1
|
Hu F, Lai Q, Fang J, He X, Lin C, Hu M, Fan L, Chen L. The impact of transcatheter aortic valve replacement on changes of coronary computed tomography-derived fractional flow reserve. Ann Med 2024; 56:2420860. [PMID: 39466648 PMCID: PMC11520094 DOI: 10.1080/07853890.2024.2420860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The effect of transcatheter aortic valve replacement (TAVR) on changes of computed tomography-derived fractional flow reserve (CT-FFR) values was controversial. Thus, we aimed to identify the impact of TAVR on changes of CT-FFR values, plaque characteristics, and the associated clinical impact. METHODS This single-center observational study included 39 consecutive patients with severe aortic valve disease undergone TAVR between August 2019 and April 2023, whom were performed with preoperative and postoperative coronary CT angiography (CCTA). The computation of CT-FFR and plaque characteristics was performed by an independent central core laboratory. RESULTS Each patient underwent CCTA and CT-FFR assessment without encountering any complications. Notably, both at discharge and six months post-TAVR, there was a significant improvement observed in the New York Heart Association (NYHA) functional classification, left ventricular fractional shortening, and ejection fraction compared to pre-operative levels. The CT-FFR for left anterior descending artery (LAD), left anterior descending artery (LCX), and right coronary artery (RCA) had no obvious change at discharge compared to pre-operation (0.92 ± 0.05 vs. 0.93 ± 0.05, p = 0.109; 0.96 ± 0.03 vs. 0.95 ± 0.03, p = 0.523; 0.97 ± 0.04 vs. 0.97 ± 0.03, p = 0.533; respectively). Furthermore, TAVR did not exert a significant impact on plaque burden during the perioperative period. Our report suggested that TAVR did not significantly affect coronary CT-FFR measurements and plaque characteristics in the perioperative period, and furthermore, the patients' cardiac function showed gradual improvement in the short-term following discharge.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, P. R. China
| | - Qianyao Lai
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, P. R. China
- School of Health, Fujian Medical University, Fuzhou, P. R. China
| | - Jun Fang
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, P. R. China
| | - Xi He
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, P. R. China
| | - Chaoyang Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, P. R. China
- School of Health, Fujian Medical University, Fuzhou, P. R. China
| | - Mingming Hu
- Pulse Medical Technology Company, Shanghai, P. R. China
| | - Lin Fan
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, P. R. China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, P. R. China
| |
Collapse
|
2
|
Nozaki YO, Fujimoto S, Takahashi D, Kudo A, Kawaguchi YO, Sato H, Kudo H, Takamura K, Hiki M, Dohi T, Tomizawa N, Kumamaru KK, Aoki S, Minamino T. Additional prognostic impact of plaque characterization with on-site CT-derived fractional flow reserve in coronary CT angiography. J Cardiol 2024; 84:336-341. [PMID: 38876399 DOI: 10.1016/j.jjcc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND On-site computed tomography-derived fractional flow reserve (CT-FFR) is a feasible method for examining lesion-specific ischemia, and plaque analysis of coronary CT angiography (CCTA) is useful for predicting future cardiac events. However, their utility and association on a per-vessel level remain unclear. METHODS We analyzed vessels showing 50-90 % stenosis on CCTA where planned revascularization was not performed after CCTA within 90 days. Relevant features, including CT-FFR and the plaque burden [necrotic core to the total plaque volume (% necrotic core), and non-calcified plaque (NCP) to vessel volume (% NCP)] using a novel algorithm for analyzing plaque to predict vessel-oriented composite outcomes (VOCO), including cardiac death, non-fatal myocardial infarction, and unplanned vessel-related revascularization, were assessed. RESULTS In 256 patients (68.7 ± 9.4 years; 73.8 % male) with 354 vessels (10.5 % CT-FFR ≤ 0.80), VOCO occurred in 24 vessels (6.8 %) during a median follow-up of 3.6 years. Multivariable Cox analysis revealed CT-FFR ≤ 0.80 had the pronounced impact on VOCO, and moreover, higher % necrotic core and % NCP were independently associated with VOCO [adjusted hazard ratio 3.43 (95 % confidence interval 1.42-8.29) and 4.05 (1.19-13.71), respectively], especially for vessels with CT-FFR > 0.80. CONCLUSIONS In vessels without planned revascularization, per-vessel CT-FFR ≤ 0.80 was the notable predictor of future cardiac events. Additionally, necrotic core volume and NCP were identified as independent predictors along with CT-FFR.
Collapse
Affiliation(s)
- Yui O Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Daigo Takahashi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kudo
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko O Kawaguchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyuki Sato
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | - Hikaru Kudo
- Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | - Kazuhisa Takamura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Hiki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuo Tomizawa
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako K Kumamaru
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
3
|
Ma Z, Dong S, Ou S, Ma X, Liu L, An Z, Xu F, Zhang D, Tu C, Song X, Zhang H. The predictive value of coronary computed tomography angiography-derived fractional flow reserve for perioperative cardiac events in lung cancer surgery. Eur J Radiol 2024; 180:111688. [PMID: 39182273 DOI: 10.1016/j.ejrad.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE As a non-invasive coronary functional examination, coronary computed tomography angiography (CCTA)-derived fractional flow reserve (CT-FFR) showed predictive value in several non-cardiac surgeries. This study aimed to evaluate the predictive value of CT-FFR in lung cancer surgery. METHOD We retrospectively collected 227 patients from January 2017 to June 2022 and used machine learning-based CT-FFR to evaluate the stable coronary artery disease (CAD) patients undergoing lung cancer surgery. The major adverse cardiac event (MACE) was defined as perioperative myocardial injury (PMI), myocardial infarction, heart failure, atrial and ventricular arrhythmia with hemodynamic disorder, cardiogenic shock and cardiac death. The multivariate logistic regression analysis was performed to identify risk factors for MACE and PMI. The discriminative capacity, goodness-of-fit, and reclassification improvement of prediction model were determined before and after the addition of CT-FFR≤0.8. RESULTS The incidence of MACE was 20.7 % and PMI was 15.9 %. CT-FFR significantly outperformed CCTA in terms of accuracy for predicting MACE (0.737 vs 0.524). In the multivariate regression analysis, CT-FFR≤0.8 was an independent risk factor for both MACE [OR=10.77 (4.637, 25.016), P<0.001] and PMI [OR=8.255 (3.372, 20.207), P<0.001]. Additionally, we found that the performance of prediction model for both MACE and PMI improved after the addition of CT-FFR. CONCLUSIONS CT-FFR can be used to assess the risk of perioperative MACE and PMI in patients with stable CAD undergoing lung cancer surgery. It adds prognostic information in the cardiac evaluation of patients undergoing lung cancer surgery.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Shuo Dong
- Department of Thoracic Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Songlei Ou
- Department of Thoracic Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Xuchen Ma
- Department of Thoracic Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Linqi Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Feng Xu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
4
|
Huang Z, Tang R, Ding Y, Wang W, Du X, Wang X, Li Z, Xiao J, Wang X. Association of the triglyceride glucose index with myocardial ischemia in patients with minimal to moderate coronary artery disease. Sci Rep 2024; 14:26093. [PMID: 39478011 PMCID: PMC11525707 DOI: 10.1038/s41598-024-76530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
The triglyceride glucose (TyG) index has been suggested as a reliable substitute to indicate insulin resistance. Several studies have identified the association between the TyG index and cardiovascular disease. However, the association between the TyG index and the incidence of myocardial ischemia in patients with minimal to moderate coronary artery disease (CAD) has not been clearly assessed. We aimed to investigate the association between the TyG index and the incidence of myocardial ischemia in patients with minimal to moderate CAD. A total of 1,697 patients who underwent coronary computed tomography angiography (CTA) examinations and had minimal to moderate CAD were retrospectively included in the study. The TyG index and computed tomography-derived fractional flow reserve (CT-FFR) were used to assess insulin resistance (IR) and myocardial ischemia, respectively. Myocardial ischemia was defined as a CT-FFR value ≤ 0.80. Logistic regression models were used to explore the associations between the TyG index and myocardial ischemia. The incidence of myocardial ischemia was higher in the highest TyG index tertile (T3) group than in the lowest TyG index tertile (T1) group. After adjusting for other variables, the T3 group remained associated with a higher risk of myocardial ischemia than the T1 group did (OR, 1.43; 95% CI, 1.01-2.04; p = 0.047). A 1- standard deviation (SD) increase in the TyG index was correlated with a 19-24% elevated risk of myocardial ischemia when regarding the TyG index was considered as a continuous variable. Subgroup analysis revealed similar effects. A TyG index is associated with a higher risk of myocardial ischemia detected by CT-FFR in patients with minimal to moderate CAD.
Collapse
Affiliation(s)
- Zengfa Huang
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China.
| | - Ruiyao Tang
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China
| | - Yi Ding
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China
| | - Wanpeng Wang
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China
| | - Xinyu Du
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China
- Department of Radiology, The Central Hospital of Wuhan Base, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xi Wang
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China
| | - Zuoqin Li
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China
| | - Jianwei Xiao
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China
| | - Xiang Wang
- Department of Radiology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, 26 Shengli Avenue, Jiangan, Wuhan, 430014, Hubei, China.
| |
Collapse
|
5
|
Vecsey-Nagy M, Tremamunno G, Schoepf UJ, Gnasso C, Zsarnóczay E, Fink N, Kravchenko D, Taha Hagar M, Halfmann MC, Jokkel Z, O'Doherty J, Szilveszter B, Maurovich-Horvat P, Spruill Suranyi P, Varga-Szemes A, Emrich T. Coronary CT angiography-based FFR with ultrahigh-resolution photon-counting detector CT: Intra-individual comparison to energy-integrating detector CT. Eur J Radiol 2024; 181:111797. [PMID: 39454427 DOI: 10.1016/j.ejrad.2024.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE To evaluate the feasibility of CT angiography-derived fractional flow reserve (CT-FFR) calculations on ultrahigh-resolution (UHR) photon-counting detector (PCD)-CT series and to intra-individually compare the results with energy-integrating (EID)-CT measurements. METHOD Prospective patients with calcified plaques detected on EID-CT between April 1st, 2023 and January 31st, 2024 were recruited for a UHR CCTA on PCD-CT within 30 days. PCD-CT was performed using the same or a lower CT dose index and an equivalent volume of contrast media. An on-site machine learning algorithm was used to obtain CT-FFR values on a per-vessel and per-patient basis. For all analyses, CT-FFR values ≤ 0.80 were deemed to be hemodynamically significant. RESULTS A total of 34 patients (age: 67.3 ± 6.6 years, 7 women [20.6 %]) were included. Excellent inter-scanner agreement was noted for CT-FFR values in the per-vessel (ICC: 0.93 [0.90-0.95]) and per-patient (ICC: 0.94 [0.88-0.97]) analysis. PCD-CT-derived CT-FFR values proved to be higher compared to EID-CT values on both vessel (0.58 ± 0.23 vs. 0.55 ± 0.23, p < 0.001) and patient levels (0.73 ± 0.23 vs. 0.70 ± 0.22, p < 0.001). Two patients (5.9 %) with hemodynamically significant lesions on EID-CT were reclassified as non-significant on PCD-CT. All remaining participants were classified into the same category with both scanner systems. CONCLUSIONS While UHR CT-FFR values demonstrate excellent agreement with EID-CT measurements, PCD-CT produces higher CT-FFR values that could contribute to a reclassification of hemodynamic significance.
Collapse
Affiliation(s)
- Milan Vecsey-Nagy
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Heart and Vascular Centre, Semmelweis University, 68 Varosmajor Street, Budapest 1122, Hungary
| | - Giuseppe Tremamunno
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, 1035-1039 Via di Grottarossa, Rome 00189, Italy
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States
| | - Chiara Gnasso
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 60 Via Olgettina, Milan 20132, Italy
| | - Emese Zsarnóczay
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, 2 Koranyi Sandor Street, Budapest 1083, Hungary
| | - Nicola Fink
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Radiology, University Hospital, LMU Munich, 15 Marchioninistraße, Munich 81377, Germany
| | - Dmitrij Kravchenko
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 1 Venusberg-Campus, Bonn 53127, Germany
| | - Muhammad Taha Hagar
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, 55 Hugstetter Street, Freiburg im Breisgau 79106, Germany
| | - Moritz C Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, 1 Langenbeckstraße, Mainz 55131, Germany
| | - Zsófia Jokkel
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor Street, Budapest 1122, Hungary
| | - Jim O'Doherty
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Siemens Medical Solutions USA Inc, 40 Liberty Boulevard, Malvern, PA 19355, United States
| | - Bálint Szilveszter
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor Street, Budapest 1122, Hungary
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, 2 Koranyi Sandor Street, Budapest 1083, Hungary
| | - Pal Spruill Suranyi
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States.
| | - Tilman Emrich
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, 1 Langenbeckstraße, Mainz 55131, Germany
| |
Collapse
|
6
|
Thangavel S, Madsen KT, Rønnow Sand NP, Veien KT, Deibjerg L, Husain M, Hosbond S, Alan DH, Øvrehus KA, Junker A, Mortensen J, Thomsen KK, Jensen LO, Poulsen TS, Steffensen FH, Rohold A, Busk M. Selective FFR CT testing in suspected stable angina in clinical practice - initial experiences. Int J Cardiovasc Imaging 2024; 40:2213-2220. [PMID: 39259436 PMCID: PMC11499349 DOI: 10.1007/s10554-024-03214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Coronary CT angiography (CTA) derived fractional flow reserve (FFRCT) is recommended for physiological assessment in intermediate coronary stenosis for guiding referral to invasive coronary angiography (ICA). In this study, we report real-world data on the feasibility of implementing a CTA/FFRCT test algorithm as a gatekeeper to ICA at referral hospitals. Retrospective all-comer study of patients with new onset stable symptoms and suspected coronary stenosis (30-89%) by CTA. Evaluation of CTA datasets, interpretation of FFRCT analysis, and decisions on downstream testing were performed by skilled CT-cardiologists. CTA was performed in 3974 patients, of whom 381 (10%) were referred directly to ICA, whereas 463 (12%) to non-invasive functional testing: FFRCT 375 (81%) and perfusion imaging 88 (19%). FFRCT analysis was rejected in 8 (2%) due to inadequate CTA image quality. Number of patients deferred from ICA after FFRCT was 267 (71%), while 100 (27%) were referred to ICA. Obstructive coronary artery disease (CAD) was confirmed in 62 (62%) patients and revascularization performed in 53 (53%). Revascularization rates, n (%), were higher in patients undergoing FFRCT-guided versus CTA-guided referral to ICA: 30-69% stenosis, 28 (44%) versus 8 (21%); 70-89% stenosis, 39 (69%) versus 25 (46%), respectively, both p < 0.05. Implementation of FFRCT at referral hospitals was feasible, reduced the number of invasive procedures, and increased the revascularization rate.
Collapse
Affiliation(s)
- Shifan Thangavel
- Department of Cardiology, University Hospital of Southern Denmark, Vejle and Kolding, Denmark.
- Department of Cardiology, University Hospital Aarhus, Aarhus Palle Juul-Jensens Blvd. 99, Aarhus, 8200, Denmark.
| | | | - Niels Peter Rønnow Sand
- Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Karsten Tange Veien
- Department of Cardiology, Odense University Hospital, Odense, Denmark
- Department of Cardiology, University Hospital Aarhus, Aarhus Palle Juul-Jensens Blvd. 99, Aarhus, 8200, Denmark
| | - Lone Deibjerg
- Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Majed Husain
- Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Susanne Hosbond
- Department of Cardiology, University Hospital of Southern Denmark, Vejle and Kolding, Denmark
| | - Dilek Hunerel Alan
- Department of Cardiology, University Hospital of Southern Denmark, Vejle and Kolding, Denmark
| | | | - Anders Junker
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Jonas Mortensen
- Department of Cardiology, University Hospital of Southern Denmark, Vejle and Kolding, Denmark
| | | | | | | | | | - Allan Rohold
- Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Martin Busk
- Department of Cardiology, University Hospital of Southern Denmark, Vejle and Kolding, Denmark
| |
Collapse
|
7
|
Karády J. AccuFFRct: Another Important Addition to the Arsenal of CT-FFR Solutions. JACC Cardiovasc Interv 2024; 17:1993-1995. [PMID: 39177556 DOI: 10.1016/j.jcin.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Júlia Karády
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA; Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Dai N, Tang X, Ling R, Zhou F, Chen S, Zhang L, Duan S, Pan W, Zhang J, Zhou D, Ge J. Prognostic implications of pre-transcatheter aortic valve replacement computed tomography-derived coronary plaque characteristics and stenosis severity. Eur Radiol 2024; 34:5923-5933. [PMID: 38308681 DOI: 10.1007/s00330-024-10633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVES The study aimed to investigate the prognostic value of pre-transcatheter aortic valve replacement (TAVR) computed tomography angiography (CTA) in assessing physiological stenosis severity (CTA-derived fractional flow reserve (CT-FFR)) and high-risk plaque characteristics (HRPC). MATERIALS AND METHODS Among TAVR patients who underwent pre-procedure CTA, the presence and number of HRPCs (minimum lumen area of < 4 mm2, plaque burden ≥ 70%, low-attenuating plaques, positive remodeling, napkin-ring sign, or spotty calcification) as well as CT-FFR were assessed. The risk of vessel-oriented composite outcome (VOCO, a composite of vessel-related ischemia-driven revascularization, vessel-related myocardial infarction, or cardiac death) was compared according to the number of HRPC and CT-FFR categories. RESULTS Four hundred and twenty-seven patients (68.4% were male) with 1072 vessels were included. Their mean age was 70.6 ± 10.6 years. Vessels with low CT-FFR (≤ 0.80) (41.7% vs. 15.8%, adjusted hazard ratio (HRadj) 1.96; 95% confidence interval (CI): 1.28-2.96; p = 0.001) or lesions with ≥ 3 HRPC (38.7% vs. 16.0%, HRadj 1.81; 95%CI 1.20-2.71; p = 0.005) demonstrated higher VOCO risk. In the CT-FFR (> 0.80) group, lesions with ≥ 3 HRPC showed a significantly higher risk of VOCO than those with < 3 HRPC (34.7% vs. 13.0%; HRadj 2.04; 95%CI 1.18-3.52; p = 0.011). However, this relative increase in risk was not observed in vessels with positive CT-FFR (≤ 0.80). CONCLUSIONS In TAVR candidates, both CT-FFR and the presence of ≥ 3 HRPC were associated with an increased risk of adverse clinical events. However, the value of HRPC differed with the CT-FFR category, with more incremental predictability among vessels with negative CT-FFR but not among vessels with positive CT-FFR. CLINICAL RELEVANCE STATEMENT In transcatheter aortic valve replacement (TAVR) candidates, pre-TAVR CTA provided the opportunity to assess coronary physiological stenosis severity and high-risk plaque characteristics, both of which are associated with worse clinical outcomes. KEY POINTS • The current study investigated the prognostic value of coronary physiology significance and plaque characteristics in transcatheter aortic valve replacement patients. • The combination of coronary plaque vulnerability and physiological significance showed improved accuracy in predicting clinical outcomes in transcatheter aortic valve replacement patients. • Pre-transcatheter aortic valve replacement CT can be a one-stop-shop tool for coronary assessments in clinical practice.
Collapse
Affiliation(s)
- Neng Dai
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xianglin Tang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Runjianya Ling
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fan Zhou
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shasha Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | | | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China.
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
9
|
Fujimoto S, Nozaki YO, Sakamoto T, Nakanishi R, Asano T, Kadota K, Komiyama K, Taguchi E, Okubo R, Saito A, Ikuta A, Nojiri S, Tanabe K. Clinical impacts of CT-derived fractional flow reserve under insurance reimbursement: Results from multicenter, prospective registry. J Cardiol 2024; 84:126-132. [PMID: 37949315 DOI: 10.1016/j.jjcc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Although computed tomography-derived fractional flow reserve (FFRCT) has been reimbursed in a few countries, its impacts on daily practice of coronary artery diseases are not fully elucidated. We evaluated the clinical impacts of FFRCT under the real Japanese insurance reimbursement. METHODS In the multicenter prospective registry: DYNAMIC-FFRCT study, a total of 410 patients who underwent FFRCT analysis under reimbursement were prospectively enrolled at 6 Japanese sites from October 2019 to November 2021. Coronary CT angiography and FFRCT findings, treatment plans, and 90-day outcomes were recorded. The primary endpoint was the redirection rate from the tests that might be expected without FFRCT [invasive coronary angiography (ICA)-selected group, myocardial perfusion single photon emission CT (MPS)-selected group, optimal medical therapy (OMT)-selected group, and others-selected group] to those that were actually performed based on FFRCT. RESULTS ICA could be avoided in 39.5 % in the ICA-selected group (N = 233). In particular, in 94.3 % of patients with an FFRCT value of >0.80, additional examinations, such as ICA, were avoided. In addition, in the MPS-selected group (N = 133), 92.6 % had no additional tests with FFRCT > 0.80, while only 2 cases with FFRCT ≤ 0.80 underwent additional MPS examination. On the contrary, 33.3 % of the OMT-selected group (N = 33) had FFRCT ≤ 0.80. Approximately, 35 % medical cost reduction was also finally expected. CONCLUSION Introduction of FFRCT could not only reduce unnecessary ICA and be a test that replaces the conventional non-invasive functional assessment modality but also result in medical cost reduction even when used under real Japanese insurance reimbursement.
Collapse
Affiliation(s)
- Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Yui O Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohiro Sakamoto
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto, Japan
| | - Rine Nakanishi
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan; Department of Cardiovascular Medicine, Department of Internal Medicine, Toho University Faculty of Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Taku Asano
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan
| | - Kazushige Kadota
- Department of Cardiovascular Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Kota Komiyama
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Eiji Taguchi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto, Japan
| | - Ryo Okubo
- Department of Cardiovascular Medicine, Department of Internal Medicine, Toho University Faculty of Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Akira Saito
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan
| | - Akihiro Ikuta
- Department of Cardiovascular Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Kengo Tanabe
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Chen L, Dai L, Xu J, Duan L, Hou X, Zhang L, Song L, Zhao F, Jiang Y. Chinese herbal compound preparation Qing-Xin-Jie-Yu granules for intermediate coronary lesions in patients with stable coronary artery disease: Study protocol for a multicenter, randomized, double-blind, placebo-controlled trial. PLoS One 2024; 19:e0307074. [PMID: 39012918 PMCID: PMC11251585 DOI: 10.1371/journal.pone.0307074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Despite the available secondary preventive treatments, the management of stable coronary artery disease (SCAD) remains challenging. Intermediate coronary lesion (ICL), defined as luminal stenosis between 50% and 70%, is a key stage of SCAD. However, existing therapeutic strategies are limitated in delaying plaque progression and associated with various adverse effects and economic burdens. Qing-Xin-Jie-Yu Granules (QXJYG) with proven anti-platelet, anti-inflammatory, and lipid-lowering effects may compensate for the drawbacks of current treatments and can be tested as a complementary therapy. Therefore, this study aims to investigate the efficacy and safety of QXJYG in treating ICL, with a particular focus on its impact on myocardial ischemia and plaque progression. MATERIALS AND METHODS This is a multicenter, randomized, double-blind, placebo-controlled trial. A total of 120 participants with ICL will be randomly assigned to two groups in a 1:1 ratio. In addition to basic medications, the intervention group will receive QXJYG, while the control group will receive a placebo for over 6 months, followed by a 12-month follow-up. The primary efficacy outcome is computed tomography-derived fractional flow reserve. The secondary outcomes include the degree of coronary stenosis, coronary artery calcification score, Gensini score, Seattle Angina Questionnaire score, high-sensitivity C-reactive protein, matrix metalloproteinase-9, blood lipids, and carotid artery ultrasound parameters. Major adverse cardiovascular events are recorded as endpoints. The safety outcomes include composite events of bleeding, laboratory test results, and adverse events. Clinical visits are scheduled at baseline, every 2 months during the treatment, and after a 12-month follow-up. DISCUSSION This trial is anticipated to yield reliable results to verify the efficacy and safety of QXJYG in the treatment of ICL, which will provide novel insights to help address the prevailing therapeutic dilemma of ICL, thereby facilitating for the management of SCAD. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2200059262. Registered on April 27, 2022.
Collapse
Affiliation(s)
- Luying Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Dai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiawei Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lian Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Hou
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Libo Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangfang Zhao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Journal of Integrated Traditional and Western Medicine Press, Beijing, China
| | - Yuerong Jiang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Bär S, Maaniitty T, Nabeta T, Bax JJ, Earls JP, Min JK, Saraste A, Knuuti J. Prognostic value of a novel artificial intelligence-based coronary CTA-derived ischemia algorithm among patients with normal or abnormal myocardial perfusion. J Cardiovasc Comput Tomogr 2024; 18:366-374. [PMID: 38664074 DOI: 10.1016/j.jcct.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Among patients with obstructive coronary artery disease (CAD) on coronary computed tomography angiography (CTA), downstream positron emission tomography (PET) perfusion imaging can be performed to assess the presence of myocardial ischemia. A novel artificial-intelligence-guided quantitative computed tomography ischemia algorithm (AI-QCTischemia) aims to predict ischemia directly from coronary CTA images. We aimed to study the prognostic value of AI-QCTischemia among patients with obstructive CAD on coronary CTA and normal or abnormal downstream PET perfusion. METHODS AI-QCTischemia was calculated by blinded analysts among patients from the retrospective coronary CTA cohort at Turku University Hospital, Finland, with obstructive CAD on initial visual reading (diameter stenosis ≥50%) being referred for downstream 15O-H2O-PET adenosine stress perfusion imaging. All coronary arteries with their side branches were assessed by AI-QCTischemia. Absolute stress myocardial blood flow ≤2.3 ml/g/min in ≥2 adjacent segments was considered abnormal. The primary endpoint was death, myocardial infarction, or unstable angina pectoris. The median follow-up was 6.2 [IQR 4.4-8.3] years. RESULTS 662 of 768 (86%) patients had conclusive AI-QCTischemia result. In patients with normal 15O-H2O-PET perfusion, an abnormal AI-QCTischemia result (n = 147/331) vs. normal AI-QCTischemia result (n = 184/331) was associated with a significantly higher crude and adjusted rates of the primary endpoint (adjusted HR 2.47, 95% CI 1.17-5.21, p = 0.018). This did not pertain to patients with abnormal 15O-H2O-PET perfusion (abnormal AI-QCTischemia result (n = 269/331) vs. normal AI-QCTischemia result (n = 62/331); adjusted HR 1.09, 95% CI 0.58-2.02, p = 0.794) (p-interaction = 0.039). CONCLUSION Among patients with obstructive CAD on coronary CTA referred for downstream 15O-H2O-PET perfusion imaging, AI-QCTischemia showed incremental prognostic value among patients with preserved perfusion by 15O-H2O-PET imaging, but not among those with reduced perfusion.
Collapse
Affiliation(s)
- Sarah Bär
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Cardiology, Bern University Hospital Inselspital, Bern, Switzerland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland
| | - Takeru Nabeta
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Turku, Finland.
| |
Collapse
|
12
|
Guo B, Jiang M, Guo X, Tang C, Zhong J, Lu M, Liu C, Zhang X, Qiao H, Zhou F, Xu P, Xue Y, Zheng M, Hou Y, Wang Y, Zhang J, Zhang B, Zhang D, Xu L, Hu X, Zhou C, Li J, Yang Z, Mao X, Lu G, Zhang L. Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD. Sci Bull (Beijing) 2024; 69:1472-1485. [PMID: 38637226 DOI: 10.1016/j.scib.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Currently, clinically available coronary CT angiography (CCTA) derived fractional flow reserve (CT-FFR) is time-consuming and complex. We propose a novel artificial intelligence-based fully-automated, on-site CT-FFR technology, which combines the automated coronary plaque segmentation and luminal extraction model with reduced order 3 dimentional (3D) computational fluid dynamics. A total of 463 consecutive patients with 600 vessels from the updated China CT-FFR study in Cohort 1 undergoing both CCTA and invasive fractional flow reserve (FFR) within 90 d were collected for diagnostic performance evaluation. For Cohort 2, a total of 901 chronic coronary syndromes patients with index CT-FFR and clinical outcomes at 3-year follow-up were retrospectively analyzed. In Cohort 3, the association between index CT-FFR from triple-rule-out CTA and major adverse cardiac events in patients with acute chest pain from the emergency department was further evaluated. The diagnostic accuracy of this CT-FFR in Cohort 1 was 0.82 with an area under the curve of 0.82 on a per-patient level. Compared with the manually dependent CT-FFR techniques, the operation time of this technique was substantially shortened by 3 times and the number of clicks from about 60 to 1. This CT-FFR technique has a highly successful (> 99%) calculation rate and also provides superior prediction value for major adverse cardiac events than CCTA alone both in patients with chronic coronary syndromes and acute chest pain. Thus, the novel artificial intelligence-based fully automated, on-site CT-FFR technique can function as an objective and convenient tool for coronary stenosis functional evaluation in the real-world clinical setting.
Collapse
Affiliation(s)
- Bangjun Guo
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Mengchun Jiang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272007, China
| | - Xiang Guo
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Chunxiang Tang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jian Zhong
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Mengjie Lu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Chunyu Liu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaolei Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Hongyan Qiao
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Fan Zhou
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Pengpeng Xu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Yi Xue
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an 733399, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jiayin Zhang
- Institute of Diagnostic and Interventional Radiology, and Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200235, China
| | - Bo Zhang
- Department of Radiology, Jiangsu Taizhou People's Hospital, Taizhou 225399, China
| | - Daimin Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiuhua Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Changsheng Zhou
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jianhua Li
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Zhiwen Yang
- Shukun (Beijing) Network Technology Co., Ltd., Beijing 102200, China
| | - Xinsheng Mao
- Shukun (Beijing) Network Technology Co., Ltd., Beijing 102200, China
| | - Guangming Lu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
13
|
Madsen KT, Nørgaard BL, Øvrehus KA, Jensen JM, Parner E, Grove EL, Mortensen MB, Fairbairn TA, Nieman K, Patel MR, Rogers C, Mullen S, Mickley H, Thomsen KK, Bøtker HE, Leipsic J, Sand NPR. Coronary computed tomography angiography derived fractional flow reserve and risk of recurrent angina: A 3-year follow-up study. J Cardiovasc Comput Tomogr 2024; 18:243-250. [PMID: 38246785 DOI: 10.1016/j.jcct.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The association between coronary computed tomography angiography (CTA) derived fractional flow reserve (FFRCT) and risk of recurrent angina in patients with new onset stable angina pectoris (SAP) and stenosis by CTA is uncertain. METHODS Multicenter 3-year follow-up study of patients presenting with symptoms suggestive of new onset SAP who underwent first-line CTA evaluation and subsequent standard-of-care treatment. All patients had at least one ≥30 % coronary stenosis. A per-patient lowest FFRCT-value ≤0.80 represented an abnormal test result. Patients with FFRCT ≤0.80 who underwent revascularization were categorized according to completeness of revascularization: 1) Completely revascularized (CR-FFRCT), all vessels with FFRCT ≤0.80 revascularized; or 2) incompletely revascularized (IR-FFRCT) ≥1 vessels with FFRCT ≤0.80 non-revascularized. Recurrent angina was evaluated using the Seattle Angina Questionnaire. RESULTS Amongst 769 patients (619 [80 %] stenosis ≥50 %, 510 [66 %] FFRCT ≤0.80), 174 (23 %) reported recurrent angina at follow-up. An FFRCT ≤0.80 vs > 0.80 associated to increased risk of recurrent angina, relative risk (RR): 1.82; 95 % CI: 1.31-2.52, p < 0.001. Risk of recurrent angina in CR-FFRCT (n = 135) was similar to patients with FFRCT >0.80, 13 % vs 15 %, RR: 0.93; 95 % CI: 0.62-1.40, p = 0.72, while IR-FFRCT (n = 90) and non-revascularized patients with FFRCT ≤0.80 (n = 285) had increased risk, 37 % vs 15 % RR: 2.50; 95 % CI: 1.68-3.73, p < 0.001 and 30 % vs 15 %, RR: 2.03; 95 % CI: 1.44-2.87, p < 0.001, respectively. Use of antianginal medication was similar across study groups. CONCLUSION In patients with SAP and coronary stenosis by CTA undergoing standard-of-care guided treatment, FFRCT provides information regarding risk of recurrent angina.
Collapse
Affiliation(s)
| | - Bjarne Linde Nørgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Jesper Møller Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Erik Parner
- Department of Public Health, Section for Biostatistics, Aarhus University, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Timothy A Fairbairn
- Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Koen Nieman
- Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, CA, USA
| | - Manesh R Patel
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA
| | | | | | - Hans Mickley
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jonathon Leipsic
- Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Niels Peter Rønnow Sand
- Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Denmark; Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
14
|
Yang S, Chung J, Lesina K, Doh JH, Jegere S, Erglis A, Leipsic JA, Fearon WF, Narula J, Koo BK. Long-term prognostic implications of CT angiography-derived fractional flow reserve: Results from the DISCOVER-FLOW study. J Cardiovasc Comput Tomogr 2024; 18:251-258. [PMID: 38378313 DOI: 10.1016/j.jcct.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND & OBJECTIVES The long-term prognostic implications of CT angiography-derived fractional flow reserve (FFRCT) remains unclear. We aimed to explore the long-term outcomes of FFRCT in the first-in-human study of it. MATERIALS & METHODS A total of 156 vessels from 102 patients with stable coronary artery disease, who underwent coronary CT angiography (CCTA) and invasive FFR measurement, were followed. The primary endpoint was target vessel failure (TVF), including cardiovascular death, target vessel myocardial infarction, and target vessel revascularization. Outcome analysis with FFRCT was performed on a per-vessel basis using a marginal Cox proportional hazard model. RESULTS During median 9.9 years of follow-up, TVF occurred in 20 (12.8%) vessels. FFRCT ≤0.80 discriminated TVF (hazard ratio [HR] 2.61, 95% confidence interval [CI] 1.06, 6.45). Among 94 vessels with deferral of percutaneous coronary intervention (PCI), TVF risk was inversely correlated with FFRCT (HR 0.62 per 0.1 increase, 95% CI 0.44, 0.86), with the cumulative incidence of TVF being 2.6%, 15.2%, and 28.6% for vessels with FFRCT >0.90, 0.81-0.90, and ≤0.80, respectively (p-for-trend 0.005). Predictive value for clinical outcomes of FFRCT was similar to that of invasive FFR (c-index 0.79 vs 0.71, P = 0.28). The estimated TVF risk was higher in the deferral of PCI group than the PCI group for vessels with FFRCT ≤0.81. CONCLUSION FFRCT showed improved long-term risk stratification and displayed a risk continuum similar to invasive FFR. CLINICAL TRIAL REGISTRATION NCT01189331.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Jaewook Chung
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Krista Lesina
- Department of Medicine, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Joon-Hyung Doh
- Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, South Korea
| | - Sanda Jegere
- Department of Medicine, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Andrejs Erglis
- Department of Medicine, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William F Fearon
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jagat Narula
- The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
15
|
Bär S, Nabeta T, Maaniitty T, Saraste A, Bax JJ, Earls JP, Min JK, Knuuti J. Prognostic value of a novel artificial intelligence-based coronary computed tomography angiography-derived ischaemia algorithm for patients with suspected coronary artery disease. Eur Heart J Cardiovasc Imaging 2024; 25:657-667. [PMID: 38084894 PMCID: PMC11057943 DOI: 10.1093/ehjci/jead339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024] Open
Abstract
AIMS Coronary computed tomography angiography (CTA) imaging is used to diagnose patients with suspected coronary artery disease (CAD). A novel artificial intelligence-guided quantitative computed tomography ischaemia algorithm (AI-QCTischaemia) aims to identify myocardial ischaemia directly from CTA images and may be helpful to improve risk stratification. The aims were to investigate (i) the prognostic value of AI-QCTischaemia amongst symptomatic patients with suspected CAD entering diagnostic imaging with coronary CTA and (ii) the prognostic value of AI-QCTischaemia separately amongst patients with no/non-obstructive CAD (≤50% visual diameter stenosis) and obstructive CAD (>50% visual diameter stenosis). METHODS AND RESULTS For this cohort study, AI-QCTischaemia was calculated by blinded analysts amongst patients with suspected CAD undergoing coronary CTA. The primary endpoint was the composite of death, myocardial infarction (MI), or unstable angina pectoris (uAP) (median follow-up 6.9 years). A total of 1880/2271 (83%) patients had conclusive AI-QCTischaemia result. Patients with an abnormal AI-QCTischaemia result (n = 509/1880) vs. patients with a normal AI-QCTischaemia result (n = 1371/1880) had significantly higher crude and adjusted rates of the primary endpoint [adjusted hazard ratio (HRadj) 1.96, 95% confidence interval (CI) 1.46-2.63, P < 0.001; covariates: age/sex/hypertension/diabetes/smoking/typical angina]. An abnormal AI-QCTischaemia result was associated with significantly higher crude and adjusted rates of the primary endpoint amongst patients with no/non-obstructive CAD (n = 1373/1847) (HRadj 1.81, 95% CI 1.09-3.00, P = 0.022), but not amongst those with obstructive CAD (n = 474/1847) (HRadj 1.26, 95% CI 0.75-2.12, P = 0.386) (P-interaction = 0.032). CONCLUSION Amongst patients with suspected CAD, an abnormal AI-QCTischaemia result was associated with a two-fold increased adjusted rate of long-term death, MI, or uAP. AI-QCTischaemia may be useful to improve risk stratification, especially amongst patients with no/non-obstructive CAD on coronary CTA.
Collapse
Affiliation(s)
- Sarah Bär
- Turku PET Centre, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Department of Cardiology, Bern University Hospital Inselspital, Bern, Switzerland
| | - Takeru Nabeta
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Hämeentie 11, 20540 Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine, and PET, Turku University Hospital, Hämeentie 11, 20540 Turku, Finland
| |
Collapse
|
16
|
Stanley GA, Scherer MD, Hajostek MM, Yammine H, Briggs CS, CrespoSoto HO, Nussbaum T, Arko FR. Utilization of coronary computed tomography angiography and computed tomography-derived fractional flow reserve in a critical limb-threatening ischemia cohort. J Vasc Surg Cases Innov Tech 2024; 10:101272. [PMID: 38435790 PMCID: PMC10907840 DOI: 10.1016/j.jvscit.2023.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/23/2023] [Indexed: 03/05/2024] Open
Abstract
Objective Patients with peripheral arterial disease (PAD) have a significant risk of myocardial infarction and death secondary to concomitant coronary artery disease (CAD). This is particularly true in patients with critical limb-threatening ischemia (CLTI) who exceed a 20% mortality rate at 6 months despite standard treatment with risk factor modification. Although systematic preoperative coronary testing is not recommended for patients with PAD without cardiac symptoms, the clinical manifestations of CAD are often muted in patients with CLTI due to poor mobility and activity intolerance. Thus, the true incidence and impact of "silent" CAD in a CLTI cohort is unknown. This study aims to determine the prevalence of ischemia-producing coronary artery stenosis in a CLTI cohort using coronary computed tomography angiography (cCTA) and computed tomography (CT)-derived fractional flow reserve (FFRCT), a noninvasive imaging modality that has shown significant correlation to cardiac catheterization in the detection of clinically relevant coronary ischemia. Methods Patients presenting with newly diagnosed CLTI at our institution from May 2020 to April 2021 were screened for underlying CAD. Included subjects had no known history of CAD, no cardiac symptoms, and no anginal equivalent complaints at presentation. Patients underwent cCTA and FFRCT evaluation and were classified by the anatomic location and severity of CAD. Significant coronary ischemia was defined as FFRCT ≤0.80 distal to a >30% coronary stenosis, and severe coronary ischemia was documented at FFRCT ≤0.75, consistent with established guidelines. Results A total of 170 patients with CLTI were screened; 65 patients (38.2%) had no coronary symptoms and met all inclusion/exclusion criteria. Twenty-four patients (31.2%) completed cCTA and FFRCT evaluation. Forty-one patients have yet to complete testing secondary to socioeconomic factors (insurance denial, transportation inaccessibility, testing availability, etc). The mean age of included subjects was 65.4 ± 7.0 years, and 15 (62.5%) were male. Patients presented with ischemic rest pain (n = 7; 29.1%), minor tissue loss (n = 14; 58.3%) or major tissue loss (n = 3; 12.5%). Significant (≥50%) coronary artery stenosis was noted on cCTA in 19 of 24 patients (79%). Significant left main coronary artery stenosis was identified in two patients (10%). When analyzed with FFRCT, 17 patients (71%) had hemodynamically significant coronary ischemia (FFRCT ≤0.8), and 54% (n = 13) had lesion-specific severe coronary ischemia (FFRCT ≤0.75). The mean FFRCT in patients with coronary ischemia was 0.70 ± 0.07. Multi-vessel disease pattern was present in 53% (n = 9) of patients with significant coronary stenosis. Conclusions The use of cCTA-derived fractional flow reserve demonstrates a significant percentage of patients with CLTI have silent (asymptomatic) coronary ischemia. More than one-half of these patients have lesion-specific severe ischemia, which may be associated with increased mortality when treated solely with risk factor modification. cCTA and FFRCT diagnosis of significant coronary ischemia has the potential to improve cardiac care, perioperative morbidity, and long-term survival curves of patients with CLTI. Systemic improvements in access to care will be needed to allow for broad application of these imaging assessments should they prove universally valuable. Additional study is required to determine the benefit of selective coronary revascularization in patients with CLTI.
Collapse
Affiliation(s)
| | | | | | - Halim Yammine
- Sanger Heart & Vascular Institute, Atrium Health, Charlotte, NC
| | | | | | - Tzvi Nussbaum
- Sanger Heart & Vascular Institute, Atrium Health, Charlotte, NC
| | - Frank R. Arko
- Sanger Heart & Vascular Institute, Atrium Health, Charlotte, NC
| |
Collapse
|
17
|
Wang S, Shi Z, Pan H, Yan T, Liu L, Xu J, Wang W, Zhang T. Triglyceride glucose index is associated with functional coronary artery stenosis in hypertensive patients. Front Endocrinol (Lausanne) 2024; 15:1323722. [PMID: 38590821 PMCID: PMC10999614 DOI: 10.3389/fendo.2024.1323722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Background The triglyceride glucose (TyG) index is an effective method for determining insulin resistance (IR). Limited research has explored the connection between the TyG index and functionally significant stenosis in hypertensive patients. Furthermore, the connections between the TyG index, fat attenuation index (FAI) and atherosclerotic plaque characteristics are also worth exploring. Methods The study screened 1622 hypertensive participants without coronary artery disease history who underwent coronary computed tomography angiography. The TyG index was calculated as ln (fasting glucose [mg/dL] * fasting TG [mg/dL]/2). Adverse plaque characteristics (HRPCs), high-risk plaques (HRPs), FAI, and CT-derived fractional flow reserve (FFRCT) were analyzed and measured for all patients. Functionally significant stenosis causing ischemia is defined as FFRCT ≤ 0.80. Two patient groups were created based on the FFRCT: the FFRCT < 0.80 group and the FFRCT > 0.80 group. In hypertensive patients, the association between the TyG index and FFRCT was examined applying a logistic regression model. Results The TyG index was higher for people with FFRCT ≤ 0.80 contrast to those with FFRCT > 0.80. After controlling for additional confounding factors, the logistic regression model revealed a clear connection between the TyG index and FFRCT ≤ 0.80 (OR = 1.718, 95% CI 1.097-2.690, p = 0.018). The restricted cubic spline analysis displayed a nonlinear connection between the TyG index and FFRCT ≤ 0.80 (p for nonlinear = 0.001). The TyG index increased the fraction of individuals with HRPs and HRPCs, FAI raised, and FFRCT decreased (p < 0.05). The multivariate linear regression analysis illustrated a powerfulcorrelation between high TyG index levels and FAI, FFRCT, positive remodeling (PR), and low-attenuation plaque (LAPs) (standardized regression coefficients: 0.029 [p = 0.007], -0.051 [p < 0.001], 0.029 [p = 0.027], and 0.026 [p = 0.046], separately). Conclusion In hypertensive patients, the TyG index showed an excellent association with a risk of FFRCT ≤ 0.80. Additionally, the TyG index was also linked to FAI, FFRCT, PR, and LAPs.
Collapse
Affiliation(s)
- Shuting Wang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenzhou Shi
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong Pan
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tiancai Yan
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ling Liu
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiaheng Xu
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Wang
- The Magnetic Resonance Imaging Room, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tong Zhang
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Zsarnoczay E, Pinos D, Schoepf UJ, Fink N, O'Doherty J, Gnasso C, Griffith J, Vecsey-Nagy M, Suranyi P, Maurovich-Horvat P, Emrich T, Varga-Szemes A. Intra-individual comparison of coronary CT angiography-based FFR between energy-integrating and photon-counting detector CT systems. Int J Cardiol 2024; 399:131684. [PMID: 38151162 DOI: 10.1016/j.ijcard.2023.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA)-based fractional flow reserve (CT-FFR) allows for noninvasive determination of the functional severity of anatomic lesions in patients with coronary artery disease. The aim of this study was to intra-individually compare CT-FFR between photon-counting detector (PCD) and conventional energy-integrating detector (EID) CT systems. METHODS In this single-center prospective study, subjects who underwent clinically indicated CCTA on an EID-CT system were recruited for a research CCTA on PCD-CT within 30 days. Image reconstruction settings were matched as closely as possible between EID-CT (Bv36 kernel, iterative reconstruction strength level 3, slice thickness 0.5 mm) and PCD-CT (Bv36 kernel, quantum iterative reconstruction level 3, virtual monoenergetic level 55 keV, slice thickness 0.6 mm). CT-FFR was measured semi-automatically using a prototype on-site machine learning algorithm by two readers. CT-FFR analysis was performed per-patient and per-vessel, and a CT-FFR ≤ 0.75 was considered hemodynamically significant. RESULTS A total of 22 patients (63.3 ± 9.2 years; 7 women) were included. Median time between EID-CT and PCD-CT was 5.5 days. Comparison of CT-FFR values showed no significant difference and strong agreement between EID-CT and PCD-CT in the per-vessel analysis (0.88 [0.74-0.94] vs. 0.87 [0.76-0.93], P = 0.096, mean bias 0.02, limits of agreement [LoA] -0.14/0.19, r = 0.83, ICC = 0.92), and in the per-patient analysis (0.81 [0.60-0.86] vs. 0.76 [0.64-0.86], P = 0.768, mean bias 0.02, LoA -0.15/0.19, r = 0.90, ICC = 0.93). All included patients were classified into the same category (CT-FFR > 0.75 vs ≤0.75) with both CT systems. CONCLUSIONS CT-FFR evaluation is feasible with PCD-CT and it shows a strong agreement with EID-CT-based evaluation when images are similarly reconstructed.
Collapse
Affiliation(s)
- Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; MTA-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Daniel Pinos
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Siemens Medical Solutions USA Inc, Malvern, USA
| | - Chiara Gnasso
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joseph Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Milán Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pal Suranyi
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany.
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
19
|
Yang S, Koo BK. Noninvasive Coronary Physiological Assessment Derived From Computed Tomography. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2024; 3:101304. [PMID: 39131222 PMCID: PMC11308392 DOI: 10.1016/j.jscai.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 08/13/2024]
Abstract
Identifying functional significance using physiological indexes is a standard approach in decision-making for treatment strategies in patients with coronary artery disease. Recently, coronary computed tomography angiography-based physiological assessments, such as computed tomography perfusion and fractional flow reserve derived from coronary computed tomography angiography (FFR-CT), have emerged. These methods have provided incremental diagnostic values for ischemia-causing lesions over anatomical stenosis defined solely by coronary computed tomography angiography. Clinical data have demonstrated their prognostic value in the prediction of adverse cardiovascular events. Several randomized controlled studies have shown that clinical use of FFR-CT can reduce unnecessary invasive procedures compared to usual care. Recent studies have also expanded the role of FFR-CT in defining target lesions for revascularization by acquiring noninvasive lesion-specific hemodynamic indexes like ΔFFR-CT. This review encompasses the current evidence of the diagnostic and prognostic performance of computed tomography-based physiological assessment in defining ischemia-causing lesions and adverse cardiac events, its clinical impact on treatment decision-making, and implications for revascularization.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine, Seoul, South Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
21
|
Nishihara T, Nakashima M, Ichikawa K, Miyoshi T. Evaluation of Changes in Coronary Ischemia After Lipid-Lowering Therapy Using Computed Tomography Angiography. Circ Rep 2024; 6:16-17. [PMID: 38196403 PMCID: PMC10774021 DOI: 10.1253/circrep.cr-23-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Takahiro Nishihara
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Mitsutaka Nakashima
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Keishi Ichikawa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
22
|
Baumeister T, Kloth C, Schmidt SA, Kloempken S, Brunner H, Buckert D, Bernhardt P, Panknin C, Beer M. On-site CT-derived cFFR in patients with suspected coronary artery disease: Feasibility on a 128-row CT scanner in everyday clinical practice. ROFO-FORTSCHR RONTG 2024; 196:62-71. [PMID: 37820710 DOI: 10.1055/a-2142-1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE Technical feasibility of CT-based calculation of fractional flow reserve (cFFR) using a 128-row computed tomography scanner in an everyday routine setting. Post-processing and everyday practicability should be analyzed on the scanner on-site in connection with clinical parameters. MATERIALS AND METHODS This single-center retrospective analysis included 230 patients (74 female; mean age 63.8 years) with CCTA within 21 months between 01/2018 and 09/2019 without non-pathological examinations. cFFR values were obtained using a deep learning-based non-commercial research prototype (cFFR Version3.5.0; Siemens Healthineers GmbH, Erlangen). cFFR values were evaluated at two points: at the maximum point of the stenosis and 1.0 cm distal to the stenosis. Comparison with invasive coronary angiography in 57/230 patients (24.7 %) was performed. CT parameters and quality were evaluated. Further subgroup classification concerning criteria of technical postprocessing was performed: no changes necessary, minor corrections necessary, major corrections necessary, and no evaluation was possible. The required time from starting the software to the final result was evaluated. RESULTS A total of 116/448 (25.9 %) mild, 223/448 (49.8 %) moderate, and 109/448 (24.3 %) obstructive stenoses was found. The mean cFFR at the maximum point of the stenosis was 0.92 ± 0.09 and significantly higher than the cFRR value of 0.89 ± 0.13 distal to the stenosis (p < 0.001*). The mean degree of stenosis was 44.02 ± 26.99 % (range: 1-99 %) with an area of 5.39 ± 3.30 mm2. In a total of 45 patients (19.1 %), a relevant reduction in cFFR below 0.80 was determined. Overall, in 57/230 patients (24.8 %), catheter angiography was performed. No significant difference in the degree of maximal stenosis (CAD-RADS 0-2/3/4) was detected between the classification of CCTA and ICA (p = 0.171). The mean post-processing time varied significantly with 8.34 ± 4.66 min. in single-vessel CAD vs. 12.91 ± 3.92 min. in two-vessel CAD vs. 21.80 ± 5.94 min. in three-vessel CAD (each p < 0.001). CONCLUSION Noninvasive onsite quantification of cFFR is feasible with minimal observer interaction in a routine real-world setting on a 128-row scanner. Deep learning-based algorithms allow a robust and semi-automatic on-site determination of cFFR based on data from standard CT scanners. KEY POINTS · Non-invasive on-site quantification of cFFR is feasible with minimal observer interaction.. · Deep-learning based algorithms allow robust and semi-automatic on-site determination of cFFR.. · The mean follow-up time varied significantly with the extent of vascular CAD..
Collapse
Affiliation(s)
- Theresia Baumeister
- Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| | - Stefan Andreas Schmidt
- Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| | - Steffen Kloempken
- Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| | - Horst Brunner
- Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| | - Dominik Buckert
- Department of Internal Medicine II, Ulm University Hospital, Ulm, Germany
| | - Peter Bernhardt
- Heart Clinic Ulm, Herzklinik Ulm Dr. Haerer und Partner, Ulm, Germany
| | - Christoph Panknin
- Scientific Collaborations Siemens Healthcare GmbH, Erlangen, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
23
|
Argacha JF, Motoc A, Lammens J, Vandeloo B, Tanaka K, Belsack D, Michiels V, Lochy S, Tsugu T, De Potter T, Thorrez Y, Magne J, De Mey J, Cosyns B. Clinical and prognostic incremental value of FFRCT in screening of patients with obstructive coronary artery disease. J Cardiovasc Comput Tomogr 2024; 18:62-68. [PMID: 38072710 DOI: 10.1016/j.jcct.2023.11.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) -derived fractional flow reserve (FFRCT) is recommended to evaluate the functional consequences of obstructive coronary artery disease (OCAD). Real-world incremental impacts of FFRCT use still remains under debate. METHODS 1601 patients with suspected OCAD on CCTA (>50 % stenosis), including 808 (50.5 %) patients evaluated by FFRCT, were included from a 2013-2021 registry. Propensity adjusted impacts of FFRCT use on rates of invasive coronary angiography (ICA), myocardial revascularization (MR) and post MR major adverse cardiac events (MACE) were reported, including a sensitivity analysis in severe OCAD (>70 % stenosis) (n = 450). Accuracy of numerical and comprehensive FFRCT interpretations in selection of patients requiring a MR were also compared. RESULTS 1160 (72,5 %) ICA, 559 (34.9 %) MR and 137 (24.5 %) post MR MACE occurred at 4.7 ± 1.9 years. FFRCT use was independently associated with decreased rate of ICA and MR (OR: 0.66; 95 % CI 0.53-0.83, p < 0.001 and OR: 0.71; 95 % CI 0.58-0.88, p < 0.01, respectively). Compared to the numerical interpretation, the FFRCT comprehensive assessment increased the ratio of MR per ICA (61.7 % vs 50.1 %, p < 0.01) and was more accurate in selection of patients requiring MR. FFRCT reduced post MR MACE (OR: 0.64; 95 % CI 0.43-0.96, p < 0.05). All these associations were no longer observed in severe OCAD. CONCLUSION Implementing FFRCT in OCAD patients reduces ICA use, improves selection of patients requiring MR and reduces post MR MACE. However, these incremental values of FFRCT were no longer observed in severe OCAD.
Collapse
Affiliation(s)
- Jean-François Argacha
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreea Motoc
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Johanna Lammens
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bert Vandeloo
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dries Belsack
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vincent Michiels
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stijn Lochy
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Toshimitsu Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom De Potter
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yves Thorrez
- Department of Information Technologies, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julien Magne
- Department of Cardiology, Dupuytren University Hospital 2, Limoges, France; INSERM U1094 and IRD, Limoges University, Limoges, France
| | - Johan De Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Huang W, Liu X, Cheng P, Li Y, Zhou H, Liu Y, Dong Y, Wang P, Xu C, Xu X. Prognostic value of plaque volume combined with CT fractional flow reserve in patients with suspected coronary artery disease. Clin Radiol 2023; 78:e1048-e1056. [PMID: 37788967 DOI: 10.1016/j.crad.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
AIM To investigate the prognostic value of quantitative plaque volume on coronary computed tomography (CT) angiography (CTA) combined with CT fractional flow reserve (CT-FFR) for major adverse cardiac events (MACE) in suspected coronary artery disease (CAD) patients. MATERIALS AND METHODS Patients who underwent coronary CTA with clinically suspected CAD were enrolled retrospectively in this study. Patients' baseline, Framingham Risk Score (FRS), coronary CTA plaque assessment, and CT-FFR were analysed retrospectively. Study outcomes included rehospitalisation and MACE (ST-segment elevation myocardial infarction, unstable angina, or non-ST-segment elevation myocardial infarction, revascularisation, and cardiac death). RESULTS There were 251 patients in the study, with a follow-up period of 1-6.58 years. Mean age was 61.16 ± 10.45 years and 146 (58%) patients were male. Higher CT-adapted Leaman score and quantitative plaque volume were found in patients with FRS >0.2 regardless of categorical or continuous variables. Coronary scores, quantitative plaque parameters, and CT-FFR were associated with MACE and rehospitalisation in univariate analysis. In model 1, CT-FFR was associated with MACE in multivariate Cox analysis when adjusted for FRS and CT-adapted Leaman score. Quantitative plaque parameters including calcified plaque volume, fibro-fatty plaque volume, low-attenuation plaque volume, non-calcified plaque volume, and total plaque volume were significantly associated with MACE and improved overall prognostic performance in a model adjusted for CT-FFR. CONCLUSION Additional quantitative plaque volume and CT-FFR further improve the predictive incremental value based on risk factor scores for prognostic prediction in patients. Adding quantitative plaque volume combined with CT-FFR analysis to anatomical and clinical assessment will be further beneficial to predict patients' prognosis of MACE.
Collapse
Affiliation(s)
- W Huang
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China
| | - X Liu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China
| | - P Cheng
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China
| | - Y Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Jianghan District, Wuhan 430022, China
| | - H Zhou
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China
| | - Y Liu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China
| | - Y Dong
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China
| | - P Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China
| | - C Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430070, China
| | - X Xu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Yanhu Avenue, Wuchang District, Wuhan 430077, China.
| |
Collapse
|
25
|
Tao M, Gier C, Al-Sadawi M, Dhaliwal S, Masson R, Rahman T, Gavalas M, Tam E, Mann N. Utility of Fractional Flow Reserve Computed Tomography Angiography in Patients With Stable Coronary Artery Disease. Am J Cardiol 2023; 208:31-36. [PMID: 37812863 DOI: 10.1016/j.amjcard.2023.07.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 10/11/2023]
Abstract
Coronary computed tomography angiography is a modality with high negative predictive value for evaluation of coronary artery disease (CAD). However, its diagnostic accuracy for obstructive CAD is limited by multiple factors. Fractional flow reserve (FFR) computed tomography (FFRCT) is an emerging analysis tool for identifying flow-limiting disease; nonetheless, the prognostic value of FFRCT is not well established. This meta-analysis aims to evaluate the association of FFRCT with clinical outcomes in patients with stable CAD. A literature search was conducted for studies reporting the association between FFRCT measurements and all-cause mortality, major adverse cardiovascular events (MACEs), acute myocardial infarction (AMI), and any need for coronary revascularization. Obstructive disease was defined as a FFR value ≤0.80; nonobstructive disease was defined as an FFR value >0.80. Ten studies were identified to meet the inclusion criteria; mean follow-up was 17 months (range, 3 to 56 months). There was no difference in risk of all-cause mortality between patients with obstructive and those with nonobstructive CAD on FFRCT. However, obstructive lesions were associated with increased risk of MACE, AMI, and any need for revascularization. FFRCT is a useful adjunctive modality for further risk stratification of patients with stable CAD. Obstructive lesions identified by FFRCT are associated with increased risk of MACE, AMI, and any need for revascularization.
Collapse
Affiliation(s)
- Michael Tao
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Chad Gier
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Mohammed Al-Sadawi
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Simrat Dhaliwal
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Ravi Masson
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Tahmid Rahman
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Michael Gavalas
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Edlira Tam
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York
| | - Noelle Mann
- Division of Cardiology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York..
| |
Collapse
|
26
|
Tomizawa N, Fujimoto S, Takahashi D, Nozaki Y, Fan R, Kudo A, Kawaguchi Y, Takamura K, Hiki M, Kadowaki S, Ikeda F, Kumamaru KK, Watada H, Minamino T, Aoki S. Energy loss is related to CT fractional flow reserve progression in type 2 diabetes mellitus patients. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 35:100328. [PMID: 38511178 PMCID: PMC10945932 DOI: 10.1016/j.ahjo.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 03/22/2024]
Abstract
Background We aimed to investigate the diagnostic value of energy loss (EL) and baseline CT fractional flow reserve (CT-FFR) computed using computational fluid dynamics to predict functional progression of coronary stenosis in patients with type 2 diabetes mellitus. Methods This single-center prospective study included 61 patients with type 2 diabetes mellitus (mean age, 61 years ±9 [SD]; 43 men) showing 20-70 % stenosis who underwent serial coronary CT performed at 2-year interval between October 2015 and March 2020. A mesh-free simulation was performed to calculate the CT-FFR and EL. Functional progression was defined as ≥ 0.05 decrease in CT-FFR on the second coronary CT. Models using baseline CT-FFR and EL were compared by analyzing the receiver operating characteristic (ROC) curve. Results Of the 94 vessels evaluated, 25 vessels (27 %) showed functional progression. EL at distal stenosis (ELdis) of vessels with functional progression was higher than that of vessels without functional progression (27.6 W/m3 [interquartile range (IQR): 15.0, 53.0] vs. 5.7 W/m3 [IQR: 2.3, 10.1], p < 0.001). Multivariable analysis showed that ELdis (per unit Ln(EL); odds ratio, 11.8; 95 % CI: 4.0-34.9; p < 0.001) remained as a predictor of functional progression after adjustment for diameter stenosis and baseline CT-FFR. The area under the ROC curve using ELdis (0.89; 95 % CI: 0.82-0.96) was higher than that using baseline CT-FFR (0.71; 95 % CI: 0.59-0.83; p < 0.001). Conclusion When ELdis and baseline CT-FFR were considered, ELdis was a better predictor of functional progression of coronary stenosis.
Collapse
Affiliation(s)
- Nobuo Tomizawa
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daigo Takahashi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yui Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ruiheng Fan
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kudo
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Kawaguchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takamura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Hiki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kadowaki
- Department of Diabetes, Endocrinology, and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fuki Ikeda
- Department of Diabetes, Endocrinology, and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako K. Kumamaru
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Diabetes, Endocrinology, and Metabolism, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Gräni C, Bigler MR, Kwong RY. Noninvasive Multimodality Imaging for the Assessment of Anomalous Coronary Artery. Curr Cardiol Rep 2023; 25:1233-1246. [PMID: 37851270 DOI: 10.1007/s11886-023-01948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE OF REVIEW Anomalous aortic origin of a coronary artery (AAOCA) is a rare congenital coronary anomaly with the potential to cause myocardial ischemia and adverse cardiac events. The presence of AAOCA anatomy itself does not necessarily implicate a need for revascularization. Therefore, the purpose of this review is to assess how noninvasive comprehensive anatomic- and physiologic evaluation may guide patient management. RECENT FINDINGS The assessment of AAOCA includes an accurate description of the anomalous origin/vessel course including anatomical high-risk features such as a slit-like ostium, proximal narrowing, elliptic vessel shape, acute take-off angle, intramural course, and possible concomitant coronary atherosclerosis and hemodynamics. Various cardiac imaging modalities offer unique advantages and capabilities in visualizing these anatomical and functional aspects of AAOCA. This review explored the role of noninvasive multimodality imaging in the characterization of AAOCA by highlighting the strengths, limitations, and potential applications of the current different cardiac imaging methods, with a focus on the pathophysiology of myocardial ischemia and stress testing protocols.
Collapse
Affiliation(s)
- Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marius R Bigler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Koo BK, Lee JM, Hwang D, Park S, Shiono Y, Yonetsu T, Lee SH, Kawase Y, Ahn JM, Matsuo H, Shin ES, Hu X, Ding D, Fezzi S, Tu S, Low AF, Kubo T, Nam CW, Yong AS, Harding SA, Xu B, Hur SH, Choo GH, Tan HC, Mullasari A, Hsieh IC, Kakuta T, Akasaka T, Wang J, Tahk SJ, Fearon WF, Escaned J, Park SJ. Practical Application of Coronary Physiologic Assessment: Asia-Pacific Expert Consensus Document: Part 1. JACC. ASIA 2023; 3:689-706. [PMID: 38095005 PMCID: PMC10715899 DOI: 10.1016/j.jacasi.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 12/30/2023]
Abstract
Coronary physiologic assessment is performed to measure coronary pressure, flow, and resistance or their surrogates to enable the selection of appropriate management strategy and its optimization for patients with coronary artery disease. The value of physiologic assessment is supported by a large body of evidence that has led to major recommendations in clinical practice guidelines. This expert consensus document aims to convey practical and balanced recommendations and future perspectives for coronary physiologic assessment for physicians and patients in the Asia-Pacific region based on updated information in the field that including both wire- and image-based physiologic assessment. This is Part 1 of the whole consensus document, which describes the general concept of coronary physiology, as well as practical information on the clinical application of physiologic indices and novel image-based physiologic assessment.
Collapse
Affiliation(s)
- Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Sungjoon Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Taishi Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seung Hun Lee
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Yoshiaki Kawase
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Jung-Min Ahn
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Daixin Ding
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, National University of Ireland, University Road, Galway, Ireland
| | - Simone Fezzi
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, National University of Ireland, University Road, Galway, Ireland
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Adrian F. Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Takashi Kubo
- Department of Cardiology, Tokyo Medical University, Hachioji Medical Center, Tokyo, Japan
| | - Chang-Wook Nam
- Department of Internal Medicine and Cardiovascular Research Institute, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Andy S.C. Yong
- Department of Cardiology, Concord Hospital, University of Sydney, Sydney, Australia
| | - Scott A. Harding
- Department of Cardiology, Wellington Hospital, Wellington, New Zealand
| | - Bo Xu
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Seung-Ho Hur
- Department of Internal Medicine and Cardiovascular Research Institute, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Gim Hooi Choo
- Department of Cardiology, Cardiac Vascular Sentral KL (CVSKL), Kuala Lumpur, Malaysia
| | - Huay Cheem Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Ajit Mullasari
- Department of Cardiology, Madras Medical Mission, Chennai, India
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Seung-Jea Tahk
- Department of Cardiology, Ajou University Medical Center, Suwon, Korea
| | - William F. Fearon
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, Madrid, Spain
| | - Seung-Jung Park
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Madsen KT, Nørgaard BL, Øvrehus KA, Jensen JM, Parner E, Grove EL, Fairbairn TA, Nieman K, Patel MR, Rogers C, Mullen S, Mickley H, Rohold A, Bøtker HE, Leipsic J, Sand NPR. Prognostic Value of Coronary CT Angiography-derived Fractional Flow Reserve on 3-year Outcomes in Patients with Stable Angina. Radiology 2023; 308:e230524. [PMID: 37698477 DOI: 10.1148/radiol.230524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Background The prognostic value of coronary CT angiography (CTA)-derived fractional flow reserve (FFR) beyond 1-year outcomes and in patients with high levels of coronary artery calcium (CAC) is uncertain. Purpose To assess the prognostic value of coronary CTA-derived FFR test results on 3-year clinical outcomes in patients with coronary stenosis and among a subgroup of patients with high levels of CAC. Materials and Methods This study represents a 3-year follow-up of patients with new-onset stable angina pectoris who were consecutively enrolled in the Assessing Diagnostic Value of Noninvasive CT-FFR in Coronary Care, known as ADVANCE (ClinicalTrials.gov: NCT02499679) registry, between December 2015 and October 2017 at three Danish sites. A high CAC was defined as an Agatston score of at least 400. A lesion-specific coronary CTA-derived FFR value of 2 cm with distal-to-stenosis value at or below 0.80 represented an abnormal test result. The primary end point was a composite of all-cause death and nonfatal spontaneous myocardial infarction. Event rates were estimated using the one-sample binomial model, and relative risk was compared between participants stratified by results of coronary CTA-derived FFR. Results This study included 900 participants: 523 participants with normal results (mean age, 64 years ± 9.6 [SD]; 318 male participants) and 377 with abnormal results from coronary CTA-derived FFR (mean age, 65 years ± 9.6; 264 male participants). The primary end point occurred in 11 of 523 (2.1%) and 25 of 377 (6.6%) participants with normal and abnormal coronary CTA-derived FFR results, respectively (relative risk, 3.1; 95% CI: 1.6, 6.3; P < .001). In participants with high CAC, the primary end point occurred in four of 182 (2.2%) and 19 of 212 (9.0%) participants with normal and abnormal coronary CTA-derived FFR results, respectively (relative risk, 4.1; 95% CI: 1.4, 11.8; P = .001). Conclusion In individuals with stable angina, a normal coronary CTA-derived FFR test result identified participants with a low 3-year risk of all-cause death or nonfatal spontaneous myocardial infarction, both in the overall cohort and in participants with high CAC scores. Clinical trial registration no. NCT02499679 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Sinitsyn in this issue.
Collapse
Affiliation(s)
- Kristian T Madsen
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Bjarne L Nørgaard
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Kristian A Øvrehus
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Jesper M Jensen
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Erik Parner
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Erik L Grove
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Timothy A Fairbairn
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Koen Nieman
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Manesh R Patel
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Campbell Rogers
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Sarah Mullen
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Hans Mickley
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Allan Rohold
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Hans Erik Bøtker
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Jonathon Leipsic
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| | - Niels Peter R Sand
- From the Department of Cardiology, University Hospital of Southern Denmark, Esbjerg, Finsensgade 35, Esbjerg DK-6700, Denmark (K.T.M., A.R., N.P.R.S.); Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (B.L.N., J.M.J., E.L.G., H.E.B.); Department of Clinical Medicine, Faculty of Health (B.L.N., E.L.G.), and Department of Public Health, Section for Biostatistics (E.P.), Aarhus University, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (K.A.Ø., H.M.); Department of Cardiology, Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom (T.A.F.); Departments of Cardiovascular Medicine and Radiology, Stanford University, Stanford, Calif (K.N.); Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.R.P.); HeartFlow Inc, Mountain View, Calif (C.R., S.M.); Department of Radiology, Providence Health Care, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (J.L.); and Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark (N.P.R.S.)
| |
Collapse
|
30
|
Liu Z, Ding Y, Dou G, Wang X, Shan D, He B, Jing J, Li T, Chen Y, Yang J. Global trans-lesional computed tomography-derived fractional flow reserve gradient is associated with clinical outcomes in diabetic patients with non-obstructive coronary artery disease. Cardiovasc Diabetol 2023; 22:186. [PMID: 37496009 PMCID: PMC10373274 DOI: 10.1186/s12933-023-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA)-derived fractional flow reserve (CT-FFR) enables physiological assessment and risk stratification, which is of significance in diabetic patients with nonobstructive coronary artery disease (CAD). We aim to evaluate prognostic value of the global trans-lesional CT-FFR gradient (GΔCT-FFR), a novel metric, in patients with diabetes without flow-limiting stenosis. METHODS Patients with diabetes suspected of having CAD were prospectively enrolled. GΔCT-FFR was calculated as the sum of trans-lesional CT-FFR gradient in all epicardial vessels greater than 2 mm. Patients were stratified into low-gradient without flow-limiting group (CT-FFR > 0.75 and GΔCT-FFR < 0.20), high-gradient without flow-limiting group (CT-FFR > 0.75 and GΔCT-FFR ≥ 0.20), and flow-limiting group (CT-FFR ≤ 0.75). Discriminant ability for major adverse cardiovascular events (MACE) prediction was compared among 4 models [model 1: Framingham risk score; model 2: model 1 + Leiden score; model 3: model 2 + high-risk plaques (HRP); model 4: model 3 + GΔCT-FFR] to determine incremental prognostic value of GΔCT-FFR. RESULTS Of 1215 patients (60.1 ± 10.3 years, 53.7% male), 11.3% suffered from MACE after a median follow-up of 57.3 months. GΔCT-FFR (HR: 2.88, 95% CI 1.76-4.70, P < 0.001) remained independent risk factors of MACE in multivariable analysis. Compared with the low-gradient without flow-limiting group, the high-gradient without flow-limiting group (HR: 2.86, 95% CI 1.75-4.68, P < 0.001) was associated with higher risk of MACE. Among the 4 risk models, model 4, which included GΔCT-FFR, showed the highest C-statistics (C-statistics: 0.75, P = 0.002) as well as a significant net reclassification improvement (NRI) beyond model 3 (NRI: 0.605, P < 0.001). CONCLUSIONS In diabetic patients with non-obstructive CAD, GΔCT-FFR was associated with clinical outcomes at 5 year follow-up, which illuminates a novel and feasible approach to improved risk stratification for a global hemodynamic assessment of coronary artery in diabetic patients.
Collapse
Affiliation(s)
- Zinuan Liu
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China
| | - Yipu Ding
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guanhua Dou
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xi Wang
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China
| | - Dongkai Shan
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China
| | - Bai He
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China
| | - Jing Jing
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China
| | - Tao Li
- Department of Radiology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China.
| | - Junjie Yang
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, #6 FuCheng Road, Haidian District, Beijing, China.
| |
Collapse
|
31
|
Liu Y, Jiang G, Wang X, An X, Wang F. The relationship between geometry and hemodynamics of the stenotic carotid artery based on computational fluid dynamics. Clin Neurol Neurosurg 2023; 231:107860. [PMID: 37390570 DOI: 10.1016/j.clineuro.2023.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/17/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE The purpose of this work was to investigate the relationship between the geometric factors and the hemodynamics of the stenotic carotid artery. METHODS We retrospectively reviewed data of patients with carotid stenosis (40%-95%). The Navier-Stokes equations were solved using ANSYS CFX 18.0. Correlation analysis was based on Spearman's test. Geometric variables (p < 0.1 in the univariate analysis) were entered into the logistical regression. A receiver-operating characteristics analysis was used to detect hemodynamically significant lesions. RESULTS 81 patients (96 arteries) were evaluated. The logistic regression analysis revealed that the translesional pressure ratio was significantly correlated with the stenosis degree (OR = 1.147, p < 0.001) and the angle between internal carotid artery and external carotid artery (angle γ) (OR = 0.933, p = 0.01). The translesional wall shear stress ratio was significantly correlated with stenosis degree (OR = 1.094, p < 0.001), lesion length (OR = 0.873, p = 0.01), lumen area of internal carotid artery (OR = 0.867, p = 0.002), and lumen area of common carotid artery (OR = 1.058, p = 0.01). For predicting low translesional pressure ratio, the AUC was 0.71 (p < 0.001) for angle γ, and was 0.87 (p < 0.001) for stenosis degree. For predicting high translesional wall shear stress ratio, the AUC was 0.62 (p = 0.04) for lumen area of internal carotid artery, and was 0.77 (p < 0.001) for stenosis degree. CONCLUSIONS Apart from stenosis degree, other geometric characteristics of lesions may also have an influence on hemodynamics of the stenotic carotid artery.
Collapse
Affiliation(s)
- Yongsheng Liu
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guinan Jiang
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuwen Wang
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangbo An
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Wang
- Department of Interventional Neuroradiology, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
32
|
Lobig F, Subramanian D, Blankenburg M, Sharma A, Variyar A, Butler O. To pay or not to pay for artificial intelligence applications in radiology. NPJ Digit Med 2023; 6:117. [PMID: 37353531 DOI: 10.1038/s41746-023-00861-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
|
33
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
34
|
Huang Z, Yang Y, Wang Z, Hu Y, Cao B, Li M, Du X, Wang X, Li Z, Wang W, Ding Y, Xiao J, Hu Y, Wang X. Comparison of prognostic value between CAD-RADS 1.0 and CAD-RADS 2.0 evaluated by convolutional neural networks based CCTA. Heliyon 2023; 9:e15988. [PMID: 37215852 PMCID: PMC10195897 DOI: 10.1016/j.heliyon.2023.e15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Objectives The aim of the present study was to investigate the prognostic value of the novel coronary artery disease reporting and data system (CAD-RADS) 2.0 compared with CAD-RADS 1.0 in patients with suspectedcoronary artery disease (CAD) evaluated by convolutional neural networks (CNN) based coronary computed tomography angiography (CCTA). Methods A total of 1796 consecutive inpatients with suspected CAD were evaluated by CCTA for CAD-RADS 1.0 and CAD-RADS 2.0 classifications. Kaplan-Meier and multivariate Cox models were used to estimate major adverse cardiovascular events (MACE) inclusive of all-cause mortality or myocardial infarction (MI). The C-statistic was used to assess the discriminatory ability of the two classifications. Results In total, 94 (5.2%) MACE occurred over the median follow-up of 45.25 months (interquartile range 43.53-46.63 months). The annualized MACE rate was 0.014 (95% CI: 0.011-0.017). Kaplan-Meier survival curves indicated that the CAD-RADS classification, segment involvement score (SIS) grade, and Computed Tomography Fractional Flow Reserve (CT-FFR) classification were all significantly associated with the increase in the cumulative MACE (all P < 0.001). CAD-RADS classification, SIS grade, and CT-FFR classification were significantly associated with endpoint in univariate and multivariate Cox analysis. CAD-RADS 2.0 showed a further incremental increase in the prognostic value in predicting MACE (c-statistic 0.702, 95% CI: 0.641-0.763, P = 0.047), compared with CAD-RADS 1.0. Conclusions The novel CAD-RADS 2.0 evaluated by CNN-based CCTA showed higher prognostic value of MACE than CAD-RADS 1.0 in patients with suspected CAD.
Collapse
Affiliation(s)
- Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Yang Yang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Zheng Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Yunting Hu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Beibei Cao
- Department of Community Health, Hanyang District Center For Disease Control and Prevention, Wuhan, Hubei, 430050, China
| | - Mei Li
- Department of Community Health, Hanyang District Center For Disease Control and Prevention, Wuhan, Hubei, 430050, China
| | - Xinyu Du
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xi Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Zuoqin Li
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Wanpeng Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Yi Ding
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Jianwei Xiao
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Yun Hu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| |
Collapse
|
35
|
Serruys PW, Kotoku N, Nørgaard BL, Garg S, Nieman K, Dweck MR, Bax JJ, Knuuti J, Narula J, Perera D, Taylor CA, Leipsic JA, Nicol ED, Piazza N, Schultz CJ, Kitagawa K, Bruyne BD, Collet C, Tanaka K, Mushtaq S, Belmonte M, Dudek D, Zlahoda-Huzior A, Tu S, Wijns W, Sharif F, Budoff MJ, Mey JD, Andreini D, Onuma Y. Computed tomographic angiography in coronary artery disease. EUROINTERVENTION 2023; 18:e1307-e1327. [PMID: 37025086 PMCID: PMC10071125 DOI: 10.4244/eij-d-22-00776] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 04/05/2023]
Abstract
Coronary computed tomographic angiography (CCTA) is becoming the first-line investigation for establishing the presence of coronary artery disease and, with fractional flow reserve (FFRCT), its haemodynamic significance. In patients without significant epicardial obstruction, its role is either to rule out atherosclerosis or to detect subclinical plaque that should be monitored for plaque progression/regression following prevention therapy and provide risk classification. Ischaemic non-obstructive coronary arteries are also expected to be assessed by non-invasive imaging, including CCTA. In patients with significant epicardial obstruction, CCTA can assist in planning revascularisation by determining the disease complexity, vessel size, lesion length and tissue composition of the atherosclerotic plaque, as well as the best fluoroscopic viewing angle; it may also help in selecting adjunctive percutaneous devices (e.g., rotational atherectomy) and in determining the best landing zone for stents or bypass grafts.
Collapse
Affiliation(s)
| | - Nozomi Kotoku
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Bjarne L Nørgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn, UK
| | - Koen Nieman
- Department of Radiology and Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Divaka Perera
- School of Cardiovascular Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | | | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D Nicol
- Royal Brompton Hospital, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Nicolo Piazza
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, Quebec, Canada
| | - Carl J Schultz
- Division of Internal Medicine, Medical School, University of Western Australia, Perth, WA, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Mie, Japan
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, VUB, Brussels, Belgium
| | | | | | - Darius Dudek
- Szpital Uniwersytecki w Krakowie, Krakow, Poland
| | - Adriana Zlahoda-Huzior
- Digital Innovations & Robotics Hub, Krakow, Poland
- Department of Measurement and Electronics, AGH University of Science and Technology, Krakow, Poland
| | - Shengxian Tu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - William Wijns
- Department of Cardiology, University of Galway, Galway, Ireland
- The Lambe Institute for Translational Medicine, The Smart Sensors Laboratory and CURAM, Galway, University of Galway, Galway, Ireland
| | - Faisal Sharif
- Department of Cardiology, University of Galway, Galway, Ireland
| | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Johan de Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, VUB, Brussels, Belgium
| | - Daniele Andreini
- Division of Cardiology and Cardiac Imaging, IRCCS Galeazzi Sant'Ambrogio, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, Galway, Ireland
| |
Collapse
|
36
|
Gao X, Wang R, Sun Z, Zhang H, Bo K, Xue X, Yang J, Xu L. A Novel CT Perfusion-Based Fractional Flow Reserve Algorithm for Detecting Coronary Artery Disease. J Clin Med 2023; 12:jcm12062154. [PMID: 36983156 PMCID: PMC10058085 DOI: 10.3390/jcm12062154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Background: The diagnostic accuracy of fractional flow reserve (FFR) derived from coronary computed tomography angiography (CCTA) (FFR-CT) needs to be further improved despite promising results available in the literature. While an innovative myocardial computed tomographic perfusion (CTP)-derived fractional flow reserve (CTP-FFR) model has been initially established, the feasibility of CTP-FFR to detect coronary artery ischemia in patients with suspected coronary artery disease (CAD) has not been proven. Methods: This retrospective study included 93 patients (a total of 103 vessels) who received CCTA and CTP for suspected CAD. Invasive coronary angiography (ICA) was performed within 2 weeks after CCTA and CTP. CTP-FFR, CCTA (stenosis ≥ 50% and ≥70%), ICA, FFR-CT and CTP were assessed by independent laboratory experts. The diagnostic ability of the CTP-FFR grouped by quantitative coronary angiography (QCA) in mild (30–49%), moderate (50–69%) and severe stenosis (≥70%) was calculated. The effect of calcification of lesions, grouped by FFR on CTP-FFR measurements, was also assessed. Results: On the basis of per-vessel level, the AUCs for CTP-FFR, CTP, FFR-CT and CCTA were 0.953, 0.876, 0.873 and 0.830, respectively (all p < 0.001). The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of CTP-FFR for per-vessel level were 0.87, 0.88, 0.87, 0.85 and 0.89 respectively, compared with 0.87, 0.54, 0.69, 0.61, 0.83 and 0.75, 0.73, 0.74, 0.70, 0.77 for CCTA ≥ 50% and ≥70% stenosis, respectively. On the basis of per-vessel analysis, CTP-FFR had higher specificity, accuracy and AUC compared with CCTA and also higher AUC compared with FFR-CT or CTP (all p < 0.05). The sensitivity and accuracy of CTP-FFR + CTP + FFR-CT were also improved over FFR-CT alone (both p < 0.05). It also had improved specificity compared with FFR-CT or CTP alone (p < 0.01). A strong correlation between CTP-FFR and invasive FFR values was found on per-vessel analysis (Pearson’s correlation coefficient 0.89). The specificity of CTP-FFR was higher in the severe calcification group than in the low calcification group (p < 0.001). Conclusions: A novel CTP-FFR model has promising value to detect myocardial ischemia in CAD, particularly in mild-to-moderate stenotic lesions.
Collapse
Affiliation(s)
- Xuelian Gao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Rui Wang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Hongkai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kairui Bo
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaofei Xue
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Junjie Yang
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
- Correspondence: (J.Y.); (L.X.)
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Correspondence: (J.Y.); (L.X.)
| |
Collapse
|
37
|
Wada S, Iwanaga Y, Nakai M, Nakao YM, Miyamoto Y, Noguchi T. Combination of coronary CT angiography, FFR CT , and risk factors in the prediction of major adverse cardiovascular events in patients suspected CAD. Clin Cardiol 2023; 46:494-501. [PMID: 36860175 DOI: 10.1002/clc.23989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND To examine the utility of fractional flow reserve by coronary computed tomography (CT) angiography (FFRCT ) for predicting major adverse cardiovascular events (MACE) in patients with suspected coronary artery disease (CAD). METHODS This was a nationwide multicenter prospective cohort study including consecutive 1187 patients aged 50-74 years with suspected CAD and had available coronary CT angiography (CCTA). In patients with ≥50% coronary artery stenosis (CAS), FFRCT was further analyzed. The Cox proportional hazards model was used to examine the association of FFRCT and cardiovascular risk factors with incident MACE within 2 years. RESULTS Among 933 patients with available information on MACE within 2 years after enrollment, the incidence rate of MACE was higher in 281 patients with CAS than in those without CAS (6.11 vs. 1.16 per 100 patient-year). In 241 patients with CAS, the Cox proportional hazards analysis showed that FFRCT as well as diabetes mellitus and low high-density lipoprotein cholesterol level were independently associated with incident MACE. Moreover, the hazard ratio was significantly higher in patients harboring all three factors compared to those harboring 0-2 of the three factors (6.01; 95% confidence interval: 2.77-13.03). CONCLUSIONS Combinatorial assessment using CCTA for stenosis, FFRCT , and risk factors was useful for more accurate prediction of MACE in patients with suspected CAD. Among patients with CAS, those with lower FFRCT , diabetes mellitus, and low high-density lipoprotein cholesterol level were at highest risk for MACE during the 2-year period following enrollment.
Collapse
Affiliation(s)
- Shinichi Wada
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshitaka Iwanaga
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Cardiology, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Michikazu Nakai
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoko M Nakao
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yoshihiro Miyamoto
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Teruo Noguchi
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | |
Collapse
|
38
|
Schwarz EL, Pegolotti L, Pfaller MR, Marsden AL. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. BIOPHYSICS REVIEWS 2023; 4:011301. [PMID: 36686891 PMCID: PMC9846834 DOI: 10.1063/5.0109400] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
Physics-based computational models of the cardiovascular system are increasingly used to simulate hemodynamics, tissue mechanics, and physiology in evolving healthy and diseased states. While predictive models using computational fluid dynamics (CFD) originated primarily for use in surgical planning, their application now extends well beyond this purpose. In this review, we describe an increasingly wide range of modeling applications aimed at uncovering fundamental mechanisms of disease progression and development, performing model-guided design, and generating testable hypotheses to drive targeted experiments. Increasingly, models are incorporating multiple physical processes spanning a wide range of time and length scales in the heart and vasculature. With these expanded capabilities, clinical adoption of patient-specific modeling in congenital and acquired cardiovascular disease is also increasing, impacting clinical care and treatment decisions in complex congenital heart disease, coronary artery disease, vascular surgery, pulmonary artery disease, and medical device design. In support of these efforts, we discuss recent advances in modeling methodology, which are most impactful when driven by clinical needs. We describe pivotal recent developments in image processing, fluid-structure interaction, modeling under uncertainty, and reduced order modeling to enable simulations in clinically relevant timeframes. In all these areas, we argue that traditional CFD alone is insufficient to tackle increasingly complex clinical and biological problems across scales and systems. Rather, CFD should be coupled with appropriate multiscale biological, physical, and physiological models needed to produce comprehensive, impactful models of mechanobiological systems and complex clinical scenarios. With this perspective, we finally outline open problems and future challenges in the field.
Collapse
Affiliation(s)
- Erica L. Schwarz
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Luca Pegolotti
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Martin R. Pfaller
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alison L. Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
39
|
Ihdayhid AR, Lan NSR, Figtree GA, Patel S, Arnott C, Hamilton-Craig C, Psaltis PJ, Leipsic J, Fairbairn T, Wahi S, Hillis GS, Rankin JM, Dwivedi G, Nicholls SJ. Contemporary Chest Pain Evaluation: The Australian Case for Cardiac CT. Heart Lung Circ 2023; 32:297-306. [PMID: 36610819 DOI: 10.1016/j.hlc.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
Computed tomography coronary angiography (CTCA) is a non-invasive diagnostic modality that provides a comprehensive anatomical assessment of the coronary arteries and coronary atherosclerosis, including plaque burden, composition and morphology. The past decade has witnessed an increase in the role of CTCA for evaluating patients with both stable and acute chest pain, and recent international guidelines have provided increasing support for a first line CTCA diagnostic strategy in select patients. CTCA offers some advantages over current functional tests in the detection of obstructive and non-obstructive coronary artery disease, as well as for ruling out obstructive coronary artery disease. Recent randomised trials have also shown that CTCA improves prognostication and guides the use of guideline-directed preventive therapies, leading to improved clinical outcomes. CTCA technology advances such as fractional flow reserve, plaque quantification and perivascular fat inflammation potentially allow for more personalised risk assessment and targeted therapies. Further studies evaluating demand, supply, and cost-effectiveness of CTCA for evaluating chest pain are required in Australia. This discussion paper revisits the evidence supporting the use of CTCA, provides an overview of its implications and limitations, and considers its potential role for chest pain evaluation pathways in Australia.
Collapse
Affiliation(s)
- Abdul Rahman Ihdayhid
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, Curtin University, Perth, WA, Australia.
| | - Nick S R Lan
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Gemma A Figtree
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Sanjay Patel
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clare Arnott
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Cardiovascular Division, The George Institute for Global Health, Sydney, NSW, Australia
| | | | - Peter J Psaltis
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jonathon Leipsic
- University of British Columbia, St Paul's Hospital, Vancouver, Canada
| | | | - Sudhir Wahi
- Princess Alexandra Hospital, University of Queensland, Brisbane, Qld, Australia
| | - Graham S Hillis
- Department of Cardiology and University of Western Australia, Royal Perth Hospital, Perth, WA, Australia
| | - James M Rankin
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA, Australia
| | - Girish Dwivedi
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA, Australia; Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
40
|
Long-term prognostic implications of hemodynamic and plaque assessment using coronary CT angiography. Atherosclerosis 2023; 373:58-65. [PMID: 36872186 DOI: 10.1016/j.atherosclerosis.2023.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND AND AIMS Hemodynamic and plaque characteristics can be analyzed using coronary CT angiography (CTA). We aimed to explore long-term prognostic implications of hemodynamic and plaque characteristics using coronary CT angiography (CTA). METHODS Invasive fractional flow reserve (FFR) and CTA-derived FFR (FFRCT) were undertaken for 136 lesions in 78 vessels and followed-up to 10 years until December 2020. FFRCT, wall shear stress (WSS), change in FFRCT across the lesion (ΔFFRCT), total plaque volume (TPV), percent atheroma volume (PAV), and low-attenuation plaque volume (LAPV) for target lesions [L] and vessels [V] were obtained by independent core laboratories. Their collective influence was evaluated for the clinical endpoints of target vessel failure (TVF) and target lesion failure (TLF). RESULTS During a median follow-up of 10.1 years, PAV[V] (per 10% increase, HR 2.32 [95% CI 1.11-4.86], p = 0.025), and FFRCT[V] (per 0.1 increase, HR 0.56 [95% CI 0.37-0.84], p = 0.006) were independent predictors of TVF for the per-vessel analysis, and WSS[L] (per 100 dyne/cm2 increase, HR 1.43 [1.09-1.88], p = 0.010), LAPV[L] (per 10 mm3 increase, HR 3.81 [1.16-12.5], p = 0.028), and ΔFFRCT[L] (per 0.1 increase, HR 1.39 [1.02-1.90], p = 0.040) were independent predictors of TLF for the per-lesion analysis after adjustment for clinical and lesion characteristics. The addition of both plaque and hemodynamic predictors improved the predictability for 10-year TVF and TLF of clinical and lesion characteristics (all p < 0.05). CONCLUSIONS Vessel- and lesion-level hemodynamic characteristics, and vessel-level plaque quantity, and lesion-level plaque compositional characteristics assessed by CTA offer independent and additive long-term prognostic value.
Collapse
|
41
|
Takagi H, Ihdayhid AR, Leipsic JA. Integration of fractional flow reserve derived from CT into clinical practice. J Cardiol 2023; 81:577-585. [PMID: 36805489 DOI: 10.1016/j.jjcc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/21/2023]
Abstract
Fractional flow reserve (FFR) is currently considered as the gold standard for revascularization decision-making in patients with stable coronary artery disease (CAD). The application of computational fluid dynamics to coronary computed tomography (CT) angiography (CCTA) enables calculation of FFR without additional testing, radiation exposure, contrast medium injection, and hyperemia (FFRCT). Although multiple diagnostic and clinical studies have enriched the scientific evidence, it is still challenging to integrate FFRCT into clinical practice. Both meticulous scientific backgrounds and precise anatomical data derived from CCTA are fundamental for FFRCT computation, and there are numerous factors impacting on FFRCT calculation and interpretation: coronary artery stenosis, calcium, atherosclerosis, luminal volume, and left ventricular myocardial mass. Further, there is a gap that clinicians using FFRCT need to recognize in interpretation of FFRCT results between diagnostic studies and clinical studies. In this review, we summarize multiple evidence related to FFRCT computation and interpretation to refine the FFRCT strategy in patients with stable CAD.
Collapse
Affiliation(s)
- Hidenobu Takagi
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Abdul Rahman Ihdayhid
- Department of Cardiology, Fiona Stanley Hospital, Harry Perkins Institute of Medical Research, Curtin University, Perth, Australia
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Burch RA, Siddiqui TA, Tou LC, Turner KB, Umair M. The Cost Effectiveness of Coronary CT Angiography and the Effective Utilization of CT-Fractional Flow Reserve in the Diagnosis of Coronary Artery Disease. J Cardiovasc Dev Dis 2023; 10:25. [PMID: 36661920 PMCID: PMC9863924 DOI: 10.3390/jcdd10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Given the high global disease burden of coronary artery disease (CAD), a major problem facing healthcare economic policy is identifying the most cost-effective diagnostic strategy for patients with suspected CAD. The aim of this review is to assess the long-term cost-effectiveness of coronary computed tomography angiography (CCTA) when compared with other diagnostic modalities and to define the cost and effective diagnostic utilization of computed tomography-fractional flow reserve (CT-FFR). A search was conducted through the MEDLINE database using PubMed with 16 of 119 manuscripts fitting the inclusion and exclusion criteria for review. An analysis of the data included in this review suggests that CCTA is a cost-effective strategy for both low risk acute chest pain patients presenting to the emergency department (ED) and low-to-intermediate risk stable chest pain outpatients. For patients with intermediate-to-high risk, CT-FFR is superior to CCTA in identifying clinically significant stenosis. In low-to-intermediate risk patients, CCTA provides a cost-effective diagnostic strategy with the potential to reduce economic burden and improve long-term health outcomes. CT-FFR should be utilized in intermediate-to-high risk patients with stenosis of uncertain clinical significance. Long-term analysis of cost-effectiveness and diagnostic utility is needed to determine the optimal balance between the cost-effectiveness and diagnostic utility of CT-FFR.
Collapse
Affiliation(s)
- Rex A. Burch
- Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwanee, GA 30024, USA
| | - Taha A. Siddiqui
- Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwanee, GA 30024, USA
| | - Leila C. Tou
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road BC-71, Boca Raton, FL 33431, USA
| | - Kiera B. Turner
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road BC-71, Boca Raton, FL 33431, USA
| | - Muhammad Umair
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, 601 N Caroline St, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Andreini D, Collet C, Leipsic J, Nieman K, Bittencurt M, De Mey J, Buls N, Onuma Y, Mushtaq S, Conte E, Bartorelli AL, Stefanini G, Sonck J, Knaapen P, Ghoshhajra B, Serruys PW. Pre-procedural planning of coronary revascularization by cardiac computed tomography: An expert consensus document of the Society of Cardiovascular Computed Tomography. EUROINTERVENTION 2022; 18:e872-e887. [PMID: 35994043 PMCID: PMC9743242 DOI: 10.4244/eij-e-22-00036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
Coronary CT angiography (CCTA) demonstrated high diagnostic accuracy for detecting coronary artery disease (CAD) and a key role in the management of patients with low-to-intermediate pretest likelihood of CAD. However, the clinical information provided by this noninvasive method is still regarded insufficient in patients with diffuse and complex CAD and for planning percutaneous coronary intervention (PCI) and surgical revascularization procedures. On the other hand, technology advancements have recently shown to improve CCTA diagnostic accuracy in patients with diffuse and calcific stenoses. Moreover, stress CT myocardial perfusion imaging (CT-MPI) and fractional flow reserve derived from CCTA (CT-FFR) have been introduced in clinical practice as new tools for evaluating the functional relevance of coronary stenoses, with the possibility to overcome the main CCTA drawback, i.e. anatomical assessment only. The potential value of CCTA to plan and guide interventional procedures lies in the wide range of information it can provide: a) detailed evaluation of plaque extension, volume and composition; b) prediction of procedural success of CTO PCI using scores derived from CCTA; c) identification of coronary lesions requiring additional techniques (e.g., atherectomy and lithotripsy) to improve stent implantation success by assessing calcium score and calcific plaque distribution; d) assessment of CCTA-derived Syntax Score and Syntax Score II, which allows to select the mode of revascularization (PCI or CABG) in patients with complex and multivessel CAD. The aim of this Consensus Document is to review and discuss the available data supporting the role of CCTA, CT-FFR and stress CT-MPI in the preprocedural and possibly intraprocedural planning and guidance of myocardial revascularization interventions.
Collapse
Affiliation(s)
- Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | | | - Jonathon Leipsic
- St Paul's Hospital & University of British Columbia, Vancouver, British Columbia Vancouver, Canada
| | - Koen Nieman
- Stanford University School of Medicine, Departments of Medicine and Radiology, USA
| | - Marcio Bittencurt
- Division of Internal Medicine, University Hospital, University of São Paulo, São Paulo, Brazil
- DASA, São Paulo, Brazil
- Division of Cardiology and the Heart and Vascular Institute, University of Pittsburgh Medical Center
| | - Johan De Mey
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussel, Belgium
| | - Nico Buls
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussel, Belgium
| | - Yoshinobu Onuma
- Clinical Science Institute, National University of Ireland, Galway, Ireland
| | | | - Edoardo Conte
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Antonio L Bartorelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLVZ Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
| | - Paul Knaapen
- Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Brian Ghoshhajra
- Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Patrick W Serruys
- Clinical Science Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
44
|
Zhang LJ, Tang C, Xu P, Guo B, Zhou F, Xue Y, Zhang J, Zheng M, Xu L, Hou Y, Lu B, Guo Y, Cheng J, Liang C, Song B, Zhang H, Hong N, Wang P, Chen M, Xu K, Liu S, Jin Z, Lu G. Coronary Computed Tomography Angiography-derived Fractional Flow Reserve: An Expert Consensus Document of Chinese Society of Radiology. J Thorac Imaging 2022; 37:385-400. [PMID: 36162081 DOI: 10.1097/rti.0000000000000679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive fractional flow reserve (FFR) measured by a pressure wire is a reference standard for evaluating functional stenosis in coronary artery disease. Coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) uses advanced computational analysis methods to noninvasively obtain FFR results from a single conventional coronary computed tomography angiography data to evaluate the hemodynamic significance of coronary artery disease. More and more evidence has found good correlation between the results of noninvasive CT-FFR and invasive FFR. CT-FFR has proven its potential in optimizing patient management, improving risk stratification and prognosis, and reducing total health care costs. However, there is still a lack of standardized interpretation of CT-FFR technology in real-world clinical settings. This expert consensus introduces the principle, workflow, and interpretation of CT-FFR; summarizes the state-of-the-art application of CT-FFR; and provides suggestions and recommendations for the application of CT-FFR with the aim of promoting the standardized application of CT-FFR in clinical practice.
Collapse
Affiliation(s)
- Long Jiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Chunxiang Tang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Pengpeng Xu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Bangjun Guo
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Fan Zhou
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Yi Xue
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University-Xi'an
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University
| | - Bin Lu
- Department of Radiology, State Key Laboratory and National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing
| | - Youmin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province
| | - Bin Song
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital
| | - Peijun Wang
- Department of Radiology, Tongji Hospital of Tongji University School of Medicine
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province
| | - Shiyuan Liu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
| | - Zhengyu Jin
- Department of Medical Imaging and Nuclear Medicine, Changzheng Hospital of Naval Medical University, Shanghai
| | - Guangming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| |
Collapse
|
45
|
Andreini D, Collet C, Leipsic J, Nieman K, Bittencurt M, De Mey J, Buls N, Onuma Y, Mushtaq S, Conte E, Bartorelli AL, Stefanini G, Sonck J, Knaapen P, Ghoshhajra B, Serruys P. Pre-procedural planning of coronary revascularization by cardiac computed tomography: An expert consensus document of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 2022; 16:558-572. [PMID: 36008263 DOI: 10.1016/j.jcct.2022.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Coronary CT angiography (CCTA) demonstrated high diagnostic accuracy for detecting coronary artery disease (CAD) and a key role in the management of patients with low-to-intermediate pretest likelihood of CAD. However, the clinical information provided by this noninvasive method is still regarded insufficient in patients with diffuse and complex CAD and for planning percutaneous coronary intervention (PCI) and surgical revascularization procedures. On the other hand, technology advancements have recently shown to improve CCTA diagnostic accuracy in patients with diffuse and calcific stenoses. Moreover, stress CT myocardial perfusion imaging (CT-MPI) and fractional flow reserve derived from CCTA (CT-FFR) have been introduced in clinical practice as new tools for evaluating the functional relevance of coronary stenoses, with the possibility to overcome the main CCTA drawback, i.e. anatomical assessment only. The potential value of CCTA to plan and guide interventional procedures lies in the wide range of information it can provide: a) detailed evaluation of plaque extension, volume and composition; b) prediction of procedural success of CTO PCI using scores derived from CCTA; c) identification of coronary lesions requiring additional techniques (e.g., atherectomy and lithotripsy) to improve stent implantation success by assessing calcium score and calcific plaque distribution; d) assessment of CCTA-derived Syntax Score and Syntax Score II, which allows to select the mode of revascularization (PCI or CABG) in patients with complex and multivessel CAD. The aim of this Consensus Document is to review and discuss the available data supporting the role of CCTA, CT-FFR and stress CT-MPI in the preprocedural and possibly intraprocedural planning and guidance of myocardial revascularization interventions.
Collapse
Affiliation(s)
- Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy.
| | | | - Jonathon Leipsic
- St Paul's Hospital & University of British Columbia, Vancouver, British Columbia, Vancouver, Canada
| | - Koen Nieman
- Stanford University School of Medicine, Departments of Medicine and Radiology, USA
| | - Marcio Bittencurt
- Division of Internal Medicine, University Hospital, University of São Paulo, São Paulo, Brazil; DASA, São Paulo, Brazil; Division of Cardiology and the Heart and Vascular Institute, University of Pittsburgh Medical Center, USA
| | - Johan De Mey
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussel, Belgium
| | - Nico Buls
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussel, Belgium
| | - Yoshinobu Onuma
- Clinical Science Institute, National University of Ireland, Galway, Ireland
| | | | - Edoardo Conte
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Antonio L Bartorelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLVZ Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
| | - Paul Knaapen
- Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - Brian Ghoshhajra
- Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Patrick Serruys
- Clinical Science Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
46
|
Tækker Madsen K, Veien KT, Larsen P, Husain M, Deibjerg L, Junker A, Kusk MW, Thomsen KK, Rohold A, Jensen LO, Sand NPR. Coronary CT angiography-derived fractional flow reserve in-stable angina: association with recurrent chest pain. Eur Heart J Cardiovasc Imaging 2022; 23:1511-1519. [PMID: 34661645 PMCID: PMC9584620 DOI: 10.1093/ehjci/jeab198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023] Open
Abstract
AIMS The aim of this study was to evaluate the association between coronary computed tomography angiography (CCTA)-derived fractional flow reserve (FFRCT) and recurrent chest pain (CP) at 1-year follow-up in patients with stable angina pectoris (SAP). METHODS AND RESULTS Study of patients (n = 267) with SAP who underwent CCTA and FFRCT testing; 236 (88%) underwent invasive coronary angiography; and 87 (33%) were revascularized. Symptomatic status at 1-year follow-up was gathered by a structured interview. Three different FFRCT algorithms were applied using the following criteria for abnormality: (i) 2 cm-FFRCT ≤0.80; (ii) d-FFRCT ≤0.80; and (iii) a combination in which both a d-FFRCT ≤0.80 and a ΔFFRCT ≥0.06 must be present in the same vessel (c-FFRCT). Patients were classified into two groups based on the FFRCT test result and revascularization: completely revascularized/normal (CRN), patients in whom all coronary arteries with an abnormal FFRCT test result were revascularized or patients with completely normal FFRCT test results, and incompletely revascularized (IR), patients in whom ≥1 coronary artery with an abnormal FFRCT test result was not revascularized. Recurrent CP was present in 62 (23%) patients. Classification of patients (CRN or IR) was significantly associated with recurrent CP for all applied FFRCT interpretation algorithms. When applying the c-FFRCT algorithm, the association with recurrent CP was found, irrespective of the extent of coronary calcification and the degree of coronary stenosis. A negative association between per-patient minimal d-FFRCT and recurrent CP was demonstrated, P < 0.005. CONCLUSION An abnormal FFRCT test result is associated with an increased risk of recurrent CP in patients with new-onset SAP.
Collapse
Affiliation(s)
- Kristian Tækker Madsen
- Department of Cardiology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg DK-6700, Denmark
| | | | - Pia Larsen
- Department of Mental Health Services, Region of Southern Denmark, Odense, Denmark
| | - Majed Husain
- Department of Cardiology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg DK-6700, Denmark
| | - Lone Deibjerg
- Department of Cardiology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg DK-6700, Denmark
| | - Anders Junker
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Martin Weber Kusk
- Department of Radiology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Kristian Korsgaard Thomsen
- Department of Cardiology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg DK-6700, Denmark
| | - Allan Rohold
- Department of Cardiology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg DK-6700, Denmark
| | | | - Niels Peter Rønnow Sand
- Department of Cardiology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg DK-6700, Denmark
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
47
|
Fractional Flow Reserve (FFR) Estimation from OCT-Based CFD Simulations: Role of Side Branches. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 36313242 PMCID: PMC9611764 DOI: 10.3390/app12115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The computational fluid dynamic method has been widely used to quantify the hemodynamic alterations in a diseased artery and investigate surgery outcomes. The artery model reconstructed based on optical coherence tomography (OCT) images generally does not include the side branches. However, the side branches may significantly affect the hemodynamic assessment in a clinical setting, i.e., the fractional flow reserve (FFR), defined as the ratio of mean distal coronary pressure to mean aortic pressure. In this work, the effect of the side branches on FFR estimation was inspected with both idealized and optical coherence tomography (OCT)-reconstructed coronary artery models. The electrical analogy of blood flow was further used to understand the impact of the side branches (diameter and location) on FFR estimation. Results have shown that the side branches decrease the total resistance of the vessel tree, resulting in a higher inlet flowrate. The side branches located at the downstream of the stenosis led to a lower FFR value, while the ones at the upstream had a minimal impact on the FFR estimation. Side branches with a diameter larger than one third of the main vessel diameter are suggested to be considered for a proper FFR estimation. The findings in this study could be extended to other coronary artery imaging modalities and facilitate treatment planning.
Collapse
|
48
|
Zhu XL, Pang ZY, Jiang W, Dong TY. Synergistic prognostic value of coronary distensibility index and fractional flow reserve based cCTA for major adverse cardiac events in patients with Coronary artery disease. BMC Cardiovasc Disord 2022; 22:220. [PMID: 35568818 PMCID: PMC9107240 DOI: 10.1186/s12872-022-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary distensibility index (CDI), as an early predictor of cardiovascular diseases, has the potential to complement coronary computed tomography angiography (cCTA)-derived fractional flow reserve (CT-FFR) for predicting major adverse cardiac events (MACEs). Thus, the prognostic value of CT-FFR combined with CDI for MACEs is worth exploring. METHODS Patients with a moderate or severe single left anterior descending coronary artery stenosis were included and underwent FFR and CDI analysis based on cCTA, followed up at least 1 year, and recorded MACEs. Multivariate logistic regression analysis was performed to determine independent predictors of MACEs. The area under of receiver operating characteristic (ROC) curve was used to evaluated evaluate the diagnostic performance of CT-FFR, CDI, and a combination of the two. RESULTS All the vessel-specific data were from LAD. 150 patients were analysed. 55 (37%) patients experienced MACEs during follow-up. Patients with CT-FFR ≤ 0.8 had higher percentage of MACEs compared with CT-FFR > 0.8 (56.3% vs.7.3%, p < 0.05). Patients' CDI was significantly decreased in MACEs group compared with non-MACEs group (p < 0.05). Multivariate analysis revealed that diabetes (p = 0.025), triglyceride (p = 0.015), CT-FFR ≤ 0.80 (p = 0.038), and CDI (p < 0.001) are independent predictors of MACEs. According to ROC curve analysis, CT-FFR combined CDI showed incremental diagnostic performance over CT-FFR alone for prediction of MACEs (AUC = 0.831 vs. 0.656, p = 0.0002). CONCLUSION Our study provides initial evidence that combining CDI with CT-FFR shows incremental discriminatory power for MACEs over CT-FFR alone, independent of clinical risk factors. Diabetes and triglyceride are also associated with MACEs.
Collapse
Affiliation(s)
- Xiao-long Zhu
- Department of Medical Imaging, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou, 075000 Hebei China
| | - Zhi-ying Pang
- Graduate School of Hebei North University, Hebei, China
| | - Wei Jiang
- The Medical Engineering Office, The First Affiliated Hospital of Hebei North University, Hebei, China
| | - Ting-yu Dong
- Graduate School of Hebei North University, Hebei, China
| |
Collapse
|
49
|
Ihdayhid AR, Fairbairn TA, Gulsin GS, Tzimas G, Danehy E, Updegrove A, Jensen JM, Taylor CA, Bax JJ, Sellers SL, Leipsic JA, Nørgaard BL. Cardiac computed tomography-derived coronary artery volume to myocardial mass. J Cardiovasc Comput Tomogr 2022; 16:198-206. [PMID: 34740557 DOI: 10.1016/j.jcct.2021.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
In the absence of disease impacting the coronary arteries or myocardium, there exists a linear relationship between vessel volume and myocardial mass to ensure balanced distribution of blood supply. This balance may be disturbed in diseases of either the coronary artery tree, the myocardium, or both. However, in contemporary evaluation the coronary artery anatomy and myocardium are assessed separately. Recently the coronary lumen volume to myocardial mass ratio (V/M), measured noninvasively using coronary computed tomography angiography (CTCA), has emerged as an integrated measure of myocardial blood supply and demand in vivo. This has the potential to yield new insights into diseases where this balance is altered, thus impacting clinical diagnoses and management. In this review, we outline the scientific methodology underpinning CTCA-derived measurement of V/M. We describe recent studies describing alterations in V/M across a range of cardiovascular conditions, including coronary artery disease, cardiomyopathies and coronary microvascular dysfunction. Lastly, we highlight areas of unmet research need and future directions, where V/M may further enhance our understanding of the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Abdul Rahman Ihdayhid
- Department of Cardiology, Fiona Stanley Hospital, Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Australia.
| | - Timothy A Fairbairn
- Department of Cardiology, University of Liverpool, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.
| | - Gaurav S Gulsin
- University of Leicester and the Leicester NIHR Biomedical Research Centre, Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom; Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Georgios Tzimas
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Heart Vessels, Cardiology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | | | | | - Jesper M Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Jeroen J Bax
- Leiden University, Department of Medicine, Leiden, Netherlands.
| | - Stephanie L Sellers
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bjarne L Nørgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
50
|
Chua A, Ihdayhid AR, Linde JJ, Sørgaard M, Cameron JD, Seneviratne SK, Ko BS. Diagnostic Performance of CT-Derived Fractional Flow Reserve in Australian Patients Referred for Invasive Coronary Angiography. Heart Lung Circ 2022; 31:1102-1109. [PMID: 35501246 DOI: 10.1016/j.hlc.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2021] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-invasive computed tomography (CT)-derived fractional flow reserve (FFRCT) is computed from standard coronary CT angiography (CTA) datasets and provides accurate vessel-specific ischaemia assessment of coronary artery disease (CAD). To date, the technique and its diagnostic performance has not been verified in the Australian clinical context. The aim of this study was to describe and compare the diagnostic performance of FFRCT and CTA for the detection of vessel-specific ischaemia as determined by invasive fractional flow reserve (FFR) in the Australian patient population. METHODS One-hundred-and-nine patients (219 vessels) referred for clinically mandated invasive angiography were retrospectively assessed. Each patient underwent research mandated CTA and FFRCT within 3 months of invasive angiography and invasive FFR assessment. Independent core laboratory assessments were made to determine visual CTA stenosis, FFRCT and invasive FFR values. FFRCT values were matched with the corresponding invasive FFR measurement taken at the given wire position. Visual CTA stenosis ≥50%, FFRCT values ≤0.8 and invasive FFR values ≤0.8 were considered significant for ischaemia. RESULTS Per vessel accuracy, sensitivity, specificity, positive predictive value and negative predictive value of FFRCT were 80.4%, 80.0%, 80.6%, 64.9% and 90.0% respectively. Corresponding values for CTA were 75.1%, 87.1%, 69.2%, 58.1% and 91.7% respectively. In receiver operating characteristic curve analysis, FFRCT demonstrated superior area under the curve (AUC) compared with CTA in both per vessel (0.87 vs 0.77, p=0.004) and per patient analysis (0.86 vs 0.74, p=0.011). Per vessel AUC of combined CTA and FFRCT was superior to CTA alone (0.89 vs 0.77, p<0.0001). CONCLUSION In this cohort of Australian patients, the diagnostic performance of FFRCT was found to be comparable to existing international literature, with demonstrated improvement in performance compared with CTA alone for the detection of vessel-specific ischaemia.
Collapse
Affiliation(s)
- Alexander Chua
- Monash Cardiovascular Research Centre, Monash University and MonashHEART, Monash Health, Melbourne, Vic, Australia
| | - Abdul-Rahman Ihdayhid
- Monash Cardiovascular Research Centre, Monash University and MonashHEART, Monash Health, Melbourne, Vic, Australia
| | - Jesper J Linde
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Sørgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - James D Cameron
- Monash Cardiovascular Research Centre, Monash University and MonashHEART, Monash Health, Melbourne, Vic, Australia
| | - Sujith K Seneviratne
- Monash Cardiovascular Research Centre, Monash University and MonashHEART, Monash Health, Melbourne, Vic, Australia
| | - Brian S Ko
- Monash Cardiovascular Research Centre, Monash University and MonashHEART, Monash Health, Melbourne, Vic, Australia.
| |
Collapse
|