. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05599-3.
Collapse
Affiliation(s)
- Daniela A Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Iliana Mebert
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Urology, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hannes Grünig
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivio Donati
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcelo T Sapienza
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jan H Rueschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niels Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Department of Nuclear Medicine, Kantonsspital Baden, Baden, Switzerland.
| |
Collapse
|
35
|
Chen C, Margolis DJ. Prostate-Specific Membrane Antigen (PSMA) PET: A Counterpart to Prostate MRI. Semin Roentgenol 2021; 56:376-383. [PMID: 34688340 DOI: 10.1053/j.ro.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Christine Chen
- Department of Radiology, Weill Cornell Medical College: Weill Cornell Medicine, 1300 York Ave, New York, NY 10065.
| | - Daniel J Margolis
- Department of Radiology, Weill Cornell Medical College: Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| |
Collapse
|
36
|
Stabile A, Pellegrino A, Mazzone E, Cannoletta D, de Angelis M, Barletta F, Scuderi S, Cucchiara V, Gandaglia G, Raggi D, Necchi A, Karakiewicz P, Montorsi F, Briganti A. Can Negative Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Avoid the Need for Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients? A Systematic Review and Meta-analysis with Backup Histology as Reference Standard. Eur Urol Oncol 2021; 5:1-17. [PMID: 34538770 DOI: 10.1016/j.euo.2021.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023]
Abstract
CONTEXT The role of positron emission tomography/computed tomography (PET/CT) with prostate-specific membrane antigen (PSMA) in the primary staging for patients with prostate cancer (PCa) is still debated. OBJECTIVE To analyze published studies reporting the accuracy of PSMA PET/CT for detecting lymph node invasion (LNI) at pelvic lymph node dissection (PLND). EVIDENCE ACQUISITION A search of PubMed/MEDLINE, Cochrane library's Central, EMBASE and Scopus databases, from inception to May 2021, was conducted. The primary outcome was to evaluate the sensitivity, specificity, positive (PPV) and negative (NPV) predictive values of PSMA PET/CT in detecting LNI on a per-patient level. As a secondary outcome, NPV of PET PSMA was tested on a per-node-level analysis. Detection rates were pooled using random-effect models. Preplanned subgroup analyses tested the diagnostic accuracy after stratification for the preoperative risk group. PPV and NPV variation over LNI prevalence was evaluated. Only studies including extended PLND (ePLND) as the reference standard test were included. EVIDENCE SYNTHESIS Twenty-seven studies, with a total of 2832 participants, were included in quantitative synthesis. The sensitivity, specificity, PPV, and NPV of PSMA PET/CT for LNI were, respectively, 58% (95% confidence interval [CI] 50-66%), 95% (95% CI 93-97%), 79% (95% CI 72-85%), and 87% (95% CI 84-89%), with overall moderate heterogeneity between studies. At bivariate analysis, the diagnostic accuracy of PSMA PET/CT estimated through summary receiver operating characteristic-derived area under the curve was 84% (95% CI 81-87%). On a per-node level, NPV of PET PSMA was 97% (95% CI 96-99%). At subgroup analyses, according to preoperative risk groups, sensitivity, specificity, PPV, and NPV were 51%, 93%, 73%, and 81%, respectively, in high-risk patients. Over the LNI prevalence range of 5-40%, PPV increased from 59% to 91%, while NPV decreased from 99% to 84%. CONCLUSIONS PSMA PET/CT scan provides promising accuracy in the field of primary nodal staging for PCa. The high NPV in men with a lower risk of LNI might be clinically useful to reduce the number of unnecessary PLND procedures performed. Conversely, in high-risk patients, negative PSMA PET/CT cannot replace staging ePLND. PATIENT SUMMARY In this systematic review and meta-analysis, we demonstrated that prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) scan may optimize the primary nodal staging and surgical management of prostate cancer patients candidate to radical prostatectomy. The high negative predictive value in men with a lower risk of lymph node invasion might be clinically useful for reducing the number of useless pelvic lymph node dissection (PLND) procedures performed. Conversely, in high-risk patients, negative PSMA PET/CT cannot allow avoiding of PLND.
Collapse
Affiliation(s)
- Armando Stabile
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Antony Pellegrino
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Elio Mazzone
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Donato Cannoletta
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Mario de Angelis
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Barletta
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Scuderi
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vito Cucchiara
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Gandaglia
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Raggi
- Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Necchi
- Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Pierre Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montreal Health Center, Montreal, QC, Canada
| | - Francesco Montorsi
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
37
|
The Role of Prostate-specific Membrane Antigen Positron Emission Tomography/Magnetic Resonance Imaging in Primary and Recurrent Prostate Cancer: A Systematic Review of the Literature. Eur Urol Focus 2021; 8:942-957. [PMID: 34538633 DOI: 10.1016/j.euf.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) positron emission tomography/magnetic resonance imaging (PET/MRI) is a novel imaging technique with several potential applications in the prostate cancer (PCa) setting. OBJECTIVE To perform a systematic review of the current evidence regarding the diagnostic performance of PSMA PET/MRI in patients with primary and recurrent PCa. EVIDENCE ACQUISITION A comprehensive bibliographic search on the MEDLINE and Cochrane Library databases was performed in October 2020. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Studies were deemed eligible if they assessed patients with primary or recurrent PCa (P) undergoing PSMA PET/MRI (I) with or without comparison with other imaging techniques (C) in order to evaluate its diagnostic performance (O). Retrospective and prospective primary clinical studies were included. Results of previous meta-analyses were reported. EVIDENCE SYNTHESIS A total of 23 original articles and three meta-analyses were included. Limited evidence on PSMA PET/MRI is available, especially in the setting of partial gland ablation. PET/MRI can be an effective imaging modality for detecting primary PCa, showing higher accuracy than multiparametric MRI alone. It provides accurate local staging of primary PCa; however, there are contradictory results in this context when its performance is compared with other imaging techniques. PET/MRI also shows high performance for restaging and detecting tumor recurrence, even at low prostate-specific antigen levels. CONCLUSIONS PSMA PET/MRI could represent a valuable tool in the management of patients with primary and recurrent PCa. No specific recommendations can be provided. PATIENT SUMMARY Encouraging data regarding the benefits of prostate-specific membrane antigen positron emission tomography/magnetic resonance imaging in patients with prostate cancer are emerging from the literature.
Collapse
|
38
|
Abstract
PET/MR imaging is in routine clinical use and is at least as effective as PET/CT for oncologic and neurologic studies with advantages with certain PET radiopharmaceuticals and applications. In addition, whole body PET/MR imaging substantially reduces radiation dosages compared with PET/CT which is particularly relevant to pediatric and young adult population. For cancer imaging, assessment of hepatic, pelvic, and soft-tissue malignancies may benefit from PET/MR imaging. For neurologic imaging, volumetric brain MR imaging can detect regional volume loss relevant to cognitive impairment and epilepsy. In addition, the single-bed position acquisition enables dynamic brain PET imaging without extending the total study length which has the potential to enhance the diagnostic information from PET.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| | - Andrei Iagaru
- Department of Radiology, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, JT 773, Birmingham, AL 35249, USA
| |
Collapse
|
39
|
Rüschoff JH, Ferraro DA, Muehlematter UJ, Laudicella R, Hermanns T, Rodewald AK, Moch H, Eberli D, Burger IA, Rupp NJ. What's behind 68Ga-PSMA-11 uptake in primary prostate cancer PET? Investigation of histopathological parameters and immunohistochemical PSMA expression patterns. Eur J Nucl Med Mol Imaging 2021; 48:4042-4053. [PMID: 34386839 PMCID: PMC8484204 DOI: 10.1007/s00259-021-05501-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
Purpose Prostate-specific membrane antigen (PSMA-) PET has become a promising tool in staging and restaging of prostate carcinoma (PCa). However, specific primary tumour features might impact accuracy of PSMA-PET for PCa detection. We investigated histopathological parameters and immunohistochemical PSMA expression patterns on radical prostatectomy (RPE) specimens and correlated them to the corresponding 68Ga-PSMA-11-PET examinations. Methods RPE specimens of 62 patients with preoperative 68Ga-PSMA-11-PET between 2016 and 2018 were analysed. WHO/ISUP grade groups, growth pattern (expansive vs. infiltrative), tumour area and diameter as well as immunohistochemical PSMA heterogeneity, intensity and negative tumour area (PSMA%neg) were correlated with spatially corresponding SUVmax on 68Ga-PSMA-11-PET in a multidisciplinary analysis. Results All tumours showed medium to strong membranous (2–3 +) and weak to strong cytoplasmic (1–3 +) PSMA expression. Heterogeneously expressed PSMA was found in 38 cases (61%). Twenty-five cases (40%) showed at least 5% and up to 80% PSMA%neg. PSMA%neg, infiltrative growth pattern, smaller tumour area and diameter and WHO/ISUP grade group 2 significantly correlated with lower SUVmax values. A ROC curve analysis revealed 20% PSMA%neg as an optimal cutoff with the highest sensitivity and specificity (89% and 86%, AUC 0.923) for a negative PSMA-PET scan. A multiple logistic regression model revealed tumoural PSMA%neg (p < 0.01, OR = 9.629) and growth pattern (p = 0.0497, OR = 306.537) as significant predictors for a negative PSMA-PET scan. Conclusions We describe PSMA%neg, infiltrative growth pattern, smaller tumour size and WHO/ISUP grade group 2 as parameters associated with a lower 68Ga-PSMA-11 uptake in prostate cancer. These findings can serve as fundament for future biopsy-based biomarker development to enable an individualized, tumour-adapted imaging approach. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05501-1.
Collapse
Affiliation(s)
- Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela A Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Urs J Muehlematter
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ann-Katrin Rodewald
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
Moradi F, Farolfi A, Fanti S, Iagaru A. Prostate cancer: Molecular imaging and MRI. Eur J Radiol 2021; 143:109893. [PMID: 34391061 DOI: 10.1016/j.ejrad.2021.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
The role of molecular imaging in initial evaluation of men with presumed or established diagnosis of prostate cancer and work up of biochemical recurrence and metastatic disease is rapidly evolving due to superior diagnostic performance compared to anatomic imaging. However, variable tumor biology and expression of transmembrane proteins or metabolic alterations poses a challenge. We review the evidence and controversies with emphasis on emerging PET radiopharmaceuticals and experience on clinical utility of PET/CT and PET/MRI in diagnosis and management of prostate cancer.
Collapse
Affiliation(s)
- Farshad Moradi
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA.
| | - Andrea Farolfi
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Coşar U, Şen İ, Aydos U, Koparal MY, Uçar M, Tokgöz N, Gönül İI, Akdemir ÜÖ, Atay LÖ, Sözen TS. Diagnostic accuracy of 68 Ga-PSMA PET/MRI and multiparametric MRI in detecting index tumours in radical prostatectomy specimen. Int J Clin Pract 2021; 75:e14287. [PMID: 33931929 DOI: 10.1111/ijcp.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of the 68 gallium (68 Ga) prostate-specific membrane antigen (PSMA) positron emission tomography/magnetic resonance imaging (PET/MRI) and multiparametric MRI (mpMRI) by region-based comparison of index tumour localisations using histopathological tumour maps of patients who underwent radical prostatectomy because of clinically significant prostate cancer. PATIENTS AND METHODS The study included 64 patients who underwent radical prostatectomy after primary staging with mpMRI and 68 Ga-PSMA PET/MRI. Diagnostic analysis was performed by dividing the prostate into four anatomic regions as left/right anterior and left/right posterior. The extension of the lesions in mpMRI and the pathological uptake in 68 Ga-PSMA PET/MRI were matched separately for each region with the extension of the index tumour into each region. RESULTS The sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, and the accuracy of mpMRI and 68 Ga-PSMA PET/MRI are shown as 55.7%, 91.8%, 80.6%, 77.2%, 78.1%, and 60.8%, 94.3%, 86.8% 79.8%, 83.5%, respectively. 68 Ga-PSMA PET/MRI has higher sensitivity and specificity compared with mpMRI. However, no statistically significant difference was found (P = .464). Combined imaging had significantly higher diagnostic accuracy compared with mpMRI and 68 Ga-PSMA PET/MRI (change in AUC: 0.084 and 0.046, P < .001 and P = .028, respectively), while no statistically significant difference was found between mpMRI and 68 Ga-PSMA PET/MRI (change in AUC: 0.038, P = .246). CONCLUSION 68 Ga-PSMA PET/MRI had higher clinical diagnostic accuracy in prostate cancer compared with mpMRI. Diagnostic accuracy was significantly increased in the combined use of both imaging modalities.
Collapse
Affiliation(s)
- Uğur Coşar
- Department of Urology, School of Medicine, Gazi University, Ankara, Turkey
| | - İlker Şen
- Department of Urology, School of Medicine, Gazi University, Ankara, Turkey
| | - Uğuray Aydos
- Department of Nuclear Medicine, School of Medicine, Gazi University, Ankara, Turkey
| | - Murat Yavuz Koparal
- Department of Urology, Recep Tayyip Erdogan University Training and Research Hospital, Rize, Turkey
| | - Murat Uçar
- Department of Radiology, School of Medicine, Gazi University, Ankara, Turkey
| | - Nil Tokgöz
- Department of Radiology, School of Medicine, Gazi University, Ankara, Turkey
| | - İpek Işık Gönül
- Department of Pathology, School of Medicine, Gazi University, Ankara, Turkey
| | - Ümit Özgür Akdemir
- Department of Nuclear Medicine, School of Medicine, Gazi University, Ankara, Turkey
| | - Lütfiye Özlem Atay
- Department of Nuclear Medicine, School of Medicine, Gazi University, Ankara, Turkey
| | - Tevfik Sinan Sözen
- Department of Urology, School of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
42
|
Qin C, Gai Y, Liu Q, Ruan W, Liu F, Hu F, Zhang X, Lan X. Optimized Application of 68Ga-Prostate-Specific Membrane Antigen-617 Whole-Body PET/CT and Pelvic PET/MR in Prostate Cancer Initial Diagnosis and Staging. Front Med (Lausanne) 2021; 8:657619. [PMID: 34055836 PMCID: PMC8155349 DOI: 10.3389/fmed.2021.657619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose: To analyze 68Ga-PSMA-617 PET/CT or PET/MR and delayed PET/MR images in patients diagnosed with or suspicion of prostate cancer, and to explore the optimal use of PET/CT and PET/MR for initial diagnosis and staging in prostate cancer. Methods: Images from conventional scan by 68Ga-PSMA whole-body PET/CT or PET/MR followed by delayed pelvic PET/MR were retrospectively analyzed. Prostatic 68Ga-PSMA uptake was measured as SUVmax1 (conventional scan 1 h post injection) and SUVmax2 (delayed scan 3 h post injection). Age, PSA levels, and SUVmax were compared between benign and malignant cases. The correlation of SUVmax1 and SUVmax2 was analyzed. Diagnostic performance was evaluated by ROC analysis. Results: Fifty-six patients with 41 prostate cancers and 15 benign prostate lesions were enrolled. Fifty-three patients had paired conventional and delayed scans. Age, tPSA, fPSA levels, and SUVmax were significantly different between benign and malignant cases. A good correlation was found between SUVmax1 and SUVmax2. There was significant difference between SUVmax1 and SUVmax2 in the malignant group (p = 0.001). SUVmax1 had superior diagnostic performance than SUVmax2, SUVmax difference and PSA levels, with a sensitivity of 85.4%, a specificity of 100% and an AUC of 0.956. A combination of SUVmax1 with nodal and/or distant metastases and MR PI-RADS V2 score had a sensitivity and specificity of 100%. Delayed pelvic PET/MR imaging in 33 patients were found to be redundant because these patients had nodal and/or distant metastases which can be easily detected by PET/CT. PET/MR provided incremental value in 8 patients at early-stage prostate cancer based on precise anatomical localization and changes in lesion signal provided by MR. Conclusion: Combined 68Ga-PSMA whole-body PET/CT and pelvic PET/MR can accurately differentiate benign prostate diseases from prostate cancer and accurately stage prostate cancer. Whole-body PET/CT is sufficient for advanced prostate cancer. Pelvic PET/MR contributes to diagnosis and accurate staging in early prostate cancer. Imaging at about 1 h after injection is sufficient in most patients. ClinicalTrials.gov: NCT03756077. Registered 27 November 2018—Retrospectively registered, https://clinicaltrials.gov/show/NCT03756077.
Collapse
Affiliation(s)
- Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
43
|
Hajjo R, Sabbah DA, Bardaweel SK, Tropsha A. Identification of Tumor-Specific MRI Biomarkers Using Machine Learning (ML). Diagnostics (Basel) 2021; 11:742. [PMID: 33919342 PMCID: PMC8143297 DOI: 10.3390/diagnostics11050742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA;
- National Center for Epidemics and Communicable Disease Control, Amman 11118, Jordan
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan;
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carlina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
44
|
Kgatle MM, Boshomane TMG, Lawal IO, Mokoala KMG, Mokgoro NP, Lourens N, Kairemo K, Zeevaart JR, Vorster M, Sathekge MM. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. Int J Mol Sci 2021; 22:4109. [PMID: 33921181 PMCID: PMC8071559 DOI: 10.3390/ijms22084109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Neo P. Mokgoro
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Nico Lourens
- Department of Urology, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kalevo Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, 00180 Helsinki, Finland;
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Radiochemistry, South African Nuclear Energy Corporation SOC (Necsa), Pelindaba 0001, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
45
|
Comparison of MRI, PSMA PET/CT, and Fusion PSMA PET/MRI for Detection of Clinically Significant Prostate Cancer. J Comput Assist Tomogr 2021; 45:210-217. [PMID: 33186177 DOI: 10.1097/rct.0000000000001116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The aim of our study is to compare the efficacy of positron emission tomography (PET) and magnetic resonance imaging (MRI) for detecting intraprostatic lesions in patients with clinically significant prostate cancer who underwent radical prostatectomy; additionally, investigate the benefits of rostate-specific membrane antigen (PSMA) PET-MR software fusion images to the diagnosis. METHODS Thirty patients, who underwent radical prostatectomy between June 2015 and April 2018, were included in the study. Subjects with gallium PSMA PET-CT and multiparametric prostate MRI performed according to Prostate Imaging Reporting and Data System v2 criteria in our clinic were included in the study. 68Ga-PSMA PET-CT images were fused with MR sequences for analysis. RESULTS The mean age of cases was 63.2 years (ranged from 45 to 79 years). Index lesions of 29 cases were detected by MRI and 22 of them by PET CT. Both modalities were found to be less sensitive for detection of bilaterality and multifocality (42.85% and 20% for MRI, 28.57% and 20% for PET CT, respectively). There was no statistically significant difference between modalities. It was observed that if a clinically significant tumor focus was not detected by MRI, it was small (6 mm or less) in diameter or had a low Gleason score. CONCLUSIONS Software fusion PSMA PET-MRI increased the sensitivity of the index lesion identification compared with PSMA PET-CT and also increased the sensitivity of real lesion size identification compared with multiparametric prostate MRI.
Collapse
|
46
|
Trägårdh E, Simoulis A, Bjartell A, Jögi J. Tumor detection of 18F-PSMA-1007 in the prostate gland in patients with prostate cancer using prostatectomy specimens as reference method. J Nucl Med 2021; 62:jnumed.121.261993. [PMID: 33789930 PMCID: PMC8612187 DOI: 10.2967/jnumed.121.261993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) radiopharmaceuticals used with positron emission tomography/computed tomography (PET-CT) are a promising tool for managing patients with prostate cancer. This study aimed to determine the accuracy of 18F-PSMA-1007 PET-CT for detecting tumors in the prostate gland using radical prostatectomy (RP) specimens as a reference method and to determine whether a correlation exists between 18F-PSMA-1007 uptake and the International Society of Urological Pathology (ISUP) grade and prostate specific antigen (PSA) levels at diagnosis. Methods: Thirty-nine patients referred for 18F-PSMA-1007 PET-CT for initial staging and who underwent RP within four months were retrospectively included. Uptake of 18F-PSMA-1007 indicative of cancer was assessed and maximum standardized uptake values (SUVmax) and total lesion uptake (TLU) were calculated for the index tumor. Histopathology was assessed from RP specimens. True positive, false negative, and false positive lesions were calculated. Results: In 94.9% of patients, the index tumor was correctly identified with PET. SUVmax was significantly higher in the tumors vs normal prostate tissue, but no significant differences were found between different ISUP grades and SUVmax There was a poor correlation between PSA at diagnosis and SUVmax (r=0.23) and moderate agreement between PSA at diagnosis and TLU (r=0.67). When all tumors (also non-index tumors) were considered, many small tumors (approx. 1-2 mm) were not detected with PET. Conclusion: 18F-PSMA-1007 PET-CT performs well in correctly identifying the index tumor in patients with intermediate to high-risk prostate cancer. Approximately 5% of the index tumors were missed by PET, which agrees with previous studies.
Collapse
Affiliation(s)
- Elin Trägårdh
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital and Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Athanasios Simoulis
- Department of Pathology, Skåne University Hospital and Lund University, Malmö, Sweden; and
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital and Lund University, Lund, Sweden
| | - Jonas Jögi
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital and Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
47
|
Hernes E, Revheim ME, Hole KH, Tulipan AJ, Strømme H, Lilleby W, Seierstad T. Prostate-Specific Membrane Antigen PET for Assessment of Primary and Recurrent Prostate Cancer with Histopathology as Reference Standard: A Systematic Review and Meta-Analysis. PET Clin 2021; 16:147-165. [PMID: 33648661 DOI: 10.1016/j.cpet.2020.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate-specific membrane antigen PET is a promising diagnostic tool in prostate cancer. The gold standard for the detection of prostate tumor and lymph node metastases is histopathology. The aim of the present review was to investigate accuracy measures of 68Ga/18F-labeled prostate-specific membrane antigen PET tracers in primary and recurrent prostate cancer with systematic sector-based histopathology as the reference standard. A systematic literature search was performed and 34 studies were included. Overall, prostate-specific membrane antigen PET showed high specificity, but variable sensitivity to localize known prostate cancer and detect pelvic lymph node metastases.
Collapse
Affiliation(s)
- Eivor Hernes
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Knut Håkon Hole
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Andreas Julius Tulipan
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Hilde Strømme
- Library of Medicine and Science, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Wolfgang Lilleby
- Department of Oncology, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Therese Seierstad
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
48
|
Manfredi C, Fernández-Pascual E, Linares-Espinós E, Couñago F, Martínez-Salamanca JI. New frontiers in focal therapy for prostate cancer: Prostate-specific membrane antigen positron emission tomography/magnetic resonance imaging. World J Clin Oncol 2021; 12:61-68. [PMID: 33680874 PMCID: PMC7918526 DOI: 10.5306/wjco.v12.i2.61] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Imaging has a central role in the context of focal therapy (FT) for prostate cancer (PCa). Prostate-specific membrane antigen (PSMA) positron emission tomography/magnetic resonance imaging (PET/MRI) is a novel imaging modality that combines the morpho-functional information of MRI with the molecular characterization of PET. Some papers reported the potential advantages of PSMA PET/MRI in different clinical scenarios. Limited evidence on PSMA PET/MRI is available in the setting of FT. PSMA PET/MRI can be an effective imaging modality for detecting primary PCa and seems to provide accurate local staging of primary PCa. PSMA PET/MRI also shows high performance for restaging and detecting tumor recurrence. The higher soft-tissue contrast and the reduction of ionizing radiation are the main advantages reported in the literature compared to PET/computed tomography. PSMA PET/MRI could represent a turning point in the management of patients with PCa in the context of FT. Further studies are needed to confirm its applications in this specific clinical setting.
Collapse
Affiliation(s)
- Celeste Manfredi
- Department of Woman, Child and General and Specialized Surgery, Urology Unit, University of Campania “Luigi Vanvitelli”, Naples 81110, Italy
| | - Esaú Fernández-Pascual
- Department of Urology, Hospital Universitario La Paz, Madrid 28046, Spain
- LYX Institute of Urology, Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Estefanía Linares-Espinós
- Department of Urology, Hospital Universitario La Paz, Madrid 28046, Spain
- LYX Institute of Urology, Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Felipe Couñago
- Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Juan Ignacio Martínez-Salamanca
- LYX Institute of Urology, Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
- Department of Urology, Hospital Universitario Puerta Hierro-Majadahonda, Majadahonda 28222, Madrid, Spain
| |
Collapse
|
49
|
Zhao J, Xue Q, Chen X, You Z, Wang Z, Yuan J, Liu H, Hu L. Evaluation of SUVlean consistency in FDG and PSMA PET/MR with Dixon-, James-, and Janma-based lean body mass correction. EJNMMI Phys 2021; 8:17. [PMID: 33598849 PMCID: PMC7889776 DOI: 10.1186/s40658-021-00363-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To systematically evaluate the consistency of various standardized uptake value (SUV) lean body mass (LBM) normalization methods in a clinical positron emission tomography/magnetic resonance imaging (PET/MR) setting. METHODS SUV of brain, liver, prostate, parotid, blood, and muscle were measured in 90 18F-FDG and 28 18F-PSMA PET/MR scans and corrected for LBM using the James, Janma (short for Janmahasatian), and Dixon approaches. The prospective study was performed from December 2018 to August 2020 at Shanghai East Hospital. Forty dual energy X-ray absorptiometry (DXA) measurements of non-fat mass were used as the reference standard. Agreement between different LBM methods was assessed by linear regression and Bland-Altman statistics. SUV's dependency on BMI was evaluated by means of linear regression and Pearson correlation. RESULTS Compared to DXA, the Dixon approach presented the least bias in LBM/weight% than James and Janma models (bias 0.4±7.3%, - 8.0±9.4%, and - 3.3±8.3% respectively). SUV normalized by body weight (SUVbw) was positively correlated with body mass index (BMI) for both FDG (e.g., liver: r = 0.45, p < 0.001) and PSMA scans (r = 0.20, p = 0.31), while SUV normalized by lean body mass (SUVlean) revealed a decreased dependency on BMI (r = 0.22, 0.08, 0.14, p = 0.04, 0.46, 0.18 for Dixon, James, and Janma models, respectively). The liver SUVbw of obese/overweight patients was significantly larger (p < 0.001) than that of normal patients, whereas the bias was mostly eliminated in SUVlean. One-way ANOVA showed significant difference (p < 0.001) between SUVlean in major organs measured using Dixon method vs James and Janma models. CONCLUSION Significant systematic variation was found using different approaches to calculate SUVlean. A consistent correction method should be applied for serial PET/MR scans. The Dixon method provides the most accurate measure of LBM, yielding the least bias of all approaches when compared to DXA.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qiaoyi Xue
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Wang
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Hui Liu
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Lingzhi Hu
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| |
Collapse
|
50
|
The Role of PSMA PET/CT and PET/MRI in the Initial Staging of Prostate Cancer. Eur Urol Focus 2021; 7:258-266. [PMID: 33541838 DOI: 10.1016/j.euf.2021.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Prostate cancer (PCa) is the most common solid organ malignancy in men and is the third leading cause of cancer death. Accurate methods for the detection and staging of PCa are necessary to determine the extent of disease and inform treatment options. OBJECTIVE To review the performance and diagnostic accuracy of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) imaging in the initial staging of PCa and evaluate its impact on definitive therapy planning. EVIDENCE ACQUISITION A comprehensive literature search was performed using PubMed. References from retrieved articles and recommendations from the authors were also included. EVIDENCE SYNTHESIS PSMA PET has moderately high sensitivity and specificity for detecting intraprostatic tumors and moderately high sensitivity for detecting regional and extrapelvic metastases, compared with conventional imaging. PSMA PET can also have an important role in the presurgical detection of extraprostatic disease and can guide surgical planning. Additionally, PSMA PET has proven to be an effective tool for planning definitive radiation therapy in treatment-naïve patients. CONCLUSIONS PSMA PET has a promising role in the initial staging of PCa and informing appropriate treatment options. Further research is necessary to evaluate the appropriate role of PSMA PET in management changes, and to understand the appropriate management of patients with metastatic disease. PATIENT SUMMARY We reviewed the diagnostic accuracy and treatment impact of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) imaging in the initial staging of prostate cancer (PCa). We conclude that PSMA PET is effective at imaging initial PCa and may result in the modification of treatment plans for patients.
Collapse
|