1
|
Dall'Armellina E, Plein S. Diffusion tensor imaging to assess myocardial microstructure after infarction by magnetic resonance. Eur Heart J 2025; 46:470-472. [PMID: 39688390 DOI: 10.1093/eurheartj/ehae806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Affiliation(s)
- Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic Medicine, Biomedical Imaging Science Department, University of Leeds, Leeds, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, Biomedical Imaging Science Department, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Zhang H, Ma X, Zhao L. Editorial for "Second-Order Motion-Compensated Echo-Planar Cardiac Diffusion-Weighted MRI: Usefulness of Compressed Sensitivity Encoding". J Magn Reson Imaging 2025; 61:319-320. [PMID: 38662936 DOI: 10.1002/jmri.29410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 12/15/2024] Open
Affiliation(s)
- Hongbo Zhang
- Department of Interventional Diagnosis and Treatment, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaohai Ma
- Department of Interventional Diagnosis and Treatment, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Chen R, Luo R, Xu Y, Ou J, Li X, Yang Y, Cao L, Wu Z, Luo W, Liu H. Second-Order Motion-Compensated Echo-Planar Cardiac Diffusion-Weighted MRI: Usefulness of Compressed Sensitivity Encoding. J Magn Reson Imaging 2025; 61:305-318. [PMID: 38587265 DOI: 10.1002/jmri.29383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Cardiac diffusion-weighted imaging (DWI) using second-order motion-compensated spin echo (M2C) can provide noninvasive in-vivo microstructural assessment, but limited by relatively low signal-to-noise ratio (SNR). Echo-planar imaging (EPI) with compressed sensitivity encoding (EPICS) could address these issues. PURPOSE To combine M2C DWI and EPCIS (M2C EPICS DWI), and compare image quality for M2C DWI. STUDY TYPE Prospective. POPULATION Ten ex-vivo hearts, 10 healthy volunteers (females, 5 [50%]; mean ± SD of age, 25 ± 4 years), and 12 patients with diseased hearts (female, 1 [8.3%]; mean ± SD of age, 44 ± 16 years; including coronary artery heart disease, congenital heart disease, dilated cardiomyopathy, amyloidosis, and myocarditis). FIELD STRENGTH/SEQUENCE 3-T, M2C EPICS DWI, and M2C DWI. ASSESSMENT The apparent SNR (aSNR) and the rating scores were used to evaluate and compared image quality of all three groups. The aSNR was calculated using aSNR = Mean intensity myocardium / Standard deviation myocardium , and the myocardium was segmented manually. Three observers independently rated subjective image quality using a 5-point Likert scale. STATISTICAL TESTS Bland-Altman analysis and paired t-tests. The threshold for statistical significance was set at P < 0.05. RESULTS In healthy volunteers, the aSNR with a b-value of 450 s/mm2 acquired by M2C EPICS DWI was significantly higher than M2C DWI at in-plane resolutions of 3.0 × 3.0, 2.5 × 2.5, and 2.0 × 2.0 mm2. In patients with diseased hearts, the aSNR ofM2C EPICS DWI was also significantly higher than that for M2C DWI (bias of M2C EPICS-M2C = 1.999, 95% limits of agreement, 0.362 to 3.636; mean ± SD, 7.80 ± 1.37 vs. 5.80 ± 0.81). The ADC values of M2C EPICS was significantly higher than M2C DWI in in-vivo hearts. Over 80% of the images with rating scores for M2C EPICS DWI were higher than M2C DWI in in-vivo hearts. DATA CONCLUSION Cardiac imaging by M2C EPICS DWI may demonstrate better overall image quality and higher aSNR than M2C DWI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ruohong Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yongzhou Xu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Jiehao Ou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liqi Cao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Wu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Wei Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Dall'Armellina E, Ennis DB, Axel L, Croisille P, Ferreira PF, Gotschy A, Lohr D, Moulin K, Nguyen CT, Nielles-Vallespin S, Romero W, Scott AD, Stoeck C, Teh I, Tunnicliffe EM, Viallon M, Wang V, Young AA, Schneider JE, Sosnovik DE. Cardiac diffusion-weighted and tensor imaging: A consensus statement from the special interest group of the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson 2024; 27:101109. [PMID: 39442672 PMCID: PMC11759557 DOI: 10.1016/j.jocmr.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Thanks to recent developments in cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the tridimensional microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intracellular, extracellular, and intravascular spaces. CMR can determine changes in microstructure by quantifying: a) mean diffusivity (MD)-measuring the magnitude of diffusion; b) fractional anisotropy (FA)-specifying the directionality of diffusion; c) helix angle (HA) and transverse angle (TA)-indicating the orientation of the cardiomyocytes; d) absolute sheetlet angle (E2A) and E2A mobility-measuring the alignment and systolic-diastolic mobility of the sheetlets, respectively. This document provides recommendations for both clinical and research cDWI and cDTI, based on published evidence when available and expert consensus when not. It introduces the cardiac microstructure focusing on the cardiomyocytes and their role in cardiac physiology and pathophysiology. It highlights methods, observations, and recommendations in terminology, acquisition schemes, postprocessing pipelines, data analysis, and interpretation of the different biomarkers. Despite the ongoing challenges discussed in the document and the need for ongoing technical improvements, it is clear that cDTI is indeed feasible, can be accurately and reproducibly performed and, most importantly, can provide unique insights into myocardial pathophysiology.
Collapse
Affiliation(s)
- Erica Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK.
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Leon Axel
- Department of Radiology, NYU Grossman School of Medicine, New York, New York, USA; Division of Cardiology, Department of Internal Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42270, Saint-Etienne, France; Department of Radiology, University Hospital Saint-Etienne, F-42055 Saint-Etienne, France
| | - Pedro F Ferreira
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexander Gotschy
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Kevin Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher T Nguyen
- Harvard Medical School, Boston, Massachusetts, USA; Department of Biomedical Engineering, Case Western Reserve University and Lerner Research Institute Cleveland Clinic, Cleveland, Ohio, USA; Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sonja Nielles-Vallespin
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - William Romero
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42270, Saint-Etienne, France
| | - Andrew D Scott
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Christian Stoeck
- Center for Preclinical Development, University of Zurich and University Hospital Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - Elizabeth M Tunnicliffe
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42270, Saint-Etienne, France; Department of Radiology, University Hospital Saint-Etienne, F-42055 Saint-Etienne, France
| | - Victoria Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Jürgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - David E Sosnovik
- Martinos Center for Biomedical Imaging and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Scott AD, Wen K, Luo Y, Huang J, Gover S, Soundarajan R, Ferreira PF, Pennell DJ, Nielles-Vallespin S. The effects of field strength on stimulated echo and motion-compensated spin-echo diffusion tensor cardiovascular magnetic resonance sequences. J Cardiovasc Magn Reson 2024; 26:101052. [PMID: 38936803 PMCID: PMC11283220 DOI: 10.1016/j.jocmr.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND In-vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) is an emerging technique for microstructural tissue characterization in the myocardium. Most studies are performed at 3T, where higher signal-to-noise ratio (SNR) should benefit this signal-starved method. However, a few studies have suggested that DT-CMR is possible at 1.5T, where echo planar imaging artifacts may be less severe and 1.5T hardware is more widely available. METHODS We recruited 20 healthy volunteers and performed mid-ventricular short-axis DT-CMR at 1.5T and 3T. Acquisitions were performed at peak systole and end-diastole using both stimulated echo acquisition mode (STEAM) and motion-compensated spin-echo (MCSE) sequences at matched spatial resolutions. DT-CMR parameters were averaged over the left ventricle and compared between 1.5T and 3T sequences using both datasets with and without the blow reference data included. RESULTS Eleven (1.5T) and 12 (3T) diastolic MCSE acquisitions were rejected as the helix angle (HA) demonstrated <50% normal appearance circumferentially or the acquisition was abandoned due to poor image quality; a maximum of one acquisition was rejected for other datasets. Subjective HA map quality was significantly better at 3T than 1.5T for STEAM (p < 0.05), but not for MCSE and other DT-CMR quality measures were consistent with improvements in STEAM at 3T over 1.5T. When blow data were excluded, no significant differences in mean diffusivity were observed between field strengths, but fractional anisotropy was significantly higher at 1.5T than 3T for STEAM systole (p < 0.05). Absolute second eigenvector orientation (E2A, sheetlet angle) was significantly higher at 1.5T than 3T for MCSE systole and STEAM diastole, but significantly lower for STEAM systole (all p < 0.05). Transmural HA distribution was less steep at 1.5T than 3T for STEAM diastole data (p < 0.05). SNR was higher at 3T than 1.5T for all acquisitions (p < 0.05). CONCLUSION While 3T provides benefits in terms of SNR, both STEAM and MCSE can be performed at 1.5T. However, MCSE is unreliable in diastole at both field strengths and STEAM benefits from the improved SNR at 3T over 1.5T. Future clinical research studies may be able to leverage the wider availability of 1.5T CMR hardware where MCSE acquisitions are desirable.
Collapse
Affiliation(s)
- Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| | - Ke Wen
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK; EPSRC Centre for Doctoral Training in Smart Medical Imaging, King's College London and Imperial College London, 5th Floor Beckett House, 1 Lambeth Palace Road, London SE1 7EU, UK
| | - Yaqing Luo
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK; EPSRC Centre for Doctoral Training in Smart Medical Imaging, King's College London and Imperial College London, 5th Floor Beckett House, 1 Lambeth Palace Road, London SE1 7EU, UK
| | - Jiahao Huang
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ, UK
| | - Simon Gover
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
| | - Rajkumar Soundarajan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
6
|
Wang X, Pu J. Recent Advances in Cardiac Magnetic Resonance for Imaging of Acute Myocardial Infarction. SMALL METHODS 2024; 8:e2301170. [PMID: 37992241 DOI: 10.1002/smtd.202301170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Indexed: 11/24/2023]
Abstract
Acute myocardial infarction (AMI) is one of the primary causes of death worldwide, with a high incidence and mortality rate. Assessment of the infarcted and surviving myocardium, along with microvascular obstruction, is crucial for risk stratification, treatment, and prognosis in patients with AMI. Nonionizing radiation, excellent soft tissue contrast resolution, a large field of view, and multiplane imaging make cardiac magnetic resonance (CMR) a "one-stop" method for assessing cardiac structure, function, perfusion, and metabolism. Hence, this imaging technology is considered the "gold standard" for evaluating myocardial function and viability in AMI. This review critically compares the advantages and disadvantages of CMR with other cardiac imaging technologies, and relates the imaging findings to the underlying pathophysiological processes in AMI. A more thorough understanding of CMR technology will clarify their advanced clinical diagnosis and prognostic assessment applications, and assess the future approaches and challenges of CMR in the setting of AMI.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Jun Pu
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| |
Collapse
|
7
|
Park CH, Kim PK, Kim Y, Kim TH, Hong YJ, Ahn E, Cha YJ, Choi BW. Development and validation of cardiac diffusion weighted magnetic resonance imaging for the diagnosis of myocardial injury in small animal models. Sci Rep 2024; 14:3552. [PMID: 38346998 PMCID: PMC10861543 DOI: 10.1038/s41598-024-52746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Cardiac diffusion weighted-magnetic resonance imaging (DWI) has slowly developed due to its technical difficulties. However, this limitation could be overcome by advanced techniques, including a stimulated echo technique and a gradient moment nulling technique. This study aimed to develop and validate a high-order DWI sequence, using echo-planar imaging (EPI) and second-order motion-compensated (M012) diffusion gradient applied to cardiac imaging in small-sized animals with fast heart and respiratory rates, and to investigate the feasibility of cardiac DWI, diagnosing acute myocardial injury in isoproterenol-induced myocardial injury rat models. The M012 diffusion gradient sequence was designed for diffusion tensor imaging of the rat myocardium and validated in the polyvinylpyrrolidone phantom. Following sequence optimization, 23 rats with isoproterenol-induced acute myocardial injury and five healthy control rats underwent cardiac MRI, including cine imaging, T1 mapping, and DWI. Diffusion gradient was applied using a 9.4-T MRI scanner (Bruker, BioSpec 94/20, gradient amplitude = 440 mT/m, maximum slew rate = 3440 T/m/s) with double gating (electrocardiogram and respiratory gating). Troponin I was used as a serum biomarker for myocardial injury. Histopathologic examination of the heart was subsequently performed. The developed DWI sequence using EPI and M012 provided the interpretable images of rat hearts. The apparent diffusion coefficient (ADC) values were significantly higher in rats with acute myocardial injury than in the control group (1.847 ± 0.326 * 10-3 mm2/s vs. 1.578 ± 0.144 * 10-3 mm2/s, P < 0.001). Troponin I levels were increased in the blood samples of rats with acute myocardial injury (P < 0.001). Histopathologic examinations detected myocardial damage and subendocardial fibrosis in rats with acute myocardial injury. The newly developed DWI technique has the ability to detect myocardial injury in small animal models, representing high ADC values on the myocardium with isoproterenol-induced injury.
Collapse
Affiliation(s)
- Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pan Ki Kim
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunkyung Ahn
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Byoung Wook Choi
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Małek ŁA, Śpiewak M. Isolated myocardial edema in cardiac magnetic resonance - in search of a management strategy. Trends Cardiovasc Med 2023; 33:395-402. [PMID: 35405307 DOI: 10.1016/j.tcm.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 01/04/2023]
Abstract
Isolated myocardial edema not accompanied by late gadolinium enhancement (LGE) may be occasionally found on cardiac magnetic resonance (CMR). This type of picture may be encountered in patients with suspected myocarditis, post some acute cardiac events, with cardiac allograft rejection or even in athletes after an extreme exercise. Currently, there is no clear management strategy for this type of incidental finding. In this narrative review we discuss the methods and pitfalls of edema detection with means of CMR, review published data on isolated myocardial edema for each of the most probable clinical scenarios and propose a structured clinical decision-making algorithm to help clinicians navigate through this type of CMR result. Finally, we highlight the most important gaps in evidence related to isolated myocardial edema without fibrosis, where further research is particularly needed.
Collapse
Affiliation(s)
- Łukasz A Małek
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland.
| | - Mateusz Śpiewak
- Magnetic Resonance Unit, Department of Radiology, National Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
9
|
Ghekiere O, Herbots L, Peters B, Berg BV, Dresselaers T, Franssen W, Padovani B, Ducreux D, Ferrari E, Nchimi A, Demanez S, De Bosscher R, Willems R, Heidbuchel H, La Gerche A, Claessen G, Bogaert J, Eijnde BO. Exercise-induced myocardial T1 increase and right ventricular dysfunction in recreational cyclists: a CMR study. Eur J Appl Physiol 2023; 123:2107-2117. [PMID: 37480391 PMCID: PMC10492712 DOI: 10.1007/s00421-023-05259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Although cardiac troponin I (cTnI) increase following strenuous exercise has been observed, the development of exercise-induced myocardial edema remains unclear. Cardiac magnetic resonance (CMR) native T1/T2 mapping is sensitive to the pathological increase of myocardial water content. Therefore, we evaluated exercise-induced acute myocardial changes in recreational cyclists by incorporating biomarkers, echocardiography and CMR. METHODS Nineteen male recreational participants (age: 48 ± 5 years) cycled the 'L'étape du tour de France" (EDT) 2021' (175 km, 3600 altimeters). One week before the race, a maximal graded cycling test was conducted to determine individual heart rate (HR) training zones. One day before and 3-6 h post-exercise 3 T CMR and echocardiography were performed to assess myocardial native T1/T2 relaxation times and cardiac function, and blood samples were collected. All participants were asked to cycle 2 h around their anaerobic gas exchange threshold (HR zone 4). RESULTS Eighteen participants completed the EDT stage in 537 ± 58 min, including 154 ± 61 min of cycling time in HR zone 4. Post-race right ventricular (RV) dysfunction with reduced strain and increased volumes (p < 0.05) and borderline significant left ventricular global longitudinal strain reduction (p = 0.05) were observed. Post-exercise cTnI (0.75 ± 5.1 ng/l to 69.9 ± 41.6 ng/l; p < 0.001) and T1 relaxation times (1133 ± 48 ms to 1182 ± 46 ms, p < 0.001) increased significantly with no significant change in T2 (p = 0.474). cTnI release correlated with increase in T1 relaxation time (p = 0.002; r = 0.703), post-race RV dysfunction (p < 0.05; r = 0.562) and longer cycling in HR zone 4 (p < 0.05; r = 0.607). CONCLUSION Strenuous exercise causes early post-race cTnI increase, increased T1 relaxation time and RV dysfunction in recreational cyclists, which showed interdependent correlation. The long-term clinical significance of these changes needs further investigation. TRIAL REGISTRATION NUMBERS AND DATE NCT04940650 06/18/2021. NCT05138003 06/18/2021.
Collapse
Affiliation(s)
- Olivier Ghekiere
- Faculty of Medicine and Life Sciences/LCRC (-MHU), Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium.
- Department of Radiology and Department of Jessa & Science, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium.
| | - Lieven Herbots
- Faculty of Medicine and Life Sciences/LCRC (-MHU), Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
- Heart Centre, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Benjamin Peters
- Faculty of Medicine and Life Sciences/LCRC (-MHU), Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
- Department of Radiology and Department of Jessa & Science, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | | | - Tom Dresselaers
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Franssen
- SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- REVAL-Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Nutrition and Movement Sciences; NUTRIM, School for Nutrition and Translation Research Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | | - Emile Ferrari
- Department of Cardiology, University Hospital Nice, Nice, France
| | - Alain Nchimi
- Department of Radiology, Centre Hospitalier Universitaire Luxembourg, Luxembourg, Luxembourg
| | - Sophie Demanez
- Department of Cardiology, Centre Cardiologique Orban, Liège, Belgium
| | - Ruben De Bosscher
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Rik Willems
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hein Heidbuchel
- Department of Cardiovascular Sciences, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Andre La Gerche
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Guido Claessen
- Faculty of Medicine and Life Sciences/LCRC (-MHU), Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
- Heart Centre, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Bert O Eijnde
- SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Seeing the Unseen in Cardiac Remodeling: Cardiac Diffusion Tensor Imaging as a Structural Biomarker in STEMI. JACC Cardiovasc Imaging 2023; 16:172-174. [PMID: 36754476 DOI: 10.1016/j.jcmg.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2023]
|
11
|
Pathophysiology of LV Remodeling Following STEMI: A Longitudinal Diffusion Tensor CMR Study. JACC Cardiovasc Imaging 2023; 16:159-171. [PMID: 36412993 PMCID: PMC9902278 DOI: 10.1016/j.jcmg.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Adverse LV remodeling post-ST-segment elevation myocardial infarction (STEMI) is associated with a poor prognosis, but the underlying mechanisms are not fully understood. Diffusion tensor (DT)-cardiac magnetic resonance (CMR) allows in vivo characterization of myocardial architecture and provides unique mechanistic insight into pathophysiologic changes following myocardial infarction. OBJECTIVES This study evaluated the potential associations between DT-CMR performed soon after STEMI and long-term adverse left ventricular (LV) remodeling following STEMI. METHODS A total of 100 patients with STEMI underwent CMR at 5 days and 12 months post-reperfusion. The protocol included DT-CMR for assessing fractional anisotropy (FA), secondary eigenvector angle (E2A) and helix angle (HA), cine imaging for assessing LV volumes, and late gadolinium enhancement for calculating infarct and microvascular obstruction size. Adverse remodeling was defined as a 20% increase in LV end-diastolic volume at 12 months. RESULTS A total of 32 patients experienced adverse remodeling at 12 months. Compared with patients without adverse remodeling, they had lower FA (0.23 ± 0.03 vs 0.27 ± 0.04; P < 0.001), lower E2A (37 ± 6° vs 51 ± 7°; P < 0.001), and, on HA maps, a lower proportion of myocytes with right-handed orientation (RHM) (8% ± 5% vs 17% ± 9%; P < 0.001) in their acutely infarcted myocardium. On multivariable logistic regression analysis, infarct FA (odds ratio [OR]: <0.01; P = 0.014) and E2A (OR: 0.77; P = 0.001) were independent predictors of adverse LV remodeling after adjusting for left ventricular ejection fraction (LVEF) and infarct size. There were no significant changes in infarct FA, E2A, or RHM between the 2 scans. CONCLUSIONS Extensive cardiomyocyte disorganization (evidenced by low FA), acute loss of sheetlet angularity (evidenced by low E2A), and a greater loss of organization among cardiomyocytes with RHM, corresponding to the subendocardium, can be detected within 5 days post-STEMI. These changes persist post-injury, and low FA and E2A are independently associated with long-term adverse remodeling.
Collapse
|
12
|
Xie Y, Li X, Liu S, Hu Y, Chen Y, Liu S, Wu P, Tao H, Chen S. Quantitative Magnetic Resonance Imaging-Based Tendon Healing of Different Regions of the Shoulder: Comparison Between the Suture-Bridge and Single-Row Techniques. Orthop J Sports Med 2023; 11:23259671221137835. [PMID: 36655017 PMCID: PMC9841867 DOI: 10.1177/23259671221137835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023] Open
Abstract
Background Rotator cuff retears occur more often at the proximal region with the suture-bridge (SB) technique than at the typical footprint region with the single-row (SR) technique. Few longitudinal clinical trials have focused on the postoperative tendon quality of the repaired rotator cuff at different regions between the 2 techniques. Purpose To compare tendon healing of the proximal and distal regions between the SB and SR techniques. Study Design Cohort study; Level of evidence, 3. Methods Included were consecutive patients who underwent arthroscopic rotator cuff repair and undertook clinical and magnetic resonance imaging (MRI) examinations at 3, 6, and 12 months postoperatively between 2016 and 2017. These patients were divided into the SB and SR groups according to the technique used. The repaired tendon was segmented into distal and proximal regions on ultrashort echo time-T2* mapping images. Clinical outcomes (Constant score, American Shoulder and Elbow Surgeons score, Fudan University Shoulder Score, and visual analog scale for pain) and MRI-based tendon healing (T2* values) of different regions were compared between the 2 groups. The differences in T2* values and clinical scores were determined by 1-way analysis of variance for repeated measurements. Results A total of 31 patients (17 in SB group and 14 in SR group) were included. At 12-month follow-up, significant improvements from preoperatively were achieved for all patients in all clinical scores (P < .001 for all). No significant between-group differences were found in T2* values of the distal region at any time point; however, the mean T2* value of the proximal region at 3 months was significantly higher in the SB group compared with the SR group (P = .03). This difference became nonsignificant at subsequent follow-up time points. Conclusion Significant clinical improvements over time can be expected in the first year after arthroscopic rotator cuff repair. In the early postoperative period, higher T2* values in the proximal region of the repaired tendon (representing inferior tendon quality) were seen with the SB technique compared with the SR technique; however, this phenomenon was resolved over time.
Collapse
Affiliation(s)
- Yuxue Xie
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangwen Li
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Hu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Chen
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyin Liu
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Puye Wu
- GE Healthcare, Shanghai, China
| | - Hongyue Tao
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.,Hongyue Tao, MD, Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China (); and Shuang Chen, PhD, Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China ()
| | - Shuang Chen
- Department of Radiology and Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.,Hongyue Tao, MD, Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China (); and Shuang Chen, PhD, Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai, China ()
| |
Collapse
|
13
|
Grundler F, Viallon M, Mesnage R, Ruscica M, von Schacky C, Madeo F, Hofer SJ, Mitchell SJ, Croisille P, Wilhelmi de Toledo F. Long-term fasting: Multi-system adaptations in humans (GENESIS) study-A single-arm interventional trial. Front Nutr 2022; 9:951000. [PMID: 36466423 PMCID: PMC9713250 DOI: 10.3389/fnut.2022.951000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Fasting provokes fundamental changes in the activation of metabolic and signaling pathways leading to longer and healthier lifespans in animal models. Although the involvement of different metabolites in fueling human fasting metabolism is well known, the contribution of tissues and organs to their supply remains partly unclear. Also, changes in organ volume and composition remain relatively unexplored. Thus, processes involved in remodeling tissues during fasting and food reintroduction need to be better understood. Therefore, this study will apply state-of-the-art techniques to investigate the effects of long-term fasting (LF) and food reintroduction in humans by a multi-systemic approach focusing on changes in body composition, organ and tissue volume, lipid transport and storage, sources of protein utilization, blood metabolites, and gut microbiome profiles in a single cohort. This is a prospective, single-arm, monocentric trial. One hundred subjects will be recruited and undergo 9 ± 3 day-long fasting periods (250 kcal/day). We will assess changes in the composition of organs, bones and blood lipid profiles before and after fasting, as well as high-density lipoprotein (HDL) transport and storage, untargeted metabolomics of peripheral blood mononuclear cells (PBMCs), protein persulfidation and shotgun metagenomics of the gut microbiome. The first 32 subjects, fasting for 12 days, will be examined in more detail by magnetic resonance imaging (MRI) and spectroscopy to provide quantitative information on changes in organ volume and function, followed by an additional follow-up examination after 1 and 4 months. The study protocol was approved by the ethics board of the State Medical Chamber of Baden-Württemberg on 26.07.2021 and registered at ClinicalTrials.gov (NCT05031598). The results will be disseminated through peer-reviewed publications, international conferences and social media. Clinical trial registration [ClinicalTrials.gov], identifier [NCT05031598].
Collapse
Affiliation(s)
| | - Magalie Viallon
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Überlingen, Germany
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Pierre Croisille
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | | |
Collapse
|
14
|
Teh I, Romero R. WA, Boyle J, Coll‐Font J, Dall'Armellina E, Ennis DB, Ferreira PF, Kalra P, Kolipaka A, Kozerke S, Lohr D, Mongeon F, Moulin K, Nguyen C, Nielles‐Vallespin S, Raterman B, Schreiber LM, Scott AD, Sosnovik DE, Stoeck CT, Tous C, Tunnicliffe EM, Weng AM, Croisille P, Viallon M, Schneider JE. Validation of cardiac diffusion tensor imaging sequences: A multicentre test-retest phantom study. NMR IN BIOMEDICINE 2022; 35:e4685. [PMID: 34967060 PMCID: PMC9285553 DOI: 10.1002/nbm.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 05/23/2023]
Abstract
Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3 mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5 mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.
Collapse
Affiliation(s)
- Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - William A. Romero R.
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jordan Boyle
- School of Mechanical EngineeringUniversity of LeedsLeedsUK
| | - Jaume Coll‐Font
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Daniel B. Ennis
- Division of RadiologyVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Prateek Kalra
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Arunark Kolipaka
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - David Lohr
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | | | - Kévin Moulin
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Christopher Nguyen
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Brian Raterman
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Laura M. Schreiber
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - David E. Sosnovik
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Cyril Tous
- Department of Radiology, Radiation‐Oncology and Nuclear Medicine and Institute of Biomedical EngineeringUniversité de MontréalMontréalCanada
| | - Elizabeth M. Tunnicliffe
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Oxford NIHR Biomedical Research CentreOxfordUK
| | - Andreas M. Weng
- Department of Diagnostic and Interventional RadiologyUniversity Hospital WürzburgWürzburgGermany
| | - Pierre Croisille
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Magalie Viallon
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
15
|
Acute-Phase Inflammatory Reaction Predicts CMR Myocardial Scar Pattern and 2-Year Mortality in STEMI Patients Undergoing Primary PCI. J Clin Med 2022; 11:jcm11051222. [PMID: 35268316 PMCID: PMC8911521 DOI: 10.3390/jcm11051222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: The inflammatory response following MI plays an important role in the healing, scar formation, and left ventricle (LV) remodeling. Cardiac magnetic resonance (CMR) imaging can accurately quantify the extent of myocardial scarring. The study aimed to investigate: (a) the relationship between acute inflammatory response and the CMR parameters of the scarring extent, and (b) the predictive power of inflammatory biomarkers and myocardial scarring for 2-year mortality. (2) Methods: The study included 202 STEMI patients, who underwent pPCI. Serum hs-CRP, IL-6, P-selectin, E-selectin, I-CAM, and V-CAM levels were determined at admission, and hs-CRP on the fifth day. Patients underwent LGE-CMR after 1 month, for LV volumes, ejection fraction (EF), infarct size (IS), and transmurality. Subjects were divided into tertiles according to the IS, and 2-year all-cause mortality was determined. (3) Results: IL-6 was associated with IS (r = 0.324, p = 0.01), increased transmurality index (r = 0.3, p = 0.01), and lower LVEF (r = −0.3, p = 0.02). Admission hs-CRP levels were not associated with IS, transmurality, or mortality, while hs-CRP at day 5 was a significant predictor for IS (AUC = 0.635, p = 0.05) as well as IL-6 levels (AUC = 0.685, p < 0.001). Mortality was significantly higher in the upper IS tertiles (6% vs. 8.7% vs. 24.52%, p = 0.005). IS was a significant predictor of 2-year mortality (AUC = 0.673, p = 0.002), with a cut-off value of 28.81 g, as well as high transmurality (AUC = 0.641, p = 0.013), with a cut off value of 18.38 g. (4) Conclusions: The serum levels of IL-6 and day-5 hs-CRP predict IS and transmurality, and day-5 hs-CRP levels are independent predictors of 2-year mortality in STEMI patients treated with pPCI. The CMR pattern of myocardial scarring after 1 month, as expressed by the magnitude of IS and transmurality, is a significant predictor for 2-year mortality after revascularized STEMI.
Collapse
|
16
|
Das A, Kelly C, Teh I, Sharrack N, Stoeck CT, Kozerke S, Schneider JE, Plein S, Dall'Armellina E. Detection of Intramyocardial Iron in Patients Following ST-Elevation Myocardial Infarction Using Cardiac Diffusion Tensor Imaging. J Magn Reson Imaging 2022; 56:1171-1181. [PMID: 35019174 PMCID: PMC9544509 DOI: 10.1002/jmri.28063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Background Intramyocardial hemorrhage (IMH) following ST‐elevation myocardial infarction (STEMI) is associated with poor prognosis. In cardiac magnetic resonance (MR), T2* mapping is the reference standard for detecting IMH while cardiac diffusion tensor imaging (cDTI) can characterize myocardial architecture via fractional anisotropy (FA) and mean diffusivity (MD) of water molecules. The value of cDTI in the detection of IMH is not currently known. Hypothesis cDTI can detect IMH post‐STEMI. Study Type Prospective. Subjects A total of 50 patients (20% female) scanned at 1‐week (V1) and 3‐month (V2) post‐STEMI. Field Strength/Sequence A 3.0 T; inversion‐recovery T1‐weighted‐imaging, multigradient‐echo T2* mapping, spin‐echo cDTI. Assessment T2* maps were analyzed to detect IMH (defined as areas with T2* < 20 msec within areas of infarction). cDTI images were co‐registered to produce averaged diffusion‐weighted‐images (DWIs), MD, and FA maps; hypointense areas were manually planimetered for IMH quantification. Statistics On averaged DWI, the presence of hypointense signal in areas matching IMH on T2* maps constituted to true‐positive detection of iron. Independent samples t‐tests were used to compare regional cDTI values. Results were considered statistically significant at P ≤ 0.05. Results At V1, 24 patients had IMH on T2*. On averaged DWI, all 24 patients had hypointense signal in matching areas. IMH size derived using averaged‐DWI was nonsignificantly greater than from T2* (2.0 ± 1.0 cm2 vs 1.89 ± 0.96 cm2, P = 0.69). Compared to surrounding infarcted myocardium, MD was significantly reduced (1.29 ± 0.20 × 10−3 mm2/sec vs 1.75 ± 0.16 × 10−3 mm2/sec) and FA was significantly increased (0.40 ± 0.07 vs 0.23 ± 0.03) within areas of IMH. By V2, all 24 patients with acute IMH continued to have hypointense signals on averaged‐DWI in the affected area. T2* detected IMH in 96% of these patients. Overall, averaged‐DWI had 100% sensitivity and 96% specificity for the detection of IMH. Data Conclusion This study demonstrates that the parameters MD and FA are susceptible to the paramagnetic properties of iron, enabling cDTI to detect IMH. Evidence Level 1 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Arka Das
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Christopher Kelly
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Noor Sharrack
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Jürgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Erica Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
17
|
Eyyupkoca F, Karakus G, Gok M, Ozkan C, Altintas MS, Tosu AR, Okutucu S, Ercan K. Association of changes in the infarct and remote zone myocardial tissue with cardiac remodeling after myocardial infarction: a T1 and T2 mapping study. Int J Cardiovasc Imaging 2021; 38:363-373. [PMID: 34902103 DOI: 10.1007/s10554-021-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Tissue structure in the infarct and remote zone myocardium post-acute myocardial infarction (MI) may offer prognostic information concerning left ventricular remodeling. We aimed to identify or establish a relationship between adverse remodeling (AR) and changes (Δ) in T1, T2 mapping and extracellular volume (ECV) in post MI periods. Fifty-four MI patients underwent 3 Tesla CMR performed 2 weeks (acute phase) and 6 months post-MI. We measured T1 mapping with MOLLI sequences and T2 mapping with TrueFISP sequences. Hematocrit was quantified in scanning time. ECV was performed post-gadolinium enhancement. AR was defined as an increase of ≥ 10% in left ventricular end-diastolic volume in 6 months. In the acute phase post-MI, high T2 relaxation times of the infarct and remote zone myocardium were associated with AR (OR 1.15, p = 0.023 and OR 1.54, p = 0.002, respectively). There was a decrease in T2 relaxation times of the remote zone myocardium at 6 months in patients with AR (42.0 ± 4.0 vs. 39.0 ± 3.5 ms, p < 0.001), while insignificant difference was found in patients without AR. Increased ΔECV (%) and decreased remote ΔT2 values were associated with AR (OR 1.04, p = 0.043 and OR 0.77, p = 0.007, respectively). The diagnostic performance analysis in predicting AR showed that acute-phase remote T2 was similar to that of remote ΔT2 (p = 0.875) but was superior to that of ΔECV (%) (ΔAUC: 0.19 ± 0.09, p = 0.038). In both acute phase and change of 6 months post-MI, the T2 relaxation times in remote myocardium are independently associated with AR, and this suggests higher inflammation in the remote myocardium in the AR group than the other group, even though no significant pathophysiological difference was observed in the healing of the infarct zone between both groups.
Collapse
Affiliation(s)
- Ferhat Eyyupkoca
- Department of Cardiology, Dr. Nafiz Korez Sincan State Hospital, Fatih District, Gazi Mustafa Kemal Boulevard, Ankara, Turkey.
| | - Gultekin Karakus
- Department of Cardiology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Murat Gok
- Department of Cardiology, Edirne Sultan Murat I State Hospital, Edirne, Turkey
| | - Can Ozkan
- Department of Cardiology, Mus State Hospital, Mus, Turkey
| | - Mehmet Sait Altintas
- Department of Cardiology, Istanbul Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Aydin Rodi Tosu
- Deparment of Cardiology, Sultangazi Haseki Training and Research Hospital, Istanbul, Turkey
| | - Sercan Okutucu
- Department of Cardiology, Memorial Ankara Hospital, Ankara, Turkey
| | - Karabekir Ercan
- Department of Radiology, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
18
|
Kharabish A, Hosny M, Hassan M, Mahrous MR, Elbayoumy M, Ahmed AE, Deyaa N, El Mozy W, Behairy N. Assessment of segmental agreement of T2 mapping versus triple inversion recovery in detection of acute myocardial edema. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
There are some limitations using the different sequences of clinical cardiac magnetic resonance (cardiac MR) in detection of edema in patients presenting with acute myocardial injury. The purpose of this study is to evaluate the myocardial segmental agreement between the different edema sequences: T2 mapping and turbo inversion recovery magnitude (TIRM) in detection of acute myocardial edema.
Results
Thirty-seven patients presented with acute infarction were sent to cardiac MR to assess myocardial edema. All cardiac MR studies were scanned using cine, TIRM, and late gadolinium enhancement (LGE) in short axis views (SAX). Position of the T2 mapping slices were copied from the TIRM. The left ventricle (LV) was divided into apical, mid, and basal segments per visualization of the papillary muscles. Edema mass was assessed separately in each segment as well as the total edema mass in both the TIRM and T2 mapping. Twenty-four patients of whom 12.5% had multi-territorial coronary lesions and edema were assessed. Myocardial edema was not assessed in thirteen patients (35%) due to significant intra myocardial hemorrhage (T2 mapping < 60 ms). No statistical significance was found between the TIRM and the T2 mapping neither in the total amount of edema (p = 0.79), nor in the LV basal, mid, and apical segments’ edema (p = 0.69, 0.5, and 0.8 respectively). The upper and lower limits of agreements were tested between the TIRM and the T2 mapping of total edema mass, basal segments, mid, and apical ventricular segments were = 18 and − 7.7 g, 11.3 and − 5.1 g, 12.3 and − 5.2 g, and 15.5 and − 7.8 g respectively.
Conclusion
This study supports the proof of the principle that there is no statistical significant difference per myocardial segments between the T2 mapping and routine edema’s sequences. Larger studies are recommended to assess the impact in clinical outcome.
Collapse
|
19
|
Rahman T, Moulin K, Ennis DB, Perotti LE. Diffusion biomarkers in chronic myocardial infarction. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2021; 12738:137-147. [PMID: 34585174 PMCID: PMC8476206 DOI: 10.1007/978-3-030-78710-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cardiac diffusion tensor magnetic resonance imaging (cDTI) allows estimating the aggregate cardiomyocyte architecture in healthy subjects and its remodeling as a result of cardiac disease. In this study, cDTI was used to quantify microstructural changes occurring in swine (N=7) six to ten weeks after myocardial infarction. Each heart was extracted and imaged ex vivo with 1mm isotropic spatial resolution. Microstructural changes were quantified in the border zone and infarct region by comparing diffusion tensor invariants - fractional anisotropy (FA), mode, and mean diffusivity (MD) - radial diffusivity, and diffusion tensor eigenvalues with the corresponding values in the remote myocardium. MD and radial diffusivity increased in the infarct and border regions with respect to the remote myocardium (p<0.01). In contrast, FA and mode decreased in the infarct and border regions (p<0.01). Diffusion tensor eigenvalues also increased in the infarct and border regions, with a larger increase in the secondary and tertiary eigenvalues.
Collapse
Affiliation(s)
- Tanjib Rahman
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
20
|
Das A, Kelly C, Teh I, Stoeck CT, Kozerke S, Chowdhary A, Brown LAE, Saunderson CED, Craven TP, Chew PG, Jex N, Swoboda PP, Levelt E, Greenwood JP, Schneider JE, Plein S, Dall'Armellina E. Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging. Radiology 2021; 299:86-96. [PMID: 33560187 DOI: 10.1148/radiol.2021203208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Cardiac diffusion tensor imaging (cDTI) allows for in vivo characterization of myocardial microstructure. In cDTI, mean diffusivity and fractional anisotropy (FA)-markers of magnitude and anisotropy of diffusion of water molecules-are known to change after myocardial infarction. However, little is known about regional changes in helix angle (HA) and secondary eigenvector angle (E2A), which reflects orientations of laminar sheetlets, and their association with long-term recovery of left ventricular ejection fraction (LVEF). Purpose To assess serial changes in cDTI biomarkers in participants following ST-segment elevation myocardial infarction (STEMI) and to determine their associations with long-term left ventricular remodeling. Materials and Methods In this prospective study, 30 participants underwent cardiac MRI (3 T) after STEMI at 5 days and 3 months after reperfusion (National Institute of Health Research study no. 33963 and Research Ethics no. REC17/YH/0062). Spin-echo cDTI with second-order motion-compensation (approximate duration, 13 minutes; three sections; 18 noncollinear diffusion-weighted scans with b values of 100 sec/mm2 [three acquisitions], 200 sec/mm2 [three acquisitions], and 500 sec/mm2 [12 acquisitions]), functional images, and late gadolinium enhancement images were obtained. Multiple regression analysis was used to assess associations between acute cDTI parameters and 3-month LVEF. Results Acutely infarcted myocardium had reduced FA, E2A, and myocytes with right-handed orientation (RHM) on HA maps compared with remote myocardium (mean remote FA = 0.36 ± 0.02 [standard deviation], mean infarcted FA = 0.25 ± 0.03, P < .001; mean remote E2A = 55° ± 9, mean infarcted E2A = 49° ± 10, P < .001; mean remote RHM = 16% ± 6, mean infarcted RHM = 9% ± 5, P < .001). All three parameters (FA, E2A, and RHM) correlated with 3-month LVEF (r = 0.68, r = 0.59, and r = 0.53, respectively), with acute FA being independently predictive of 3-month LVEF (standardized β = 0.56, P = .008) after multivariable analysis adjusting for factors, including acute LVEF and infarct size. Conclusion After ST-segment elevation myocardial infarction, diffusion becomes more isotropic in acutely infarcted myocardium as reflected by decreased fractional anisotropy. Reductions in secondary eigenvector angle suggest that the myocardial sheetlets are unable to adopt their usual steep orientations in systole, whereas reductions in myocytes with right-handed orientation on helix angle maps are likely reflective of a loss of organization among subendocardial myocytes. Correlations between these parameters and 3-month left ventricular ejection fraction highlight the potential clinical use of cardiac diffusion tensor imaging after myocardial infarction in predicting long-term remodeling. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Arka Das
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher Kelly
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Irvin Teh
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christian T Stoeck
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sebastian Kozerke
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Amrit Chowdhary
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Louise A E Brown
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher E D Saunderson
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Thomas P Craven
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Pei G Chew
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Nicholas Jex
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Peter P Swoboda
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Eylem Levelt
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - John P Greenwood
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Jurgen E Schneider
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sven Plein
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Erica Dall'Armellina
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| |
Collapse
|
21
|
Lloyd SG, Farris GR. MRI Apparent Diffusion Coefficient in Reperfused Acute Myocardial Infarction: New Use of an Old Technique. Radiology 2020; 295:550-551. [DOI: 10.1148/radiol.2020200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Steven G. Lloyd
- From the Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294; and Birmingham VA Medical Center, Birmingham, Ala
| | - G. Ross Farris
- From the Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294; and Birmingham VA Medical Center, Birmingham, Ala
| |
Collapse
|