1
|
Yoon MA, Gold GE, Chaudhari AS. Accelerated Musculoskeletal Magnetic Resonance Imaging. J Magn Reson Imaging 2024; 60:1806-1822. [PMID: 38156716 DOI: 10.1002/jmri.29205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
With a substantial growth in the use of musculoskeletal MRI, there has been a growing need to improve MRI workflow, and faster imaging has been suggested as one of the solutions for a more efficient examination process. Consequently, there have been considerable advances in accelerated MRI scanning methods. This article aims to review the basic principles and applications of accelerated musculoskeletal MRI techniques including widely used conventional acceleration methods, more advanced deep learning-based techniques, and new approaches to reduce scan time. Specifically, conventional accelerated MRI techniques, including parallel imaging, compressed sensing, and simultaneous multislice imaging, and deep learning-based accelerated MRI techniques, including undersampled MR image reconstruction, super-resolution imaging, artifact correction, and generation of unacquired contrast images, are discussed. Finally, new approaches to reduce scan time, including synthetic MRI, novel sequences, and new coil setups and designs, are also reviewed. We believe that a deep understanding of these fast MRI techniques and proper use of combined acceleration methods will synergistically improve scan time and MRI workflow in daily practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Min A Yoon
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | | |
Collapse
|
2
|
Peng W, Wan L, Tong X, Yang F, Zhao R, Chen S, Wang S, Li Y, Hu M, Li M, Li L, Zhang H. Prospective and multi-reader evaluation of deep learning reconstruction-based accelerated rectal MRI: image quality, diagnostic performance, and reading time. Eur Radiol 2024; 34:7438-7449. [PMID: 39017934 DOI: 10.1007/s00330-024-10882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To evaluate deep learning reconstruction (DLR)-based accelerated rectal magnetic resonance imaging (MRI) compared with standard MRI. MATERIALS AND METHODS Patients with biopsy-confirmed rectal adenocarcinoma between November/2022 and May/2023 in a single centre were prospectively enrolled for an intra-individual comparison between standard fast spin-echo (FSEstandard) and DLR-based FSE (FSEDL) sequences. Quantitative and qualitative image quality metrics of the pre-therapeutic MRIs were evaluated in all patients; diagnostic performance and evaluating time for T-staging, N-staging, extramural vascular invasion (EMVI), and mesorectal fascia (MRF) status was further analysed in patients undergoing curative surgery, with histopathologic results as the diagnostic gold standard. RESULTS A total of 117 patients were enrolled, with 60 patients undergoing curative surgery. FSEDL reduced the acquisition time by 65% than FSEstandard. FSEDL exhibited higher signal-to-noise ratios, contrast-to-noise ratio, and subjective scores (noise, tumour margin clarity, visualisation of bowel wall layering and MRF, overall image quality, and diagnostic confidence) than FSEstandard (p < 0.001). Reduced artefacts were observed in FSEDL for patients without spasmolytics (p < 0.05). FSEDL provided higher T-staging accuracy by junior readers than FSEstandard (reader 1, 58.33% vs 70.00%, p = 0.016; reader 3, 60.00% vs 76.67%, p = 0.021), with similar N-staging, EMVI, and MRF performance. No significant difference was observed for senior readers. FSEDL exhibited shorter diagnostic time in all readers' T-staging and overall evaluation, and junior readers' EMVI and MRF (p < 0.05). CONCLUSION FSEDL provided improved image quality, reading time, and junior radiologists' T-staging accuracy than FSEstandard, while reducing the acquisition time by 65%. CLINICAL RELEVANCE STATEMENT DLR is clinically applicable for rectal MRI, providing improved image quality with shorter scanning time, which may ease the examination burden. It is beneficial for diagnostic optimisation in improving junior radiologists' T-staging accuracy and reading time. KEY POINTS The rising incidence of rectal cancer has demanded enhanced efficiency and quality in imaging examinations. FSEDL demonstrated superior image quality and had a 65% reduced acquisition time. FSEDL can improve the diagnostic accuracy of T-staging and reduce the reading time for assessing rectal cancer.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijuan Wan
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowan Tong
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Chen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Mancang Hu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- GE Healthcare, Beijing, China
| | - Lin Li
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongmei Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Sun JP, Bu CX, Dang JH, Lv QQ, Tao QY, Kang YM, Niu XY, Wen BH, Wang WJ, Wang KY, Cheng JL, Zhang Y. Enhanced image quality and lesion detection in FLAIR MRI of white matter hyperintensity through deep learning-based reconstruction. Asian J Surg 2024:S1015-9584(24)02201-2. [PMID: 39368951 DOI: 10.1016/j.asjsur.2024.09.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
OBJECTIVE To delve deeper into the study of degenerative diseases, it becomes imperative to investigate whether deep-learning reconstruction (DLR) can improve the evaluation of white matter hyperintensity (WMH) on 3.0T scanners, and compare its lesion detection capabilities with conventional reconstruction (CR). METHODS A total of 131 participants (mean age, 46 years ±17; 46 men) were included in the study. The images of these participants were evaluated by readers blinded to clinical data. Two readers independently assessed subjective image indicators on a 4-point scale. The severity of WMH was assessed by four raters using the Fazekas scale. To evaluate the relative detection capabilities of each method, we employed the Wilcoxon signed rank test to compare scores between the DLR and the CR group. Additionally, we assessed interrater reliability using weighted k statistics and intraclass correlation coefficient to test consistency among the raters. RESULTS In terms of subjective image scoring, the DLR group exhibited significantly better scores compared to the CR group (P < 0.001). Regarding the severity of WMH, the DL group demonstrated superior performance in detecting lesions. Majority readers agreed that the DL group provided clearer visualization of the lesions compared to the conventional group. CONCLUSION DLR exhibits notable advantages over CR, including subjective image quality, lesion detection sensitivity, and inter reader reliability.
Collapse
Affiliation(s)
- Jie Ping Sun
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Chun Xiao Bu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Jing Han Dang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Qing Qing Lv
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Qiu Ying Tao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yi Meng Kang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xiao Yu Niu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Bao Hong Wen
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Wei Jian Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Kai Yu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Jing Liang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
4
|
Ensle F, Abel F, Lohezic M, Obermüller C, Guggenberger R. Deep learning reconstruction for optimized bone assessment in zero echo time MR imaging of the knee. Eur J Radiol 2024; 179:111663. [PMID: 39142010 DOI: 10.1016/j.ejrad.2024.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE To evaluate the impact of deep learning-based reconstruction (DLRecon) on bone assessment in zero echo-time (ZTE) MRI of the knee at 1.5 Tesla. METHODS This retrospective study included 48 consecutive exams of 46 patients (23 females) who underwent clinically indicated knee MRI at 1.5 Tesla. Standard imaging protocol comprised a sagittal prescribed, isotropic ZTE sequence. ZTE image reconstruction was performed with a standard-of-care (non-DL) and prototype DLRecon method. Exams were divided into subsets with and without osseous pathology based on the radiology report. Using a 4-point scale, two blinded readers qualitatively graded features of bone depiction including artifacts and conspicuity of pathology including diagnostic certainty in the respective subsets. Quantitatively, one reader measured signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of bone. Comparative analyses were conducted to assess the differences between the reconstruction methods. In addition, interreader agreement was calculated for the qualitative gradings. RESULTS DLRecon significantly improved gradings for bone depiction relative to non-DL reconstruction (all, p < 0.05), while there was no significant difference with regards to artifacts (both, median score of 0; p = 0.058). In the subset with pathologies, conspicuity of pathology and diagnostic confidence were also scored significantly higher in DLRecon compared to non-DL (median 3 vs 2; p ≤ 0.03). Interreader agreement ranged from moderate to almost-perfect (κ = 0.54-0.88). Quantitatively, DLRecon demonstrated significantly enhanced CNR and SNR of bone compared to non-DL (p < 0.001). CONCLUSION ZTE MRI with DLRecon improved bone depiction in the knee, compared to non-DL. Additionally, DLRecon increased conspicuity of osseous findings together with diagnostic certainty.
Collapse
Affiliation(s)
- Falko Ensle
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Frederik Abel
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Carina Obermüller
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roman Guggenberger
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Lee Y, Yoon S, Paek M, Han D, Choi MH, Park SH. Advanced MRI techniques in abdominal imaging. Abdom Radiol (NY) 2024; 49:3615-3636. [PMID: 38802629 DOI: 10.1007/s00261-024-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Magnetic resonance imaging (MRI) is a crucial modality for abdominal imaging evaluation of focal lesions and tissue properties. However, several obstacles, such as prolonged scan times, limitations in patients' breath-hold capacity, and contrast agent-associated artifacts, remain in abdominal MR images. Recent techniques, including parallel imaging, three-dimensional acquisition, compressed sensing, and deep learning, have been developed to reduce the scan time while ensuring acceptable image quality or to achieve higher resolution without extending the scan duration. Quantitative measurements using MRI techniques enable the noninvasive evaluation of specific materials. A comprehensive understanding of these advanced techniques is essential for accurate interpretation of MRI sequences. Herein, we therefore review advanced abdominal MRI techniques.
Collapse
Affiliation(s)
- Yoonhee Lee
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Sungjin Yoon
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | | | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Moon Hyung Choi
- Department of Radiology, Catholic University of Korea Eunpyeong St Mary's Hospital, Seoul, Republic of Korea
| | - So Hyun Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
6
|
Foti G, Longo C. Deep learning and AI in reducing magnetic resonance imaging scanning time: advantages and pitfalls in clinical practice. Pol J Radiol 2024; 89:e443-e451. [PMID: 39444654 PMCID: PMC11497590 DOI: 10.5114/pjr/192822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful imaging modality, but one of its drawbacks is its relatively long scanning time to acquire high-resolution images. Reducing the scanning time has become a critical area of focus in MRI, aiming to enhance patient comfort, reduce motion artifacts, and increase MRI throughput. In the past 5 years, artificial intelligence (AI)-based algorithms, particularly deep learning models, have been developed to reconstruct high-resolution images from significantly fewer data points. These new techniques significantly enhance MRI efficiency, improve patient comfort and lower patient motion artifacts. Improving MRI throughput with lower scanning duration increases accessibility, potentially reducing the need for additional MRI machines and associated costs. Several fields can benefit from shortened protocols, especially for routine exams. In oncologic imaging, faster MRI scans can facilitate more regular monitoring of cancer patients. In patients suffering from neurological disorders, rapid brain imaging can aid in the quick assessment of conditions like stroke, multiple sclerosis, and epilepsy, improving patient outcomes. In chronic inflammatory disease, faster imaging may help in reducing the interval between imaging to better check therapy outcomes. Additionally, reducing scanning time could effectively help MRI to play a role in emergency medicine and acute conditions such as trauma or acute ischaemic stroke. The purpose of this paper is to describe and discuss the advantages and disadvantages of introducing deep learning reconstruction techniques to reduce MRI scanning times in clinical practice.
Collapse
Affiliation(s)
- Giovanni Foti
- Department of Radiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Chiara Longo
- Department of Radiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| |
Collapse
|
7
|
Park SH, Han K, Lee JG. Conceptual review of outcome metrics and measures used in clinical evaluation of artificial intelligence in radiology. LA RADIOLOGIA MEDICA 2024:10.1007/s11547-024-01886-9. [PMID: 39225919 DOI: 10.1007/s11547-024-01886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Artificial intelligence (AI) has numerous applications in radiology. Clinical research studies to evaluate the AI models are also diverse. Consequently, diverse outcome metrics and measures are employed in the clinical evaluation of AI, presenting a challenge for clinical radiologists. This review aims to provide conceptually intuitive explanations of the outcome metrics and measures that are most frequently used in clinical research, specifically tailored for clinicians. While we briefly discuss performance metrics for AI models in binary classification, detection, or segmentation tasks, our primary focus is on less frequently addressed topics in published literature. These include metrics and measures for evaluating multiclass classification; those for evaluating generative AI models, such as models used in image generation or modification and large language models; and outcome measures beyond performance metrics, including patient-centered outcome measures. Our explanations aim to guide clinicians in the appropriate use of these metrics and measures.
Collapse
Affiliation(s)
- Seong Ho Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Goo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Zijlstra F, While PT. Deep-learning-based image reconstruction with limited data: generating synthetic raw data using deep learning. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01193-4. [PMID: 39207581 DOI: 10.1007/s10334-024-01193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
OBJECT Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality. MATERIALS AND METHODS An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data. RESULTS Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%. DISCUSSION Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.
Collapse
Affiliation(s)
- Frank Zijlstra
- Department of Radiology and Nuclear Medicine, St Olav's University Hospital, Postboks 3250 Torgarden, 7006, Trondheim, Norway.
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Peter Thomas While
- Department of Radiology and Nuclear Medicine, St Olav's University Hospital, Postboks 3250 Torgarden, 7006, Trondheim, Norway
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Smekens C, Beirinckx Q, Bosmans F, Vanhevel F, Snoeckx A, Sijbers J, Jeurissen B, Janssens T, Van Dyck P. Deep Learning-Enhanced Accelerated 2D TSE and 3D Superresolution Dixon TSE for Rapid Comprehensive Knee Joint Assessment. Invest Radiol 2024:00004424-990000000-00251. [PMID: 39190787 DOI: 10.1097/rli.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the use of a multicontrast deep learning (DL)-reconstructed 4-fold accelerated 2-dimensional (2D) turbo spin echo (TSE) protocol and the feasibility of 3-dimensional (3D) superresolution reconstruction (SRR) of DL-enhanced 6-fold accelerated 2D Dixon TSE magnetic resonance imaging (MRI) for comprehensive knee joint assessment, by comparing image quality and diagnostic performance with a conventional 2-fold accelerated 2D TSE knee MRI protocol. MATERIALS AND METHODS This prospective, ethics-approved study included 19 symptomatic adult subjects who underwent knee MRI on a clinical 3 T scanner. Every subject was scanned with 3 DL-enhanced acquisition protocols in a single session: a clinical standard 2-fold in-plane parallel imaging (PI) accelerated 2D TSE-based protocol (5 sequences, 11 minutes 23 seconds) that served as a reference, a DL-reconstructed 4-fold accelerated 2D TSE protocol combining 2-fold PI and 2-fold simultaneous multislice acceleration (5 sequences, 6 minutes 24 seconds), and a 3D SRR protocol based on DL-enhanced 6-fold accelerated (ie, 3-fold PI and 2-fold simultaneous multislice) 2D Dixon TSE MRI (6 anisotropic 2D Dixon TSE acquisitions rotated around the phase-encoding axis, 6 minutes 24 seconds). This resulted in a total of 228 knee MRI scans comprising 21,204 images. Three readers evaluated all pseudonymized and randomized images in terms of image quality using a 5-point Likert scale. Two of the readers (musculoskeletal radiologists) additionally evaluated anatomical visibility and diagnostic confidence to assess normal and pathological knee structures with a 5-point Likert scale. They recorded the presence and location of internal knee derangements, including cartilage defects, meniscal tears, tears of ligaments, tendons and muscles, and bone injuries. The statistical analysis included nonparametric Friedman tests, and interreader and intrareader agreement assessment using the weighted Fleiss-Cohen kappa (κ) statistic. P values of less than 0.05 were considered statistically significant. RESULTS The evaluated DL-enhanced 4-fold accelerated 2D TSE protocol provided very similar image quality and anatomical visibility to the standard 2D TSE protocol, whereas the 3D SRR Dixon TSE protocol scored less in terms of overall image quality due to reduced edge sharpness and the presence of artifacts (P < 0.001). Subjective signal-to-noise ratio, contrast resolution, fluid brightness, and fat suppression were good to excellent for all protocols. For 1 reader, the Dixon method of the 3D SRR protocol provided significantly better fat suppression than the spectral fat saturation applied in the standard 2D TSE protocol (P < 0.05). The visualization of knee structures with 3D SRR Dixon TSE was very similar to the standard protocol, except for cartilage, tendons, and bone, which were affected by the presence of reconstruction and aliasing artifacts (P < 0.001). The diagnostic confidence of both readers was high for all protocols and all knee structures, except for cartilage and tendons. The standard 2D TSE protocol showed a significantly higher diagnostic confidence for assessing tendons than 3D SRR Dixon TSE MRI (P < 0.01). The interreader and intrareader agreement for the assessment of internal knee derangements using any of the 3 protocols was substantial to almost perfect (κ = 0.67-1.00). For cartilage, the interreader agreement was substantial for DL-enhanced accelerated 2D TSE (κ = 0.79) and almost perfect for standard 2D TSE (κ = 0.98) and 3D SRR Dixon TSE (κ = 0.87). For menisci, the interreader agreement was substantial for 3D SRR Dixon TSE (κ = 0.70-0.80) and substantial to almost perfect for standard 2D TSE (κ = 0.80-0.99) and DL-enhanced 2D TSE (κ = 0.87-1.00). Moreover, the total acquisition time was reduced by 44% when using the DL-enhanced accelerated 2D TSE or 3D SRR Dixon TSE protocol instead of the conventional 2D TSE protocol. CONCLUSIONS The presented DL-enhanced 4-fold accelerated 2D TSE protocol provides image quality and diagnostic performance similar to the standard 2D protocol. Moreover, the 3D SRR of DL-enhanced 6-fold accelerated 2D Dixon TSE MRI is feasible for multicontrast 3D knee MRI as its diagnostic performance is comparable to standard 2-fold accelerated 2D knee MRI. However, reconstruction and aliasing artifacts need to be further addressed to guarantee a more reliable visualization and assessment of cartilage, tendons, and bone. Both the 2D and 3D SRR DL-enhanced protocols enable a 44% faster examination compared with conventional 2-fold accelerated routine 2D TSE knee MRI and thus open new paths for more efficient clinical 2D and 3D knee MRI.
Collapse
Affiliation(s)
- Céline Smekens
- From the imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium (C.S., Q.B., J.S., B.J.); Siemens Healthcare NV/SA, Groot-Bijgaarden, Belgium (C.S., T.J.); Department of Radiology, Antwerp University Hospital, Antwerp, Belgium (F.B., F.V., A.S., P.V.D.); and MIRA, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium (A.S., P.V.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Feuerriegel GC, Goller SS, von Deuster C, Sutter R. Inflammatory Knee Synovitis: Evaluation of an Accelerated FLAIR Sequence Compared With Standard Contrast-Enhanced Imaging. Invest Radiol 2024; 59:599-604. [PMID: 38329824 DOI: 10.1097/rli.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVES The aim of this study was to assess the diagnostic value and accuracy of a deep learning (DL)-accelerated fluid attenuated inversion recovery (FLAIR) sequence with fat saturation (FS) in patients with inflammatory synovitis of the knee. MATERIALS AND METHODS Patients with suspected knee synovitis were retrospectively included between January and September 2023. All patients underwent a 3 T knee magnetic resonance imaging including a DL-accelerated noncontrast FLAIR FS sequence (acquisition time: 1 minute 38 seconds) and a contrast-enhanced (CE) T1-weighted FS sequence (acquisition time: 4 minutes 50 seconds), which served as reference standard. All knees were scored by 2 radiologists using the semiquantitative modified knee synovitis score, effusion synovitis score, and Hoffa inflammation score. Diagnostic confidence, image quality, and image artifacts were rated on separate Likert scales. Wilcoxon signed rank test was used to compare the semiquantitative scores. Interreader and intrareader reproducibility were calculated using Cohen κ. RESULTS Fifty-five patients (mean age, 52 ± 17 years; 28 females) were included in the study. Twenty-seven patients (49%) had mild to moderate synovitis (synovitis score 6-13), and 17 patients (31%) had severe synovitis (synovitis score >14). No signs of synovitis were detected in 11 patients (20%) (synovitis score <5). Semiquantitative assessment of the whole knee synovitis score showed no significant difference between the DL-accelerated FLAIR sequence and the CE T1-weighted sequence (mean FLAIR score: 10.69 ± 8.83, T1 turbo spin-echo FS: 10.74 ± 10.32; P = 0.521). Both interreader and intrareader reproducibility were excellent (range Cohen κ [0.82-0.96]). CONCLUSIONS Assessment of inflammatory knee synovitis using a DL-accelerated noncontrast FLAIR FS sequence was feasible and equivalent to CE T1-weighted FS imaging.
Collapse
Affiliation(s)
- Georg C Feuerriegel
- From the Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland (G.C.F., S.S.G., R.S.); Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Zurich, Switzerland (C.v.D.); and Swiss Center for Musculoskeletal Imaging, Balgrist Campus, Zurich, Switzerland (C.v.D.)
| | | | | | | |
Collapse
|
11
|
Bosbach WA, Merdes KC, Jung B, Montazeri E, Anderson S, Mitrakovic M, Daneshvar K. Deep Learning Reconstruction of Accelerated MRI: False-Positive Cartilage Delamination Inserted in MRI Arthrography Under Traction. Top Magn Reson Imaging 2024; 33:e0313. [PMID: 39016321 DOI: 10.1097/rmr.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES The radiological imaging industry is developing and starting to offer a range of novel artificial intelligence software solutions for clinical radiology. Deep learning reconstruction of magnetic resonance imaging data seems to allow for the acceleration and undersampling of imaging data. Resulting reduced acquisition times would lead to greater machine utility and to greater cost-efficiency of machine operations. MATERIALS AND METHODS Our case shows images from magnetic resonance arthrography under traction of the right hip joint from a 30-year-old, otherwise healthy, male patient. RESULTS The undersampled image data when reconstructed by a deep learning tool can contain false-positive cartilage delamination and false-positive diffuse cartilage defects. CONCLUSIONS In the future, precision of this novel technology will have to be put to thorough testing. Bias of systems, in particular created by the choice of training data, will have to be part of those assessments.
Collapse
Affiliation(s)
- Wolfram A Bosbach
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Okolie A, Dirrichs T, Huck LC, Nebelung S, Arasteh ST, Nolte T, Han T, Kuhl CK, Truhn D. Accelerating breast MRI acquisition with generative AI models. Eur Radiol 2024:10.1007/s00330-024-10853-x. [PMID: 39088043 DOI: 10.1007/s00330-024-10853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES To investigate the use of the score-based diffusion model to accelerate breast MRI reconstruction. MATERIALS AND METHODS We trained a score-based model on 9549 MRI examinations of the female breast and employed it to reconstruct undersampled MRI images with undersampling factors of 2, 5, and 20. Images were evaluated by two experienced radiologists who rated the images based on their overall quality and diagnostic value on an independent test set of 100 additional MRI examinations. RESULTS The score-based model produces MRI images of high quality and diagnostic value. Both T1- and T2-weighted MRI images could be reconstructed to a high degree of accuracy. Two radiologists rated the images as almost indistinguishable from the original images (rating 4 or 5 on a scale of 5) in 100% (radiologist 1) and 99% (radiologist 2) of cases when the acceleration factor was 2. This fraction dropped to 88% and 70% for an acceleration factor of 5 and to 5% and 21% with an extreme acceleration factor of 20. CONCLUSION Score-based models can reconstruct MRI images at high fidelity, even at comparatively high acceleration factors, but further work on a larger scale of images is needed to ensure that diagnostic quality holds. CLINICAL RELEVANCE STATEMENT The number of MRI examinations of the breast is expected to rise with MRI screening recommended for women with dense breasts. Accelerated image acquisition methods can help in making this examination more accessible. KEY POINTS Accelerating breast MRI reconstruction remains a significant challenge in clinical settings. Score-based diffusion models can achieve near-perfect reconstruction for moderate undersampling factors. Faster breast MRI scans with maintained image quality could revolutionize clinic workflows and patient experience.
Collapse
Affiliation(s)
- Augustine Okolie
- Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany.
| | - Timm Dirrichs
- Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Sven Nebelung
- Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Teresa Nolte
- Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Tianyu Han
- Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Daniel Truhn
- Department of Radiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
13
|
Chaika M, Brendel JM, Ursprung S, Herrmann J, Gassenmaier S, Brendlin A, Werner S, Nickel MD, Nikolaou K, Afat S, Almansour H. Deep Learning Reconstruction of Prospectively Accelerated MRI of the Pancreas: Clinical Evaluation of Shortened Breath-Hold Examinations With Dixon Fat Suppression. Invest Radiol 2024:00004424-990000000-00235. [PMID: 39043213 DOI: 10.1097/rli.0000000000001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Deep learning (DL)-enabled magnetic resonance imaging (MRI) reconstructions can enable shortening of breath-hold examinations and improve image quality by reducing motion artifacts. Prospective studies with DL reconstructions of accelerated MRI of the upper abdomen in the context of pancreatic pathologies are lacking. In a clinical setting, the purpose of this study is to investigate the performance of a novel DL-based reconstruction algorithm in T1-weighted volumetric interpolated breath-hold examinations with partial Fourier sampling and Dixon fat suppression (hereafter, VIBE-DixonDL). The objective is to analyze its impact on acquisition time, image sharpness and quality, diagnostic confidence, pancreatic lesion conspicuity, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). METHODS This prospective single-center study included participants with various pancreatic pathologies who gave written consent from January 2023 to September 2023. During the same session, each participant underwent 2 MRI acquisitions using a 1.5 T scanner: conventional precontrast and postcontrast T1-weighted VIBE acquisitions with Dixon fat suppression (VIBE-Dixon, reference standard) using 4-fold parallel imaging acceleration and 6-fold accelerated VIBE-Dixon acquisitions with partial Fourier sampling utilizing a novel DL reconstruction tailored to the acquisition. A qualitative image analysis was performed by 4 readers. Acquisition time, image sharpness, overall image quality, image noise and artifacts, diagnostic confidence, as well as pancreatic lesion conspicuity and size were compared. Furthermore, a quantitative analysis of SNR and CNR was performed. RESULTS Thirty-two participants were evaluated (mean age ± SD, 62 ± 19 years; 20 men). The VIBE-DixonDL method enabled up to 52% reduction in average breath-hold time (7 seconds for VIBE-DixonDL vs 15 seconds for VIBE-Dixon, P < 0.001). A significant improvement of image sharpness, overall image quality, diagnostic confidence, and pancreatic lesion conspicuity was observed in the images recorded using VIBE-DixonDL (P < 0.001). Furthermore, a significant reduction of image noise and motion artifacts was noted in the images recorded using the VIBE-DixonDL technique (P < 0.001). In addition, for all readers, there was no evidence of a difference in lesion size measurement between VIBE-Dixon and VIBE-DixonDL. Interreader agreement between VIBE-Dixon and VIBE-DixonDL regarding lesion size was excellent (intraclass correlation coefficient, >90). Finally, a statistically significant increase of pancreatic SNR in VIBE-DIXONDL was observed in both the precontrast (P = 0.025) and postcontrast images (P < 0.001). Also, an increase of splenic SNR in VIBE-DIXONDL was observed in both the precontrast and postcontrast images, but only reaching statistical significance in the postcontrast images (P = 0.34 and P = 0.003, respectively). Similarly, an increase of pancreas CNR in VIBE-DIXONDL was observed in both the precontrast and postcontrast images, but only reaching statistical significance in the postcontrast images (P = 0.557 and P = 0.026, respectively). CONCLUSIONS The prospectively accelerated, DL-enhanced VIBE with Dixon fat suppression was clinically feasible. It enabled a 52% reduction in breath-hold time and provided superior image quality, diagnostic confidence, and pancreatic lesion conspicuity. This technique might be especially useful for patients with limited breath-hold capacity.
Collapse
Affiliation(s)
- Marianna Chaika
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tübingen University Hospital, Tübingen, Germany (M.C., J.M.B., S.U., J.H., S.G., A.B., S.W., K.N., S.A., H.A.); MR Application Predevelopment, Siemens Healthineers AG, Forchheim, Germany (M.D.N.); and Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor, Therapies," University of Tübingen, Tübingen, Germany (K.N.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Reichel K, Hahlbohm P, Kromrey ML, Nebelung H, Schön F, Kamin K, Goronzy J, Kühn JP, Hoffmann RT, Blum SFU. Feasibility and diagnostic accuracy of fast whole-body MRI in slightly to moderately injured trauma patients. Eur Radiol 2024:10.1007/s00330-024-10933-y. [PMID: 38995385 DOI: 10.1007/s00330-024-10933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES To determine the feasibility and diagnostic accuracy of fast whole-body magnetic resonance imaging (WB-MRI) compared to whole-body computed tomography (WB-CT) in detecting injuries of slightly to moderately injured trauma patients. MATERIALS AND METHODS In a prospective single-center approach, trauma patients from convenience sampling with an expected Abbreviated Injury Scale (AIS) score ≤ 3 at admission, received an indicated contrast-enhanced WB-CT (reference standard) and a plain WB-MRI (index test) voluntarily up to five days after trauma. Two radiologists, blinded to the WB-CT findings, evaluated the absence or presence of injuries with WB-MRI in four body regions: head, torso, axial skeleton, and upper extremity. Diagnostic accuracy was determined using sensitivity, specificity, positive predictive value, and negative predictive value by body region. RESULTS Between June 2019 and July 2021, 40 patients were assessed for eligibility of whom 35 (median age (interquartile range): 50 (32.5) years; 26 men) received WB-MRI. Of 140 body regions (35 patients × 4 regions), 31 true positive, 6 false positive, 94 true negative, and 9 false negative findings were documented with WB-MRI. Thus, plain WB-MRI achieved a total sensitivity of 77.5% (95%-confidence interval (CI): (61.6-89.2%)), specificity of 94% (95%-CI: (87.4-97.8%)), and diagnostic accuracy of 89.3% (95%-CI: (82.9-93.9%)). Across the four regions sensitivity and specificity varied: head (66.7%/93.1%), torso (62.5%/96.3%), axial skeleton (91.3%/75%), upper extremity (33.3%/100%). Both radiologists showed substantial agreement on the WB-MRI reading (Cohen's Kappa: 0.66, 95%-CI: (0.51-0.81)). CONCLUSION Regarding injury detection, WB-MRI is feasible in slightly to moderately injured trauma patients, especially in the axial skeleton. CLINICAL RELEVANCE STATEMENT Besides offering a radiation-free approach, whole-body MRI detects injuries almost identically to whole-body CT in slightly to moderately injured trauma patients, who comprise a relevant share of all trauma patients. KEY POINTS Whole-body MRI could offer radiation-free injury detection in slightly to moderately injured trauma patients. Whole-body MRI detected injuries almost identically compared to whole-body CT in this population. Whole-body MRI could be a radiation-free approach for slightly to moderately injured young trauma patients.
Collapse
Affiliation(s)
- Katrin Reichel
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Patricia Hahlbohm
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Marie-Luise Kromrey
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Heiner Nebelung
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Felix Schön
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Konrad Kamin
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jens Goronzy
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jens-Peter Kühn
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ralf-Thorsten Hoffmann
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Sophia Freya Ulrike Blum
- Institute and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
15
|
Marth AA, von Deuster C, Sommer S, Feuerriegel GC, Goller SS, Sutter R, Nanz D. Accelerated High-Resolution Deep Learning Reconstruction Turbo Spin Echo MRI of the Knee at 7 T. Invest Radiol 2024:00004424-990000000-00230. [PMID: 38960863 DOI: 10.1097/rli.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
OBJECTIVES The aim of this study was to compare the image quality of 7 T turbo spin echo (TSE) knee images acquired with varying factors of parallel-imaging acceleration reconstructed with deep learning (DL)-based and conventional algorithms. MATERIALS AND METHODS This was a prospective single-center study. Twenty-three healthy volunteers underwent 7 T knee magnetic resonance imaging. Two-, 3-, and 4-fold accelerated high-resolution fat-signal-suppressing proton density (PD-fs) and T1-weighted coronal 2D TSE acquisitions with an encoded voxel volume of 0.31 × 0.31 × 1.5 mm3 were acquired. Each set of raw data was reconstructed with a DL-based and a conventional Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) algorithm. Three readers rated image contrast, sharpness, artifacts, noise, and overall quality. Friedman analysis of variance and the Wilcoxon signed rank test were used for comparison of image quality criteria. RESULTS The mean age of the participants was 32.0 ± 8.1 years (15 male, 8 female). Acquisition times at 4-fold acceleration were 4 minutes 15 seconds (PD-fs, Supplemental Video is available at http://links.lww.com/RLI/A938) and 3 minutes 9 seconds (T1, Supplemental Video available at http://links.lww.com/RLI/A939). At 4-fold acceleration, image contrast, sharpness, noise, and overall quality of images reconstructed with the DL-based algorithm were significantly better rated than the corresponding GRAPPA reconstructions (P < 0.001). Four-fold accelerated DL-reconstructed images scored significantly better than 2- to 3-fold GRAPPA-reconstructed images with regards to image contrast, sharpness, noise, and overall quality (P ≤ 0.031). Image contrast of PD-fs images at 2-fold acceleration (P = 0.087), image noise of T1-weighted images at 2-fold acceleration (P = 0.180), and image artifacts for both sequences at 2- and 3-fold acceleration (P ≥ 0.102) of GRAPPA reconstructions were not rated differently than those of 4-fold accelerated DL-reconstructed images. Furthermore, no significant difference was observed for all image quality measures among 2-fold, 3-fold, and 4-fold accelerated DL reconstructions (P ≥ 0.082). CONCLUSIONS This study explored the technical potential of DL-based image reconstruction in accelerated 2D TSE acquisitions of the knee at 7 T. DL reconstruction significantly improved a variety of image quality measures of high-resolution TSE images acquired with a 4-fold parallel-imaging acceleration compared with a conventional reconstruction algorithm.
Collapse
Affiliation(s)
- Adrian Alexander Marth
- From the Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland (A.A.M., C.v.D., S.S., D.N.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (A.A.M., G.C.F., S.S.G., R.S.); Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Zurich, Switzerland (C.v.D., S.S.); and Medical Faculty, University of Zurich, Zurich, Switzerland (R.S., D.N.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Lin DJ, Doshi AM, Fritz J, Recht MP. Designing Clinical MRI for Enhanced Workflow and Value. J Magn Reson Imaging 2024; 60:29-39. [PMID: 37795927 DOI: 10.1002/jmri.29038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
MRI is an expensive and traditionally time-intensive modality in imaging. With the paradigm shift toward value-based healthcare, radiology departments must examine the entire MRI process cycle to identify opportunities to optimize efficiency and enhance value for patients. Digital tools such as "frictionless scheduling" prioritize patient preference and convenience, thereby delivering patient-centered care. Recent advances in conventional and deep learning-based accelerated image reconstruction methods have reduced image acquisition time to such a degree that so-called nongradient time now constitutes a major percentage of total room time. For this reason, architectural design strategies that reconfigure patient preparation processes and decrease the turnaround time between scans can substantially impact overall throughput while also improving patient comfort and privacy. Real-time informatics tools that provide an enterprise-wide overview of MRI workflow and Picture Archiving and Communication System (PACS)-integrated instant messaging can complement these efforts by offering transparent, situational data and facilitating communication between radiology team members. Finally, long-term investment in training, recruiting, and retaining a highly skilled technologist workforce is essential for building a pipeline and team of technologists committed to excellence. Here, we highlight various opportunities for optimizing MRI workflow and enhancing value by offering many of our own on-the-ground experiences and conclude by anticipating some of the future directions for process improvement and innovation in clinical MR imaging. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dana J Lin
- Department of Radiology, NYU Grossman School of Medicine/NYU Langone Health, New York, New York, USA
| | - Ankur M Doshi
- Department of Radiology, NYU Grossman School of Medicine/NYU Langone Health, New York, New York, USA
| | - Jan Fritz
- Department of Radiology, NYU Grossman School of Medicine/NYU Langone Health, New York, New York, USA
| | - Michael P Recht
- Department of Radiology, NYU Grossman School of Medicine/NYU Langone Health, New York, New York, USA
| |
Collapse
|
17
|
Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01174-7. [PMID: 38904746 DOI: 10.1007/s10334-024-01174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level. Quantitative MRI techniques have been employed to characterize tissues' structural integrity, biochemical content, and mechanical properties. Their applications extend to studying degenerative alterations, early OA detection, and evaluating therapeutic intervention. This article is a review of qMRI techniques for musculoskeletal tissue evaluation, with a particular emphasis on articular cartilage. The goal is to describe the underlying mechanism and primary limitations of the qMRI parameters, their association with the tissue physiological properties and their potential in detecting tissue degeneration leading to the development of OA with a primary focus on basic and preclinical research studies. Additionally, the review highlights some clinical applications of qMRI, discussing the role of texture-based radiomics and machine learning in advancing OA research.
Collapse
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Abdul Wahed Kajabi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Tang H, Hong M, Yu L, Song Y, Cao M, Xiang L, Zhou Y, Suo S. Deep learning reconstruction for lumbar spine MRI acceleration: a prospective study. Eur Radiol Exp 2024; 8:67. [PMID: 38902467 PMCID: PMC11189847 DOI: 10.1186/s41747-024-00470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND We compared magnetic resonance imaging (MRI) turbo spin-echo images reconstructed using a deep learning technique (TSE-DL) with standard turbo spin-echo (TSE-SD) images of the lumbar spine regarding image quality and detection performance of common degenerative pathologies. METHODS This prospective, single-center study included 31 patients (15 males and 16 females; aged 51 ± 16 years (mean ± standard deviation)) who underwent lumbar spine exams with both TSE-SD and TSE-DL acquisitions for degenerative spine diseases. Images were analyzed by two radiologists and assessed for qualitative image quality using a 4-point Likert scale, quantitative signal-to-noise ratio (SNR) of anatomic landmarks, and detection of common pathologies. Paired-sample t, Wilcoxon, and McNemar tests, unweighted/linearly weighted Cohen κ statistics, and intraclass correlation coefficients were used. RESULTS Scan time for TSE-DL and TSE-SD protocols was 2:55 and 5:17 min:s, respectively. The overall image quality was either significantly higher for TSE-DL or not significantly different between TSE-SD and TSE-DL. TSE-DL demonstrated higher SNR and subject noise scores than TSE-SD. For pathology detection, the interreader agreement was substantial to almost perfect for TSE-DL, with κ values ranging from 0.61 to 1.00; the interprotocol agreement was almost perfect for both readers, with κ values ranging from 0.84 to 1.00. There was no significant difference in the diagnostic confidence or detection rate of common pathologies between the two sequences (p ≥ 0.081). CONCLUSIONS TSE-DL allowed for a 45% reduction in scan time over TSE-SD in lumbar spine MRI without compromising the overall image quality and showed comparable detection performance of common pathologies in the evaluation of degenerative lumbar spine changes. RELEVANCE STATEMENT Deep learning-reconstructed lumbar spine MRI protocol enabled a 45% reduction in scan time compared with conventional reconstruction, with comparable image quality and detection performance of common degenerative pathologies. KEY POINTS • Lumbar spine MRI with deep learning reconstruction has broad application prospects. • Deep learning reconstruction of lumbar spine MRI saved 45% scan time without compromising overall image quality. • When compared with standard sequences, deep learning reconstruction showed similar detection performance of common degenerative lumbar spine pathologies.
Collapse
Affiliation(s)
- Hui Tang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Ming Hong
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Lu Yu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Yang Song
- MR Research Collaboration Team, Siemens Healthineers Ltd., Shanghai, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200127, China
| | | | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200127, China.
| | - Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong New District, Shanghai, 200127, China.
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Ni M, He M, Yang Y, Wen X, Zhao Y, Gao L, Yan R, Xu J, Zhang Y, Chen W, Jiang C, Li Y, Zhao Q, Wu P, Li C, Qu J, Yuan H. Application research of AI-assisted compressed sensing technology in MRI scanning of the knee joint: 3D-MRI perspective. Eur Radiol 2024; 34:3046-3058. [PMID: 37932390 DOI: 10.1007/s00330-023-10368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the potential applicability of AI-assisted compressed sensing (ACS) in knee MRI to enhance and optimize the scanning process. METHODS Volunteers and patients with sports-related injuries underwent prospective MRI scans with a range of acceleration techniques. The volunteers were subjected to varied ACS acceleration levels to ascertain the most effective level. Patients underwent scans at the determined optimal 3D-ACS acceleration level, and 3D compressed sensing (CS) and 2D parallel acquisition technology (PAT) scans were performed. The resultant 3D-ACS images underwent 3.5 mm/2.0 mm multiplanar reconstruction (MPR). Experienced radiologists evaluated and compared the quality of images obtained by 3D-ACS-MRI and 3D-CS-MRI, 3.5 mm/2.0 mm MPR and 2D-PAT-MRI, diagnosed diseases, and compared the results with the arthroscopic findings. The diagnostic agreement was evaluated using Cohen's kappa correlation coefficient, and both absolute and relative evaluation methods were utilized for objective assessment. RESULTS The study involved 15 volunteers and 53 patients. An acceleration factor of 10.69 × was identified as optimal. The quality evaluation showed that 3D-ACS provided poorer bone structure visualization, and improved cartilage visualization and less satisfactory axial images with 3.5 mm/2.0 mm MPR than 2D-PAT. In terms of objective evaluation, the relative evaluation yielded satisfactory results across different groups, while the absolute evaluation revealed significant variances in most features. Nevertheless, high levels of diagnostic agreement (κ: 0.81-0.94) and accuracy (0.83-0.98) were observed across all diagnoses. CONCLUSION ACS technology presents significant potential as a replacement for traditional CS in 3D-MRI knee scans, allowing thinner MPRs and markedly faster scans without sacrificing diagnostic accuracy. CLINICAL RELEVANCE STATEMENT 3D-ACS-MRI of the knee can be completed in the 160 s with good diagnostic consistency and image quality. 3D-MRI-MPR can replace 2D-MRI and reconstruct images with thinner slices, which helps to optimize the current MRI examination process and shorten scanning time. KEY POINTS • AI-assisted compressed sensing technology can reduce knee MRI scan time by over 50%. • 3D AI-assisted compressed sensing MRI and related multiplanar reconstruction can replace traditional accelerated MRI and yield thinner 2D multiplanar reconstructions. • Successful application of 3D AI-assisted compressed sensing MRI can help optimize the current knee MRI process.
Collapse
Affiliation(s)
- Ming Ni
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Miao He
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Yuxin Yang
- United Imaging Research Institute of Intelligent Imaging, Beijing, People's Republic of China
| | - Xiaoyi Wen
- Institute of Statistics and Big Data, Renmin University of China, Beijing, People's Republic of China
| | - Yuqing Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Lixiang Gao
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ruixin Yan
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jiajia Xu
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yarui Zhang
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wen Chen
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Chenyu Jiang
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yali Li
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Qiang Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Peng Wu
- United Imaging Healthcare Co, Shanghai, People's Republic of China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Junda Qu
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, People's Republic of China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, People's Republic of China.
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Brown JD, Kadom N, Weinberg BD, Krupinski EA. ResearchConnect.info: An Interactive Web-Based Platform for Building Academic Collaborations. Acad Radiol 2024; 31:1968-1975. [PMID: 38724131 DOI: 10.1016/j.acra.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/15/2024]
Abstract
RATIONALE AND OBJECTIVES Radiology is a rapidly evolving field that benefits from continuous innovation and research participation among trainees. Traditional methods for involving residents in research are often inefficient and limited, usually due to the absence of a standardized approach to identifying available research projects. A centralized online platform can enhance networking and offer equal opportunities for all residents. MATERIALS AND METHODS Research Connect is an online platform built with PHP, SQL, and JavaScript. Features include project and collaboration listing as well as advertisement of project openings to medical/undergraduate students, residents, and fellows. The automated system maintains project data and sends notifications for new research opportunities when they meet user preference criteria. Both pre- and post-launch surveys were used to assess the platform's efficacy. RESULTS Before the introduction of Research Connect, 69% of respondents used informal conversations as their primary method of discovering research opportunities. One year after its launch, Research Connect had 141 active users, comprising 63 residents and 41 faculty members, along with 85 projects encompassing various radiology subspecialties. The platform received a median satisfaction rating of 4 on a 1-5 scale, with 54% of users successfully locating projects of interest through the platform. CONCLUSION Research Connect addresses the need for a standardized method and centralized platform with active research projects and is designed for scalability. Feedback suggests it has increased the visibility and accessibility of radiology research, promoting greater trainee involvement and academic collaboration.
Collapse
Affiliation(s)
- Joshua D Brown
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, Georgia, 30322, USA.
| | - Nadja Kadom
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, Georgia, 30322, USA
| | - Brent D Weinberg
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, Georgia, 30322, USA
| | - Elizabeth A Krupinski
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, Georgia, 30322, USA
| |
Collapse
|
21
|
Zhang X, Wang Y, Xu X, Zhang J, Sun Y, Hu M, Wang S, Li Y, Chen Y, Zhao X. Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS. Abdom Radiol (NY) 2024; 49:1615-1625. [PMID: 38652125 DOI: 10.1007/s00261-024-04280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To investigate the influence of deep learning reconstruction (DLR) on bladder MRI, specifically examination time, image quality, and diagnostic performance of vesical imaging reporting and data system (VI-RADS) within a prospective clinical cohort. METHODS Seventy participants with bladder cancer who underwent MRI between August 2022 and February 2023 with a protocol containing standard T2-weighted imaging (T2WIS), standard diffusion-weighted imaging (DWIS), fast T2WI with DLR (T2WIDL), and fast DWI with DLR (DWIDL) were enrolled in this prospective study. Imaging quality was evaluated by measuring signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and qualitative image quality scoring. Additionally, the apparent diffusion coefficient (ADC) of bladder lesions derived from DWIS and DWIDL was measured and VI-RADS scoring was performed. Paired t-test or paired Wilcoxon signed-rank test were performed to compare image quality score, SNR, CNR, and ADC between standard sequences and fast sequences with DLR. The diagnostic performance for VI-RADS was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS Compared to T2WIS and DWIS, T2WIDL and DWIDL reduced the acquisition time from 5:57 min to 3:13 min and showed significantly higher SNR, CNR, qualitative image quality score of overall image quality, image sharpness, and lesion conspicuity. There were no significant differences in ADC and AUC of VI-RADS between standard sequences and fast sequences with DLR. CONCLUSIONS The application of DLR to T2WI and DWI reduced examination time and significantly improved image quality, maintaining ADC and the diagnostic performance of VI-RADS for evaluating muscle invasion in bladder cancer.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yichen Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaojuan Xu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jie Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuying Sun
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mancang Hu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sicong Wang
- GE Healthcare, MR Research China, Tongji South Road No1, Beijing, 100176, China
| | - Yi Li
- School of Statistics and Mathematics, Nanjing Audit University, Nanjing, 211815, China
| | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
22
|
Zhang Y, Ye Z, Xia C, Tan Y, Zhang M, Lv X, Tang J, Li Z. Clinical Applications and Recent Updates of Simultaneous Multi-slice Technique in Accelerated MRI. Acad Radiol 2024; 31:1976-1988. [PMID: 38220568 DOI: 10.1016/j.acra.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Simultaneous multi-slice (SMS) is a magnetic resonance imaging (MRI) acceleration technique that utilizes multi-band radio-frequency pulses to simultaneously excite and encode multiple slices. Currently, SMS has been widely studied and applied in the MRI examination to reduce acquisition time, which can significantly improve the examination efficiency and patient throughput. Moreover, SMS technique can improve spatial resolution, which is of great value in disease diagnosis, treatment response monitoring, and prognosis prediction. This review will briefly introduce the technical principles of SMS, and summarize its current clinical applications. More importantly, we will discuss the recent technical progress and future research direction of SMS, hoping to highlight the clinical value and scientific potential of this technique.
Collapse
Affiliation(s)
- Yiteng Zhang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zheng Ye
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yuqi Tan
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Meng Zhang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Xinyang Lv
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Jing Tang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Safari M, Eidex Z, Chang CW, Qiu RL, Yang X. Fast MRI Reconstruction Using Deep Learning-based Compressed Sensing: A Systematic Review. ARXIV 2024:arXiv:2405.00241v1. [PMID: 38745700 PMCID: PMC11092677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Magnetic resonance imaging (MRI) has revolutionized medical imaging, providing a non-invasive and highly detailed look into the human body. However, the long acquisition times of MRI present challenges, causing patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, researchers are exploring various techniques to reduce acquisition time and improve the overall efficiency of MRI. One such technique is compressed sensing (CS), which reduces data acquisition by leveraging image sparsity in transformed spaces. In recent years, deep learning (DL) has been integrated with CS-MRI, leading to a new framework that has seen remarkable growth. DL-based CS-MRI approaches are proving to be highly effective in accelerating MR imaging without compromising image quality. This review comprehensively examines DL-based CS-MRI techniques, focusing on their role in increasing MR imaging speed. We provide a detailed analysis of each category of DL-based CS-MRI including end-to-end, unroll optimization, self-supervised, and federated learning. Our systematic review highlights significant contributions and underscores the exciting potential of DL in CS-MRI. Additionally, our systematic review efficiently summarizes key results and trends in DL-based CS-MRI including quantitative metrics, the dataset used, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based CS-MRI in the advancement of medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based CS-MRI publications and publicly available datasets - https://github.com/mosaf/Awesome-DL-based-CS-MRI.
Collapse
Affiliation(s)
- Mojtaba Safari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
24
|
Xie Y, Li X, Hu Y, Liu C, Liang H, Nickel D, Fu C, Chen S, Tao H. Deep learning reconstruction for turbo spin echo to prospectively accelerate ankle MRI: A multi-reader study. Eur J Radiol 2024; 175:111451. [PMID: 38593573 DOI: 10.1016/j.ejrad.2024.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/10/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE To evaluate a deep learning reconstruction for turbo spin echo (DLR-TSE) sequence of ankle magnetic resonance imaging (MRI) in terms of acquisition time, image quality, and lesion detectability by comparing with conventional TSE. METHODS Between March 2023 and May 2023, patients with an indication for ankle MRI were prospectively enrolled. Each patient underwent a conventional TSE protocol and a prospectively undersampled DLR-TSE protocol. Four experienced radiologists independently assessed image quality using a 5-point scale and reviewed structural abnormalities. Image quality assessment included overall image quality, differentiation of anatomic details, diagnostic confidence, artifacts, and noise. Interchangeability analysis was performed to evaluate the equivalence of DLR-TSE relative to conventional TSE for detection of structural pathologies. RESULTS In total, 56 patients were included (mean age, 32.6 ± 10.6 years; 35 men). The DLR-TSE (233 s) protocol enabled a 57.4 % reduction in total acquisition time, compared with the conventional TSE protocol (547 s). DLR-TSE images had superior overall image quality, fewer artifacts, and less noise (all P < 0.05), compared with conventional TSE images, according to mean ratings by the four readers. Differentiation of anatomic details, diagnostic confidence, and assessments of structural abnormalities showed no differences between the two techniques (P > 0.05). Furthermore, DLR-TSE demonstrated diagnostic equivalence with conventional TSE, based on interchangeability analysis involving all analyzed structural abnormalities. CONCLUSION DLR can prospectively accelerate conventional TSE to a level comparable with a 4-minute comprehensive examination of the ankle, while providing superior image quality and similar lesion detectability in clinical practice.
Collapse
Affiliation(s)
- Yuxue Xie
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiangwen Li
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yiwen Hu
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.
| | - Changyan Liu
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.
| | - Haoyu Liang
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany.
| | - Caixia Fu
- MR Collaboration, Siemens (Shenzhen) Magnetic Resonance Ltd., Shenzhen, China.
| | - Shuang Chen
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, China.
| | - Hongyue Tao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Lemainque T, Huppertz MS, Yüksel C, Siepmann R, Kuhl C, Roemer F, Truhn D, Nebelung S. [Current MR imaging of cartilage in the context of knee osteoarthritis (part 1) : Principles and sequences]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:295-303. [PMID: 38158404 DOI: 10.1007/s00117-023-01252-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Magnetic resonance imaging (MRI) is the clinical method of choice for cartilage imaging in the context of degenerative and nondegenerative joint diseases. The MRI-based definitions of osteoarthritis rely on the detection of osteophytes, cartilage pathologies, bone marrow edema and meniscal lesions but currently a scientific consensus is lacking. In the clinical routine proton density-weighted, fat-suppressed 2D turbo spin echo sequences with echo times of 30-40 ms are predominantly used, which are sufficiently sensitive and specific for the assessment of cartilage. The additionally acquired T1-weighted sequences are primarily used for evaluating other intra-articular and periarticular structures. Diagnostically relevant artifacts include magic angle and chemical shift artifacts, which can lead to artificial signal enhancement in cartilage or incorrect representations of the subchondral lamina and its thickness. Although scientifically validated, high-resolution 3D gradient echo sequences (for cartilage segmentation) and compositional MR sequences (for quantification of physical tissue parameters) are currently reserved for scientific research questions. The future integration of artificial intelligence techniques in areas such as image reconstruction (to reduce scan times while maintaining image quality), image analysis (for automated identification of cartilage defects), and image postprocessing (for automated segmentation of cartilage in terms of volume and thickness) will significantly improve the diagnostic workflow and advance the field further.
Collapse
Affiliation(s)
- Teresa Lemainque
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Marc Sebastian Huppertz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Can Yüksel
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Robert Siepmann
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Christiane Kuhl
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Frank Roemer
- Radiologisches Institut, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, 91054, Erlangen, Deutschland
- Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Daniel Truhn
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Sven Nebelung
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
26
|
Yi PH, Garner HW, Hirschmann A, Jacobson JA, Omoumi P, Oh K, Zech JR, Lee YH. Clinical Applications, Challenges, and Recommendations for Artificial Intelligence in Musculoskeletal and Soft-Tissue Ultrasound: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024; 222:e2329530. [PMID: 37436032 DOI: 10.2214/ajr.23.29530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Artificial intelligence (AI) is increasingly used in clinical practice for musculoskeletal imaging tasks, such as disease diagnosis and image reconstruction. AI applications in musculoskeletal imaging have focused primarily on radiography, CT, and MRI. Although musculoskeletal ultrasound stands to benefit from AI in similar ways, such applications have been relatively underdeveloped. In comparison with other modalities, ultrasound has unique advantages and disadvantages that must be considered in AI algorithm development and clinical translation. Challenges in developing AI for musculoskeletal ultrasound involve both clinical aspects of image acquisition and practical limitations in image processing and annotation. Solutions from other radiology subspecialties (e.g., crowdsourced annotations coordinated by professional societies), along with use cases (most commonly rotator cuff tendon tears and palpable soft-tissue masses), can be applied to musculoskeletal ultrasound to help develop AI. To facilitate creation of high-quality imaging datasets for AI model development, technologists and radiologists should focus on increasing uniformity in musculoskeletal ultrasound performance and increasing annotations of images for specific anatomic regions. This Expert Panel Narrative Review summarizes available evidence regarding AI's potential utility in musculoskeletal ultrasound and challenges facing its development. Recommendations for future AI advancement and clinical translation in musculoskeletal ultrasound are discussed.
Collapse
Affiliation(s)
- Paul H Yi
- University of Maryland Medical Intelligent Imaging Center, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | | - Anna Hirschmann
- Imamed Radiology Nordwest, Basel, Switzerland
- Department of Radiology, University of Basel, Basel, Switzerland
| | - Jon A Jacobson
- Lenox Hill Radiology, New York, NY
- Department of Radiology, University of California, San Diego Medical Center, San Diego, CA
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
| | - Kangrok Oh
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - John R Zech
- Department of Radiology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
27
|
Herrmann J, Benkert T, Brendlin A, Gassenmaier S, Hölldobler T, Maennlin S, Almansour H, Lingg A, Weiland E, Afat S. Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T. Acad Radiol 2024; 31:921-928. [PMID: 37500416 DOI: 10.1016/j.acra.2023.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
RATIONALE AND OBJECTIVES To determine the impact on acquisition time reduction and image quality of a deep learning (DL) reconstruction for accelerated diffusion-weighted imaging (DWI) of the pelvis at 1.5 T compared to standard DWI. MATERIALS AND METHODS A total of 55 patients (mean age, 61 ± 13 years; range, 27-89; 20 men, 35 women) were consecutively included in this retrospective, monocentric study between February and November 2022. Inclusion criteria were (1) standard DWI (DWIS) in clinically indicated magnetic resonance imaging (MRI) at 1.5 T and (2) DL-reconstructed DWI (DWIDL). All patients were examined using the institution's standard MRI protocol according to their diagnosis including DWI with two different b-values (0 and 800 s/mm2) and calculation of apparent diffusion coefficient (ADC) maps. Image quality was qualitatively assessed by four radiologists using a visual 5-point Likert scale (5 = best) for the following criteria: overall image quality, noise level, extent of artifacts, sharpness, and diagnostic confidence. The qualitative scores for DWIS and DWIDL were compared with the Wilcoxon signed-rank test. RESULTS The overall image quality was evaluated to be significantly superior in DWIDL compared to DWIS for b = 0 s/mm2, b = 800 s/mm2, and ADC maps by all readers (P < .05). The extent of noise was evaluated to be significantly less in DWIDL compared to DWIS for b = 0 s/mm2, b = 800 s/mm2, and ADC maps by all readers (P < .001). No significant differences were found regarding artifacts, lesion detectability, sharpness of organs, and diagnostic confidence (P > .05). Acquisition time for DWIS was 2:06 minutes, and simulated acquisition time for DWIDL was 1:12 minutes. CONCLUSION DL image reconstruction improves image quality, and simulation results suggest that a reduction in acquisition time for diffusion-weighted MRI of the pelvis at 1.5 T is possible.
Collapse
Affiliation(s)
- Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Andreas Brendlin
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Thomas Hölldobler
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Simon Maennlin
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Andreas Lingg
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | - Elisabeth Weiland
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany.
| |
Collapse
|
28
|
Kim M, Kim SH, Hong S, Kim YJ, Kim HR, Kim JY. Evaluation of Extra-Prostatic Extension on Deep Learning-Reconstructed High-Resolution Thin-Slice T2-Weighted Images in Patients with Prostate Cancer. Cancers (Basel) 2024; 16:413. [PMID: 38254901 PMCID: PMC10814256 DOI: 10.3390/cancers16020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to compare diagnostic performance for extra-prostatic extension (EPE) and image quality among three image datasets: conventional T2-weighted images (T2WIconv, slice thickness, 3 mm) and high-resolution thin-slice T2WI (T2WIHR, 2 mm), with and without deep learning reconstruction (DLR) in patients with prostatic cancer (PCa). A total of 88 consecutive patients (28 EPE-positive and 60 negative) diagnosed with PCa via radical prostatectomy who had undergone 3T-MRI were included. Two independent reviewers performed a crossover review in three sessions, in which each reviewer recorded five-point confidence scores for the presence of EPE and image quality using a five-point Likert scale. Pathologic topographic maps served as the reference standard. For both reviewers, T2WIconv showed better diagnostic performance than T2WIHR with and without DLR (AUCs, in order, for reviewer 1, 0.883, 0.806, and 0.772, p = 0.0006; for reviewer 2, 0.803, 0.762, and 0.745, p = 0.022). The image quality was also the best in T2WIconv, followed by T2WIHR with DLR and T2WIHR without DLR for both reviewers (median, in order, 3, 4, and 5, p < 0.0001). In conclusion, T2WIconv was optimal in regard to image quality and diagnostic performance for the evaluation of EPE in patients with PCa.
Collapse
Affiliation(s)
- Mingyu Kim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Seung Ho Kim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Sujin Hong
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Yeon Jung Kim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Hye Ri Kim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Joo Yeon Kim
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| |
Collapse
|
29
|
Zhang Y, Ma Y, Wang J, Guan Q, Yu B. Construction and validation of a clinical prediction model for deep vein thrombosis in patients with digestive system tumors based on a machine learning. Am J Cancer Res 2024; 14:155-168. [PMID: 38323284 PMCID: PMC10839316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
This study developed a deep vein thrombosis (DVT) risk prediction model based on multiple machine learning methods for patients with digestive system tumors undergoing surgical treatment. Data of 1048 patients with digestive system tumors admitted to Shanxi Provincial People's Hospital (College of Shanxi Medical University) from January 2020 to January 2023 were retrospectively analyzed, and 845 cases were screened according to the inclusion and exclusion criteria. The patients were divided into a training group (586 patients), and a validation group (259 patients), then feature selection was performed using six models, including Lasso regression, XGBoost, Random Forest, Decision Tree, Support Vector Machine, and Logistics. Predictive models were subsequently constructed from column-line plots, and the predictive validity of the models was assessed using receiver operating characteristic curves, precision-recall curves, and decision-curve analysis. In the model comparison, the XGBoost model showed the largest area under the curve (AUC) on the validation set (P < 0.05), demonstrating excellent predictive performance and generalization ability. We selected the common characteristic factors in the six models to further develop the column line plots to assess the DVT risk. The model performed well in clinical validation and effectively differentiated high-risk and low-risk patients. The differences in BMI, procedure time, and D-dimer were statistically significant between patients in the thrombus group and those in the non-thrombus group (P < 0.05). However, the AUC of the Xgboost model was found to be greater than that of the column chart model by the Delong test (P < 0.05). BMI, procedure time, and D-dimer are critical predictors of DVT risk in patients with digestive system tumors. Our model is an adequate assessment tool for DVT risk, which can help improve the prevention and treatment of DVT.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital (The Fifth Clinical Medical School of Shanxi Medical University)No. 29 Shuangtasi Street, Taiyuan 030012, Shanxi, China
| | - Yongqi Ma
- Shanxi University of Chinese MedicineNo. 121 Daxue Street, Yuci District, Jinzhong 030619, Shanxi, China
| | - Jie Wang
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital (The Fifth Clinical Medical School of Shanxi Medical University)No. 29 Shuangtasi Street, Taiyuan 030012, Shanxi, China
| | - Qiang Guan
- Department of Vascular Surgery, Shanxi Provincial People’s Hospital (The Fifth Clinical Medical School of Shanxi Medical University)No. 29 Shuangtasi Street, Taiyuan 030012, Shanxi, China
| | - Bo Yu
- Department of Operating Room, Affiliated Hospital of Hebei UniversityNo. 212 Yuhua East Road, Lianchi District, Baoding 071000, Hebei, China
| |
Collapse
|
30
|
Xie Y, Tao H, Li X, Hu Y, Liu C, Zhou B, Cai J, Nickel D, Fu C, Xiong B, Chen S. Prospective Comparison of Standard and Deep Learning-reconstructed Turbo Spin-Echo MRI of the Shoulder. Radiology 2024; 310:e231405. [PMID: 38193842 DOI: 10.1148/radiol.231405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Background Deep learning (DL)-based MRI reconstructions can reduce imaging times for turbo spin-echo (TSE) examinations. However, studies that prospectively use DL-based reconstructions of rapidly acquired, undersampled MRI in the shoulder are lacking. Purpose To compare the acquisition time, image quality, and diagnostic confidence of DL-reconstructed TSE (TSEDL) with standard TSE in patients indicated for shoulder MRI. Materials and Methods This prospective single-center study included consecutive adult patients with various shoulder abnormalities who were clinically referred for shoulder MRI between February and March 2023. Each participant underwent standard TSE MRI (proton density- and T1-weighted imaging; conventional TSE sequence was used as reference for comparison), followed by a prospectively undersampled accelerated TSEDL examination. Six musculoskeletal radiologists evaluated images using a four-point Likert scale (1, poor; 4, excellent) for overall image quality, perceived signal-to-noise ratio, sharpness, artifacts, and diagnostic confidence. The frequency of major pathologic features and acquisition times were also compared between the acquisition protocols. The intergroup comparisons were performed using the Wilcoxon signed rank test. Results Overall, 135 shoulders in 133 participants were evaluated (mean age, 47.9 years ± 17.1 [SD]; 73 female participants). The median acquisition time of the TSEDL protocol was lower than that of the standard TSE protocol (288 seconds [IQR, 288-288 seconds] vs 926 seconds [IQR, 926-950 seconds], respectively; P < .001), achieving a 69% lower acquisition time. TSEDL images were given higher scores for overall image quality, perceived signal-to-noise ratio, and artifacts (all P < .001). Similar frequency of pathologic features (P = .48 to > .99), sharpness (P = .06), or diagnostic confidence (P = .05) were noted between images from the two protocols. Conclusion In a clinical setting, TSEDL led to reduced examination time and higher image quality with similar diagnostic confidence compared with standard TSE MRI in the shoulder. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Chang and Chow in this issue.
Collapse
Affiliation(s)
- Yuxue Xie
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Hongyue Tao
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Xiangwen Li
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Yiwen Hu
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Changyan Liu
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Bijing Zhou
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Jiajie Cai
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Dominik Nickel
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Caixia Fu
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Bo Xiong
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| | - Shuang Chen
- From the Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai 200040, China (Y.X., H.T., X.L., Y.H., C.L., B.Z., J.C., S.C.); MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany (D.N.); MR Collaboration, Siemens (Shenzhen) Magnetic Resonance, Shenzhen, China (C.F.); and MR Application, Siemens Healthineers, Shanghai, China (B.X.)
| |
Collapse
|
31
|
Guermazi A, Omoumi P, Tordjman M, Fritz J, Kijowski R, Regnard NE, Carrino J, Kahn CE, Knoll F, Rueckert D, Roemer FW, Hayashi D. How AI May Transform Musculoskeletal Imaging. Radiology 2024; 310:e230764. [PMID: 38165245 PMCID: PMC10831478 DOI: 10.1148/radiol.230764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 01/03/2024]
Abstract
While musculoskeletal imaging volumes are increasing, there is a relative shortage of subspecialized musculoskeletal radiologists to interpret the studies. Will artificial intelligence (AI) be the solution? For AI to be the solution, the wide implementation of AI-supported data acquisition methods in clinical practice requires establishing trusted and reliable results. This implementation will demand close collaboration between core AI researchers and clinical radiologists. Upon successful clinical implementation, a wide variety of AI-based tools can improve the musculoskeletal radiologist's workflow by triaging imaging examinations, helping with image interpretation, and decreasing the reporting time. Additional AI applications may also be helpful for business, education, and research purposes if successfully integrated into the daily practice of musculoskeletal radiology. The question is not whether AI will replace radiologists, but rather how musculoskeletal radiologists can take advantage of AI to enhance their expert capabilities.
Collapse
Affiliation(s)
- Ali Guermazi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Patrick Omoumi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Mickael Tordjman
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Jan Fritz
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Richard Kijowski
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Nor-Eddine Regnard
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - John Carrino
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Charles E. Kahn
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Florian Knoll
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Daniel Rueckert
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Frank W. Roemer
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| | - Daichi Hayashi
- From the Department of Radiology, Boston University School of
Medicine, Boston, Mass (A.G., F.W.R., D.H.); Department of Radiology, VA Boston
Healthcare System, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.);
Department of Radiology, Lausanne University Hospital and University of
Lausanne, Lausanne, Switzerland (P.O.); Department of Radiology, Hotel Dieu
Hospital and University Paris Cité, Paris, France (M.T.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.,
R.K.); Gleamer, Paris, France (N.E.R.); Réseau d’Imagerie Sud
Francilien, Clinique du Mousseau Ramsay Santé, Evry, France (N.E.R.);
Pôle Médical Sénart, Lieusaint, France (N.E.R.); Department
of Radiology and Imaging, Hospital for Special Surgery and Weill Cornell
Medicine, New York, NY (J.C.); Department of Radiology and Institute for
Biomedical Informatics, University of Pennsylvania, Philadelphia, Penn (C.E.K.);
Departments of Artificial Intelligence in Biomedical Engineering (F.K.) and
Radiology (F.W.R.), Universitätsklinikum Erlangen &
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany (F.K.); School of Medicine & Computation, Information and
Technology Klinikum rechts der Isar, Technical University Munich,
München, Germany (D.R.); Department of Computing, Imperial College
London, London, England (D.R.); and Department of Radiology, Tufts Medical
Center, Tufts University School of Medicine, Boston, Mass (D.H.)
| |
Collapse
|
32
|
Moy L. Top Publications in Radiology, 2023: Our 100th Year. Radiology 2023; 309:e233126. [PMID: 38085075 DOI: 10.1148/radiol.233126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
|
33
|
Keller G, Rachunek K, Springer F, Kraus M. Evaluation of a newly designed deep learning-based algorithm for automated assessment of scapholunate distance in wrist radiography as a surrogate parameter for scapholunate ligament rupture and the correlation with arthroscopy. LA RADIOLOGIA MEDICA 2023; 128:1535-1541. [PMID: 37726593 PMCID: PMC10700195 DOI: 10.1007/s11547-023-01720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Not diagnosed or mistreated scapholunate ligament (SL) tears represent a frequent cause of degenerative wrist arthritis. A newly developed deep learning (DL)-based automated assessment of the SL distance on radiographs may support clinicians in initial image interpretation. MATERIALS AND METHODS A pre-trained DL algorithm was specifically fine-tuned on static and dynamic dorsopalmar wrist radiography (training data set n = 201) for the automated assessment of the SL distance. Afterwards the DL algorithm was evaluated (evaluation data set n = 364 patients with n = 1604 radiographs) and correlated with results of an experienced human reader and with arthroscopic findings. RESULTS The evaluation data set comprised arthroscopically diagnosed SL insufficiency according to Geissler's stages 0-4 (56.5%, 2.5%, 5.5%, 7.5%, 28.0%). Diagnostic accuracy of the DL algorithm on dorsopalmar radiography regarding SL integrity was close to that of the human reader (e.g. differentiation of Geissler's stages ≤ 2 versus > 2 with a sensitivity of 74% and a specificity of 78% compared to 77% and 80%) with a correlation coefficient of 0.81 (P < 0.01). CONCLUSION A DL algorithm like this might become a valuable tool supporting clinicians' initial decision making on radiography regarding SL integrity and consequential triage for further patient management.
Collapse
Affiliation(s)
- Gabriel Keller
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- Department of Diagnostic Radiology, BG Trauma Center Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Katarzyna Rachunek
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tübingen, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
- Department of Diagnostic Radiology, BG Trauma Center Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Mathias Kraus
- Institute of Information Systems, FAU Erlangen-Nuremberg, Nuremberg, Germany
| |
Collapse
|
34
|
Lee J, Jung M, Park J, Kim S, Im Y, Lee N, Song HT, Lee YH. Highly accelerated knee magnetic resonance imaging using deep neural network (DNN)-based reconstruction: prospective, multi-reader, multi-vendor study. Sci Rep 2023; 13:17264. [PMID: 37828048 PMCID: PMC10570285 DOI: 10.1038/s41598-023-44248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
In this prospective, multi-reader, multi-vendor study, we evaluated the performance of a commercially available deep neural network (DNN)-based MR image reconstruction in enabling accelerated 2D fast spin-echo (FSE) knee imaging. Forty-five subjects were prospectively enrolled and randomly divided into three 3T MRIs. Conventional 2D FSE and accelerated 2D FSE sequences were acquired for each subject, and the accelerated FSE images were reconstructed and enhanced with DNN-based reconstruction software (FSE-DNN). Quantitative assessments and diagnostic performances were independently evaluated by three musculoskeletal radiologists. For statistical analyses, paired t-tests, and Pearson's correlation were used for image quality comparison and inter-reader agreements. Accelerated FSE-DNN reduced scan times by 41.0% on average. FSE-DNN showed better SNR and CNR (p < 0.001). Overall image quality of FSE-DNN was comparable (p > 0.05), and diagnostic performances of FSE-DNN showed comparable lesion detection. Two of cartilage lesions were under-graded or over-graded (n = 2) while there was no significant difference in other image sets (n = 43). Overall inter-reader agreement between FSE-conventional and FSE-DNN showed good agreement (R2 = 0.76; p < 0.001). In conclusion, DNN-based reconstruction can be applied to accelerated knee imaging in multi-vendor MRI scanners, with reduced scan time and comparable image quality. This study suggests the potential for DNN-accelerated knee MRI in clinical practice.
Collapse
Affiliation(s)
- Joohee Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Min Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jiwoo Park
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sungjun Kim
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Yunjin Im
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Nim Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ho-Taek Song
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
35
|
Gao Y, Liu W(V, Li L, Liu C, Zha Y. Usefulness of T2-Weighted Images with Deep-Learning-Based Reconstruction in Nasal Cartilage. Diagnostics (Basel) 2023; 13:3044. [PMID: 37835786 PMCID: PMC10572289 DOI: 10.3390/diagnostics13193044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE This study aims to evaluate the feasibility of visualizing nasal cartilage using deep-learning-based reconstruction (DLR) fast spin-echo (FSE) imaging in comparison to three-dimensional fast spoiled gradient-echo (3D FSPGR) images. MATERIALS AND METHODS This retrospective study included 190 set images of 38 participants, including axial T1- and T2-weighted FSE images using DLR (T1WIDL and T2WIDL, belong to FSEDL) and without using DLR (T1WIO and T2WIO, belong to FSEO) and 3D FSPGR images. Subjective evaluation (overall image quality, noise, contrast, artifacts, and identification of anatomical structures) was independently conducted by two radiologists. Objective evaluation including signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) was conducted using manual region-of-interest (ROI)-based analysis. Coefficient of variation (CV) and Bland-Altman plots were used to demonstrate the intra-rater repeatability of measurements for cartilage thickness on five different images. RESULTS Both qualitative and quantitative results confirmed superior FSEDL to 3D FSPGR images (both p < 0.05), improving the diagnosis confidence of the observers. Lower lateral cartilage (LLC), upper lateral cartilage (ULC), and septal cartilage (SP) were relatively well delineated on the T2WIDL, while 3D FSPGR showed poorly on the septal cartilage. For the repeatability of cartilage thickness measurements, T2WIDL showed the highest intra-observer (%CV = 8.7% for SP, 9.5% for ULC, and 9.7% for LLC) agreements. In addition, the acquisition time for T1WIDL and T2WIDL was respectively reduced by 14.2% to 29% compared to 3D FSPGR (both p < 0.05). CONCLUSIONS Two-dimensional equivalent-thin-slice T1- and T2-weighted images using DLR showed better image quality and shorter scan time than 3D FSPGR and conventional construction images in nasal cartilages. The anatomical details were preserved without losing clinical performance on diagnosis and prognosis, especially for pre-rhinoplasty planning.
Collapse
Affiliation(s)
- Yufan Gao
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | | | - Liang Li
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Changsheng Liu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
36
|
Ehmig J, Engel G, Lotz J, Lehmann W, Taheri S, Schilling AF, Seif Amir Hosseini A, Panahi B. MR-Imaging in Osteoarthritis: Current Standard of Practice and Future Outlook. Diagnostics (Basel) 2023; 13:2586. [PMID: 37568949 PMCID: PMC10417111 DOI: 10.3390/diagnostics13152586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that affects millions of people worldwide. Magnetic resonance imaging (MRI) has emerged as a powerful tool for the evaluation and monitoring of OA due to its ability to visualize soft tissues and bone with high resolution. This review aims to provide an overview of the current state of MRI in OA, with a special focus on the knee, including protocol recommendations for clinical and research settings. Furthermore, new developments in the field of musculoskeletal MRI are highlighted in this review. These include compositional MRI techniques, such as T2 mapping and T1rho imaging, which can provide additional important information about the biochemical composition of cartilage and other joint tissues. In addition, this review discusses semiquantitative joint assessment based on MRI findings, which is a widely used method for evaluating OA severity and progression in the knee. We analyze the most common scoring methods and discuss potential benefits. Techniques to reduce acquisition times and the potential impact of deep learning in MR imaging for OA are also discussed, as these technological advances may impact clinical routine in the future.
Collapse
Affiliation(s)
- Jonathan Ehmig
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Günther Engel
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Joachim Lotz
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Wolfgang Lehmann
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Shahed Taheri
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Arndt F. Schilling
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Ali Seif Amir Hosseini
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Babak Panahi
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| |
Collapse
|
37
|
Recht MP, White LM, Fritz J, Resnick DL. Advances in Musculoskeletal Imaging: Recent Developments and Predictions for the Future. Radiology 2023; 308:e230615. [PMID: 37642575 DOI: 10.1148/radiol.230615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Michael P Recht
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Lawrence M White
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Jan Fritz
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Donald L Resnick
- From the Department of Radiology, NYU Grossman School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016 (M.P.R., J.F.); Department of Medical Imaging, University Health Network, Sinai Health System and Women's College Hospital, Toronto, Canada (L.M.W.); and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| |
Collapse
|
38
|
Guermazi A, Roemer FW, Crema MD, Jarraya M, Mobasheri A, Hayashi D. Strategic application of imaging in DMOAD clinical trials: focus on eligibility, drug delivery, and semiquantitative assessment of structural progression. Ther Adv Musculoskelet Dis 2023; 15:1759720X231165558. [PMID: 37063459 PMCID: PMC10103249 DOI: 10.1177/1759720x231165558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Despite decades of research efforts and multiple clinical trials aimed at discovering efficacious disease-modifying osteoarthritis (OA) drugs (DMOAD), we still do not have a drug that shows convincing scientific evidence to be approved as an effective DMOAD. It has been suggested these DMOAD clinical trials were in part unsuccessful since eligibility criteria and imaging-based outcome evaluation were solely based on conventional radiography. The OA research community has been aware of the limitations of conventional radiography being used as a primary imaging modality for eligibility and efficacy assessment in DMOAD trials. An imaging modality for DMOAD trials should be able to depict soft tissue and osseous pathologies that are relevant to OA disease progression and clinical manifestations of OA. Magnetic resonance imaging (MRI) fulfills these criteria and advances in technology and increasing knowledge regarding imaging outcomes likely should play a more prominent role in DMOAD clinical trials. In this perspective article, we will describe MRI-based tools and analytic methods that can be applied to DMOAD clinical trials with a particular emphasis on knee OA. MRI should be the modality of choice for eligibility screening and outcome assessment. Optimal MRI pulse sequences must be chosen to visualize specific features of OA.
Collapse
Affiliation(s)
- Ali Guermazi
- Department of Radiology, School of Medicine, Boston University, Boston, MA 02132, USA
- VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA, USA
| | - Frank W. Roemer
- Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| | - Michel D. Crema
- Institute of Sports Imaging, Sports Medicine Department, French National Institute of Sports (INSEP), Paris, France
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Daichi Hayashi
- Department of Radiology, Tufts Medical Center, Tufts Medicine, Boston, MA, USA
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
39
|
Kojima S. [[MRI] 3. Current Status of AI Image Reconstruction in Clinical MRI Systems]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1200-1209. [PMID: 37866905 DOI: 10.6009/jjrt.2023-2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Affiliation(s)
- Shinya Kojima
- Department of Medical Radiology, Faculty of Medical Technology, Teikyo University
| |
Collapse
|