1
|
Zhao L, Zhou Y, Bai Z, Zhang F, Yang X. The underlying molecular mechanism of intratumoral radiofrequency hyperthermia-enhanced chemotherapy of pancreatic cancer. J Interv Med 2022; 5:57-63. [PMID: 35936663 PMCID: PMC9349012 DOI: 10.1016/j.jimed.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Background To investigate the underlying molecular mechanisms of radiofrequency hyperthermia (RFH)-enhanced direct chemotherapy of pancreatic cancers. Method Rat ductal PaCa cell line DSL-6A/C1 and orthotopic pancreatic cancers of Lewis rats were divided into four study groups with various treatments: i) phosphate-buffered saline (PBS) as a control; ii) RFH alone; iii) intratumoral chemotherapy alone (gemcitabine); and (iv) combination therapy of gemcitabine plus intratumoral RFH at 42 °C for 30 min. In the in-vitro confirmation experiments, the viability and apoptosis of DSL-6A/C1 cells in each treatment group were evaluated using cell live/dead staining, flow cytometry, and Western blot. In the in vivo validation experiments, related proteins were evaluated by immunohistochemistry (IHC) staining of tumors. Results Of the in-vitro experiments, the lowest cell viability and more apoptotic cells were shown in the group with combination therapy compared to other treatments. Western blot data showed elevated Bax/Bcl-2, Caspase-3, and HSP70 expressions in DSL cells with combination therapy, compared to other treatments. Of the in vivo experiments, IHC staining detected the significantly increased expressions of HSP70, IL-1β, TNF-ɑ, Bax, and Caspase-3 in pancreatic cancer tissues of the animal group treated by combination therapy of gemcitabine with RFH. Conclusion Molecular imaging-guided interventional RFH can significantly enhance the chemotherapeutic effect on pancreatic cancers via potential molecular mechanisms of up-regulating Bax/caspase-3-dependent apoptosis pathways.
Collapse
|
2
|
Bai Z, Shi Y, Wang J, Qiu L, Monroe EJ, Teng G, Zhang F, Yang X. Intratumoral radiofrequency hyperthermia-enhanced direct chemotherapy of pancreatic cancer. Oncotarget 2018; 8:3591-3599. [PMID: 27690303 PMCID: PMC5356906 DOI: 10.18632/oncotarget.12295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Purpose To investigate the technical feasibility of using ultrasound-guided intratumoral radiofrequency hyperthermia (RFH) to enhance local chemotherapy of rat orthotopic pancreatic cancers. Materials and Methods Orthotopic pancreatic cancer masses were established by inoculating luciferase/mCherry labeled-pancreatic cancer cells into the pancreatic tails of Lewis model rats via a laparotomy approach. Twenty-four rats with pancreatic cancer and 24 mice with subcutaneous pancreatic cancer xenografts in four study groups (n = 6/group) received various treatments: i) combination therapy of intratumoral MR imaging-heating-guidewire-mediated RFH (42oC) plus local chemotherapy (gemcitabine); ii) intratumoral chemotherapy alone; iii) RFH alone; and (iv)phosphate-buffered saline (PBS). Transcutaneous ultrasound imaging was used to guide the treatment and subsequently follow changes in tumor sizes. Bioluminescence optical imaging was performed to follow photon signal changes. Sonographic and optical findings were correlated with histology at 14 days. Results Optical imaging demonstrated a significantly decreased bioluminescence signal in mice with combination therapy group, compared with the other control groups (0.51±0.18 VS 1.6±0.4 VS 3.18±0.9 VS 3.5±0.96, p < 0.05). Ultrasound imaging showed the smallest tumor volumes of both mice and rat group with the combination therapy, compared with other control groups (0.62±0.16 VS 1.25±0.19 VS 2.28±0.25 VS 2.64±0.26, p < 0.05) and (0.75±0.18 VS 1.31±0.30 VS 1.61±0.28 VS 1.72±0.28, p < 0.05). Both imaging findings were confirmed by histologic correlation. Conclusion Intratumoral RFH can augment the chemotherapeutic effect in an orthotopic pancreatic cancer model.
Collapse
Affiliation(s)
- Zhibin Bai
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Radiology, Zhongda Hospital, Southeastern University, Nanjing, China
| | - Yaoping Shi
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianfeng Wang
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Longhua Qiu
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric J Monroe
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gaojun Teng
- Department of Radiology, Zhongda Hospital, Southeastern University, Nanjing, China
| | - Feng Zhang
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiaoming Yang
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
3
|
Shi Y, Zhang F, Bai Z, Wang J, Qiu L, Li Y, Meng Y, Valji K, Yang X. Orthotopic Esophageal Cancers: Intraesophageal Hyperthermia-enhanced Direct Chemotherapy in Rats. Radiology 2016; 282:103-112. [PMID: 27404050 DOI: 10.1148/radiol.2016152281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose To determine the feasibility of using intraesophageal radiofrequency (RF) hyperthermia to enhance local chemotherapy in a rat model with orthotopic esophageal squamous cancers. Materials and Methods The animal protocol was approved by the institutional animal care and use committee and the institutional review board. Human esophageal squamous cancer cells were transduced with luciferase lentiviral particles. Cancer cells, mice with subcutaneous cancer esophageal xenografts, and nude rats with orthotopic esophageal cancers in four study groups of six animals per group were treated with (a) combination therapy of magnetic resonance imaging heating guidewire-mediated RF hyperthermia (42°C) plus local chemotherapy (cisplatin and 5-fluorouracil), (b) chemotherapy alone, (c) RF hyperthermia alone, and (d) phosphate-buffered saline. Bioluminescent optical imaging and transcutaneous ultrasonographic imaging were used to observe bioluminescence signal and changes in tumor size among the groups over 2 weeks, which were correlated with subsequent histologic results. The nonparametric Mann-Whitney U test was used for comparisons of variables. Results Compared with chemotherapy alone, RF hyperthermia alone, and phosphate-buffered saline, combination therapy with RF hyperthermia and chemotherapy induced the lowest cell proliferation (relative absorbance of formazan: 23.4% ± 7, 44.6% ± 7.5, 95.8% ± 2, 100%, respectively; P < .0001), rendered the smallest relative tumor volume (0.65 mm3 ± 0.15, P < .0001) and relative bioluminescence optical imaging photon signal (0.57 × 107 photons per second per square millimeter ± 0.15, P < .001) of mice with esophageal cancer xenografts, as well as the smallest relative tumor volume (0.68 mm3 ± 0.13, P < .05) and relative photon signal (0.56 × 107 photons per second per square millimeter ± 0.11. P < .001) of rat orthotopic esophageal cancers. Conclusion Intraesophageal RF hyperthermia can enhance the effect of chemotherapy on esophageal squamous cell cancers. © RSNA, 2016.
Collapse
Affiliation(s)
- Yaoping Shi
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Feng Zhang
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Zhibin Bai
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Jianfeng Wang
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Longhua Qiu
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Yonggang Li
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Yanfeng Meng
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Karim Valji
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| | - Xiaoming Yang
- From the Image-guided Biomolecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Campus Box 358056, 850 Republican St, Room S470, Seattle, WA 98109
| |
Collapse
|
4
|
Zhou Y, Sun J, Yang X. Molecular Imaging-Guided Interventional Hyperthermia in Treatment of Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:505269. [PMID: 26491673 PMCID: PMC4605349 DOI: 10.1155/2015/505269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/11/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most frequent malignancy in women worldwide. Although it is commonly treated via chemotherapy, responses vary among its subtypes, some of which are relatively insensitive to chemotherapeutic drugs. Recent studies have shown that hyperthermia can enhance the effects of chemotherapy in patients with refractory breast cancer or without surgical indications. Recent advances in molecular imaging may not only improve early diagnosis but may also facilitate the development and response assessment of targeted therapies. Combining advanced techniques such as molecular imaging and hyperthermia-integrated chemotherapy should open new avenues for effective management of breast cancer.
Collapse
Affiliation(s)
- Yurong Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, China
- Image-Guided Bio-Molecular Interventions Research, Department of Radiology, University of Washington School of Medicine, 815 Mercer Street, Room S470, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Zhang F, Bai Z, Shi Y, Wang J, Li Y, Yang X. Interventional MRI-guided local delivery of agents into swine bile duct walls using MR-compatible needle-integrated balloon catheter system. NMR IN BIOMEDICINE 2015; 28:679-684. [PMID: 25900480 PMCID: PMC4441522 DOI: 10.1002/nbm.3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to investigate the feasibility of interventional MRI-guided local agent delivery into pig common bile duct (CBD) walls using a newly designed MR-compatible, needle-integrated balloon catheter system. We first designed a needle-integrated balloon catheter system that comprised of a 22 G MR-compatible Chiba biopsy needle and a conventional 12 mm × 2 cm balloon catheter. Under fluoroscopy guidance, a custom needle-balloon system was positioned in the target CBD via a transcholecystic access. T1-weighted MRI was used to localize and reposition the needle-balloon system in the target. A 0.5 mL mixture of motexafin gadolinium (MGd) and trypan blue dye as well as 5-fluorouracil was delivered into the CBD wall through the needle-balloon system. Post-infusion T1-weighted MRI was obtained and contrast-to-noise ratios (CNRs) of CBD walls of pre- and post-MGd-blue infusions were compared by a paired t-test. In addition, post-infusion x-ray cholangiography was achieved to evaluate the potential injuries of CBDs by the needle-balloon system. Subsequent histologic analysis was performed to correlate and confirm the imaging findings. A post-infusion cholangiogram did not show any extravasation of contrast agent, indicating no procedure-related damage to the CBDs. MRI demonstrated clear enhancement of the target bile duct walls infused with MGd-trypan blue dye with average penetration depth of 4.7 ± 1.2 mm and an average MGd perfusion length of 21 ± 1.5 mm in the bile ducts and their surrounding tissues. The average CNR of the post-infusion bile ducts was significant higher than that of the pre-infusion bile ducts (110.6 ± 22 versus 5.7 ± 2.8, p < 0.0001). Histology depicted the blue dye staining and red fluorescence of MGd through the target CBD walls, which was well correlated with the imaging findings. It is feasible to use the new MR-compatible, needle-integrated balloon catheter system for intrabiliary local agent delivery into CBD walls under MRI guidance, which may open new avenues for efficient management of pancreatobiliary malignancies using MR-guided interventional oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoming Yang
- Correspondence to: Xiaoming Yang, MD, PhD, Image-Guided Bio-Molecular Intervention Section, Department of Radiology, University of Washington School of Medicine, 850 Republican Street, S470, Seattle, Washington, USA., Phone: 206-685-6967, Fax: 206-221-0647,
| |
Collapse
|
6
|
Abstract
Recent advances in genetic analysis especially DNA sequencing technology open a new strategy for adult disease prevention by genetic screening. Physicians presently treat disease pathology with less emphasis on disease risk prevention/reduction. Genetic screening has reduced the incidence of untreatable childhood genetic diseases and improved the care of newborns. The opportunity exists to expand screening programs and reduce the incidence of adult onset diseases via genetic risk identification and disease intervention. This article outlines the approach, challenges, and benefits of such screening for adult genetic disease risks.
Collapse
|
7
|
Sun J, Li X, Feng H, Gu H, Blair T, Li J, Soriano S, Meng Y, Zhang F, Feng Q, Yang X. Magnetic resonance imaging of bone marrow cell-mediated interleukin-10 gene therapy of atherosclerosis. PLoS One 2011; 6:e24529. [PMID: 21915349 PMCID: PMC3168522 DOI: 10.1371/journal.pone.0024529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/12/2011] [Indexed: 11/23/2022] Open
Abstract
Background A characteristic feature of atherosclerosis is its diffuse involvement of arteries across the entire human body. Bone marrow cells (BMC) can be simultaneously transferred with therapeutic genes and magnetic resonance (MR) contrast agents prior to their transplantation. Via systemic transplantation, these dual-transferred BMCs can circulate through the entire body and thus function as vehicles to carry genes/contrast agents to multiple atherosclerosis. This study was to evaluate the feasibility of using in vivo MR imaging (MRI) to monitor BMC-mediated interleukin-10 (IL-10) gene therapy of atherosclerosis. Methodology For in vitro confirmation, donor mouse BMCs were transduced by IL-10/lentivirus, and then labeled with a T2-MR contrast agent (Feridex). For in vivo validation, atherosclerotic apoE−/− mice were intravenously transplanted with IL-10/Feridex-BMCs (Group I, n = 5) and Feridex-BMCs (Group II, n = 5), compared to controls without BMC transplantation (Group III, n = 5). The cell migration to aortic atherosclerotic lesions was monitored in vivo using 3.0T MRI with subsequent histology correlation. To evaluate the therapeutic effect of BMC-mediated IL-10 gene therapy, we statistically compared the normalized wall indexes (NWI) of ascending aortas amongst different mouse groups with various treatments. Principal Findings Of in vitro experiments, simultaneous IL-10 transduction and Feridex labeling of BMCs were successfully achieved, with high cell viability and cell labeling efficiency, as well as IL-10 expression efficiency (≥90%). Of in vivo experiments, MRI of animal groups I and II showed signal voids within the aortic walls due to Feridex-created artifacts from the migrated BMCs in the atherosclerotic plaques, which were confirmed by histology. Histological quantification showed that the mean NWI of group I was significantly lower than those of group II and group III (P<0.05). Conclusion This study has confirmed the possibility of using MRI to track, in vivo, IL-10/Feridex-BMCs recruited to atherosclerotic lesions, where IL-10 genes function to prevent the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Xubin Li
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hongqing Feng
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Huidong Gu
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Tiffany Blair
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jiakai Li
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephanie Soriano
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Yanfeng Meng
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Feng Zhang
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Qinghua Feng
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dual transfer of GFP gene and MGd into stem-progenitor cells: toward in vivo MRI of stem cell-mediated gene therapy of atherosclerosis. Acad Radiol 2010; 17:547-52. [PMID: 20227305 DOI: 10.1016/j.acra.2010.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/05/2010] [Accepted: 02/07/2010] [Indexed: 01/08/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to develop a new technique, the use of magnetic resonance (MR) imaging (MRI) to monitor gene/MR-cotransferred stem-progenitor cells (SPCs) recruited to atherosclerosis. MATERIALS AND METHODS First, a green fluorescent protein (GFP) gene and a T1 MR contrast agent (motexafin gadolinium [MGd]) were cotransferred into neural or bone marrow (BM)-derived SPCs. GFP expression and MGd signal were confirmed by fluorescent microscopy and quantified by flow cytometry. Cell viability and proliferation were then evaluated by trypan blue exclusion and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and GFP/MGd-transferred cells were imaged using 1.5-T and 9.4-T MR scanners. For in vivo validation, GFP/MGd-cotransferred beta-galactosidase-BM SPCs were transplanted to apolipoprotein E-knockout mice, and cell migration to atherosclerotic aortas was monitored using 9.4-T micro-MRI with subsequent histologic correlations. RESULTS Fluorescent microscopy demonstrated simultaneous GFP expression and MGd signals in cotransferred-cells. Quantitative flow cytometry showed GFP-positive cells at 47 +/- 25% and 56 +/- 12% and MGd-positive cells at 96 +/- 6% and 57 +/- 11% for neural stem cells and BM cells, respectively. Cell viability and metabolic rates of cotransferred cells were 86 +/- 4% and 84 +/- 12%, respectively. In vivo MRI revealed high MR signals of the aortic walls in GFP/MGd-transferred mice, which were confirmed by histologic correlations. CONCLUSION This study has initially proven the new concept of MRI for plaque-specific, cell-mediated gene expression of atherosclerosis.
Collapse
|
9
|
Cosgrove D, Lassau N. [Assessment of tumour angiogenesis using contrast-enhanced ultrasound]. ACTA ACUST UNITED AC 2009; 90:156-64. [PMID: 19212283 DOI: 10.1016/s0221-0363(09)70094-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbubbles are useful for imaging tumour angiogenesis and relatively crude forms of this approach are now routinely used for subjective diagnosis, especially in the liver. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves and have shown great promise in revealing effective tumour response to anti-angiogenic drugs in humans before tumour shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumour therapy are expected to be tested.
Collapse
Affiliation(s)
- D Cosgrove
- Imaging Sciences Department, Imperial College, Hammersmith Hospital, London W120HS, UK.
| | | |
Collapse
|
10
|
Qiu B, Gao F, Karmarkar P, Atalar E, Yang X. Intracoronary MR imaging using a 0.014-inch MR imaging-guidewire: Toward MRI-guided coronary interventions. J Magn Reson Imaging 2008; 28:515-8. [DOI: 10.1002/jmri.21424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Molecular MRI of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis. ACTA ACUST UNITED AC 2008; 5:396-404. [PMID: 18477983 DOI: 10.1038/ncpcardio1217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/22/2008] [Indexed: 11/09/2022]
Abstract
A characteristic feature of atherosclerotic cardiovascular disease is the diffuse involvement of arteries across the entire human body and the presence of multiple, simultaneous lesions. The diffuse nature of this disease creates a unique challenge for early diagnosis and effective treatment. We believe that recent progress in the field of molecular MRI has opened new avenues towards solving the problem. A new technology has been developed that uses molecular MRI to monitor the migration and homing of hematopoietic stem-progenitor cells to injured arteries and atherosclerosis. In this Review, we introduce several novel technical developments in the field of molecular MRI of atherosclerosis, including advanced techniques for magnetic labeling of stem-progenitor cells and molecular MRI of hematopoietic bone marrow cells migrating to injured arteries and homing to atherosclerotic plaques. In addition, we examine molecular MRI of vascular gene therapy mediated by stem-progenitor cells. These new techniques provide the basis for the further development of in vivo MRI techniques to monitor stem-cell-mediated vascular gene therapy for multiple and diffuse atherosclerotic cardiovascular lesions.
Collapse
|
12
|
Abstract
MRI has the ability to generate high-contrast and high-resolution images, to obtain multiple diagnostic evaluations of organ function and morphology, and to provide multiple image planes with no risk of ionizing radiation. Recent efforts have focused on using MR technology to monitor gene delivery, to enhance gene transfection/transduction, and to track gene expression. This review summarizes the current status of MRI-guided gene therapy.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Radiology, Johns Hopkins University, USA
| | | |
Collapse
|
13
|
Manninen HI, Yang X. Imaging after vascular gene therapy. Eur J Radiol 2005; 56:165-70. [PMID: 16233890 DOI: 10.1016/j.ejrad.2005.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/10/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022]
Abstract
Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy.
Collapse
Affiliation(s)
- Hannu I Manninen
- Department of Clinical Radiology, Kuopio University Hospital, Puijonlaaksontie 2, FIN-70210 Kuopio, Finland.
| | | |
Collapse
|
14
|
Qiu B, El-Sharkawy AM, Paliwal V, Karmarkar P, Gao F, Atalar E, Yang X. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system. Magn Reson Med 2005; 54:226-30. [PMID: 15968681 DOI: 10.1002/mrm.20521] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.
Collapse
Affiliation(s)
- Bensheng Qiu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Du X, Qiu B, Zhan X, Kolmakova A, Gao F, Hofmann LV, Cheng L, Chatterjee S, Yang X. Radiofrequency-enhanced vascular gene transduction and expression for intravascular MR imaging-guided therapy: feasibility study in pigs. Radiology 2005; 236:939-44. [PMID: 16040894 DOI: 10.1148/radiol.2363041021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the feasibility of radiofrequency (RF)-enhanced vascular gene transduction and expression by using a magnetic resonance (MR) imaging-heating guidewire as an intravascular heating vehicle during MR imaging-guided therapy. MATERIALS AND METHODS The institutional committee for animal care and use approved the experimental protocol. The study included in vitro evaluation of the use of RF energy to enhance gene transduction and expression in vascular cells, as well as in vivo validation of the feasibility of intravascular MR imaging-guided RF-enhanced vascular gene transduction and expression in pig arteries. For in vitro experiments, approximately 10(4) vascular smooth muscle cells were seeded in each of four chambers of a cell culture plate. Next, 1 mL of a green fluorescent protein gene (gfp)-bearing lentivirus was added to each chamber. Chamber 4 was heated at approximately 41 degrees C for 15 minutes by using an MR imaging-heating guidewire connected to a custom RF generator. At day 6 after transduction, the four chambers were examined and compared at confocal microscopy to determine the efficiency of gfp transduction and expression. For the in vivo experiments, a lentivirus vector bearing a therapeutic gene, vascular endothelial growth factor 165 (VEGF-165), was transferred by using a gene delivery balloon catheter in 18 femoral-iliac arteries (nine artery pairs) in domestic pigs and Yucatan pigs with atherosclerosis. During gene infusion, one femoral-iliac artery in each pig was heated to approximately 41 degrees C with RF energy transferred via the intravascular MR imaging-heating guidewire, while the contralateral artery was not heated (control condition). At day 6, the 18 arteries were harvested for quantitative Western blot analysis to compare VEGF-165 transduction and expression efficiency between RF-heated and nonheated arterial groups. RESULTS Confocal microscopy showed gfp expression in chamber 4 that was 293% the level of expression in chamber 1 (49.6% +/- 25.8 vs 16.8% +/- 8.0). Results of Western blot analysis showed VEGF-165 expression for normal arteries in the RF-heated group that was 300% the level of expression in the nonheated group (70.4 arbitrary units [au] +/- 107.1 vs 23.5 au +/- 29.8), and, for atherosclerotic arteries in the RF-heated group, 986% the level in the nonheated group (129.2 au +/- 100.3 vs 13.1 au +/- 4.9). CONCLUSION Simultaneous monitoring and enhancement of vascular gene delivery and expression is feasible with the MR imaging-heating guidewire.
Collapse
Affiliation(s)
- Xiangying Du
- Department of Radiology, Johns Hopkins University School of Medicine, Traylor Bldg, Room 330, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun Z. Transrenal fixation of aortic stent-grafts: current status and future directions. J Endovasc Ther 2005; 11:539-49. [PMID: 15482027 DOI: 10.1583/04-1212.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aortic stent-graft repair has been widely used in clinical practice for more than a decade, achieving satisfactory results compared to open surgical techniques. Transrenal fixation of stent-grafts is designed to obtain secure fixation of the proximal end of the stent-graft to avoid graft migration and to prevent type I endoleak. Unlike infrarenal deployment of stent-grafts, transrenal fixation takes advantage of the relative stability of the suprarenal aorta as a landing zone for the uncovered struts of the proximal stent. These transostial wires have sparked concern about the patency of the renal arteries, interference with renal blood flow, and effects on renal function. Although short to midterm results with suprarenal stent-grafts have not shown significant changes in renal function, long-term effects of this technique are still not fully understood. This review will explore the current status of transrenal fixation of aortic stent-grafts, potential risks of stent struts relative to the renal ostium, alternative methods to preserve blood flow to the renal arteries, and future directions or developments in stent-graft design to prevent myointimal proliferation around the stent struts.
Collapse
Affiliation(s)
- Zhonghua Sun
- School of Applied Medical Sciences and Sports Studies, University of Ulster, Newtownabbey, Northern Ireland, UK.
| |
Collapse
|
17
|
Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Delapaz RL, Bishop PL, Pile-Spellman J. Feasibility of Stent Placement in Carotid Arteries with Real-time MR Imaging Guidance in Pigs. Radiology 2005; 234:558-62. [PMID: 15591432 DOI: 10.1148/radiol.2341031950] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
All examinations were performed with approval from the institutional animal care and use committee of Columbia University. To assess the feasibility of real-time magnetic resonance (MR) imaging-guided neurovascular intervention in a swine model, the authors placed stents in the carotid arteries of five domestic pigs. Seven-French vascular sheaths were placed in the target carotid arteries via femoral access by using active MR tracking. Ten nitinol stents (8-10 x 20-40 mm) were successfully deployed in the target segments of carotid arteries bilaterally. MR imaging and necropsy findings confirmed stent position. Necropsy revealed no gross vascular injury. Study results demonstrated the feasibility of performing real-time MR imaging-guided neurovascular intervention by using an active-tracking technique in an animal model.
Collapse
Affiliation(s)
- Lei Feng
- Department of Radiology, Columbia University, 177 Fort Washington Ave, MHB 8SK, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Qiu B, Karmarkar P, Brushett C, Gao F, Kon R, Kar S, Atalar E, Yang X. Development of a 0.014-inch magnetic resonance imaging guidewire. Magn Reson Med 2005; 53:986-90. [PMID: 15799059 DOI: 10.1002/mrm.20384] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to develop a standard 0.014-inch intravascular magnetic resonance imaging guidewire (MRIG), a coaxial cable with an extension of the inner conductor, specifically designed for use in the small vessels. After a theoretical analysis, the 0.014-inch MRIG was built by plating/cladding highly electrically conductive materials, silver or gold, over the inside and outside of the coaxial conductors. The conductors were made of superelastic, nonmagnetic, biocompatible materials, Nitinol or MP35N. Then, in comparison with a previously designed 0.032-inch MRIG, the performance of the new 0.014-inch MRIG in vitro and in vivo was successfully evaluated. This study represents the initial work to confirm the critical role of highly conductive and superelastic materials in building such small-size MRIGs, which are expected to generate high-resolution MR imaging of vessel walls/plaques and guide endovascular interventional procedures in the small vessels, such as the coronary arteries.
Collapse
Affiliation(s)
- Bensheng Qiu
- Department of Radiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- D Cosgrove
- Imaging Sciences Department, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|