1
|
Ueda D, Walston SL, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Yamada A, Yanagawa M, Ito R, Fujima N, Kawamura M, Nakaura T, Matsui Y, Tatsugami F, Fujioka T, Nozaki T, Hirata K, Naganawa S. Climate change and artificial intelligence in healthcare: Review and recommendations towards a sustainable future. Diagn Interv Imaging 2024; 105:453-459. [PMID: 38918123 DOI: 10.1016/j.diii.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
The rapid advancement of artificial intelligence (AI) in healthcare has revolutionized the industry, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. However, the increasing adoption of AI systems also raises concerns about their environmental impact, particularly in the context of climate change. This review explores the intersection of climate change and AI in healthcare, examining the challenges posed by the energy consumption and carbon footprint of AI systems, as well as the potential solutions to mitigate their environmental impact. The review highlights the energy-intensive nature of AI model training and deployment, the contribution of data centers to greenhouse gas emissions, and the generation of electronic waste. To address these challenges, the development of energy-efficient AI models, the adoption of green computing practices, and the integration of renewable energy sources are discussed as potential solutions. The review also emphasizes the role of AI in optimizing healthcare workflows, reducing resource waste, and facilitating sustainable practices such as telemedicine. Furthermore, the importance of policy and governance frameworks, global initiatives, and collaborative efforts in promoting sustainable AI practices in healthcare is explored. The review concludes by outlining best practices for sustainable AI deployment, including eco-design, lifecycle assessment, responsible data management, and continuous monitoring and improvement. As the healthcare industry continues to embrace AI technologies, prioritizing sustainability and environmental responsibility is crucial to ensure that the benefits of AI are realized while actively contributing to the preservation of our planet.
Collapse
Affiliation(s)
- Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan; Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan.
| | - Shannon L Walston
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto 606-8507, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Graduate School of Medicine, Osaka University, Suita-city, Osaka 565-0871, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
2
|
Bizjak Ž, Choi JH, Park W, Pernuš F, Špiclin Ž. Deep geometric learning for intracranial aneurysm detection: towards expert rater performance. J Neurointerv Surg 2024; 16:1157-1162. [PMID: 37833055 DOI: 10.1136/jnis-2023-020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Early detection of intracranial aneurysms (IAs) is crucial for patient outcomes. Typically identified on angiographic scans such as CT angiography (CTA) or MR angiography (MRA), the sensitivity of experts in studies on small IAs (diameter <3 mm) was moderate (64-74.1% for CTAs and 70-92.8% for MRAs), and these figures could be lower in a routine clinical setting. Recent research shows that the expert level of sensitivity might be achieved using deep learning approaches. METHODS A large multisite dataset including 1054 MRA and 2174 CTA scans with expert IA annotations was collected. A novel modality-agnostic two-step IA detection approach was proposed. The first step used nnU-Net for segmenting vascular structures, with model training performed separately for each modality. In the second step, segmentations were converted to vascular surface that was parcellated by sampling point clouds and, using a PointNet++ model, each point was labeled as an aneurysm or vessel class. RESULTS Quantitative validation of the test data from different sites than the training data showed that the proposed approach achieved pooled sensitivity of 85% and 90% on 157 MRA scans and 1338 CTA scans, respectively, while the sensitivity for small IAs was 72% and 83%, respectively. The corresponding number of false findings per image was low at 1.54 and 1.57, and 0.4 and 0.83 on healthy subject data. CONCLUSIONS The proposed approach achieved a state-of-the-art balance between the sensitivity and the number of false findings, matched the expert-level sensitivity to small (and other) IAs on external data, and therefore seems fit for computer-assisted detection of IAs in a clinical setting.
Collapse
Affiliation(s)
- Žiga Bizjak
- Laboratory of Imaging Technologies, University of Ljubljana Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - June Ho Choi
- Department of Neurological Surgery, Asan Medical Center, Songpa-gu, Seoul, Korea
| | - Wonhyoung Park
- Department of Neurological Surgery, Asan Medical Center, Songpa-gu, Seoul, Korea
| | - Franjo Pernuš
- Laboratory of Imaging Technologies, University of Ljubljana Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Žiga Špiclin
- Laboratory of Imaging Technologies, University of Ljubljana Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
3
|
de Jong KJ, Poon E, Foo M, Maingard J, Kok HK, Barras C, Yazdabadi A, Shaygi B, Fitt GJ, Egan G, Brooks M, Asadi H. Incidental findings in research brain MRI: Definition, prevalence and ethical implications. J Med Imaging Radiat Oncol 2024. [PMID: 39301891 DOI: 10.1111/1754-9485.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Radiological incidental findings (IFs) are previously undetected abnormalities which are unrelated to the original indication for imaging and are unexpectedly discovered. In brain magnetic resonance imaging (MRI), the prevalence of IFs is increasing. By reviewing the literature on IFs in brain MRI performed for research purposes and discussing ethical considerations of IFs, this paper provides an overview of brain IF research results and factors contributing to inconsistencies and considers how the consent process can be improved from an ethical perspective. We found that despite extensive literature regarding IFs in research MRI of the brain, there are major inconsistencies in the reported prevalence, ranging from 1.3% to 99%. Many factors appear to contribute to this broad range: lack of standardised definition, participant demographics variance, heterogenous MRI scanner strength and sequences, reporter variation and results classification. We also found significant discrepancies in the review, consent and clinical communication processes pertaining to the ethical nature of these studies. These findings have implications for future studies, particularly those involving artificial intelligence. Further research, particularly in relation to MRI brain IFs would be useful to explore the generalisability of study results.
Collapse
Affiliation(s)
- Kenneth J de Jong
- Emergency Department, Epworth Healthcare, Melbourne, Victoria, Australia
| | - Emma Poon
- Department of Imaging, Monash Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michelle Foo
- Department of Radiology, Austin Health, Melbourne, Victoria, Australia
| | - Julian Maingard
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Interventional Radiology, Austin Hospital, Melbourne, Victoria, Australia
- Interventional Radiology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Interventional Radiology, Epworth Hospital, Melbourne, Victoria, Australia
- Endovascular Clot Retrieval (ECR) Service, Austin Hospital, Melbourne, Victoria, Australia
| | - Hong Kuan Kok
- Interventional Radiology Service, Northern Imaging Victoria, Melbourne, Victoria, Australia
- Medicine (Northern Health), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Christen Barras
- Department of Radiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Anousha Yazdabadi
- Department of Medical Education, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Monash University, Eastern Health, Melbourne, Victoria, Australia
| | - Benham Shaygi
- London North West University Healthcare NHS Trust, London, UK
| | - Gregory J Fitt
- Department of Radiology, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine and Radiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Mark Brooks
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Melbourne, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Hamed Asadi
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Melbourne, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Li K, Yang Y, Yang Y, Li Q, Jiao L, Chen T, Guo D. Added value of artificial intelligence solutions for arterial stenosis detection on head and neck CT angiography: A randomized crossover multi-reader multi-case study. Diagn Interv Imaging 2024:S2211-5684(24)00169-4. [PMID: 39299829 DOI: 10.1016/j.diii.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE The purpose of this study was to investigate the added value of artificial intelligence (AI) solutions for the detection of arterial stenosis (AS) on head and neck CT angiography (CTA). MATERIALS AND METHODS Patients who underwent head and neck CTA examinations at two hospitals were retrospectively included. CTA examinations were randomized into group 1 (without AI-washout-with AI) and group 2 (with AI-washout-without AI), and six readers (two radiology residents, two non-neuroradiologists, and two neuroradiologists) independently interpreted each CTA examination without and with AI solutions. Additionally, reading time was recorded for each patient. Digital subtraction angiography was used as the standard of reference. The diagnostic performance for AS at lesion and patient levels with four AS thresholds (30 %, 50 %, 70 %, and 100 %) was assessed by calculating sensitivity, false-positive lesions index (FPLI), specificity, and accuracy. RESULTS A total of 268 patients (169 men, 63.1 %) with a median age of 65 years (first quartile, 57; third quartile, 72; age range: 28-88 years) were included. At the lesion level, AI improved the sensitivity of all readers by 5.2 % for detecting AS ≥ 30 % (P < 0.001). Concurrently, AI reduced the FPLI of all readers and specifically neuroradiologists for detecting non-occlusive AS (all P < 0.05). At the patient level, AI improved the accuracy of all readers by 4.1 % (73.9 % [1189/1608] without AI vs. 78.0 % [1254/1608] with AI) (P < 0.001). Sensitivity for AS ≥ 30 % and the specificity for AS ≥ 70 % increased for all readers with AI assistance (P = 0.01). The median reading time for all readers was reduced from 268 s without AI to 241 s with AI (P< 0.001). CONCLUSION AI-assisted diagnosis improves the performance of radiologists in detecting head and neck AS, and shortens reading time.
Collapse
Affiliation(s)
- Kunhua Li
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Yang Yang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, 400060 Chongqing, PR China
| | - Yongwei Yang
- Department of Radiology, the Fifth People's Hospital of Chongqing, 400062 Chongqing, PR China
| | - Qingrun Li
- Department of Radiology, Traditional Chinese Medicine Hospital of Dianjiang, 408300 Chongqing, PR China
| | - Lanqian Jiao
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Ting Chen
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Dajing Guo
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China.
| |
Collapse
|
5
|
Teodorescu B, Gilberg L, Koç AM, Goncharov A, Berclaz LM, Wiedemeyer C, Guzel HE, Ataide EJG. Advancements in opportunistic intracranial aneurysm screening: The impact of a deep learning algorithm on radiologists' analysis of T2-weighted cranial MRI. J Stroke Cerebrovasc Dis 2024; 33:108014. [PMID: 39293708 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.
Collapse
Affiliation(s)
- Bianca Teodorescu
- Floy GmbH, Germany; Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Ali Murat Koç
- Floy GmbH, Germany; Izmir Katip Celebi University, Ataturk Education and Research Hospital, Department of Radiology
| | | | - Luc M Berclaz
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | | | | | | |
Collapse
|
6
|
Adamchic I, Kantelhardt SR, Wagner HJ, Burbelko M. Artificial intelligence can help detecting incidental intracranial aneurysm on routine brain MRI using TOF MRA data sets and improve the time required for analysis of these images. Neuroradiology 2024:10.1007/s00234-024-03460-6. [PMID: 39230716 DOI: 10.1007/s00234-024-03460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE The aim of our study was to assess the diagnostic performance of commercially available AI software for intracranial aneurysm detection and to determine if the AI system enhances the radiologist's accuracy in identifying aneurysms and reduces image analysis time. METHODS TOF-MRA clinical brain examinations were analyzed using commercially available software and by an consultant neuroradiologist for the presence of intracranial aneurysms. The results were compared with the reference standard, to measure the sensitivity and specificity of the software and the consultant neuroradiologist. Furthermore, we examined the time required for the neuroradiologist to analyze the TOF-MRA image set, both with and without use of the AI software. RESULTS In 500 TOF-MRI brain studies, 106 aneurysms were detected in 85 examinations by combining AI software with neuroradiologist readings. The neuroradiologist identified 98 aneurysms (92.5% sensitivity), while AI detected 77 aneurysms (72.6% sensitivity). Specificity and sensitivity were calculated from the combined effort as reference. Combining AI and neuroradiologist readings significantly improves detection reliability. Additionally, AI integration reduced TOF-MRA analysis time by 19 s (23% reduction). CONCLUSIONS Our findings indicate that the AI-based software can support neuroradiologists in interpreting brain TOF-MRA. A combined reading of the AI-based software and the neuroradiologist demonstrated higher reliability in identifying intracranial aneurysms as compared to reading by either neuroradiologist or software, thus improving diagnostic accuracy of the neuroradiologist. Simultaneously, reading time for the neuroradiologist was reduced by approximately one quarter.
Collapse
Affiliation(s)
- Ilya Adamchic
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany.
| | - Sven R Kantelhardt
- Department of Neurosurgery, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Hans-Joachim Wagner
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Michael Burbelko
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
- Department of Radiology, Philipps University of Marburg, 35043, Baldingerstraße, Marburg, Germany
| |
Collapse
|
7
|
Assis Y, Liao L, Pierre F, Anxionnat R, Kerrien E. Intracranial aneurysm detection: an object detection perspective. Int J Comput Assist Radiol Surg 2024; 19:1667-1675. [PMID: 38632166 DOI: 10.1007/s11548-024-03132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Intracranial aneurysm detection from 3D Time-Of-Flight Magnetic Resonance Angiography images is a problem of increasing clinical importance. Recently, a streak of methods have shown promising performance by using segmentation neural networks. However, these methods may be less relevant in a clinical settings where diagnostic decisions rely on detecting objects rather than their segmentation. METHODS We introduce a 3D single-stage object detection method tailored for small object detection such as aneurysms. Our anchor-free method incorporates fast data annotation, adapted data sampling and generation to address class imbalance problem, and spherical representations for improved detection. RESULTS A comprehensive evaluation was conducted, comparing our method with the state-of-the-art SCPM-Net, nnDetection and nnUNet baselines, using two datasets comprising 402 subjects. The evaluation used adapted object detection metrics. Our method exhibited comparable or superior performance, with an average precision of 78.96%, sensitivity of 86.78%, and 0.53 false positives per case. CONCLUSION Our method significantly reduces the detection complexity compared to existing methods and highlights the advantages of object detection over segmentation-based approaches for aneurysm detection. It also holds potential for application to other small object detection problems.
Collapse
Affiliation(s)
- Youssef Assis
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France.
| | - Liang Liao
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
- Department of Diagnostic and Therapeutic Interventional Neuroradiology, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
- Université de Lorraine, Inserm, IADI, 54000, Nancy, France
| | - Fabien Pierre
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
| | - René Anxionnat
- Department of Diagnostic and Therapeutic Interventional Neuroradiology, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
- Université de Lorraine, Inserm, IADI, 54000, Nancy, France
| | - Erwan Kerrien
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
| |
Collapse
|
8
|
Vach M, Wolf L, Weiss D, Ivan VL, Hofmann BB, Himmelspach L, Caspers J, Rubbert C. Reproducibility and across-site transferability of an improved deep learning approach for aneurysm detection and segmentation in time-of-flight MR-angiograms. Sci Rep 2024; 14:18749. [PMID: 39138338 PMCID: PMC11322557 DOI: 10.1038/s41598-024-68805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to (1) replicate a deep-learning-based model for cerebral aneurysm segmentation in TOF-MRAs, (2) improve the approach by testing various fully automatic pre-processing pipelines, and (3) rigorously validate the model's transferability on independent, external test-datasets. A convolutional neural network was trained on 235 TOF-MRAs acquired on local scanners from a single vendor to segment intracranial aneurysms. Different pre-processing pipelines including bias field correction, resampling, cropping and intensity-normalization were compared regarding their effect on model performance. The models were tested on independent, external same-vendor and other-vendor test-datasets, each comprised of 70 TOF-MRAs, including patients with and without aneurysms. The best-performing model achieved excellent results on the external same-vendor test-dataset, surpassing the results of the previous publication with an improved sensitivity (0.97 vs. ~ 0.86), a higher Dice score coefficient (DSC, 0.60 ± 0.25 vs. 0.53 ± 0.31), and an improved false-positive rate (0.87 ± 1.35 vs. ~ 2.7 FPs/case). The model further showed excellent performance in the external other-vendor test-datasets (DSC 0.65 ± 0.26; sensitivity 0.92, 0.96 ± 2.38 FPs/case). Specificity was 0.38 and 0.53, respectively. Raising the voxel-size from 0.5 × 0.5×0.5 mm to 1 × 1×1 mm reduced the false-positive rate seven-fold. This study successfully replicated core principles of a previous approach for detecting and segmenting cerebral aneurysms in TOF-MRAs with a robust, fully automatable pre-processing pipeline. The model demonstrated robust transferability on two independent external datasets using TOF-MRAs from the same scanner vendor as the training dataset and from other vendors. These findings are very encouraging regarding the clinical application of such an approach.
Collapse
Affiliation(s)
- Marius Vach
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Luisa Wolf
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Daniel Weiss
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Vivien Lorena Ivan
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Björn B Hofmann
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ludmila Himmelspach
- Heine Center for Artificial Intelligence and Data Science (HeiCAD), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Li Y, Zhang H, Sun Y, Fan Q, Wang L, Ji C, HuiGu, Chen B, Zhao S, Wang D, Yu P, Li J, Yang S, Zhang C, Wang X. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study. Int J Med Inform 2024; 188:105487. [PMID: 38761459 DOI: 10.1016/j.ijmedinf.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE To evaluate the diagnostic efficacy of a developed artificial intelligence (AI) platform incorporating deep learning algorithms for the automated detection of intracranial aneurysms in time-of-flight (TOF) magnetic resonance angiography (MRA). METHOD This retrospective study encompassed 3D TOF MRA images acquired between January 2023 and June 2023, aiming to validate the presence of intracranial aneurysms via our developed AI platform. The manual segmentation results by experienced neuroradiologists served as the "gold standard". Following annotation of MRA images by neuroradiologists using InferScholar software, the AI platform conducted automatic segmentation of intracranial aneurysms. Various metrics including accuracy (ACC), balanced ACC, area under the curve (AUC), sensitivity (SE), specificity (SP), F1 score, Brier Score, and Net Benefit were utilized to evaluate the generalization of AI platform. Comparison of intracranial aneurysm identification performance was conducted between the AI platform and six radiologists with experience ranging from 3 to 12 years in interpreting MR images. Additionally, a comparative analysis was carried out between radiologists' detection performance based on independent visual diagnosis and AI-assisted diagnosis. Subgroup analyses were also performed based on the size and location of the aneurysms to explore factors impacting aneurysm detectability. RESULTS 510 patients were enrolled including 215 patients (42.16 %) with intracranial aneurysms and 295 patients (57.84 %) without aneurysms. Compared with six radiologists, the AI platform showed competitive discrimination power (AUC, 0.96), acceptable calibration (Brier Score loss, 0.08), and clinical utility (Net Benefit, 86.96 %). The AI platform demonstrated superior performance in detecting aneurysms with an overall SE, SP, ACC, balanced ACC, and F1 score of 91.63 %, 92.20 %, 91.96 %, 91.92 %, and 90.57 % respectively, outperforming the detectability of the two resident radiologists. For subgroup analysis based on aneurysm size and location, we observed that the SE of the AI platform for identifying tiny (diameter<3mm), small (3 mm ≤ diameter<5mm), medium (5 mm ≤ diameter<7mm) and large aneurysms (diameter ≥ 7 mm) was 87.80 %, 93.14 %, 95.45 %, and 100 %, respectively. Furthermore, the SE for detecting aneurysms in the anterior circulation was higher than that in the posterior circulation. Utilizing the AI assistance, six radiologists (i.e., two residents, two attendings and two professors) achieved statistically significant improvements in mean SE (residents: 71.40 % vs. 88.37 %; attendings: 82.79 % vs. 93.26 %; professors: 90.07 % vs. 97.44 %; P < 0.05) and ACC (residents: 85.29 % vs. 94.12 %; attendings: 91.76 % vs. 97.06 %; professors: 95.29 % vs. 98.82 %; P < 0.05) while no statistically significant change was observed in SP. Overall, radiologists' mean SE increased by 11.40 %, mean SP increased by 1.86 %, and mean ACC increased by 5.88 %, mean balanced ACC promoted by 6.63 %, mean F1 score grew by 7.89 %, and Net Benefit rose by 12.52 %, with a concurrent decrease in mean Brier score declined by 0.06. CONCLUSIONS The deep learning algorithms implemented in the AI platform effectively detected intracranial aneurysms on TOF-MRA and notably enhanced the diagnostic capabilities of radiologists. This indicates that the AI-based auxiliary diagnosis model can provide dependable and precise prediction to improve the diagnostic capacity of radiologists.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Huiling Zhang
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Yun Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Qianrui Fan
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Long Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Congshan Ji
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - HuiGu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Baojin Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Shuo Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Dawei Wang
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Pengxin Yu
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Junchen Li
- Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China.
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
10
|
Hamada A, Yasaka K, Hatano S, Kurokawa M, Inui S, Kubo T, Watanabe Y, Abe O. Deep-Learning Reconstruction of High-Resolution CT Improves Interobserver Agreement for the Evaluation of Pulmonary Fibrosis. Can Assoc Radiol J 2024; 75:542-548. [PMID: 38293802 DOI: 10.1177/08465371241228468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Objective: This study aimed to investigate whether deep-learning reconstruction (DLR) improves interobserver agreement in the evaluation of honeycombing for patients with interstitial lung disease (ILD) who underwent high-resolution computed tomography (CT) compared with hybrid iterative reconstruction (HIR). Methods: In this retrospective study, 35 consecutive patients suspected of ILD who underwent CT including the chest region were included. High-resolution CT images of the unilateral lung with DLR and HIR were reconstructed for the right and left lungs. A radiologist placed regions of interest on the lung and measured standard deviation of CT attenuation (i.e., quantitative image noise). In the qualitative image analyses, 5 blinded readers assessed the presence of honeycombing and reticulation, qualitative image noise, artifacts, and overall image quality using a 5-point scale (except for artifacts which was evaluated using a 3-point scale). Results: The quantitative and qualitative image noise in DLR was remarkably reduced compared to that in HIR (P < .001). Artifacts and overall DLR quality were significantly improved compared to those of HIR (P < .001 for 4 out of 5 readers). Interobserver agreement in the evaluations of honeycombing and reticulation for DLR (0.557 [0.450-0.693] and 0.525 [0.470-0.541], respectively) were higher than those for HIR (0.321 [0.211-0.520] and 0.470 [0.354-0.533], respectively). A statistically significant difference was found for honeycombing (P = .014). Conclusions: DLR improved interobserver agreement in the evaluation of honeycombing in patients with ILD on CT compared to HIR.
Collapse
Affiliation(s)
- Akiyoshi Hamada
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Koichiro Yasaka
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Sosuke Hatano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Mariko Kurokawa
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Shohei Inui
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Takatoshi Kubo
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Zheng H, Liu X, Huang Z, Ren Y, Fu B, Shi T, Liu L, Guo Q, Tian C, Liang D, Wang R, Chen J, Hu Z. Deep learning for intracranial aneurysm segmentation using CT angiography. Phys Med Biol 2024; 69:155024. [PMID: 39008990 DOI: 10.1088/1361-6560/ad6372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Objective.This study aimed to employ a two-stage deep learning method to accurately detect small aneurysms (4-10 mm in size) in computed tomography angiography images.Approach.This study included 956 patients from 6 hospitals and a public dataset obtained with 6 CT scanners from different manufacturers. The proposed method consists of two components: a lightweight and fast head region selection (HRS) algorithm and an adaptive 3D nnU-Net network, which is used as the main architecture for segmenting aneurysms. Segments generated by the deep neural network were compared with expert-generated manual segmentation results and assessed using Dice scores.MainResults.The area under the curve (AUC) exceeded 79% across all datasets. In particular, the precision and AUC reached 85.2% and 87.6%, respectively, on certain datasets. The experimental results demonstrated the promising performance of this approach, which reduced the inference time by more than 50% compared to direct inference without HRS.Significance.Compared with a model without HRS, the deep learning approach we developed can accurately segment aneurysms by automatically localizing brain regions and can accelerate aneurysm inference by more than 50%.
Collapse
Affiliation(s)
- Huizhong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xinfeng Liu
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yan Ren
- AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518005, People's Republic of China
| | - Bin Fu
- AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518005, People's Republic of China
| | - Tianliang Shi
- Department of Radiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, People's Republic of China
| | - Lu Liu
- Department of Radiology, The Second People's Hospital of Guiyang, Guiyang, Guizhou 550002, People's Republic of China
| | - Qiping Guo
- Department of Radiology, Xingyi Municipal People's Hospital, Xingyi, Guizhou 562400, People's Republic of China
| | - Chong Tian
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Jie Chen
- AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518005, People's Republic of China
- Peng Cheng Laboratory, Shenzhen 518005, People's Republic of China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
12
|
Zhou Z, Jin Y, Ye H, Zhang X, Liu J, Zhang W. Classification, detection, and segmentation performance of image-based AI in intracranial aneurysm: a systematic review. BMC Med Imaging 2024; 24:164. [PMID: 38956538 PMCID: PMC11218239 DOI: 10.1186/s12880-024-01347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The detection and management of intracranial aneurysms (IAs) are vital to prevent life-threatening complications like subarachnoid hemorrhage (SAH). Artificial Intelligence (AI) can analyze medical images, like CTA or MRA, spotting nuances possibly overlooked by humans. Early detection facilitates timely interventions and improved outcomes. Moreover, AI algorithms offer quantitative data on aneurysm attributes, aiding in long-term monitoring and assessing rupture risks. METHODS We screened four databases (PubMed, Web of Science, IEEE and Scopus) for studies using artificial intelligence algorithms to identify IA. Based on algorithmic methodologies, we categorized them into classification, segmentation, detection and combined, and then their merits and shortcomings are compared. Subsequently, we elucidate potential challenges that contemporary algorithms might encounter within real-world clinical diagnostic contexts. Then we outline prospective research trajectories and underscore key concerns in this evolving field. RESULTS Forty-seven studies of IA recognition based on AI were included based on search and screening criteria. The retrospective results represent that current studies can identify IA in different modal images and predict their risk of rupture and blockage. In clinical diagnosis, AI can effectively improve the diagnostic accuracy of IA and reduce missed detection and false positives. CONCLUSIONS The AI algorithm can detect unobtrusive IA more accurately in communicating arteries and cavernous sinus arteries to avoid further expansion. In addition, analyzing aneurysm rupture and blockage before and after surgery can help doctors plan treatment and reduce the uncertainties in the treatment process.
Collapse
Affiliation(s)
- Zhiyue Zhou
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Jin
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Haili Ye
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Zhang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jiang Liu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
13
|
Fujita N, Yasaka K, Hatano S, Sakamoto N, Kurokawa R, Abe O. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction. Neuroradiology 2024; 66:1105-1112. [PMID: 38514472 DOI: 10.1007/s00234-024-03330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE We investigated whether the quality of high-resolution computed tomography (CT) images of the temporal bone improves with deep learning reconstruction (DLR) compared with hybrid iterative reconstruction (HIR). METHODS This retrospective study enrolled 36 patients (15 men, 21 women; age, 53.9 ± 19.5 years) who had undergone high-resolution CT of the temporal bone. Axial and coronal images were reconstructed using DLR, HIR, and filtered back projection (FBP). In qualitative image analyses, two radiologists independently compared the DLR and HIR images with FBP in terms of depiction of structures, image noise, and overall quality, using a 5-point scale (5 = better than FBP, 1 = poorer than FBP) to evaluate image quality. The other two radiologists placed regions of interest on the tympanic cavity and measured the standard deviation of CT attenuation (i.e., quantitative image noise). Scores from the qualitative and quantitative analyses of the DLR and HIR images were compared using, respectively, the Wilcoxon signed-rank test and the paired t-test. RESULTS Qualitative and quantitative image noise was significantly reduced in DLR images compared with HIR images (all comparisons, p ≤ 0.016). Depiction of the otic capsule, auditory ossicles, and tympanic membrane was significantly improved in DLR images compared with HIR images (both readers, p ≤ 0.003). Overall image quality was significantly superior in DLR images compared with HIR images (both readers, p < 0.001). CONCLUSION Compared with HIR, DLR provided significantly better-quality high-resolution CT images of the temporal bone.
Collapse
Affiliation(s)
- Nana Fujita
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Sosuke Hatano
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Naoya Sakamoto
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
14
|
Lehnen NC, Schievelkamp AH, Gronemann C, Haase R, Krause I, Gansen M, Fleckenstein T, Dorn F, Radbruch A, Paech D. Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography. Neuroradiology 2024; 66:1153-1160. [PMID: 38619571 DOI: 10.1007/s00234-024-03351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels. METHODS One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured. RESULTS The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times. CONCLUSION In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.
Collapse
Affiliation(s)
- Nils C Lehnen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Arndt-Hendrik Schievelkamp
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Christian Gronemann
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Robert Haase
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Inga Krause
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Max Gansen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Tobias Fleckenstein
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniel Paech
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
15
|
Carvalho Macruz FBD, Dias ALMP, Andrade CS, Nucci MP, Rimkus CDM, Lucato LT, Rocha AJD, Kitamura FC. The new era of artificial intelligence in neuroradiology: current research and promising tools. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-12. [PMID: 38565188 PMCID: PMC10987255 DOI: 10.1055/s-0044-1779486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 04/04/2024]
Abstract
Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.
Collapse
Affiliation(s)
- Fabíola Bezerra de Carvalho Macruz
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Rede D'Or São Luiz, Departamento de Radiologia e Diagnóstico por Imagem, São Paulo SP, Brazil.
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
- Academia Nacional de Medicina, Rio de Janeiro RJ, Brazil.
| | | | | | - Mariana Penteado Nucci
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
| | - Carolina de Medeiros Rimkus
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Rede D'Or São Luiz, Departamento de Radiologia e Diagnóstico por Imagem, São Paulo SP, Brazil.
- Universidade de São Paulo, Laboratório de Investigação Médica em Ressonância Magnética (LIM 44), São Paulo SP, Brazil.
| | - Leandro Tavares Lucato
- Universidade de São Paulo, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Seção de Neurorradiologia, Faculdade de Medicina, São Paulo SP, Brazil.
- Diagnósticos da América SA, São Paulo SP, Brazil.
| | | | - Felipe Campos Kitamura
- Diagnósticos da América SA, São Paulo SP, Brazil.
- Universidade Federal de São Paulo, São Paulo SP, Brazil.
| |
Collapse
|
16
|
Qu J, Niu H, Li Y, Chen T, Peng F, Xia J, He X, Xu B, Chen X, Li R, Liu A, Zhang X, Li C. A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images. Eur Radiol 2024; 34:2838-2848. [PMID: 37843574 DOI: 10.1007/s00330-023-10295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES To design a deep learning-based framework for automatic segmentation and detection of intracranial aneurysms (IAs) on magnetic resonance T1 images and test the robustness and performance of framework. METHODS A retrospective diagnostic study was conducted based on 159 IAs from 136 patients who underwent the T1 images. Among them, 127 cases were randomly selected for training and validation, and 32 cases were used to assess the accuracy and consistency of our algorithm. We developed and assembled three convolutional neural networks for the segmentation and detection of IAs. The segmentation and detection performance of the model were compared with the ground truth, and various metrics were calculated at the voxel level, IAs level, and patient level to show the performance of our framework. RESULTS Our assembled model achieved overall Dice, voxel-level sensitivity, specificity, balanced accuracy, and F1 score of 0.802, 0.874, 0.9998, 0.937, and 0.802, respectively. A coincidence greater than 0.7 between the aneurysms predicted by the model and the ground truth was considered as a true positive. For IAs detection, the sensitivity reached 90.63% with 0.58 false positives per case. The volume of IAs segmented by our model showed a high agreement and consistency with the volume of IAs labeled by experts. CONCLUSION The deep learning framework is achievable and robust for IAs segmentation and detection. Our model offers more clinical application opportunities compared to digital subtraction angiography (DSA)-based, CTA-based, and MRA-based methods. CLINICAL RELEVANCE STATEMENT Our deep learning framework effectively detects and segments intracranial aneurysms using clinical routine T1 sequences, showing remarkable effectiveness and offering great potential for improving the detection of latent intracranial aneurysms and enabling early identification. KEY POINTS •There is no segmentation method based on clinical routine T1 images. Our study shows that the proper deep learning framework can effectively localize the intracranial aneurysms. •The T1-based segmentation and detection method is more universal than other angiography-based detection methods, which can potentially reduce missed diagnoses caused by the absence of angiography images. •The deep learning framework is robust and has the potential to be applied in a clinical setting.
Collapse
Affiliation(s)
- Junda Qu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutang Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiaxiang Xia
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxin He
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boya Xu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuge Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Wen Z, Wang Y, Zhong Y, Hu Y, Yang C, Peng Y, Zhan X, Zhou P, Zeng Z. Advances in research and application of artificial intelligence and radiomic predictive models based on intracranial aneurysm images. Front Neurol 2024; 15:1391382. [PMID: 38694771 PMCID: PMC11061371 DOI: 10.3389/fneur.2024.1391382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Intracranial aneurysm is a high-risk disease, with imaging playing a crucial role in their diagnosis and treatment. The rapid advancement of artificial intelligence in imaging technology holds promise for the development of AI-based radiomics predictive models. These models could potentially enable the automatic detection and diagnosis of intracranial aneurysms, assess their status, and predict outcomes, thereby assisting in the creation of personalized treatment plans. In addition, these techniques could improve diagnostic efficiency for physicians and patient prognoses. This article aims to review the progress of artificial intelligence radiomics in the study of intracranial aneurysms, addressing the challenges faced and future prospects, in hopes of introducing new ideas for the precise diagnosis and treatment of intracranial aneurysms.
Collapse
Affiliation(s)
- Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, China
| | - Yuxin Zhong
- School of Nursing, Guizhou Medical University, Guiyang, China
| | - Yiheng Hu
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Cheng Yang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yan Peng
- Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiang Zhan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhen Zeng
- Psychiatry Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Nishi H, Cancelliere NM, Rustici A, Charbonnier G, Chan V, Spears J, Marotta TR, Mendes Pereira V. Deep learning-based cerebral aneurysm segmentation and morphological analysis with three-dimensional rotational angiography. J Neurointerv Surg 2024; 16:197-203. [PMID: 37192786 DOI: 10.1136/jnis-2023-020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The morphological assessment of cerebral aneurysms based on cerebral angiography is an essential step when planning strategy and device selection in endovascular treatment, but manual evaluation by human raters only has moderate interrater/intrarater reliability. METHODS We collected data for 889 cerebral angiograms from consecutive patients with suspected cerebral aneurysms at our institution from January 2017 to October 2021. The automatic morphological analysis model was developed on the derivation cohort dataset consisting of 388 scans with 437 aneurysms, and the performance of the model was tested on the validation cohort dataset consisting of 96 scans with 124 aneurysms. Five clinically important parameters were automatically calculated by the model: aneurysm volume, maximum aneurysm size, neck size, aneurysm height, and aspect ratio. RESULTS On the validation cohort dataset the average aneurysm size was 7.9±4.6 mm. The proposed model displayed high segmentation accuracy with a mean Dice similarity index of 0.87 (median 0.93). All the morphological parameters were significantly correlated with the reference standard (all P<0.0001; Pearson correlation analysis). The difference in the maximum aneurysm size between the model prediction and reference standard was 0.5±0.7 mm (mean±SD). The difference in neck size between the model prediction and reference standard was 0.8±1.7 mm (mean±SD). CONCLUSION The automatic aneurysm analysis model based on angiography data exhibited high accuracy for evaluating the morphological characteristics of cerebral aneurysms.
Collapse
Affiliation(s)
- Hidehisa Nishi
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Nicole M Cancelliere
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Ariana Rustici
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Guillaume Charbonnier
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Vanessa Chan
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Julian Spears
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas R Marotta
- Department of Medical Imaging, St Michael's Hospital, Toronto, Ontario, Canada
| | - Vitor Mendes Pereira
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Yang H, Yuwen C, Cheng X, Fan H, Wang X, Ge Z. Deep Learning: A Primer for Neurosurgeons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:39-70. [PMID: 39523259 DOI: 10.1007/978-3-031-64892-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter explores the transformative impact of deep learning (DL) on neurosurgery, elucidating its pivotal role in enhancing diagnostic performance, surgical planning, execution, and postoperative assessment. It delves into various deep learning architectures, including convolutional and recurrent neural networks, and their applications in analyzing neuroimaging data for brain tumors, spinal cord injuries, and other neurological conditions. The integration of DL in neurosurgical robotics and the potential for fully autonomous surgical procedures are discussed, highlighting advancements in surgical precision and patient outcomes. The chapter also examines the challenges of data privacy, quality, and interpretability that accompany the implementation of DL in neurosurgery. The potential for DL to revolutionize neurosurgical practices through improved diagnostics, patient-specific surgical planning, and the advent of intelligent surgical robots is underscored, promising a future where technology and healthcare converge to offer unprecedented solutions in neurosurgery.
Collapse
Affiliation(s)
- Hongxi Yang
- Department of Data Science and Artificial Intelligence (DSAI), Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Chang Yuwen
- Monash Suzhou Research Institute, Monash University, Suzhou, China
| | - Xuelian Cheng
- Department of Data Science and Artificial Intelligence (DSAI), Faculty of Information Technology, Monash University, Clayton, VIC, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou, China
| | - Hengwei Fan
- Shukun (Beijing) Technology Co, Beijing, China
| | - Xin Wang
- Shukun (Beijing) Technology Co, Beijing, China
| | - Zongyuan Ge
- Department of Data Science and Artificial Intelligence (DSAI), Faculty of Information Technology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
20
|
Yasaka K, Sato C, Hirakawa H, Fujita N, Kurokawa M, Watanabe Y, Kubo T, Abe O. Impact of deep learning on radiologists and radiology residents in detecting breast cancer on CT: a cross-vendor test study. Clin Radiol 2024; 79:e41-e47. [PMID: 37872026 DOI: 10.1016/j.crad.2023.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
AIM To investigate the effect of deep learning on the diagnostic performance of radiologists and radiology residents in detecting breast cancers on computed tomography (CT). MATERIALS AND METHODS In this retrospective study, patients undergoing contrast-enhanced chest CT between January 2010 and December 2020 using equipment from two vendors were included. Patients with confirmed breast cancer were categorised as the training (n=201) and validation (n=26) group and the testing group (n=30) using processed CT images from either vendor. The trained deep-learning model was applied to test group patients with (30 females; mean age = 59.2 ± 15.8 years) and without (19 males, 21 females; mean age = 64 ± 15.9 years) breast cancer. Image-based diagnostic performance of the deep-learning model was evaluated with the area under the receiver operating characteristic curve (AUC). Two radiologists and three radiology residents were asked to detect malignant lesions by recording a four-point diagnostic confidence score before and after referring to the result from the deep-learning model, and their diagnostic performance was evaluated using jackknife alternative free-response receiver operating characteristic analysis by calculating the figure of merit (FOM). RESULTS The AUCs of the trained deep-learning model on the validation and test data were 0.976 and 0.967, respectively. After referencing with the result of the deep learning model, the FOMs of readers significantly improved (reader 1/2/3/4/5: from 0.933/0.962/0.883/0.944/0.867 to 0.958/0.968/0.917/0.947/0.900; p=0.038). CONCLUSION Deep learning can help radiologists and radiology residents detect breast cancer on CT.
Collapse
Affiliation(s)
- K Yasaka
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - C Sato
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - H Hirakawa
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - N Fujita
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - M Kurokawa
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Y Watanabe
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - T Kubo
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - O Abe
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
21
|
Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, Matsui Y, Nozaki T, Nakaura T, Fujima N, Tatsugami F, Yanagawa M, Hirata K, Yamada A, Tsuboyama T, Kawamura M, Fujioka T, Naganawa S. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol 2024; 42:3-15. [PMID: 37540463 PMCID: PMC10764412 DOI: 10.1007/s11604-023-01474-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.
Collapse
Affiliation(s)
- Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
| | | | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
22
|
Abdollahifard S, Farrokhi A, Kheshti F, Jalali M, Mowla A. Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis. Interv Neuroradiol 2023; 29:738-747. [PMID: 35549574 PMCID: PMC10680951 DOI: 10.1177/15910199221097475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. METHODS Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. RESULTS Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2-93/2%) and specificity of 94/6% (CI: 0/914-0/966). CTA was the most sensitive modality (92.0%(CI:85/2-95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians' sensitivity increased to 12/8% and interrater agreement to 0/193. CONCLUSION CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
Collapse
Affiliation(s)
- Saeed Abdollahifard
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirmohammad Farrokhi
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Kheshti
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Jalali
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Mowla
- Division of Stroke and Endovascular Neurosurgery, Department of Neurological Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
23
|
Wang J, Sun J, Xu J, Lu S, Wang H, Huang C, Zhang F, Yu Y, Gao X, Wang M, Wang Y, Ruan X, Pan Y. Detection of Intracranial Aneurysms Using Multiphase CT Angiography with a Deep Learning Model. Acad Radiol 2023; 30:2477-2486. [PMID: 36737273 DOI: 10.1016/j.acra.2022.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023]
Abstract
RATIONALE AND OBJECTIVES Determine the effect of a multiphase fusion deep-learning model with automatic phase selection in detection of intracranial aneurysm (IA) from computed tomography angiography (CTA) images. MATERIALS AND METHODS CTA images of intracranial arteries from patients at Ningbo First Hospital were retrospectively analyzed. Images were randomly classified as training data, internal validation data, or test data. CTA images from cases examined by digital subtraction angiography (DSA) were examined for independent validation. A deep-learning model was constructed by automatic phase selection of multiphase fusion, and compared to the single-phase algorithm to evaluate algorithm sensitivity. RESULTS We analyzed 1110 patients (1493 aneurysms) as training data, 139 patients (174 aneurysms) as internal validation data, and 134 patients (175 aneurysms) as test data. The sensitivity of the multiphase analysis of the internal validation data, test data, and independent validation data were greater than from the single-phase analysis. The recall of the multiphase selection was greater or equal to that of single-phase selection in the aneurysm position, shape, size, and rupture status. Use of the test data to determine the presence and absence of aneurysm rupture led to a recall from multiphase selection of 94.8% and 87.6% respectively; both of these values were greater than those from single-phase selection (89.6% and 79.4%). CONCLUSION A multiphase fusion deep learning model with automatic phase selection provided automated detection of IAs with high sensitivity.
Collapse
Affiliation(s)
- Jinglu Wang
- Department of Radiology, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Jingxu Xu
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, People's Republic of China
| | - Shiyu Lu
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, People's Republic of China
| | - Hao Wang
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, People's Republic of China
| | - Chencui Huang
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, People's Republic of China
| | - Fandong Zhang
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, People's Republic of China
| | - Yizhou Yu
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, People's Republic of China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Ming Wang
- Department of Radiology, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Yu Wang
- Department of Radiology, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Xinzhong Ruan
- Department of Radiology, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Yuning Pan
- Department of Radiology, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, People's Republic of China.
| |
Collapse
|
24
|
Atarashi R, Takahashi T, Hayashi N, Okawa R. [Echo Train Length (ETL) of Fluid-attenuated Inversion Recovery (FLAIR) and Extraction Volume of White Matter Hyperintensity Volume in Automated White Matter Signal Analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1158-1167. [PMID: 37612045 DOI: 10.6009/jjrt.2023-1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
PURPOSE To investigate whether the volume of white matter hyperintensity (WMH) extracted from FLAIR images changes when the imaging parameters of the original images are changed. METHODS Seven healthy volunteers were imaged by changing the imaging parameter ETL of FLAIR images, and WMHs were extracted and their volumes were calculated by the automatic extraction software. The results were statistically analyzed to examine the relationship (Experiment 1). Simulated images with different SNRs were created by adding white noise to four examples of healthy volunteer images. The SNR of the simulated images simulated the SNR of the measured images of different ETLs. The WMH was extracted from the simulated images and its volume was calculated using the automatic extraction software (Experiment 2). RESULTS Experiment 1 showed that there was no significant difference between FLAIR imaging parameters and WMH volume in automatic white matter signal analysis, except for some conditions. Experiment 2 showed that as the SNR of the original image decreased, the volume of high white matter signal extracted decreased. CONCLUSION In automatic white matter signal analysis, WMH was shown to be small when the ETL of the FLAIR sequence was larger than normal and/or the SNR of the image was low.
Collapse
Affiliation(s)
- Ryo Atarashi
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences
| | - Tetsuhiko Takahashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences
| | - Norio Hayashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences
| | - Ryuya Okawa
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences
- Department of Diagnostic Imaging, Mihara Memorial Hospital
| |
Collapse
|
25
|
Nader R, Bourcier R, Autrusseau F. Using deep learning for an automatic detection and classification of the vascular bifurcations along the Circle of Willis. Med Image Anal 2023; 89:102919. [PMID: 37619447 DOI: 10.1016/j.media.2023.102919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Most of the intracranial aneurysms (ICA) occur on a specific portion of the cerebral vascular tree named the Circle of Willis (CoW). More particularly, they mainly arise onto fifteen of the major arterial bifurcations constituting this circular structure. Hence, for an efficient and timely diagnosis it is critical to develop some methods being able to accurately recognize each Bifurcation of Interest (BoI). Indeed, an automatic extraction of the bifurcations presenting the higher risk of developing an ICA would offer the neuroradiologists a quick glance at the most alarming areas. Due to the recent efforts on Artificial Intelligence, Deep Learning turned out to be the best performing technology for many pattern recognition tasks. Moreover, various methods have been particularly designed for medical image analysis purposes. This study intends to assist the neuroradiologists to promptly locate any bifurcation presenting a high risk of ICA occurrence. It can be seen as a Computer Aided Diagnosis scheme, where the Artificial Intelligence facilitates the access to the regions of interest within the MRI. In this work, we propose a method for a fully automatic detection and recognition of the bifurcations of interest forming the Circle of Willis. Several neural networks architectures have been tested, and we thoroughly evaluate the bifurcation recognition rate.
Collapse
Affiliation(s)
- Rafic Nader
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Romain Bourcier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Florent Autrusseau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Nantes Université, Polytech'Nantes, LTeN, U-6607, Rue Ch. Pauc, 44306, Nantes, France.
| |
Collapse
|
26
|
Tajima T, Akai H, Yasaka K, Kunimatsu A, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Comparison of 1.5 T and 3 T magnetic resonance angiography for detecting cerebral aneurysms using deep learning-based computer-assisted detection software. Neuroradiology 2023; 65:1473-1482. [PMID: 37646791 DOI: 10.1007/s00234-023-03216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE To compare the diagnostic performance of 1.5 T versus 3 T magnetic resonance angiography (MRA) for detecting cerebral aneurysms with clinically available deep learning-based computer-assisted detection software (EIRL aneurysm® [EIRL_an]), which has been approved by the Japanese Pharmaceuticals and Medical Devices Agency. We also sought to analyze the causes of potential false positives. METHODS In this single-center, retrospective study, we evaluated the MRA scans of 90 patients who underwent head MRA (1.5 T and 3 T in 45 patients each) in clinical practice. Overall, 51 patients had 70 aneurysms. We used MRI from a vendor not included in the dataset used to create the EIRL_an algorithm. Two radiologists determined the ground truth, the accuracy of the candidates noted by EIRL_an, and the causes of false positives. The sensitivity, number of false positives per case (FPs/case), and the causes of false positives were compared between 1.5 T and 3 T MRA. Pearson's χ2 test, Fisher's exact test, and the Mann‒Whitney U test were used for the statistical analyses as appropriate. RESULTS The sensitivity was high for 1.5 T and 3 T MRA (0.875‒1), but the number of FPs/case was significantly higher with 3 T MRA (1.511 vs. 2.578, p < 0.001). The most common causes of false positives (descending order) were the origin/bifurcation of vessels/branches, flow-related artifacts, and atherosclerosis and were similar between 1.5 T and 3 T MRA. CONCLUSION EIRL_an detected significantly more false-positive lesions with 3 T than with 1.5 T MRA in this external validation study. Our data may help physicians with limited experience with MRA to correctly diagnose aneurysms using EIRL_an.
Collapse
Affiliation(s)
- Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-Ku, Tokyo, 108-8329, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Koichiro Yasaka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Akira Kunimatsu
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-Ku, Tokyo, 108-8329, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara, Tochigi, 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|
27
|
Kuwabara M, Ikawa F, Sakamoto S, Okazaki T, Ishii D, Hosogai M, Maeda Y, Chiku M, Kitamura N, Choppin A, Takamiya D, Shimahara Y, Nakayama T, Kurisu K, Horie N. Effectiveness of tuning an artificial intelligence algorithm for cerebral aneurysm diagnosis: a study of 10,000 consecutive cases. Sci Rep 2023; 13:16202. [PMID: 37758849 PMCID: PMC10533861 DOI: 10.1038/s41598-023-43418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
Diagnostic image analysis for unruptured cerebral aneurysms using artificial intelligence has a very high sensitivity. However, further improvement is needed because of a relatively high number of false positives. This study aimed to confirm the clinical utility of tuning an artificial intelligence algorithm for cerebral aneurysm diagnosis. We extracted 10,000 magnetic resonance imaging scans of participants who underwent brain screening using the "Brain Dock" system. The sensitivity and false positives/case for aneurysm detection were compared before and after tuning the algorithm. The initial diagnosis included only cases for which feedback to the algorithm was provided. In the primary analysis, the sensitivity of aneurysm diagnosis decreased from 96.5 to 90% and the false positives/case improved from 2.06 to 0.99 after tuning the algorithm (P < 0.001). In the secondary analysis, the sensitivity of aneurysm diagnosis decreased from 98.8 to 94.6% and the false positives/case improved from 1.99 to 1.03 after tuning the algorithm (P < 0.001). The false positives/case reduced without a significant decrease in sensitivity. Using large clinical datasets, we demonstrated that by tuning the algorithm, we could significantly reduce false positives with a minimal decline in sensitivity.
Collapse
Affiliation(s)
- Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Fusao Ikawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.
- Department of Neurosurgery, Shimane Prefectural Central Hospital, 4-1-1 Himebara, Izumo, Shimane, 693-8555, Japan.
| | - Shigeyuki Sakamoto
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Daizo Ishii
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Masahiro Hosogai
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Masaaki Chiku
- Department of Neurosurgery, Medical Check Studio, Tokyo Ginza Clinic, 1-2-4 Ginza, Chuo-ku, Tokyo, 104-0061, Japan
| | - Naoyuki Kitamura
- Department of Diagnostic Radiology, Kasumi Clinic, 1-2-27 Shinonomehommachi, Minami-ku, Hiroshima, Hiroshima, 734-0023, Japan
| | - Antoine Choppin
- LPIXEL Inc., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | | | - Yuki Shimahara
- LPIXEL Inc., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Takeo Nakayama
- Department of Health Informatics, School of Public Health, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan
| | - Kaoru Kurisu
- Chugoku Rosai Hospital, 1-5-1 Hirotagaya, Kure, Hiroshima, 737-0193, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
28
|
Gilotra K, Swarna S, Mani R, Basem J, Dashti R. Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease. Front Hum Neurosci 2023; 17:1254417. [PMID: 37746051 PMCID: PMC10516608 DOI: 10.3389/fnhum.2023.1254417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cerebrovascular diseases are known to cause significant morbidity and mortality to the general population. In patients with cerebrovascular disease, prompt clinical evaluation and radiographic interpretation are both essential in optimizing clinical management and in triaging patients for critical and potentially life-saving neurosurgical interventions. With recent advancements in the domains of artificial intelligence (AI) and machine learning (ML), many AI and ML algorithms have been developed to further optimize the diagnosis and subsequent management of cerebrovascular disease. Despite such advances, further studies are needed to substantively evaluate both the diagnostic accuracy and feasibility of these techniques for their application in clinical practice. This review aims to analyze the current use of AI and MI algorithms in the diagnosis of, and clinical decision making for cerebrovascular disease, and to discuss both the feasibility and future applications of utilizing such algorithms. Methods We review the use of AI and ML algorithms to assist clinicians in the diagnosis and management of ischemic stroke, hemorrhagic stroke, intracranial aneurysms, and arteriovenous malformations (AVMs). After identifying the most widely used algorithms, we provide a detailed analysis of the accuracy and effectiveness of these algorithms in practice. Results The incorporation of AI and ML algorithms for cerebrovascular patients has demonstrated improvements in time to detection of intracranial pathologies such as intracerebral hemorrhage (ICH) and infarcts. For ischemic and hemorrhagic strokes, commercial AI software platforms such as RapidAI and Viz.AI have bene implemented into routine clinical practice at many stroke centers to expedite the detection of infarcts and ICH, respectively. Such algorithms and neural networks have also been analyzed for use in prognostication for such cerebrovascular pathologies. These include predicting outcomes for ischemic stroke patients, hematoma expansion, risk of aneurysm rupture, bleeding of AVMs, and in predicting outcomes following interventions such as risk of occlusion for various endovascular devices. Preliminary analyses have yielded promising sensitivities when AI and ML are used in concert with imaging modalities and a multidisciplinary team of health care providers. Conclusion The implementation of AI and ML algorithms to supplement clinical practice has conferred a high degree of accuracy, efficiency, and expedited detection in the clinical and radiographic evaluation and management of ischemic and hemorrhagic strokes, AVMs, and aneurysms. Such algorithms have been explored for further purposes of prognostication for these conditions, with promising preliminary results. Further studies should evaluate the longitudinal implementation of such techniques into hospital networks and residency programs to supplement clinical practice, and the extent to which these techniques improve patient care and clinical outcomes in the long-term.
Collapse
Affiliation(s)
| | | | | | | | - Reza Dashti
- Dashti Lab, Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, United States
| |
Collapse
|
29
|
Ham S, Seo J, Yun J, Bae YJ, Kim T, Sunwoo L, Yoo S, Jung SC, Kim JW, Kim N. Automated detection of intracranial aneurysms using skeleton-based 3D patches, semantic segmentation, and auxiliary classification for overcoming data imbalance in brain TOF-MRA. Sci Rep 2023; 13:12018. [PMID: 37491504 PMCID: PMC10368697 DOI: 10.1038/s41598-023-38586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
Accurate and reliable detection of intracranial aneurysms is vital for subsequent treatment to prevent bleeding. However, the detection of intracranial aneurysms can be time-consuming and even challenging, and there is great variability among experts, especially in the case of small aneurysms. This study aimed to detect intracranial aneurysms accurately using a convolutional neural network (CNN) with 3D time-of-flight magnetic resonance angiography (TOF-MRA). A total of 154 3D TOF-MRA datasets with intracranial aneurysms were acquired, and the gold standards were manually drawn by neuroradiologists. We also obtained 113 subjects from a public dataset for external validation. These angiograms were pre-processed by using skull-stripping, signal intensity normalization, and N4 bias correction. The 3D patches along the vessel skeleton from MRA were extracted. Values of the ratio between the aneurysmal and the normal patches ranged from 1:1 to 1:5. The semantic segmentation on intracranial aneurysms was trained using a 3D U-Net with an auxiliary classifier to overcome the imbalance in patches. The proposed method achieved an accuracy of 0.910 in internal validation and external validation accuracy of 0.883 with a 2:1 ratio of normal to aneurysmal patches. This multi-task learning method showed that the aneurysm segmentation performance was sufficient to be helpful in an actual clinical setting.
Collapse
Affiliation(s)
- Sungwon Ham
- Healthcare Readiness Institute for Unified Korea, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan City, Gyeonggi-do, 15355, Republic of Korea
| | - Jiyeon Seo
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jihye Yun
- Department of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Tackeun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sooyoung Yoo
- Healthcare ICT Research Center, Office of eHealth Research and Businesses, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung Chai Jung
- Department of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Jeong-Whun Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Namkug Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
- Department of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Luo X, Wang J, Liang X, Yan L, Chen X, He J, Luo J, Zhao B, He G, Wang M, Zhu Y. Prediction of cerebral aneurysm rupture using a point cloud neural network. J Neurointerv Surg 2023; 15:380-386. [PMID: 35396332 DOI: 10.1136/neurintsurg-2022-018655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Accurate prediction of cerebral aneurysm (CA) rupture is of great significance. We intended to evaluate the accuracy of the point cloud neural network (PC-NN) in predicting CA rupture using MR angiography (MRA) and CT angiography (CTA) data. METHODS 418 CAs in 411 consecutive patients confirmed by CTA (n=180) or MRA (n=238) in a single hospital were retrospectively analyzed. A PC-NN aneurysm model with/without parent artery involvement was used for CA rupture prediction and compared with ridge regression, support vector machine (SVM) and neural network (NN) models based on radiomics features. Furthermore, the performance of the trained PC-NN and radiomics-based models was prospectively evaluated in 258 CAs of 254 patients from five external centers. RESULTS In the internal test data, the area under the curve (AUC) of the PC-NN model trained with parent artery (AUC=0.913) was significantly higher than that of the PC-NN model trained without parent artery (AUC=0.851; p=0.041) and of the ridge regression (AUC=0.803; p=0.019), SVM (AUC=0.788; p=0.013) and NN (AUC=0.805; p=0.023) radiomics-based models. Additionally, the PC-NN model trained with MRA source data achieved a higher prediction accuracy (AUC=0.936) than that trained with CTA source data (AUC=0.824; p=0.043). In external data of prospective cohort patients, the AUC of PC-NN was 0.835, significantly higher than ridge regression (0.692; p<0.001), SVM (0.701; p<0.001) and NN (0.681; p<0.001) models. CONCLUSION PC-NNs can achieve more accurate CA rupture prediction than traditional radiomics-based models. Furthermore, the performance of the PC-NN model trained with MRA data was superior to that trained with CTA data.
Collapse
Affiliation(s)
- Xiaoyuan Luo
- Digital Medical Research Center and also with the Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, Shanghai, China
| | - Jienan Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinmei Liang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lei Yan
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - XinHua Chen
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Luo
- Department of Neurosurgery, Anhui Medical University Affiliated First Hospital, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangchen He
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Manning Wang
- Digital Medical Research Center and also with the Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, Shanghai, China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
31
|
Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. J Neurointerv Surg 2023; 15:262-271. [PMID: 36375834 PMCID: PMC9985742 DOI: 10.1136/jnis-2022-019456] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage from cerebral aneurysm rupture is a major cause of morbidity and mortality. Early aneurysm identification, aided by automated systems, may improve patient outcomes. Therefore, a systematic review and meta-analysis of the diagnostic accuracy of artificial intelligence (AI) algorithms in detecting cerebral aneurysms using CT, MRI or DSA was performed. METHODS MEDLINE, Embase, Cochrane Library and Web of Science were searched until August 2021. Eligibility criteria included studies using fully automated algorithms to detect cerebral aneurysms using MRI, CT or DSA. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-DTA), articles were assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis included a bivariate random-effect model to determine pooled sensitivity, specificity, and area under the receiver operator characteristic curve (ROC-AUC). PROSPERO CRD42021278454. RESULTS 43 studies were included, and 41/43 (95%) were retrospective. 34/43 (79%) used AI as a standalone tool, while 9/43 (21%) used AI assisting a reader. 23/43 (53%) used deep learning. Most studies had high bias risk and applicability concerns, limiting conclusions. Six studies in the standalone AI meta-analysis gave (pooled) 91.2% (95% CI 82.2% to 95.8%) sensitivity; 16.5% (95% CI 9.4% to 27.1%) false-positive rate (1-specificity); 0.936 ROC-AUC. Five reader-assistive AI studies gave (pooled) 90.3% (95% CI 88.0% - 92.2%) sensitivity; 7.9% (95% CI 3.5% to 16.8%) false-positive rate; 0.910 ROC-AUC. CONCLUSION AI has the potential to support clinicians in detecting cerebral aneurysms. Interpretation is limited due to high risk of bias and poor generalizability. Multicenter, prospective studies are required to assess AI in clinical practice.
Collapse
Affiliation(s)
- Munaib Din
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Siddharth Agarwal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mariusz Grzeda
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - David A Wood
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Karako K, Song P, Chen Y. Recent deep learning models for dementia as point-of-care testing: Potential for early detection. Intractable Rare Dis Res 2023; 12:1-4. [PMID: 36873669 PMCID: PMC9976095 DOI: 10.5582/irdr.2023.01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Deep learning has been intensively researched over the last decade, yielding several new models for natural language processing, images, speech and time series processing that have dramatically improved performance. This wave of technological developments in deep learning is also spreading to medicine. The effective use of deep learning in medicine is concentrated in diagnostic imaging-related applications, but deep learning has the potential to lead to early detection and prevention of diseases. Physical aspects of disease that went unnoticed can now be used in diagnosis with deep learning. In particular, deep learning models for the early detection of dementia have been proposed to predict cognitive function based on various information such as blood test results, speech, and the appearance of the face, where the effects of dementia can be seen. Deep learning is a useful diagnostic tool, as it has the potential to detect diseases early based on trivial aspects before clear signs of disease appear. The ability to easily make a simple diagnosis based on information such as blood test results, voice, pictures of the body, and lifestyle is a method suited to point-of-cate testing, which requires immediate testing at the desired time and place. Over the past few years, the process of predicting disease can now be visualized using deep learning, providing insights into new methods of diagnosis.
Collapse
Affiliation(s)
- Kenji Karako
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
- National College of Nursing, Japan
- Address correspondence to:Peipei Song, Center for Clinical Sciences, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan. E-mail:
| | - Yu Chen
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Address correspondence to:Peipei Song, Center for Clinical Sciences, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan. E-mail:
| |
Collapse
|
33
|
Chen G, Yifang B, Jiajun Z, Dongdong W, Zhiyong Z, Ruoyu D, Bin D, Sirong P, Daoying G, Meng C, Yakang D, Yuxin L. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research. Eur Radiol 2023; 33:3532-3543. [PMID: 36725720 DOI: 10.1007/s00330-022-09385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Time of flight magnetic resonance angiography (TOF-MRA) is the primary non-invasive screening method for cerebral aneurysms. We aimed to develop a computer-aided aneurysm detection method to improve the diagnostic efficiency and accuracy, especially decrease the false positive rate. METHODS This is a retrospective multicenter study. The dataset contained 1160 TOF-MRA examinations composed of unruptured aneurysms (n = 1096) and normal controls (n = 166) from six hospitals. A total of 1037 examinations acquired from 2013 to 2019 were used as training set; 123 examinations acquired from 2020 to 2021 were used as external test set. We proposed an equalized augmentation strategy based on aneurysm location and constructed a detection model based on dual channel SE-3D UNet. The model was trained with a 5-fold cross-validation in the training set, then tested on the external test set. RESULTS The proposed method achieved 82.46% sensitivity on patient-level, 73.85% sensitivity on lesion-level, and 0.88 false positives per case in the external test set. The performance did not show significant differences in subgroups according to the aneurysm site (except ACA), aneurysm size (except smaller than 3 mm), or MRI scanners. The performance preceded the basic SE-3D UNet by increasing 15.79% patient-level sensitivity and decreasing 4.19 FPs/case. CONCLUSIONS The proposed automated aneurysm detection method achieved acceptable sensitivity while controlling fairly low false positives per case. It might provide a useful auxiliary tool of cerebral aneurysms MRA screening. KEY POINTS • The need for automated cerebral aneurysms detecting is growing. • The strategy of equalized augmentation based on aneurysm location and dual-channel input could improve the model performance. • The retrospective multi-center study showed that the proposed automated cerebral aneurysms detection using dual-channel SE-3D UNet could achieve acceptable sensitivity while controlling a low false positive rate.
Collapse
Affiliation(s)
- Geng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Jinan Guoke Medical Technology Development Co. Ltd., Jinan, China
| | - Bao Yifang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Zhang Jiajun
- School of Electronic & Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Wang Dongdong
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Zhou Zhiyong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Di Ruoyu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dai Bin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Piao Sirong
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Geng Daoying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Chen Meng
- School of Biomedical Engineering, Xuzhou Medical University, Xuzhou, China
| | - Dai Yakang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- Jinan Guoke Medical Technology Development Co. Ltd., Jinan, China.
| | - Li Yuxin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN's final layer for distinguishing between aneurysm and infundibular dilatation. Jpn J Radiol 2023; 41:131-141. [PMID: 36173510 PMCID: PMC9889446 DOI: 10.1007/s11604-022-01341-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE We evaluated the diagnostic performance of a clinically available deep learning-based computer-assisted diagnosis software for detecting unruptured aneurysms (UANs) using magnetic resonance angiography and assessed the functionality of the convolutional neural network (CNN) final layer score for distinguishing between UAN and infundibular dilatation (ID). MATERIALS AND METHODS EIRL brain aneurysm (EIRL_BA) was used in this study. The subjects were 117 UAN and/or ID cases including 100 UAN lesions (average sizes of 2.56 ± 1.45 mm) and 40 ID lesions (average sizes of 1.75 ± 0.41 mm) in any of internal carotid artery, middle cerebral artery, and anterior communicating artery, and 123 normal controls. The sensitivity, specificity, and accuracy of EIRL_BA were determined for UAN and ID or UAN only. Furthermore, the relationship between the lesion category and score was examined using a linear regression analysis model, and the receiver operating characteristic (ROC) analysis was used to assess whether the scores represent UAN-like characteristics. RESULTS EIRL_BA showed a total of 203 candidates (an average of 1.73/case) in UAN and/or ID cases and 98 candidates (an average of 0.80/case) in normal controls. For diagnosing either UAN/ID, EIRL_BA showed an overall sensitivity of 80%, specificity of 84.2%, and accuracy of 83.7%, resulting in the positive likelihood ratio of 5.0. For diagnosing UAN only, the overall sensitivity of 89.0, specificity of 82.6%, and accuracy of 83.2% resulting in the positive likelihood ratio of 5.1. In a linear regression analysis, the scores significantly increased in the candidates' first and second ranks in UAN (p < 0.05) but not in ID. An ROC analysis using the score for diagnosing UAN showed an area under the curve of 0.836. CONCLUSION EIRL_BA is applicable for detecting small UAN, and the CNN's final layer scores may be an effective index for discriminating UAN and ID and representing the likelihood of UAN.
Collapse
|
35
|
Towards Automated Brain Aneurysm Detection in TOF-MRA: Open Data, Weak Labels, and Anatomical Knowledge. Neuroinformatics 2023; 21:21-34. [PMID: 35982364 PMCID: PMC9931814 DOI: 10.1007/s12021-022-09597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Brain aneurysm detection in Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) has undergone drastic improvements with the advent of Deep Learning (DL). However, performances of supervised DL models heavily rely on the quantity of labeled samples, which are extremely costly to obtain. Here, we present a DL model for aneurysm detection that overcomes the issue with "weak" labels: oversized annotations which are considerably faster to create. Our weak labels resulted to be four times faster to generate than their voxel-wise counterparts. In addition, our model leverages prior anatomical knowledge by focusing only on plausible locations for aneurysm occurrence. We first train and evaluate our model through cross-validation on an in-house TOF-MRA dataset comprising 284 subjects (170 females / 127 healthy controls / 157 patients with 198 aneurysms). On this dataset, our best model achieved a sensitivity of 83%, with False Positive (FP) rate of 0.8 per patient. To assess model generalizability, we then participated in a challenge for aneurysm detection with TOF-MRA data (93 patients, 20 controls, 125 aneurysms). On the public challenge, sensitivity was 68% (FP rate = 2.5), ranking 4th/18 on the open leaderboard. We found no significant difference in sensitivity between aneurysm risk-of-rupture groups (p = 0.75), locations (p = 0.72), or sizes (p = 0.15). Data, code and model weights are released under permissive licenses. We demonstrate that weak labels and anatomical knowledge can alleviate the necessity for prohibitively expensive voxel-wise annotations.
Collapse
|
36
|
Qiu J, Tan G, Lin Y, Guan J, Dai Z, Wang F, Zhuang C, Wilman AH, Huang H, Cao Z, Tang Y, Jia Y, Li Y, Zhou T, Wu R. Automated detection of intracranial artery stenosis and occlusion in magnetic resonance angiography: A preliminary study based on deep learning. Magn Reson Imaging 2022; 94:105-111. [PMID: 36174873 DOI: 10.1016/j.mri.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Intracranial atherosclerotic stenosis of a major intracranial artery is the common cause of ischemic stroke. We evaluate the feasibility of using deep learning to automatically detect intracranial arterial steno-occlusive lesions from time-of-flight magnetic resonance angiography. METHODS In a retrospective study, magnetic resonance images with radiological reports of intracranial arterial stenosis and occlusion were extracted. The images were randomly divided into a training set and a test set. The manual annotation of lesions with a bounding box labeled "moderate stenosis," "severe stenosis," "occlusion," and "absence of signal" was considered as ground truth. A deep learning algorithm based on you only look once version 5 (YOLOv5) detection model was developed with the training set, and its sensitivity and positive predictive values to detect lesions were evaluated in the test set. RESULTS A dataset of 200 examinations consisted of a total of 411 lesions-242 moderate stenoses, 84 severe stenoses, 70 occlusions, and 15 absence of signal. The magnetic resonance images contained 291 lesions in the training set and 120 lesions in the test set. The sensitivity and positive predictive values were 64.2 and 83.7%, respectively. The detection sensitivity in relation to the location was greatest in the internal carotid artery (86.2%). CONCLUSIONS Applying deep learning algorithms in the automated detection of intracranial arterial steno-occlusive lesions from time-of-flight magnetic resonance angiography is feasible and has great potential.
Collapse
Affiliation(s)
- Jinming Qiu
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Radiology, the Sixth Affiliated Hospital, South China University of Technology, Foshan 528000, Guangdong, PR China
| | - Guanru Tan
- Department of Computer Science, Shantou University, Shantou 515041, Guangdong, PR China
| | - Yan Lin
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jitian Guan
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Zhuozhi Dai
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Fei Wang
- Department of Computer Science, Shantou University, Shantou 515041, Guangdong, PR China
| | - Caiyu Zhuang
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Huaidong Huang
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Zhen Cao
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yanyan Tang
- Department of Medical Imaging, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong, PR China
| | - Yanlong Jia
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yan Li
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515800, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| |
Collapse
|
37
|
Lehnen NC, Haase R, Schmeel FC, Vatter H, Dorn F, Radbruch A, Paech D. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study. AJNR Am J Neuroradiol 2022; 43:1700-1705. [PMID: 36357154 DOI: 10.3174/ajnr.a7695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral aneurysms yield the risk of rupture, severe disability and death. Thus, early detection of cerebral aneurysms is crucial to ensure timely treatment, if necessary. AI-based software tools are expected to enhance radiologists' performance in detecting pathologies like cerebral aneurysms in the future. Our aim was to evaluate the diagnostic performance of an artificial intelligence-based software designed to detect intracranial aneurysms on TOF-MRA. MATERIALS AND METHODS One hundred ninety-one MR imaging data sets were analyzed using the software mdbrain for the presence of intracranial aneurysms on TOF-MRA obtained using two 3T MR imaging scanners or a 1.5T MR imaging scanner according to our clinical standard protocol. The results were compared with the reading of an experienced radiologist as a criterion standard to measure the sensitivity, specificity, positive and negative predictive values, and accuracy of the software. Additionally, detection rates depending on size, morphology, and location of the aneurysms were evaluated. RESULTS Fifty-four aneurysms were detected by the expert reader. The overall sensitivity of the software for the detection of cerebral aneurysms was 72.6%, the specificity was 87.2%, and the accuracy was 82.6%. The positive predictive value was 67.9%, and the negative predictive value was 88.5%. We observed a sensitivity of 100% for saccular aneurysms of >5 mm without signs of thrombosis and low detection rates for fusiform or thrombosed aneurysms of 33.3% and 16.7%, respectively. Of 8 aneurysms that were not included in the initial written reports but were detected by the expert reader, retrospectively, 4 were detected by the software. CONCLUSIONS Our data suggest that the software can assist radiologists in reporting TOF-MRA. The software was highly reliable in detecting saccular aneurysms, while for fusiform or thrombosed aneurysms, further improvements are needed. Further studies are necessary to investigate the impact of the software on detection rates, interrater reliability, and reading times.
Collapse
Affiliation(s)
- N C Lehnen
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - R Haase
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - F C Schmeel
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - H Vatter
- Neurosurgery (H.V.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - F Dorn
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - A Radbruch
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - D Paech
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| |
Collapse
|
38
|
Wu K, Gu D, Qi P, Cao X, Wu D, Chen L, Qu G, Wang J, Pan X, Wang X, Chen Y, Chen L, Xue Z, Lyu J. Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks. Comput Med Imaging Graph 2022; 102:102126. [PMID: 36242993 DOI: 10.1016/j.compmedimag.2022.102126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.
Collapse
Affiliation(s)
- Ke Wu
- Department of Radiology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Dongdong Gu
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Peihong Qi
- Zhengzhou People's Hospital, Zhengzhou, China
| | - Xiaohuan Cao
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Dijia Wu
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Lei Chen
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Guoxiang Qu
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Jiayu Wang
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Xianpan Pan
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Xuechun Wang
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China
| | - Yuntian Chen
- West China Hospital of Sichuan University, Chengdu, China
| | - Lizhou Chen
- West China Hospital of Sichuan University, Chengdu, China
| | - Zhong Xue
- Shanghai United Imaging Intelligence Co. Ltd, Shanghai, China.
| | - Jinhao Lyu
- Department of Radiology, The First Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
39
|
Ou C, Qian Y, Chong W, Hou X, Zhang M, Zhang X, Si W, Duan CZ. A deep learning-based automatic system for intracranial aneurysms diagnosis on three-dimensional digital subtraction angiographic images. Med Phys 2022; 49:7038-7053. [PMID: 35792717 DOI: 10.1002/mp.15846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Intracranial aneurysms (IAs) are a life-threatening disease. Their rupture can lead to hemorrhagic stroke. Most studies applying deep learning for the detection of aneurysms are based on angiographic images. However, critical diagnostic information such as morphology and aneurysm location are not captured by deep learning algorithms and still require manual assessments. PURPOSE Digital subtraction angiography (DSA) is the gold standard for aneurysm diagnosis. To facilitate the fully automatic diagnosis of aneurysms, we proposed a comprehensive system for the detection, morphology measurement, and location classification of aneurysms on three-dimensional DSA images, allowing automatic diagnosis without further human input. METHODS The system comprised three neural networks: a network for aneurysm detection, a network for morphology measurement, and a network for aneurysm location identification. A cross-scale dual-path transformer module was proposed to effectively fuse local and global information to capture aneurysms of varying sizes. A multitask learning approach was also proposed to allow an accurate localization of aneurysm neck for morphology measurement. RESULTS The cross-scale dual-path transformer module was shown to outperform other state-of-the-art network architectures, improving segmentation, and classification accuracy. The detection network in our system achieved an F2 score of 0.946 (recall 93%, precision 100%), better than the winning team in the Cerebral Aneurysm Detection and Analysis challenge. The measurement network achieved a relative error of less than 10% for morphology measurement, at the same level as human operators. Perfect accuracy (100%) was achieved on aneurysm location classification. CONCLUSIONS We have demonstrated that a comprehensive system can automatically detect, measure morphology and report the aneurysm location of aneurysms without human intervention. This can be a potential tool for the diagnosis of IAs, improving radiologists' performance and reducing their workload.
Collapse
Affiliation(s)
- Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yi Qian
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Xiaoxi Hou
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Mingzi Zhang
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weixin Si
- Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuan-Zhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Ghannam MM, Davies JM. Application of Big Data in Vascular Neurosurgery. Neurosurg Clin N Am 2022; 33:469-482. [DOI: 10.1016/j.nec.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Huang C, Wang J, Wang SH, Zhang YD. Applicable artificial intelligence for brain disease: A survey. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Wang J, Ti L, Sun X, Yang R, Zhang N, Sun K. DSA Image Analysis of Clinical Features and Nursing Care of Cerebral Aneurysm Patients Based on the Deep Learning Algorithm. SCANNING 2022; 2022:8485651. [PMID: 36034470 PMCID: PMC9392628 DOI: 10.1155/2022/8485651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE A deep learning algorithm was developed for automatic detection and localization of intracranial aneurysms in DSA, and its clinical characteristics were analyzed, and targeted nursing measures were formulated. METHODS Using a retrospective multicenter study method based on radiology reports, DSA images of aneurysms were randomly divided into 75 cases in the training set, 20 cases in the internal test set, and 35 cases in the external test set. Using a computer-aided detection method based on the three-dimensional U-Net (3D U-Net), after preprocessing DSA images, automatic segmentation of intracranial blood vessels is performed to obtain regions of interest, and based on the segmentation results, physicians' annotations are introduced. The 3D U-Net network model is trained and adjusted, and the obtained model is used to automatically detect the cerebral aneurysm area. RESULTS Fivefold cross-validation was used for the training set and the internal test set, and a sensitivity of (94.4 ± 1.1)% was obtained. Automatic detection of aneurysms was performed on the external test set, and the average false positive rate was 0.86 FPs/case (false positives/case). The resulting sensitivity was 82.9%. The classification comparison of external test sets showed that the sensitivity of the method for detecting aneurysms with sizes of 5.00~<10.00 mm and ≥10.00 mm (88.2% and 100.0%) was higher than that for aneurysms with sizes of <3.00 mm and 3.00~<5.00 mm (50.0% and 72.7%). The sensitivity of patients aged 50-60 years and >60 years (90.0% and 87.5%) was higher than that of patients aged <50 years (66.7%), and there was little difference between different genders (84.6% in males and 81.8% in females). CONCLUSION The deep learning algorithm has high diagnostic performance in detecting intracranial aneurysms, which is verified by external datasets.
Collapse
Affiliation(s)
- Jian Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Lin Ti
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xiaorui Sun
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Ruping Yang
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Nafei Zhang
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Kejuan Sun
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| |
Collapse
|
43
|
Chen X, Lei Y, Su J, Yang H, Ni W, Yu J, Gu Y, Mao Y. A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges. Curr Neuropharmacol 2022; 20:1359-1382. [PMID: 34749621 PMCID: PMC9881077 DOI: 10.2174/1570159x19666211108141446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A variety of emerging medical imaging technologies based on artificial intelligence have been widely applied in many diseases, but they are still limitedly used in the cerebrovascular field even though the diseases can lead to catastrophic consequences. OBJECTIVE This work aims to discuss the current challenges and future directions of artificial intelligence technology in cerebrovascular diseases through reviewing the existing literature related to applications in terms of computer-aided detection, prediction and treatment of cerebrovascular diseases. METHODS Based on artificial intelligence applications in four representative cerebrovascular diseases including intracranial aneurysm, arteriovenous malformation, arteriosclerosis and moyamoya disease, this paper systematically reviews studies published between 2006 and 2021 in five databases: National Center for Biotechnology Information, Elsevier Science Direct, IEEE Xplore Digital Library, Web of Science and Springer Link. And three refinement steps were further conducted after identifying relevant literature from these databases. RESULTS For the popular research topic, most of the included publications involved computer-aided detection and prediction of aneurysms, while studies about arteriovenous malformation, arteriosclerosis and moyamoya disease showed an upward trend in recent years. Both conventional machine learning and deep learning algorithms were utilized in these publications, but machine learning techniques accounted for a larger proportion. CONCLUSION Algorithms related to artificial intelligence, especially deep learning, are promising tools for medical imaging analysis and will enhance the performance of computer-aided detection, prediction and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Xi Chen
- School of Information Science and Technology, Fudan University, Shanghai, China; ,These authors contributed equally to this work
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China,These authors contributed equally to this work
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China; ,Address correspondence to these authors at the School of Information Science and Technology, Fudan University, Shanghai 200433, China; Tel: +86 021 65643202; Fax: +86 021 65643202; E-mail: Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China; Tel: +86 021 52889999; Fax: +86 021 62489191; E-mail:
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China,Address correspondence to these authors at the School of Information Science and Technology, Fudan University, Shanghai 200433, China; Tel: +86 021 65643202; Fax: +86 021 65643202; E-mail: Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China; Tel: +86 021 52889999; Fax: +86 021 62489191; E-mail:
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Gu F, Wu X, Wu W, Wang Z, Yang X, Chen Z, Wang Z, Chen G. Performance of deep learning in the detection of intracranial aneurysm: a systematic review and meta-analysis. Eur J Radiol 2022; 155:110457. [DOI: 10.1016/j.ejrad.2022.110457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
|
45
|
Chen G, Meng C, Ruoyu D, Dongdong W, Liqin Y, Wei X, Yuxin L, Daoying G. An Automatic Detection Method Of Cerebral Aneurysms In Time-Of-Flight Magnetic Resonance Angiography Images Based On Attention 3D U-Net. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:106998. [PMID: 35939977 DOI: 10.1016/j.cmpb.2022.106998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/23/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
|
46
|
Nabaei M. Cerebral aneurysm evolution modeling from microstructural computational models to machine learning: A review. Comput Biol Chem 2022; 98:107676. [DOI: 10.1016/j.compbiolchem.2022.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/13/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
|
47
|
Ivantsits M, Goubergrits L, Kuhnigk JM, Huellebrand M, Bruening J, Kossen T, Pfahringer B, Schaller J, Spuler A, Kuehne T, Jia Y, Li X, Shit S, Menze B, Su Z, Ma J, Nie Z, Jain K, Liu Y, Lin Y, Hennemuth A. Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge. Med Image Anal 2022; 77:102333. [PMID: 34998111 DOI: 10.1016/j.media.2021.102333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
The Cerebral Aneurysm Detection and Analysis (CADA) challenge was organized to support the development and benchmarking of algorithms for detecting, analyzing, and risk assessment of cerebral aneurysms in X-ray rotational angiography (3DRA) images. 109 anonymized 3DRA datasets were provided for training, and 22 additional datasets were used to test the algorithmic solutions. Cerebral aneurysm detection was assessed using the F2 score based on recall and precision, and the fit of the delivered bounding box was assessed using the distance to the aneurysm. The segmentation quality was measured using the Jaccard index and a combination of different surface distance measures. Systematic errors were analyzed using volume correlation and bias. Rupture risk assessment was evaluated using the F2 score. 158 participants from 22 countries registered for the CADA challenge. The U-Net-based detection solutions presented by the community show similar accuracy compared to experts (F2 score 0.92), with a small number of missed aneurysms with diameters smaller than 3.5 mm. In addition, the delineation of these structures, based on U-Net variations, is excellent, with a Jaccard score of 0.92. The rupture risk estimation methods achieved an F2 score of 0.71. The performance of the detection and segmentation solutions is equivalent to that of human experts. The best results are obtained in rupture risk estimation by combining different image-based, morphological, and computational fluid dynamic parameters using machine learning methods. Furthermore, we evaluated the best methods pipeline, from detecting and delineating the vessel dilations to estimating the risk of rupture. The chain of these methods achieves an F2-score of 0.70, which is comparable to applying the risk prediction to the ground-truth delineation (0.71).
Collapse
Affiliation(s)
- Matthias Ivantsits
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany.
| | - Leonid Goubergrits
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Einstein Center Digital Future, Wilhelmstrae 67, Berlin 10117, Germany
| | | | - Markus Huellebrand
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Fraunhofer MEVIS, Am Fallturm 1, Bremen 28359, Germany
| | - Jan Bruening
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Tabea Kossen
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Boris Pfahringer
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Jens Schaller
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Andreas Spuler
- Helios Hospital Berlin-Buch, Schwanebecker Chaussee 50, Berlin 13125, Germany
| | - Titus Kuehne
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; German Heart Centre Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Yizhuan Jia
- Mediclouds Medical Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Suprosanna Shit
- Departments of Informatics, Technical University Munich, Germany; TranslaTUM Center for Translational Cancer Research, Munich, Germany
| | - Bjoern Menze
- Departments of Informatics, Technical University Munich, Germany; TranslaTUM Center for Translational Cancer Research, Munich, Germany; Department of Quantitative Biomedicine of UZH, Zurich, Switzerland
| | - Ziyu Su
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Jun Ma
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
| | - Ziwei Nie
- Department of Mathematics, Nanjing University, Nanjing, China
| | - Kartik Jain
- Faculty of Engineering Technology, University of Twente, P.O. Box 217, Enschede 7500, AE, the Netherlands
| | - Yanfei Liu
- Jarvis Lab, Tencent, Shenzhen, China; Shenzhen United Imaging Research Institute of Innovative Medical Equipment Innovation Research, Shenzhen, China
| | - Yi Lin
- Jarvis Lab, Tencent, Shenzhen, China
| | - Anja Hennemuth
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Fraunhofer MEVIS, Am Fallturm 1, Bremen 28359, Germany; German Heart Centre Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
48
|
Bravo J, Wali AR, Hirshman BR, Gopesh T, Steinberg JA, Yan B, Pannell JS, Norbash A, Friend J, Khalessi AA, Santiago-Dieppa D. Robotics and Artificial Intelligence in Endovascular Neurosurgery. Cureus 2022; 14:e23662. [PMID: 35371874 PMCID: PMC8971092 DOI: 10.7759/cureus.23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/05/2022] Open
Abstract
The use of artificial intelligence (AI) and robotics in endovascular neurosurgery promises to transform neurovascular care. We present a review of the recently published neurosurgical literature on artificial intelligence and robotics in endovascular neurosurgery to provide insights into the current advances and applications of this technology. The PubMed database was searched for "neurosurgery" OR "endovascular" OR "interventional" AND "robotics" OR "artificial intelligence" between January 2016 and August 2021. A total of 1296 articles were identified, and after applying the inclusion and exclusion criteria, 38 manuscripts were selected for review and analysis. These manuscripts were divided into four categories: 1) robotics and AI for the diagnosis of cerebrovascular pathology, 2) robotics and AI for the treatment of cerebrovascular pathology, 3) robotics and AI for training in neuroendovascular procedures, and 4) robotics and AI for clinical outcome optimization. The 38 articles presented include 23 articles on AI-based diagnosis of cerebrovascular disease, 10 articles on AI-based treatment of cerebrovascular disease, two articles on AI-based training techniques for neuroendovascular procedures, and three articles reporting AI prediction models of clinical outcomes in vascular disorders of the brain. Innovation with robotics and AI focus on diagnostic efficiency, optimizing treatment and interventional procedures, improving physician procedural performance, and predicting clinical outcomes with the use of artificial intelligence and robotics. Experimental studies with robotic systems have demonstrated safety and efficacy in treating cerebrovascular disorders, and novel microcatheterization techniques may permit access to deeper brain regions. Other studies show that pre-procedural simulations increase overall physician performance. Artificial intelligence also shows superiority over existing statistical tools in predicting clinical outcomes. The recent advances and current usage of robotics and AI in the endovascular neurosurgery field suggest that the collaboration between physicians and machines has a bright future for the improvement of patient care. The aim of this work is to equip the medical readership, in particular the neurosurgical specialty, with tools to better understand and apply findings from research on artificial intelligence and robotics in endovascular neurosurgery.
Collapse
|
49
|
A multi-stage ensemble network system to diagnose adolescent idiopathic scoliosis. Eur Radiol 2022; 32:5880-5889. [DOI: 10.1007/s00330-022-08692-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 01/22/2023]
|
50
|
Alwalid O, Long X, Xie M, Han P. Artificial Intelligence Applications in Intracranial Aneurysm: Achievements, Challenges and Opportunities. Acad Radiol 2022; 29 Suppl 3:S201-S214. [PMID: 34376335 DOI: 10.1016/j.acra.2021.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023]
Abstract
Intracranial aneurysms present in about 3% of the general population and the number of detected aneurysms is continuously rising with the advances in imaging techniques. Intracranial aneurysm rupture carries a high risk of death or permanent disabilities; therefore assessment of the intracranial aneurysm along the entire course is of great clinical importance. Given the outstanding performance of artificial intelligence (AI) in image-based tasks, many AI-based applications have emerged in recent years for the assessment of intracranial aneurysms. In this review we will summarize the state-of-the-art of AI applications in intracranial aneurysms, emphasizing the achievements, and exploring the challenges. We will also discuss the future prospects and potential opportunities. This article provides an updated view of the AI applications in intracranial aneurysms and may act as a basis for guiding the related future works.
Collapse
Affiliation(s)
- Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xi Long
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingfei Xie
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|