1
|
Dada A, Umbach G, Majumdar A, Kaur J, Oten S, Berger MS, Brang D, Hervey-Jumper SL. Somatosensory Mapping Using a Novel Sensory Discrimination Task: Technical Note. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01315. [PMID: 39248466 DOI: 10.1227/ons.0000000000001349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although diffuse gliomas in the primary somatosensory cortex (S1) are often considered resectable, gliomas in the primary motor cortex require motor mapping to preserve motor function. Recent evidence indicates that some somatosensory cortex neurons may trigger motor responses, necessitating refined somatosensory mapping techniques. METHODS Using piezoelectric tactile stimulators on patients' faces and hands, we delivered 25 Hz vibrations and prompted patients to discriminate between dermatomes. Testing included areas contralateral to tumor-infiltrated and to non-tumor-infiltrated cortical regions. Sensory thresholds were determined by reducing stimulus intensity based on performance. Intraoperatively, electrocorticography electrode arrays were used to map sensory responses, and postoperative assessments evaluated sensory outcomes. RESULTS The high-grade glioma case involved a 61-year-old man with right-sided weakness and numbness with a left parietal mass on MRI. Preoperative testing showed that the average vibratory detection threshold of the hand contralateral to the suspected tumor site was significantly higher than that of the hand contralateral to healthy cortex (P < .001). Intraoperative mapping confirmed the absence of functional involvement in cortical structures overlying the tumor. Postoperative imaging confirmed gross total resection, and sensory vibratory thresholds were normalized (P = .51). The low-grade glioma case included a 54-year-old man with a left parietal nonenhancing mass on MRI. No baseline sensory impairments were found on preoperative testing. Intraoperative mapping identified motor and sensory cortices, guiding tumor resection while preserving motor function. Postoperative MRI confirmed near-total resection, but new sensory impairments were noted in the hand and face contralateral to the resection site (P < .001). These deficits resolved by postoperative day 11, with no evidence of tumor progression on follow-up imaging. CONCLUSION The sensory discrimination task provides a quantifiable method for assessing sensory changes and functional outcomes related to glioma. This technique enhances our understanding of how glioma infiltration remodels sensory systems and affects clinical outcomes in patients.
Collapse
Affiliation(s)
- Abraham Dada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Gray Umbach
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Areti Majumdar
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jasleen Kaur
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Sena Oten
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Kamagata K, Andica C, Uchida W, Takabayashi K, Saito Y, Lukies M, Hagiwara A, Fujita S, Akashi T, Wada A, Hori M, Kamiya K, Zalesky A, Aoki S. Advancements in Diffusion MRI Tractography for Neurosurgery. Invest Radiol 2024; 59:13-25. [PMID: 37707839 DOI: 10.1097/rli.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.
Collapse
Affiliation(s)
- Koji Kamagata
- From the Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan (K.K., C.A., W.U., K.T., Y.S., A.H., S.F., T.A., A.W., S.A.); Faculty of Health Data Science, Juntendo University, Chiba, Japan (C.A., S.A.); Department of Radiology, Alfred Health, Melbourne, Victoria, Australia (M.L.); Department of Radiology, University of Tokyo, Tokyo, Japan (S.F.); Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan (M.H., K.K.); Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia (A.Z.); and Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia (A.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
4
|
Valdes PA, Ng S, Bernstock JD, Duffau H. Development of an educational method to rethink and learn oncological brain surgery in an "a la carte" connectome-based perspective. Acta Neurochir (Wien) 2023; 165:2489-2500. [PMID: 37199758 DOI: 10.1007/s00701-023-05626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding the structural connectivity of white matter tracts (WMT) and their related functions is a prerequisite to implementing an "a la carte" "connectomic approach" to glioma surgery. However, accessible resources facilitating such an approach are lacking. Here we present an educational method that is readily accessible, simple, and reproducible that enables the visualization of WMTs on individual patient images via an atlas-based approach. METHODS Our method uses the patient's own magnetic resonance imaging (MRI) images and consists of three main steps: data conversion, normalization, and visualization; these are accomplished using accessible software packages and WMT atlases. We implement our method on three common cases encountered in glioma surgery: a right supplementary motor area tumor, a left insular tumor, and a left temporal tumor. RESULTS Using patient-specific perioperative MRIs with open-sourced and co-registered atlas-derived WMTs, we highlight the critical subnetworks requiring specific surgical monitoring identified intraoperatively using direct electrostimulation mapping with cognitive monitoring. The aim of this didactic method is to provide the neurosurgical oncology community with an accessible and ready-to-use educational tool, enabling neurosurgeons to improve their knowledge of WMTs and to better learn their oncologic cases, especially in glioma surgery using awake mapping. CONCLUSIONS Taking no more than 3-5 min per patient and irrespective of their resource settings, we believe that this method will enable junior surgeons to develop an intuition, and a robust 3-dimensional imagery of WMT by regularly applying it to their cases both before and after surgery to develop an "a la carte" connectome-based perspective to glioma surgery.
Collapse
Affiliation(s)
- Pablo A Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Neurosurgery, Hôpital Gui de Chauliac, CHU Montpellier, 80 Av Augustin Fliche, 34295, Montpellier, France.
| | - Sam Ng
- Department of Neurosurgery, Hôpital Gui de Chauliac, CHU Montpellier, 80 Av Augustin Fliche, 34295, Montpellier, France
- Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors", Institute of Functional Genomics, INSERM U1191, University of Montpellier, 141 Rue de la cardonille, 34091, Montpellier, France
| | - Joshua D Bernstock
- Department of Neurosurgery, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugues Duffau
- Department of Neurosurgery, Hôpital Gui de Chauliac, CHU Montpellier, 80 Av Augustin Fliche, 34295, Montpellier, France
- Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors", Institute of Functional Genomics, INSERM U1191, University of Montpellier, 141 Rue de la cardonille, 34091, Montpellier, France
| |
Collapse
|
5
|
Ordonez-Rubiano EG, Johnson JM, Abdalá-Vargas N, Zorro OF, Marin-Munoz JH, Álvarez-Tobián R, Forlizzi V, Rangel CC, Luzzi S, Campero A, Patiño-Gómez JG, Baldoncini M. Preoperative tractography algorithm for safe resection of tumors located in the descending motor pathways zone. Surg Neurol Int 2023; 14:255. [PMID: 37560574 PMCID: PMC10408624 DOI: 10.25259/sni_230_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) tractography facilitates maximal safe resection and optimizes planning to avoid injury during subcortical dissection along descending motor pathways (DMPs). We provide an affordable, safe, and timely algorithm for preoperative DTI motor reconstruction for gliomas adjacent to DMPs. METHODS Preoperative DTI reconstructions were extracted from a prospectively acquired registry of glioma resections adjacent to DMPs. The surgeries were performed over a 7-year period. Demographic, clinical, and radiographic data were extracted from patients' electronic medical records. RESULTS Nineteen patients (12 male) underwent preoperative tractography between January 1, 2013, and May 31, 2020. The average age was 44.5 years (range, 19-81 years). A complete radiological resection was achieved in nine patients, a subtotal resection in five, a partial resection in three, and a biopsy in two. Histopathological diagnoses included 10 patients with high-grade glioma and nine with low-grade glioma. A total of 16 perirolandic locations (10 frontal and six frontoparietal) were recorded, as well as two in the insula and one in the basal ganglia. In 9 patients (47.3%), the lesion was in the dominant hemisphere. The median preoperative and postoperative Karnofsky Performance Scores were 78 and 80, respectively. Motor function was unchanged or improved over time in 15 cases (78.9%). CONCLUSION This protocol of DTI reconstruction for glioma removal near the DMP shows good results in low-term neurological functional outcomes.
Collapse
Affiliation(s)
- Edgar G. Ordonez-Rubiano
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Nadin Abdalá-Vargas
- Department of Neurological Surgery, Hospital de San José - Sociedad de Cirugía de Bogotá, Colombia
| | - Oscar F. Zorro
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Jorge H. Marin-Munoz
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Ricardo Álvarez-Tobián
- Department of Diagnostic Imaging and Diagnostic Radiology, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Valeria Forlizzi
- Department of Anatomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Carlos Castillo Rangel
- Department of Neurosurgery, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Sabino Luzzi
- Department of Neurosurgery, University of Pavia, Pavia, Italy
| | - Alvaro Campero
- Department of Neurosurgery, Hospital Padilla de Tucuman, Tucuman, Argentina
| | - Javier G. Patiño-Gómez
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Matias Baldoncini
- Department of Neurosurgery, San Fernando Hospital, San Fernando, Argentina
| |
Collapse
|
6
|
Dmitriev AY, Dashyan VG. [Tractography in functional neuronavigation]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-18. [PMID: 37490660 DOI: 10.17116/jnevro202312307112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The review addresses the combined use of tractography and neuronavigation. Fundamentals of diffusion tensor imaging are given, technical aspects of fiber tracking in general and in depicting separate subcortical tracts are described. Main advantages of the method and possible causes of errors are highlighted. Precision assessment of this technology is given by comparing with results of subcortical neurostimulation. Surgical tactics is described depending on distance between the tumor and subcortical pathways.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V G Dashyan
- Sklifosovsky Research Institute for Emergency, Moscow, Russia
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
7
|
Zhang W, Ille S, Schwendner M, Wiestler B, Meyer B, Krieg SM. Tracking motor and language eloquent white matter pathways with intraoperative fiber tracking versus preoperative tractography adjusted by intraoperative MRI-based elastic fusion. J Neurosurg 2022; 137:1114-1123. [PMID: 35213839 DOI: 10.3171/2021.12.jns212106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Preoperative fiber tracking (FT) enables visualization of white matter pathways. However, the intraoperative accuracy of preoperative image registration is reduced due to brain shift. Intraoperative FT is currently considered the standard of anatomical accuracy, while intraoperative imaging can also be used to correct and update preoperative data by intraoperative MRI (ioMRI)-based elastic fusion (IBEF). However, the use of intraoperative tractography is restricted due to the need for additional acquisition of diffusion imaging in addition to scanner limitations, quality factors, and setup time. Since IBEF enables compensation for brain shift and updating of preoperative FT, the aim of this study was to compare intraoperative FT with IBEF of preoperative FT. METHODS Preoperative MRI (pMRI) and ioMRI, both including diffusion tensor imaging (DTI) data, were acquired between February and November 2018. Anatomy-based DTI FT of the corticospinal tract (CST) and the arcuate fascicle (AF) was reconstructed at various fractional anisotropy (FA) values on pMRI and ioMRI, respectively. The intraoperative DTI FT, as a baseline tractography, was fused with original preoperative FT and IBEF-compensated FT, processes referred to as rigid fusion (RF) and elastic fusion (EF), respectively. The spatial overlap index (Dice coefficient [DICE]) and distances of surface points (average surface distance [ASD]) of fused FT before and after IBEF were analyzed and compared in operated and nonoperated hemispheres. RESULTS Seventeen patients with supratentorial brain tumors were analyzed. On the operated hemisphere, the overlap index of pre- and intraoperative FT of the CST by DICE significantly increased by 0.09 maximally after IBEF. A significant decrease by 0.5 mm maximally in the fused FT presented by ASD was observed. Similar improvements were found in IBEF-compensated FT, for which AF tractography on the tumor hemispheres increased by 0.03 maximally in DICE and decreased by 1.0 mm in ASD. CONCLUSIONS Preoperative tractography after IBEF is comparable to intraoperative tractography and can be a reliable alternative to intraoperative FT.
Collapse
Affiliation(s)
| | | | | | - Benedikt Wiestler
- 2Diagnostic and Interventional Neuroradiology, Technical University of Munich School of Medicine, Munich, Germany
| | | | | |
Collapse
|
8
|
Yang JYM, Chen J, Alexander B, Schilling K, Kean M, Wray A, Seal M, Maixner W, Beare R. Assessment of intraoperative diffusion EPI distortion and its impact on estimation of supratentorial white matter tract positions in pediatric epilepsy surgery. Neuroimage Clin 2022; 35:103097. [PMID: 35759887 PMCID: PMC9250069 DOI: 10.1016/j.nicl.2022.103097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 10/26/2022]
Abstract
The effectiveness of correcting diffusion Echo Planar Imaging (EPI) distortion and its impact on tractography reconstruction have not been adequately investigated in the intraoperative MRI setting, particularly for High Angular Resolution Diffusion Imaging (HARDI) acquisition. In this study, we evaluated the effectiveness of EPI distortion correction using 27 legacy intraoperative HARDI datasets over two consecutive surgical time points, acquired without reverse phase-encoded data, from 17 children who underwent epilepsy surgery at our institution. The data was processed with EPI distortion correction using the Synb0-Disco technique (Schilling et al., 2019) and without distortion correction. The corrected and uncorrected b0 diffusion-weighted images (DWI) were first compared visually. The mutual information indices between the original T1-weighted images and the fractional anisotropy images derived from corrected and uncorrected DWI were used to quantify the effect of distortion correction. Sixty-four white matter tracts were segmented from each dataset, using a deep-learning based automated tractography algorithm for the purpose of a standardized and unbiased evaluation. Displacement was calculated between tracts generated before and after distortion correction. The tracts were grouped based on their principal morphological orientations to investigate whether the effects of EPI distortion vary with tract orientation. Group differences in tract distortion were investigated both globally, and regionally with respect to proximity to the resecting lesion in the operative hemisphere. Qualitatively, we observed notable improvement in the corrected diffusion images, over the typically affected brain regions near skull-base air sinuses, and correction of additional distortion unique to intraoperative open cranium images, particularly over the resection site. This improvement was supported quantitatively, as mutual information indices between the FA and T1-weighted images were significantly greater after the correction, compared to before the correction. Maximum tract displacement between the corrected and uncorrected data, was in the range of 7.5 to 10.0 mm, a magnitude that would challenge the safety resection margin typically tolerated for tractography-informed surgical guidance. This was particularly relevant for tracts oriented partially or fully in-line with the acquired diffusion phase-encoded direction. Portions of these tracts passing close to the resection site demonstrated significantly greater magnitude of displacement, compared to portions of tracts remote from the resection site in the operative hemisphere. Our findings have direct clinical implication on the accuracy of intraoperative tractography-informed image guidance and emphasize the need to develop a distortion correction technique with feasible intraoperative processing time.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Bonnie Alexander
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Kurt Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, USA
| | - Michael Kean
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Medical Imaging, The Royal Children's Hospital, Melbourne, Australia
| | - Alison Wray
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Wirginia Maixner
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Peninsula Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Shalan ME, Soliman AY, Nassar IA, Alarabawy RA. Surgical planning in patients with brain glioma using diffusion tensor MR imaging and tractography. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [PMCID: PMC8050646 DOI: 10.1186/s43055-021-00490-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diffusion-tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that depicts the integrity of white matter (WM) tracts. This study was conducted to assess the utility of DTI tractography as an imaging technique in assessment of brain gliomas and planning of the surgical corridor.
Results
Twenty adult patients with brain gliomas were included. Neurological examination and conventional MRI and DTI scans were performed before and after surgery. Low-grade and high-grade tumors were found in 30% and 70% of patients, respectively. Preoperative DTI demonstrated five patterns of WM tract involvement: non-affected (10%), displaced (75%), edematous (55%), infiltrated (60%), and disrupted (20%). The obtained DTI scans were used for preoperative planning of the surgical corridor and extent of resection to achieve the maximum resection while preserving the WM tracts. Total resection was achieved in 40%, while 60% underwent subtotal resection. Postoperative neurological examination showed deterioration of cognitive function, motor power, and vision in 15%, 10%, and 5% of patients, respectively. Headache persisted in 15%, while motor power improved in 35% of patients. High-grade tumors were significantly associated with higher percentage of subtotal resection (p=0.018) and pattern IV (p=0.018). There was a significant association between the preoperative pattern of WM tract involvement and the postoperative DTI changes (p<0.001).
Conclusion
DTI enables assessment of displaced and infiltrated WM tracts in the vicinity of brain tumors. Preoperative planning of tumor resection and surgical corridor should include DTI scan to achieve the balance between maximum resection of tumor and maximal preservation of function.
Collapse
|
10
|
Drakopoulos F, Tsolakis C, Angelopoulos A, Liu Y, Yao C, Kavazidi KR, Foroglou N, Fedorov A, Frisken S, Kikinis R, Golby A, Chrisochoides N. Adaptive Physics-Based Non-Rigid Registration for Immersive Image-Guided Neuronavigation Systems. Front Digit Health 2021; 2:613608. [PMID: 34713074 PMCID: PMC8521897 DOI: 10.3389/fdgth.2020.613608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a safe resection of brain tumors in eloquent areas of the brain. However, the brain deforms during surgery, particularly in the presence of tumor resection. Non-Rigid Registration (NRR) of the preoperative image data can be used to create a registered image that captures the deformation in the intraoperative image while maintaining the quality of the preoperative image. Using clinical data, this paper reports the results of a comparison of the accuracy and performance among several non-rigid registration methods for handling brain deformation. A new adaptive method that automatically removes mesh elements in the area of the resected tumor, thereby handling deformation in the presence of resection is presented. To improve the user experience, we also present a new way of using mixed reality with ultrasound, MRI, and CT. Materials and methods: This study focuses on 30 glioma surgeries performed at two different hospitals, many of which involved the resection of significant tumor volumes. An Adaptive Physics-Based Non-Rigid Registration method (A-PBNRR) registers preoperative and intraoperative MRI for each patient. The results are compared with three other readily available registration methods: a rigid registration implemented in 3D Slicer v4.4.0; a B-Spline non-rigid registration implemented in 3D Slicer v4.4.0; and PBNRR implemented in ITKv4.7.0, upon which A-PBNRR was based. Three measures were employed to facilitate a comprehensive evaluation of the registration accuracy: (i) visual assessment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using anatomical points identified by a neurosurgeon. Results: The A-PBNRR using multi-tissue mesh adaptation improved the accuracy of deformable registration by more than five times compared to rigid and traditional physics based non-rigid registration, and four times compared to B-Spline interpolation methods which are part of ITK and 3D Slicer. Performance analysis showed that A-PBNRR could be applied, on average, in <2 min, achieving desirable speed for use in a clinical setting. Conclusions: The A-PBNRR method performed significantly better than other readily available registration methods at modeling deformation in the presence of resection. Both the registration accuracy and performance proved sufficient to be of clinical value in the operating room. A-PBNRR, coupled with the mixed reality system, presents a powerful and affordable solution compared to current neuronavigation systems.
Collapse
Affiliation(s)
- Fotis Drakopoulos
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States
| | - Christos Tsolakis
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| | - Angelos Angelopoulos
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| | - Yixun Liu
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States
| | - Chengjun Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | | | - Nikolaos Foroglou
- Department of Neurosurgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andrey Fedorov
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexandra Golby
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Nikos Chrisochoides
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
11
|
Lesage AC, Simmons A, Sen A, Singh S, Chen M, Cazoulat G, Weinberg JS, Brock KK. Viscoelastic biomechanical models to predict inward brain-shift using public benchmark data. Phys Med Biol 2021; 66. [PMID: 34469879 DOI: 10.1088/1361-6560/ac22dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2021] [Indexed: 11/11/2022]
Abstract
Brain-shift during neurosurgery compromises the accuracy of tracking the boundaries of the tumor to be resected. Although several studies have used various finite element models (FEMs) to predict inward brain-shift, evaluation of their accuracy and efficiency based on public benchmark data has been limited. This study evaluates several FEMs proposed in the literature (various boundary conditions, mesh sizes, and material properties) by using intraoperative imaging data (the public REtroSpective Evaluation of Cerebral Tumors [RESECT] database). Four patients with low-grade gliomas were identified as having inward brain-shifts. We computed the accuracy (using target registration error) of several FEM-based brain-shift predictions and compared our findings. Since information on head orientation during craniotomy is not included in this database, we tested various plausible angles of head rotation. We analyzed the effects of brain tissue viscoelastic properties, mesh size, craniotomy position, CSF drainage level, and rigidity of meninges and then quantitatively evaluated the trade-off between accuracy and central processing unit time in predicting inward brain-shift across all models with second-order tetrahedral FEMs. The mean initial target registration error (TRE) was 5.78 ± 3.78 mm with rigid registration. FEM prediction (edge-length, 5 mm) with non-rigid meninges led to a mean TRE correction of 1.84 ± 0.83 mm assuming heterogeneous material. Results show that, for the low-grade glioma patients in the study, including non-rigid modeling of the meninges was significant statistically. In contrast including heterogeneity was not significant. To estimate the optimal head orientation and CSF drainage, an angle step of 5° and an CSF height step of 5 mm were enough leading to <0.26 mm TRE fluctuation.
Collapse
Affiliation(s)
- Anne-Cecile Lesage
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Alexis Simmons
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anando Sen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Simran Singh
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Melissa Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
12
|
Gogos AJ, Young JS, Morshed RA, Avalos LN, Noss RS, Villanueva-Meyer JE, Hervey-Jumper SL, Berger MS. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg 2021; 134:1728-1737. [PMID: 32502996 DOI: 10.3171/2020.3.jns193434] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. The authors and other groups have described the use of bipolar or monopolar direct stimulation to identify functional tissue, as well as transcranial or transcortical motor evoked potentials (MEPs) to monitor motor pathways. Here, the authors describe their initial experience using all 3 modalities to identify, monitor, and preserve cortical and subcortical motor systems during glioma surgery. METHODS Intraoperative mapping data were extracted from a prospective registry of glioma resections near motor pathways. Additional demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. All patients with new or worsened postoperative motor deficits were followed for at least 6 months. RESULTS Between January 2018 and August 2019, 59 operations were performed in 58 patients. Overall, patients in 6 cases (10.2%) had new or worse immediate postoperative deficits. Patients with temporary deficits all had at least Medical Research Council grade 4/5 power. Only 2 patients (3.4%) had permanently worsened deficits after 6 months, both of which were associated with diffusion restriction consistent with ischemia within the corticospinal tract. One patient's deficit improved to 4/5 and the other to 4/5 proximally and 3/5 distally in the lower limb, allowing ambulation following rehabilitation. Subcortical motor pathways were identified in 51 cases (86.4%) with monopolar high-frequency stimulation, but only in 6 patients using bipolar stimulation. Transcranial or cortical MEPs were diminished in only 6 cases, 3 of which had new or worsened deficits, with 1 permanent deficit. Insula location (p = 0.001) and reduction in MEPs (p = 0.01) were the only univariate predictors of new or worsened postoperative deficits. Insula location was the only predictor of permanent deficits (p = 0.046). The median extent of resection was 98.0%. CONCLUSIONS Asleep triple motor mapping is safe and resulted in a low rate of deficits without compromising the extent of resection.
Collapse
Affiliation(s)
| | | | | | | | - Roger S Noss
- 3Neuromonitoring Service, University of California, San Francisco, California
| | | | | | | |
Collapse
|
13
|
Elliott CA, Danyluk H, Aronyk KE, Au K, Wheatley BM, Gross DW, Sankar T, Beaulieu C. Intraoperative acquisition of DTI in cranial neurosurgery: readout-segmented DTI versus standard single-shot DTI. J Neurosurg 2020; 133:1210-1219. [PMID: 31419798 DOI: 10.3171/2019.5.jns19890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/21/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) tractography is commonly used in neurosurgical practice but is largely limited to the preoperative setting. This is due primarily to image degradation caused by susceptibility artifact when conventional single-shot (SS) echo-planar imaging (EPI) DTI (SS-DTI) is acquired for open cranial, surgical position intraoperative DTI (iDTI). Readout-segmented (RS) EPI DTI (RS-DTI) has been reported to reduce such artifact but has not yet been evaluated in the intraoperative MRI (iMRI) environment. The authors evaluated the performance of RS versus SS EPI for DTI of the human brain in the iMRI setting. METHODS Pre- and intraoperative 3-T 3D T1-weighted and 2D multislice RS-iDTI (called RESOLVE [readout segmentation of long variable echo-trains] on the Siemens platform) and SS-iDTI images were acquired in 22 adult patients undergoing intraaxial iMRI resections for suspected low-grade glioma (14; 64%), high-grade glioma (7; 32%), or focal cortical dysplasia. Regional susceptibility artifact, anatomical deviation relative to T1-weighted imaging, and tractographic output for surgically relevant tracts were compared between iDTI sequences as well as the intraoperative tract shifts from preoperative DTI. RESULTS RS-iDTI resulted in qualitatively less regional susceptibility artifact (resection cavity, orbitofrontal and anterior temporal cortices) and mean anatomical deviation in regions most prone to susceptibility artifact (RS-iDTI 2.7 ± 0.2 vs SS-iDTI 7.5 ± 0.4 mm) compared to SS-iDTI. Although tract reconstruction success did not significantly differ by DTI method, susceptibility artifact-related tractography failure (of at least 1 surgically relevant tract) occurred for SS-iDTI in 8/22 (36%) patients, and in 5 of these 8 patients RS-iDTI permitted successful reconstruction. Among cases with successful tractography for both sequences, maximal intersequence differences were substantial (mean 9.5 ± 5.7 mm, range -27.1 to 18.7 mm). CONCLUSIONS RS EPI enables higher quality and more accurate DTI for surgically relevant tractography of major white matter tracts in intraoperative, open cranium neurosurgical applications at 3 T.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christian Beaulieu
- 4Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Lukyanchikov VA, Senko IV, Ryzhkova ES, Dmitriev AY. [Navigation in vascular neurosurgery]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:82-89. [PMID: 32759931 DOI: 10.17116/neiro20208404182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Literature review is devoted to the role of frameless neuronavigation in surgery of distal aneurysms, cavernomas, arteriovenous malformations, Kimmerle's anomaly and revascularization surgeries. Visualization methods used in preoperative preparation of patients with vascular lesions compatible with frameless neuronavigation and the methods of intraoperative visualization as an addition to navigation are described.
Collapse
Affiliation(s)
- V A Lukyanchikov
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia.,Peoples' Friendship University of Russia, Moscow, Russia
| | - I V Senko
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - E S Ryzhkova
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia.,Peoples' Friendship University of Russia, Moscow, Russia
| | - A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
| |
Collapse
|
15
|
Yang J, Carl B, Nimsky C, Bopp MHA. The impact of position-orientation adaptive smoothing in diffusion weighted imaging-From diffusion metrics to fiber tractography. PLoS One 2020; 15:e0233474. [PMID: 32433682 PMCID: PMC7239461 DOI: 10.1371/journal.pone.0233474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
In contrast to commonly used approaches to improve data quality in diffusion weighted imaging, position-orientation adaptive smoothing (POAS) provides an edge-preserving post-processing approach. This study aims to investigate its potential and effects on image quality, diffusion metrics, and fiber tractography of the corticospinal tract in relation to non-post-processed and averaged data. 22 healthy volunteers were included in this study. For each volunteer five clinically applicable diffusion weighted imaging data sets were acquired and post-processed by standard averaging and POAS. POAS post-processing led to significantly higher signal-to-noise-ratios (p < 0.001), lower fractional anisotropy across the whole brain (p < 0.05) and reduced intra-subject variability of diffusion weighted imaging signal intensity and fractional anisotropy (p < 0.001, p = 0.006). Fiber tractography of the corticospinal tract resulted in significantly (p = 0.027, p = 0.014) larger tract volumes while fiber density was the lowest. Similarity across tractography results was highest for POAS post-processed data (p < 0.001). POAS post-processing enhances image quality, decreases the intra-subject variability of signal intensity and fractional anisotropy, increases fiber tract volume of the corticospinal tract, and leads to higher reproducibility of tractography results. Thus, POAS post-processing supports a reliable and more accurate fiber tractography of the corticospinal tract, being mandatory for the clinical use.
Collapse
Affiliation(s)
- Jia Yang
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
16
|
Awake glioma surgery: technical evolution and nuances. J Neurooncol 2020; 147:515-524. [PMID: 32270374 DOI: 10.1007/s11060-020-03482-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Multiple studies have demonstrated that improved extent of resection is associated with longer overall survival for patients with both high and low grade glioma. Awake craniotomy was developed as a technique for maximizing resection whilst preserving neurological function. METHODS We performed a comprehensive review of the literature describing the history, indications, techniques and outcomes of awake craniotomy for patients with glioma. RESULTS The technique of awake craniotomy evolved to become an essential tool for resection of glioma. Many perceived contraindications can now be managed. We describe in detail our preferred technique, the testing paradigms utilized, and critically review the literature regarding functional and oncological outcome. CONCLUSIONS Awake craniotomy with mapping has become the gold standard for safely maximizing extent of resection for tumor in or near eloquent brain. Cortical and subcortical mapping methods have been refined and the technique is associated with an extremely low rate of complications.
Collapse
|
17
|
Lacerda LM, Clayden JD, Handley SE, Winston GP, Kaden E, Tisdall M, Cross JH, Liasis A, Clark CA. Microstructural Investigations of the Visual Pathways in Pediatric Epilepsy Neurosurgery: Insights From Multi-Shell Diffusion Magnetic Resonance Imaging. Front Neurosci 2020; 14:269. [PMID: 32322185 PMCID: PMC7158873 DOI: 10.3389/fnins.2020.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023] Open
Abstract
Background Surgery is a key approach for achieving seizure freedom in children with focal onset epilepsy. However, the resection can affect or be in the vicinity of the optic radiations. Multi-shell diffusion MRI and tractography can better characterize tissue structure and provide guidance to help minimize surgical related deficits. Whilst in adults tractography has been used to demonstrate that damage to the optic radiations leads to postoperative visual field deficits, this approach has yet to be properly explored in children. Objective To demonstrate the capabilities of multi-shell diffusion MRI and tractography in characterizing microstructural changes in children with epilepsy pre- and post-surgery affecting the occipital, parietal or temporal lobes. Methods Diffusion Tensor Imaging and the Spherical Mean Technique were used to investigate the microstructure of the optic radiations. Furthermore, tractography was used to evaluate whether pre-surgical reconstructions of the optic radiations overlap with the resection margin as measured using anatomical post-surgical T1-weighted MRI. Results Increased diffusivity in patients compared to controls at baseline was observed with evidence of decreased diffusivity, anisotropy, and neurite orientation distribution in contralateral hemisphere after surgery. Pre-surgical optic radiation tractography overlapped with post-surgical resection margins in 20/43 (46%) children, and where visual data was available before and after surgery, the presence of overlap indicated a visual field deficit. Conclusion This is the first report in a pediatric series which highlights the relevance of tractography for future pre-surgical evaluation in children undergoing epilepsy surgery and the usefulness of multi-shell diffusion MRI to characterize brain microstructure in these patients.
Collapse
Affiliation(s)
- Luís M Lacerda
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jonathan D Clayden
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sian E Handley
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Enrico Kaden
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Martin Tisdall
- Department of Neurosurgery, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - J Helen Cross
- Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alki Liasis
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Centre, Pittsburgh, PA, United States
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
18
|
Packer RA, McGrath S. Onscreen-guided resection of extra-axial and intra-axial forebrain masses through registration of a variable-suction tissue resection device with a neuronavigation system. Vet Surg 2020; 49:676-684. [PMID: 32220078 DOI: 10.1111/vsu.13414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/10/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To describe a novel surgical technique in which neuronavigation is used to guide a tissue resection device during excision of forebrain masses in locations difficult to visualize optically. STUDY DESIGN Short case series. ANIMALS Six dogs and one cat with forebrain masses (five neoplastic, two nonneoplastic) undergoing excision with a novel tissue resection device and veterinary neuronavigation system. METHODS The animals and resection instrument were coregistered to the neuronavigation system. Surgery was guided by real-time onscreen visualization of the resection instrument position relative to the preoperative MR images. Surgical outcome was evaluated by calculating residual tumor volume according to postoperative MRI. RESULTS The technique was technically simple and led to the collection of diagnostic tissue samples in all cases. Postoperative MRI was available in six cases, two with gross-total resection, three with near-total resection, and one with subtotal resection. CONCLUSION Neuronavigation-guided resection of intra-axial and extra-axial brain masses with the resection device resulted in gross-total or near-total resection in five of six animals with tumors otherwise difficult to visualize. Risk of brain shift limited absolute reliance on navigation images. CLINICAL SIGNIFICANCE Real-time neuronavigation assistance is a feasible method for guidance and successful resection of brain masses that are poorly visualized because of intra-axial or deep location, tumor appearance, or hemorrhage.
Collapse
Affiliation(s)
- Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Stephanie McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
19
|
Vanderweyen DC, Theaud G, Sidhu J, Rheault F, Sarubbo S, Descoteaux M, Fortin D. The role of diffusion tractography in refining glial tumor resection. Brain Struct Funct 2020; 225:1413-1436. [PMID: 32180019 DOI: 10.1007/s00429-020-02056-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.
Collapse
Affiliation(s)
- Davy Charles Vanderweyen
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada.
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Silvio Sarubbo
- Division of Neurosurgery, Emergency Area, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada
| |
Collapse
|
20
|
Caffo M, Cardali SM, Raffa G, Caruso G, Barresi V, Ricciardo G, Gorgoglione N, Granata F, Germanò A. The Value of Preoperative Planning Based on Navigated Transcranical Magnetic Stimulation for Surgical Treatment of Brain Metastases Located in the Perisylvian Area. World Neurosurg 2020; 134:e442-e452. [DOI: 10.1016/j.wneu.2019.10.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
21
|
Schult T, Hauser TK, Klose U, Hurth H, Ehricke HH. Fiber visualization for preoperative glioma assessment: Tractography versus local connectivity mapping. PLoS One 2019; 14:e0226153. [PMID: 31830068 PMCID: PMC6907809 DOI: 10.1371/journal.pone.0226153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022] Open
Abstract
In diffusion MRI, the advent of high angular resolution diffusion imaging (HARDI) and HARDI with compressed sensing (HARDI+CS) has led to clinically practical signal acquisition techniques which allow for the assessment of white matter architecture in routine patient studies. However, the reconstruction and visualization of fiber pathways by tractography has not yet been established as a standard methodology which can easily be applied. This is due to various algorithmic problems, such as a lack of robustness, error propagation and the necessity of fine-tuning parameters depending on the clinical question. In the framework of a clinical study of glioma patients, we compare two different whole-brain tracking methods to a local connectivity mapping approach which has recently shown promising results in an adaptation to diffusion MRI. The ability of the three methods to correctly depict fiber affection is analyzed by comparing visualization results to representations of local diffusion profiles provided by orientation distribution functions (ODFs). Our results suggest that methods beyond fiber tractography, which visualize local connectedness rather than global connectivity, should be evaluated further for pre-surgical assessment of fiber affection.
Collapse
Affiliation(s)
- Thomas Schult
- Institute for Applied Computer Science, Stralsund University of Applied Sciences, Stralsund, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Helene Hurth
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Heino Ehricke
- Institute for Applied Computer Science, Stralsund University of Applied Sciences, Stralsund, Germany
| |
Collapse
|
22
|
Zhang Y, Wang X, Cheng J, Lin Y, Yang L, Cao Z, Yang Y. Changes of fractional anisotropy and RGMa in crossed cerebellar diaschisis induced by middle cerebral artery occlusion. Exp Ther Med 2019; 18:3595-3602. [PMID: 31602236 DOI: 10.3892/etm.2019.7986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 07/09/2018] [Indexed: 01/18/2023] Open
Abstract
Crossed cerebellar diaschisis (CCD) is the phenomenon of hypoperfusion and hypometabolism of the contralateral cerebellar hemisphere caused by dysfunction of the associated supratentorial region. The aim of the present study was to analyze the changes in fractional anisotropy (FA) in CCD induced by middle cerebral artery occlusion (MCAO) using magnetic resonance-diffusion tensor imaging (MR-DTI). Furthermore, the role of repulsive guidance molecule a (RGMa) in CCD was assessed by measuring RGMa expression using histochemical analysis. In the present study, the cerebellar hemisphere was serially scanned with T2-weighted, serial diffusion-weighted and diffusion tensor (DT) imaging using a 3.0T GE Signa HDxt Scanner to analyze the changes in FA over 72 h. Subsequently, immunohistochemistry analyses of the corresponding cerebellar hemisphere sections were performed to assess the expression of RGMa. Results indicated that FA of both sides of the cerebellar hemisphere, particularly that of the contralateral cerebellar hemisphere (right side) derived from DTI, was reduced during the 72-h time period following MCAO, and the decrease was maximal and statistically significant at 12 h (P<0.05). Immunohistochemistry analysis revealed a significant increase in the expression of RGMa protein in the affected region of the contralateral cerebellar hemisphere (right side) at 24 h following MCAO injury (P<0.05). Furthermore, the expression of RGMa and FA was negatively correlated in MCAO (P<0.05). The results suggest that MR-DTI is an important assessment to evaluate changes of FA in CCD induced by MCAO. Furthermore, the present results suggest that RGMa, which was negatively correlated with FA in MCAO rats, may serve an important role in CCD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingliang Cheng
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanan Lin
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lu Yang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenghao Cao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
23
|
Krivosheya D, Rao G, Tummala S, Kumar V, Suki D, Bastos DCA, Prabhu SS. Impact of Multi-modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors using the Intraoperative MRI. J Neurol Surg A Cent Eur Neurosurg 2019; 82:375-380. [PMID: 31659724 DOI: 10.1055/s-0039-1698383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Preserving the integrity of the corticospinal tract (CST) while maximizing the extent of tumor resection is one of the key principles of brain tumor surgery to prevent new neurologic deficits. Our goal was to determine the impact of the use of perioperative diffusion tensor imaging (DTI) fiber-tracking protocols for location of the CSTs, in conjunction with intraoperative direct electrical stimulation (DES) on patient neurologic outcomes. The role of combining DES and CST shift in intraoperative magnetic resonance imaging (iMRI) to enhance extent of resection (EOR) has not been studied previously. METHODS A total of 53 patients underwent resection of tumors adjacent to the motor gyrus and the underlying CST between June 5, 2009, and April 16, 2013. All cases were performed in the iMRI (BrainSuite 1.5 T). Preoperative DTI mapping and intraoperative cortical and subcortical DES including postoperative DTI mapping were performed in all patients. There were 32 men and 21 women with 40 high-grade gliomas (76%), 4 low-grade gliomas (8%), and 9 (17%) metastases. Thirty-four patients (64%) were newly diagnosed, and 19 (36%) had a previous resection. There were 31 (59%) right-sided and 22 (42%) left-sided tumors. Eighteen patients (34%) had a re-resection after the first intraoperative scan. Most patients had motor-only mapping, and one patient had both speech and motor mapping. Relative to the resection margin, the CST after the first iMRI was designated as having an outward shift (OS), inward shift (IS), or no shift (NS). RESULTS A gross total resection (GTR) was achieved in 41 patients (77%), subtotal resection in 4 (7.5%), and a partial resection in 8 (15%). Eighteen patients had a re-resection, and the mean EOR increased from 84% to 95% (p = 0.002). Of the 18 patients, 7 had an IS, 8 an OS, and in 3 NS was noted. More patients in the OS group had a GTR compared with the IS or NS groups (p = 0.004). Patients were divided into four groups based on the proximity of the tumor to the CST as measured from the preoperative scan. Group 1 (32%) included patients whose tumors were 0 to 5 mm from the CST based on preoperative scans; group 2 (28%), 6 to 10 mm; group 3 (13%), 11 to 15 mm; and group 4 (26%), 16 to 20 mm, respectively. Patients in group 4 had fewer neurologic complications compared with other groups at 1 and 3 months postoperatively (p = 0.001 and p = 0.007, respectively) despite achieving a similar degree of resection (p = 0.61). Furthermore, the current of intraoperative DES was correlated to the distance of the tumor to the CST, and the regression equation showed a close linear relationship between the two parameters. CONCLUSIONS Combining information about intraoperative CST and DES in the iMRI can enhance resection in brain tumors (77% had a GTR). The relative relationship between the positions of the CST to the resection cavity can be a dynamic process that could further influence the surgeon's decision about the stimulation parameters and EOR. Also, the patients with an OS of the CST relative to the resection cavity had a GTR comparable with the other groups.
Collapse
Affiliation(s)
- Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ganesh Rao
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sudhakar Tummala
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Vinodh Kumar
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dima Suki
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dheigo C A Bastos
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sujit S Prabhu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
24
|
Peterson RK, Tabori U, Bouffet E, Laughlin S, Liu F, Scantlebury N, Mabbott D. Predictors of neuropsychological late effects and white matter correlates in children treated for a brain tumor without radiation therapy. Pediatr Blood Cancer 2019; 66:e27924. [PMID: 31309694 DOI: 10.1002/pbc.27924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND Little is known about cognition and predictors of neuropsychological outcomes in pediatric low-grade glioma (PLGG) survivors treated without radiation therapy. This research expands upon our previous work by further identifying the cognitive profile of PLGG patients treated without radiation therapy, investigating the specific medical and demographic variables that predict functioning, and examining white matter structure and its relationship to neuropsychological performance. PROCEDURE Nineteen PLGG patients (11-19 years) were administered the Wechsler Intelligence Scale for Children/Wechsler Adult Intelligence Scale, and subtests from the Woodcock-Johnson Tests of Cognition (visual matching, rapid picture naming, and pair cancellation) and Cambridge Neuropsychological Test Automated Battery (pattern recognition memory, delayed matching to sample, intra-extra dimensional set shift, motor screening task, rapid visual information processing, and spatial span). RESULTS The sample had normative weaknesses in verbal working memory, brief attention/vigilance, psychomotor speeded output, visual perception and matching, overall cognition, working memory, and processing speed. Increased surgeries or subtotal resections, hydrocephalus, shunting procedures, chemotherapy, NF1, and supratentorial location were predictive of cognitive deficits. Broad white matter involvement of the frontal, temporal, parietal, and occipital lobes as well as the cerebellum, as inferred from diffusion tensor imaging indices of decreased fiber orientation and increased water diffusion, was related to many cognitive difficulties. CONCLUSIONS This study comprehensively examines cognitive functioning in PLGG patients treated without radiation therapy, predictors of cognition, and its relation to white matter structure. Our findings indicate that medical and demographic variables other than radiation therapy can lead to cognitive late effects with diffuse white matter involvement.
Collapse
Affiliation(s)
- Rachel K Peterson
- Department of Psychology, Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Department of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Suzanne Laughlin
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fang Liu
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nadia Scantlebury
- Centre for Brain and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donald Mabbott
- Department of Psychology, Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Zacà D, Jovicich J, Corsini F, Rozzanigo U, Chioffi F, Sarubbo S. ReStNeuMap: a tool for automatic extraction of resting-state functional MRI networks in neurosurgical practice. J Neurosurg 2019; 131:764-771. [PMID: 30485221 DOI: 10.3171/2018.4.jns18474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/17/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Resting-state functional MRI (rs-fMRI) represents a promising and cost-effective alternative to task-based fMRI for presurgical mapping. However, the lack of clinically streamlined and reliable rs-fMRI analysis tools has prevented wide adoption of this technique. In this work, the authors introduce an rs-fMRI processing pipeline (ReStNeuMap) for automatic single-patient rs-fMRI network analysis. METHODS The authors provide a description of the rs-fMRI network analysis steps implemented in ReStNeuMap and report their initial experience with this tool after performing presurgical mapping in 6 patients. They verified the spatial agreement between rs-fMRI networks derived by ReStNeuMap and localization of activation with intraoperative direct electrical stimulation (DES). RESULTS The authors automatically extracted rs-fMRI networks including eloquent cortex in spatial proximity with the resected lesion in all patients. The distance between DES points and corresponding rs-fMRI networks was less than 1 cm in 78% of cases for motor, 100% of cases for visual, 87.5% of cases for language, and 100% of cases for speech articulation mapping. CONCLUSIONS The authors' initial experience with ReStNeuMap showed good spatial agreement between presurgical rs-fMRI predictions and DES findings during awake surgery. The availability of the rs-fMRI analysis tools for clinicians aiming to perform noninvasive mapping of brain functional networks may extend its application beyond surgical practice.
Collapse
Affiliation(s)
- Domenico Zacà
- 1Center for Mind/Brain Sciences, University of Trento; and
| | - Jorge Jovicich
- 1Center for Mind/Brain Sciences, University of Trento; and
| | - Francesco Corsini
- 2Division of Neurosurgery, Structural and Functional Connectivity Lab Project, and
| | - Umberto Rozzanigo
- 3Department of Radiology, Neuroradiology Unit, "S. Chiara" Hospital, Trento, Italy
| | - Franco Chioffi
- 2Division of Neurosurgery, Structural and Functional Connectivity Lab Project, and
| | - Silvio Sarubbo
- 2Division of Neurosurgery, Structural and Functional Connectivity Lab Project, and
| |
Collapse
|
26
|
Han SJ, Morshed RA, Troncon I, Jordan KM, Henry RG, Hervey-Jumper SL, Berger MS. Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: assessment of morbidity and functional outcome in 702 cases. J Neurosurg 2019; 131:201-208. [PMID: 30117770 DOI: 10.3171/2018.3.jns172494] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/19/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Herein, the authors report their experience with intraoperative stimulation mapping to locate the descending subcortical motor pathways in patients undergoing surgery for hemispheric gliomas within or adjacent to the rolandic cortex, with particular description of the morbidity and functional outcomes associated with this technique. METHODS This is a retrospective analysis of patients who, in the period between 1997 and 2016, had undergone resection of hemispheric perirolandic gliomas within or adjacent to descending motor pathways. Data regarding intraoperative stimulation mapping and patient postoperative neurological status were collected. RESULTS Of 702 patients, stimulation mapping identified the descending motor pathways in 300 cases (43%). A new or worsened motor deficit was seen postoperatively in 210 cases (30%). Among these 210 cases, there was improvement in motor function to baseline levels by 3 months postoperatively in 161 cases (77%), whereas the deficit remained in 49 cases (23%). The majority (65%) of long-term deficits (persisting beyond 3 months) were mild or moderate (antigravity strength or better). On multivariate analysis, patients in whom the subcortical motor pathways had been identified with stimulation mapping during surgery were more likely to develop an additional and/or worsened motor deficit postoperatively than were those in whom the subcortical pathways had not been found (45% vs 19%, respectively, p < 0.001). This difference remained when considering the likelihood of a long-term deficit (i.e., persisting > 3 months; 12% vs 3.2%, p < 0.001). A higher tumor grade and the presence of a preoperative motor deficit were also associated with higher rates of motor deficits persisting long-term. A region of restricted diffusion adjacent to the resection cavity was seen in 20 patients with long-term deficits (41%) and was more common in cases in which the motor pathways were not identified (69%). Long-term deficits that occur in settings in which the subcortical motor pathways are not identified seem in large part due to ischemic injury to descending tracts. CONCLUSIONS Stimulation mapping allows surgeons to identify the descending motor pathways during resection of tumors in perirolandic regions and to attain an acceptable rate of morbidity in these high-risk cases.
Collapse
Affiliation(s)
- Seunggu J Han
- 1Department of Neurological Surgery, University of California, San Francisco, California
- 2Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Ramin A Morshed
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Irene Troncon
- 3Department of Neurological Surgery, Padua University Hospital, Padua, Italy; and
| | - Kesshi M Jordan
- 4Department of Neurology, University of California, San Francisco, California
| | - Roland G Henry
- 4Department of Neurology, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- 1Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
27
|
Raffa G, Scibilia A, Conti A, Cardali SM, Rizzo V, Terranova C, Quattropani MC, Marzano G, Ricciardo G, Vinci SL, Germanò A. Multimodal Surgical Treatment of High-Grade Gliomas in the Motor Area: The Impact of the Combination of Navigated Transcranial Magnetic Stimulation and Fluorescein-Guided Resection. World Neurosurg 2019; 128:e378-e390. [PMID: 31029822 DOI: 10.1016/j.wneu.2019.04.158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fluorescein-guided surgery of high-grade gliomas (HGGs) increases the extent of tumor resection but its efficacy has been questioned, especially for tumors located close to functional networks. In these cases, navigated transcranial magnetic stimulation (nTMS) may be used to plan and guide a safe resection. The aim of this study was to assess the impact of these techniques combined with intraoperative neurophysiologic mapping (IONM) to achieve the maximal safe resection of tumors located in the motor area. METHODS We collected data of patients operated using a multimodal combination of sodium fluorescein-guided resection, nTMS motor planning, and IONM for HGGs in the motor area. The nTMS planning accuracy, extent of resection, and postoperative motor and functional status were compared with a matched control group of patients with HGG operated on only by IONM-guided resection. RESULTS Forty-one patients treated by multimodal approach (group A) and 41 controls (group B) were included. The nTMS-based planning reliably identified the tumor/motor pathway spatial relationship (accuracy, 92.68%). We obtained in group A versus controls a higher gross total resection rate (73.17% vs. 51.22%; P = 0.04), and a reduction of cases with new permanent motor deficits (9.75% vs. 29.27%; P = 0.04) or Karnofsky Performance Status worsening (12.19% vs. 31.71%; P = 0.03). CONCLUSIONS This study supports the role of the combination of sodium fluorescein-guided resection and nTMS-based planning for surgery of HGGs close to the motor pathway. This multimodal approach in combination with IONM may lead to customized preoperative planning, increased extent of resection, and improved functional outcome, compared with standard IONM-guided surgery.
Collapse
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy.
| | - Antonino Scibilia
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy; Division of Neurosurgery, University of Strasbourg, Strasbourg, France
| | - Alfredo Conti
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | - Vincenzo Rizzo
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmen Terranova
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Ricciardo
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Sergio Lucio Vinci
- Division of Neuroradiology, BIOMORF Department, University of Messina, Messina, Italy
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
28
|
Khan KA, Jain SK, Sinha VD, Sinha J. Preoperative Diffusion Tensor Imaging: A Landmark Modality for Predicting the Outcome and Characterization of Supratentorial Intra-Axial Brain Tumors. World Neurosurg 2019; 124:e540-e551. [PMID: 30639605 DOI: 10.1016/j.wneu.2018.12.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE In view of the few large prospective studies available on the role of preoperative diffusion tensor imaging (DTI), and the potential of DTI in showing the relationship between tumor and white matter tracts, we studied the role of preoperative DTI in planning a safe surgical corridor, predicting the neurologic and surgical outcome and tumor characterization in supratentorial intra-axial brain tumors. METHODS We included 128 cases. Preoperative neurologic status and tumor volume were assessed. A magnetic resonance imaging (MRI)-based surgical plan was decided and reviewed for changes after DTI (site of corticotomy or limit of resection) by senior faculty of neurosurgery and neuroradiologist. Tracts were classified as displaced, infiltrated, or disrupted. Postoperative neurologic and surgical outcome was assessed along with evaluation of association of DTI with tumor type. RESULTS DTI-based change in surgical corridor was seen in 60 patients (47%). Sixty-six patients harbored low-grade gliomas, 48 had high-grade gliomas, and 14 had metastastic lesions. Resectability (maximum safe resection) was higher in patients with displaced fibers and lower in those with disrupted/infiltrated fibers, which was statistically significant. Fewer patients had neurologic deterioration in the displaced category (7.1%) compared with the disrupted/infiltrated category (13.9%). Although no significant association could be established between neurologic outcome and fiber type, displaced fibers were associated mainly with low-grade glioma (71%), whereas disrupted/infiltrated fibers were associated mainly with high-grade glioma (66%); this correlation was significant. CONCLUSIONS Preoperative DTI is a landmark tool for planning a safe surgical corridor and predicting the tumor type along with neurologic and surgical outcome of patients.
Collapse
Affiliation(s)
| | - Shashi Kant Jain
- Department of Neurosurgery, Sawai Maan Singh Medical College, Jaipur, India.
| | - Virendra Deo Sinha
- Department of Neurosurgery, Sawai Maan Singh Medical College, Jaipur, India
| | - Jyotsna Sinha
- Department of Radiology, Getwell Clinic, Jaipur, India
| |
Collapse
|
29
|
Janca R, Jezdik P, Jahodova A, Kudr M, Benova B, Celakovsky P, Zamecnik J, Komarek V, Liby P, Tichy M, Krsek P. Intraoperative Thermography of the Electrical Stimulation Mapping: A Safety Control Study. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2126-2133. [PMID: 30475703 DOI: 10.1109/tnsre.2018.2871875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A standard procedure for continuous intraoperative monitoring of the integrity of the corticospinal tracts by eliciting muscle responses is the electric stimulation mapping (ESM). However, standard ESM protocols are ineffective in 20% of young children. We have developed a novel, highly efficient paradigm consisting of short-time burst (30 ms) of high frequency (500 Hz) and high peak current (≤100 mA), which may cause local tissue overheating. The presented safety control study was therefore designed. The infrared thermography camera captured to-be-resected cortex of 13 patients in vivo during ESM. Thermograms were image processed to reveal discrete ESM thermal effect of currents from 10 to 100 mA. Peak 100 mA currents induced a maximal increase in temperature of 3.1 °C, 1.23±0.72 °C in average. The warming correlated with stimulating electrode resistance ( ). The measurement uncertainty was estimated ± 1.01 ºC for the most skeptical conditions. The histopathological evaluation of stimulated tissue (performed in all cases) did not show any destructive changes. Our study demonstrates the ability of the thermographic camera to measure the discrete thermal effect of the ESM. The results provide evidence for the safety of the proposed protocol for full range currents with minimal risk of brain tissue damage.
Collapse
|
30
|
Javadi SA, Nabavi A, Giordano M, Faghihzadeh E, Samii A. Evaluation of Diffusion Tensor Imaging-Based Tractography of the Corticospinal Tract: A Correlative Study With Intraoperative Magnetic Resonance Imaging and Direct Electrical Subcortical Stimulation. Neurosurgery 2018; 80:287-299. [PMID: 28175893 DOI: 10.1227/neu.0000000000001347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 05/07/2016] [Indexed: 11/19/2022] Open
Abstract
Background The accuracy of intraoperative diffusion tensor imaging (DTI)–based tractography of the corticospinal tract (CST) is crucial for its use in neurosurgical planning and its implementation in image-guided surgery. To the best of our knowledge, this is the largest prospective correlative study of the intraoperative DTI tractography of the CST and intraoperative direct electrical subcortical stimulation (DESS) of the CST, with application of intraoperative magnetic resonance imaging (iMR). Objective To evaluate intraoperatively acquired DTI-based tractography of the CST in correlation with DESS. Methods Twenty patients with gliomas (grades II-IV) adjacent to the CST were included in this prospective study. Bilateral DTI tractography of the CST was performed pre- and intraoperatively with application of 1.5-T iMRI and the results correlated and compared with the prevailing gold standard of DESS. Sensitivity, specificity, positive predictive value, and negative predictive value were considered to quantify the correlation of DTI tractography with DESS. The intensity of DESS was correlated with the distance from the CST. Moreover, the tissue quality of stimulation points at the wall of the resection cavity was evaluated with 5-aminolevulinic acid. The clinical and volumetric outcomes at postoperative and follow-up periods were also analyzed. Results The mean ± SD age of the patients was 54.9 ± 12 years. A total of 40 CSTs were reconstructed and 36 stimulations were included at 20 pathological CSTs, resulting in 18 true-positive, 5 false-positive, and 13 true-negative responses. The sensitivity, specificity, positive predictive value, and negative predictive value of DTI tractography to localize the CST were 100%, 72%, 78%, and 100%, respectively. DTI-based tractography correlated well at 86% of DESSs, and a linear correlation was detected between the intensity of DESS and the distance. All of the patients improved clinically, and the mean extent of resection was 97.2%. 5-Aminolevulinic acid was valuable in visualizing tumor infiltration in the false-positive cases, suggesting an infiltration of the CST at stimulation points. Conclusion CST visualization in the iMRI setting appears to have a high sensitivity in accurately localizing the area of the CST adjacent to the resection cavity in glioma surgery. More prospective studies with a large sample size are needed to further support the results.
Collapse
Affiliation(s)
- Seyed A Javadi
- Department of Neurosurgery, Interna-tional Neuroscience Institute, Hannover, Germany
| | - Arya Nabavi
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mario Giordano
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Faghihzadeh
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Samii
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Salama GR, Heier LA, Patel P, Ramakrishna R, Magge R, Tsiouris AJ. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future. Front Neurol 2018; 8:660. [PMID: 29403420 PMCID: PMC5786563 DOI: 10.3389/fneur.2017.00660] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023] Open
Abstract
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.
Collapse
Affiliation(s)
- Gayle R Salama
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Linda A Heier
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Praneil Patel
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|
32
|
Xiao Y, Eikenes L, Reinertsen I, Rivaz H. Nonlinear deformation of tractography in ultrasound-guided low-grade gliomas resection. Int J Comput Assist Radiol Surg 2018; 13:457-467. [DOI: 10.1007/s11548-017-1699-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/21/2017] [Indexed: 11/24/2022]
|
33
|
Nimsky C, Carl B. Historical, Current, and Future Intraoperative Imaging Modalities. Neurosurg Clin N Am 2017; 28:453-464. [DOI: 10.1016/j.nec.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Khalid MT, Allen JC, King NKK, Rao JP, Tan ETW, See AAQ, Moorakonda R, Ng WH. Characterization of Pyramidal Tract Shift in High-Grade Glioma Resection. World Neurosurg 2017; 107:612-622. [PMID: 28823656 DOI: 10.1016/j.wneu.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study aimed to characterize pyramidal tract shift in different regions of the brain during glioma resection and its association with head position and tumor location. METHODS From 2008-2013, 14 patients presenting at the National Neuroscience Institute with high-grade glioma (World Health Organization III or IV) underwent preoperative and intraoperative diffusion tensor imaging. A novel method of placing landmarks along the preoperative and intraoperative tracts, with anterior commissure as the origin, was used to determine pyramidal tract shift. Shift was evaluated in x (lateromedial), y (anteroposterior), and z (craniocaudal) directions for 3 brain regions: brainstem, around third and lateral ventricles, and above ventricles. Shift radius is calculated as the distance between preoperative and postoperative landmarks. RESULTS Mean shift radius was 2.72 ± 0.55, 2.98 ± 0.53, and 4.04 ± 0.58 mm at the brainstem, third and lateral ventricles, and above the ventricles, respectively (P < 0.001). Only shift in the y direction (P < 0.03) and shift radius (P < 0.03) were significantly different among regions. Head position during surgery strongly influenced shift radius above the ventricles (P < 0.005), but tumor location had no significant effect. The z-direction shift did not differ significantly among regions. CONCLUSION Direction of pyramidal tract shift in 3 dimensions is unpredictable; hence shift radius is a more clinical useful concept. Shift radius was largest above the ventricles and was strongly influenced by head position, with a trend for temporal lobe tumors to exhibit larger shifts.
Collapse
Affiliation(s)
| | - John Carson Allen
- Center for Quantitative Medicine, Duke NUS Medical School, Singapore City, Singapore
| | - Nicolas Kon Kam King
- National Neuroscience Institute, Department of Neurosurgery, Singapore City, Singapore
| | - Jai Prashanth Rao
- National Neuroscience Institute, Department of Neurosurgery, Singapore City, Singapore
| | - Eddie Tung Wee Tan
- National Neuroscience Institute, Department of Neurosurgery, Singapore City, Singapore
| | - Angela An Qi See
- National Neuroscience Institute, Department of Neurosurgery, Singapore City, Singapore
| | - Rajesh Moorakonda
- Center for Quantitative Medicine, Duke NUS Medical School, Singapore City, Singapore; Biostatistics, Singapore Clinical Research Institute, Singapore City, Singapore
| | - Wai Hoe Ng
- Singhealth Duke NUS Academic Medical Center, Neuroscience Duke-NUS Medical School, Singapore City, Singapore; National Neuroscience Institute, Department of Neurosurgery, Singapore City, Singapore
| |
Collapse
|
35
|
Besson P, Bandt SK, Proix T, Lagarde S, Jirsa VK, Ranjeva JP, Bartolomei F, Guye M. Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study. Brain 2017; 140:2639-2652. [DOI: 10.1093/brain/awx181] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/12/2017] [Indexed: 11/12/2022] Open
|
36
|
Hallway Conversations in Physics. AJR Am J Roentgenol 2017; 209:W44-W46. [DOI: 10.2214/ajr.17.18064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Reyns N, Leroy HA, Delmaire C, Derre B, Le-Rhun E, Lejeune JP. Intraoperative MRI for the management of brain lesions adjacent to eloquent areas. Neurochirurgie 2017; 63:181-188. [PMID: 28571707 DOI: 10.1016/j.neuchi.2016.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/17/2016] [Accepted: 12/04/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of our study was to report the usefulness of intraoperative MRI guidance in the resection of brain lesions adjacent to eloquent areas. PATIENTS AND METHODS A single center prospective series of gliomas amenable to optimized resection with intraoperative MRI between September 2014 and December 2015. RESULTS The study included 56 patients. The median duration of the first intraoperative MRI was 38min, interquartile range (IQR 30-46). Fourteen patients (40%) underwent a second intraoperative MRI, which had a median duration of 26min (IQR, 18-30). The median total operative time was 265min (IQR, 242-337). After the first intraoperative MRI, the median residual glioma volume of the 35 gliomas adjacent to eloquent areas was 7.04cm3 (IQR, 2.22-13.8), which did not significantly differ from the other gliomas (P=0.07). After the second intraoperative MRI, the median residual glioma volume was 3.86cm3 (IQR, 0.82-6.99), which did not significantly differ from the other patients (P=0.700). On the postoperative MRI, the median extent of the glioma resections adjacent to eloquent areas was 99.78% (IQR, 88.9-100), which was not significantly different from the rest of the population (P=0.290). At 6 months after surgery, the median Karnofsky Performance Score was 90, and 2.8% of the patients presented a permanent new neurological deficit. CONCLUSION Our results suggest that intraoperative MRI is an effective and safe technique to improve the extent of brain lesion resections close to eloquent areas.
Collapse
Affiliation(s)
- N Reyns
- Inserm U1189, Onco-Thai - Image Assisted Laser Therapy for Oncology, University of Lille, 59000 Lille, France; Department of Neurosurgery, CHU de Lille, 59000 Lille, France.
| | - H-A Leroy
- Department of Neurosurgery, CHU de Lille, 59000 Lille, France
| | - C Delmaire
- Department of Radiology, CHU de Lille, 59000 Lille, France
| | - B Derre
- Department of Neurosurgery, CHU de Lille, 59000 Lille, France; Department of Radiology, CHU de Lille, 59000 Lille, France
| | - E Le-Rhun
- Department of Neuro-oncology, CHU de Lille, 59000 Lille, France
| | - J-P Lejeune
- Inserm U1189, Onco-Thai - Image Assisted Laser Therapy for Oncology, University of Lille, 59000 Lille, France; Department of Neurosurgery, CHU de Lille, 59000 Lille, France
| |
Collapse
|
39
|
Yang JYM, Beare R, Seal ML, Harvey AS, Anderson VA, Maixner WJ. A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography. J Neurosurg Pediatr 2017; 19:592-605. [PMID: 28304232 DOI: 10.3171/2016.11.peds16312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Characterization of intraoperative white matter tract (WMT) shift has the potential to compensate for neuronavigation inaccuracies using preoperative brain imaging. This study aimed to quantify and characterize intraoperative WMT shift from the global hemispheric to the regional tract-based scale and to investigate the impact of intraoperative factors (IOFs). METHODS High angular resolution diffusion imaging (HARDI) diffusion-weighted data were acquired over 5 consecutive perioperative time points (MR1 to MR5) in 16 epilepsy patients (8 male; mean age 9.8 years, range 3.8-15.8 years) using diagnostic and intraoperative 3-T MRI scanners. MR1 was the preoperative planning scan. MR2 was the first intraoperative scan acquired with the patient's head fixed in the surgical position. MR3 was the second intraoperative scan acquired following craniotomy and durotomy, prior to lesion resection. MR4 was the last intraoperative scan acquired following lesion resection, prior to wound closure. MR5 was a postoperative scan acquired at the 3-month follow-up visit. Ten association WMT/WMT segments and 1 projection WMT were generated via a probabilistic tractography algorithm from each MRI scan. Image registration was performed through pairwise MRI alignments using the skull segmentation. The MR1 and MR2 pairing represented the first surgical stage. The MR2 and MR3 pairing represented the second surgical stage. The MR3 and MR4 (or MR5) pairing represented the third surgical stage. The WMT shift was quantified by measuring displacements between a pair of WMT centerlines. Linear mixed-effects regression analyses were carried out for 6 IOFs: head rotation, craniotomy size, durotomy size, resected lesion volume, presence of brain edema, and CSF loss via ventricular penetration. RESULTS The average WMT shift in the operative hemisphere was 2.37 mm (range 1.92-3.03 mm) during the first surgical stage, 2.19 mm (range 1.90-3.65 mm) during the second surgical stage, and 2.92 mm (range 2.19-4.32 mm) during the third surgical stage. Greater WMT shift occurred in the operative than the nonoperative hemisphere, in the WMTs adjacent to the surgical lesion rather than those remote to it, and in the superficial rather than the deep segment of the pyramidal tract. Durotomy size and resection size were significant, independent IOFs affecting WMT shift. The presence of brain edema was a marginally significant IOF. Craniotomy size, degree of head rotation, and ventricular penetration were not significant IOFs affecting WMT shift. CONCLUSIONS WMT shift occurs noticeably in tracts adjacent to the surgical lesions, and those motor tracts superficially placed in the operative hemisphere. Intraoperative probabilistic HARDI tractography following craniotomy, durotomy, and lesion resection may compensate for intraoperative WMT shift and improve neuronavigation accuracy.
Collapse
Affiliation(s)
| | - Richard Beare
- Developmental Imaging Group and.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marc L Seal
- Developmental Imaging Group and.,Department of Paediatrics and
| | | | - Vicki A Anderson
- Psychology, Royal Children's Hospital.,Clinical Sciences Theme, Murdoch Childrens Research Institute.,Department of Paediatrics and.,School of Psychological Sciences, University of Melbourne; and
| | | |
Collapse
|
40
|
Stadlbauer A, Merkel A, Zimmermann M, Sommer B, Buchfelder M, Meyer-Bäse A, Rössler K. Intraoperative Magnetic Resonance Imaging of Cerebral Oxygen Metabolism During Resection of Brain Lesions. World Neurosurg 2017; 100:388-394. [PMID: 28137548 DOI: 10.1016/j.wneu.2017.01.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Tissue oxygen tension is an important parameter for brain tissue viability and its noninvasive intraoperative monitoring in the whole brain is of highly clinical relevance. The purpose of this study was the introduction of a multiparametric quantitative blood oxygenation dependent magnetic resonance imaging (MRI) approach for intraoperative examination of oxygen metabolism during the resection of brain lesions. METHODS Sixteen patients suffering from brain lesions were examined intraoperatively twice (before craniotomy and after gross-total resection) via the quantitative blood oxygenation dependent technique and a 1.5-Tesla MRI scanner, which is installed in an operating room. The MRI protocol included T2*- and T2 mapping and dynamic susceptibility weighted perfusion. Data analysis was performed with a custom-made, in-house MatLab software for calculation of maps of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) as well as of cerebral blood volume and cerebral blood flow. RESULTS Perilesional edema showed a significant increase in both perfusion (cerebral blood volume +21%, cerebral blood flow +13%) and oxygen metabolism (OEF +32%, CMRO2 +16%) after resection of the lesions. In perilesional nonedematous tissue only, however, oxygen metabolism (OEF +19%, CMRO2 +11%) was significantly increased, but not perfusion. No changes were found in normal brain. Fortunately, no neurovascular adverse events were observed. CONCLUSIONS This approach for intraoperative examination of oxygen metabolism in the whole brain is a new application of intraoperative MRI additionally to resection control (residual tumor detection) and updating of neuronavigation (brain shift detection). It may help to detect neurovascular adverse events early during surgery.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany; Institute of Medical Radiology, University Clinic of St. Pölten, St. Pölten, Austria.
| | - Andreas Merkel
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Björn Sommer
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anke Meyer-Bäse
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, USA
| | - Karl Rössler
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
D'Andrea G, Trillo' G, Picotti V, Raco A. Functional Magnetic Resonance Imaging (fMRI), Pre-intraoperative Tractography in Neurosurgery: The Experience of Sant' Andrea Rome University Hospital. ACTA NEUROCHIRURGICA. SUPPLEMENT 2017; 124:241-250. [PMID: 28120080 DOI: 10.1007/978-3-319-39546-3_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND The goal of neurosurgery for cerebral intraparenchymal neoplasms of the eloquent areas is maximal resection with the preservation of normal functions, and minimizing operative risk and postoperative morbidity. Currently, modern technological advances in neuroradiological tools, neuronavigation, and intraoperative magnetic resonance imaging (MRI) have produced great improvements in postoperative morbidity after the surgery of cerebral eloquent areas. The integration of preoperative functional MRI (fMRI), intraoperative MRI (volumetric and diffusion tensor imaging [DTI]), and neuronavigation, defined as "functional neuronavigation" has improved the intraoperative detection of the eloquent areas. METHODS We reviewed 142 patients operated between 2004 and 2010 for intraparenchymal neoplasms involving or close to one or more major white matter tracts (corticospinal tract [CST], arcuate fasciculus [AF], optic radiation). All the patients underwent neurosurgery in a BrainSUITE equipped with a 1.5 T MR scanner and were preoperatively studied with fMRI and DTI for tractography for surgical planning. The patients underwent MRI and DTI during surgery after dural opening, after the gross total resection close to the white matter tracts, and at the end of the procedure. We evaluated the impact of fMRI on surgical planning and on the selection of the entry point on the cortical surface. We also evaluated the impact of preoperative and intraoperative DTI, in order to modify the surgical approach, to define the borders of resection, and to correlate this modality with subcortical neurophysiological monitoring. We evaluated the impact of the preoperative fMRI by intraoperative neurophysiological monitoring, performing "neuronavigational" brain mapping, following its data to localize the previously elicited areas after brain shift correction by intraoperative MRI. RESULTS The mean age of the 142 patients (89 M/53 F) was 59.1 years and the lesion involved the CST in 66 patients (57 %), the language pathways in 24 (21 %), and the optic radiations in 25 (22 %). The integration of tractographic data into the volumetric dataset for neuronavigation was technically possible in all cases. In all patients intraoperative DTI demonstrated a shift of the bundle position caused by the surgical procedure; its dislocation was both outward and inward in the range of +6 mm and -2 mm. CONCLUSION We found a high concordance between fMRI/DTI and intraoperative brain mapping; their combination improves the sensitivity of each technique, reducing pitfalls and so defining "functional neuronavigation", increasing the definition of eloquent areas and also reducing the time of surgery.
Collapse
Affiliation(s)
- Giancarlo D'Andrea
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy.
| | - Giuseppe Trillo'
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy
| | - Veronica Picotti
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy
| | - Antonino Raco
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy
| |
Collapse
|
42
|
Weiss Lucas C, Tursunova I, Neuschmelting V, Nettekoven C, Oros-Peusquens AM, Stoffels G, Faymonville AM, Jon SN, Langen KJ, Lockau H, Goldbrunner R, Grefkes C. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. NEUROIMAGE-CLINICAL 2016; 13:297-309. [PMID: 28050345 PMCID: PMC5192048 DOI: 10.1016/j.nicl.2016.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND DTI-based tractography is an increasingly important tool for planning brain surgery in patients suffering from brain tumours. However, there is an ongoing debate which tracking approaches yield the most valid results. Especially the use of functional localizer data such as navigated transcranial magnetic stimulation (nTMS) or functional magnetic resonance imaging (fMRI) seem to improve fibre tracking data in conditions where anatomical landmarks are less informative due to tumour-induced distortions of the gyral anatomy. We here compared which of the two localizer techniques yields more plausible results with respect to mapping different functional portions of the corticospinal tract (CST) in brain tumour patients. METHODS The CSTs of 18 patients with intracranial tumours in the vicinity of the primary motor area (M1) were investigated by means of deterministic DTI. The core zone of the tumour-adjacent hand, foot and/or tongue M1 representation served as cortical regions of interest (ROIs). M1 core zones were defined by both the nTMS hot-spots and the fMRI local activation maxima. In addition, for all patients, a subcortical ROI at the level of the inferior anterior pons was implemented into the tracking algorithm in order to improve the anatomical specificity of CST reconstructions. As intra-individual control, we additionally tracked the CST of the hand motor region of the unaffected, i.e., non-lesional hemisphere, again comparing fMRI and nTMS M1 seeds. The plausibility of the fMRI-ROI- vs. nTMS-ROI-based fibre trajectories was assessed by a-priori defined anatomical criteria. Moreover, the anatomical relationship of different fibre courses was compared regarding their distribution in the anterior-posterior direction as well as their location within the posterior limb of the internal capsule (PLIC). RESULTS Overall, higher plausibility rates were observed for the use of nTMS- as compared to fMRI-defined cortical ROIs (p < 0.05) in tumour vicinity. On the non-lesional hemisphere, however, equally good plausibility rates (100%) were observed for both localizer techniques. fMRI-originated fibres generally followed a more posterior course relative to the nTMS-based tracts (p < 0.01) in both the lesional and non-lesional hemisphere. CONCLUSION NTMS achieved better tracking results than fMRI in conditions when the cortical tract origin (M1) was located in close vicinity to a brain tumour, probably influencing neurovascular coupling. Hence, especially in situations with altered BOLD signal physiology, nTMS seems to be the method of choice in order to identify seed regions for CST mapping in patients.
Collapse
Key Words
- APB, Abductor pollicis brevis muscle
- BOLD, Blood-oxygenation-level dependent
- CST
- CST, Corticospinal tract
- DCS, Direct cortical stimulation
- DTI, Diffusion tensor imaging
- Deterministic
- EF, Electric field
- EMG, Electromyography
- FA(T), Fractional anisotropy (threshold)
- FACT, Fibre assignment by continuous tracking
- FOV, Field-of-view
- FWE, Family-wise error
- KPS, Karnofsky performance scale
- LT, Lateral tongue muscle, anterior third
- M1, Primary motor cortex
- MEP, Motor-evoked potential
- MFL, Minimal fibre length
- MPRAGE, Magnetization prepared rapid acquisition gradient echo (T1 MR seq.)
- OR, Odd's ratio
- PLIC, Posterior limb of the internal capsule
- PM, Plantar muscle
- Pyramidal tract
- RMT, Resting motor threshold
- ROI
- ROI, Region-of-interest
- SD, Standard deviation
- SE, Standard error
- Somatotopic
- X-sq, X-squared (Pearson's chi-square test)
- dMRI, Diffusion magnetic resonance imaging (i.e., diffusion-weighted imaging, DWI)
- fMRI
- fMRI, Functional magnetic resonance imaging
- nTMS
- nTMS, Neuronavigated transcranial magnetic stimulation
- pxsq, p-value according to Pearson's chi-square test
Collapse
Affiliation(s)
| | - Irada Tursunova
- University of Cologne, Center of Neurosurgery, 50924 Cologne, Germany
| | | | | | | | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany
| | | | - Shah N Jon
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany; RWTH Aachen University, University Clinic Aachen, Departments of Nuclear Medicine and Neurology, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Victoria, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Karl Josef Langen
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany; RWTH Aachen University, University Clinic Aachen, Departments of Nuclear Medicine and Neurology, 52074 Aachen, Germany
| | - Hannah Lockau
- University of Cologne, Department of Radiology, 50937 Cologne, Germany
| | | | - Christian Grefkes
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52425 Jülich, Germany; University of Cologne, Department of Neurology, 50924 Cologne, Germany
| |
Collapse
|
43
|
Beare R, Yang JYM, Maixner WJ, Harvey AS, Kean MJ, Anderson VA, Seal ML. Automated alignment of perioperative MRI scans: A technical note and application in pediatric epilepsy surgery. Hum Brain Mapp 2016; 37:3530-43. [PMID: 27198965 DOI: 10.1002/hbm.23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/03/2016] [Accepted: 04/29/2016] [Indexed: 11/06/2022] Open
Abstract
Conventional image registration utilizing brain voxel information may be erroneous in a neurosurgical setting due to pathology and surgery-related anatomical distortions. We report a novel application of an automated image registration procedure based on skull segmentation for magnetic resonance imaging (MRI) scans acquired before, during and after surgery (i.e., perioperative). The procedure was implemented to assist analysis of intraoperative brain shift in 11 pediatric epilepsy surgery cases, each of whom had up to five consecutive perioperative MRI scans. The procedure consisted of the following steps: (1) Skull segmentation using tissue classification tools. (2) Estimation of rigid body transformation between image pairs using registration driven by the skull segmentation. (3) Composition of transformations to provide transformations between each scan and a common space. The procedure was validated using locations of three types of reference structural landmarks: the skull pin sites, the eye positions, and the scalp skin surface, detected using the peak intensity gradient. The mean target registration error (TRE) scores by skull pin sites and scalp skin rendering were around 1 mm and <1 mm, respectively. Validation by eye position demonstrated >1 mm TRE scores, suggesting it is not a reliable reference landmark in surgical scenarios. Comparable registration accuracy was achieved between opened and closed skull scan pairs and closed and closed skull scan pairs. Our procedure offers a reliable registration framework for processing intrasubject time series perioperative MRI data, with potential of improving intraoperative MRI-based image guidance in neurosurgical practice. Hum Brain Mapp 37:3530-3543, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard Beare
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Stroke and Aging Research Group, Monash University, Melbourne, Victoria, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Neurosurgery, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Neuroscience Research, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Wirginia J Maixner
- Department of Neurosurgery, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - A Simon Harvey
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Michael J Kean
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Vicki A Anderson
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Child Neuropsychology, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Psychology, Royal Children's Hospital, Melbourne, Victoria, Australia.,School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc L Seal
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Rueckriegel SM, Linsenmann T, Kessler AF, Homola GA, Bartsch AJ, Ernestus RI, Westermaier T, Löhr M. Feasibility of the Combined Application of Navigated Probabilistic Fiber Tracking and Navigated Ultrasonography in Brain Tumor Surgery. World Neurosurg 2016; 90:306-314. [PMID: 26968447 DOI: 10.1016/j.wneu.2016.02.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Surgical resection of intra-axial tumors is a challenging procedure because of indistinct tumor margins, infiltration, and displacement of white matter tracts surrounding the lesion. Hence, gross total tumor resection without causing new neurologic deficits is demanding, especially in tumor sites adjoining eloquent structures. Feasibility of the combination of navigated probabilistic fiber tracking to identify eloquent fiber pathways and navigated ultrasonography to control brain shift was tested. METHODS Eleven patients with lesions adjacent to eloquent white matter structures (pyramidal tract, optic radiation and arcuate fascicle) were preoperatively subjected to magnetic resonance imaging including diffusion-weighted imaging on a 3-T magnetic resonance system (Trio [Siemens, Erlangen, Germany]). Probabilistic fiber tracking was performed using the tools of the FMRIB Software Library (FSL). Results of probabilistic fiber tracking and high-resolution anatomic images were integrated into the neuronavigation system Stealth Station (Medtronic, Minneapolis, Minnesota, USA) together with the navigated ultrasonography (SonoNav [Medtronic]). RESULTS FSL-based probabilistic fiber tracking depicted the pyramidal tract, the optic radiation, and arcuate fascicle anatomically plausibly. Integration of the probabilistic fiber tracking into neuronavigation was technically feasible and allowed visualization of the reconstructed fiber pathways. Navigated ultrasonography controlled brain shift. CONCLUSIONS Integration of probabilistic fiber tracking and navigated ultrasonography into intraoperative neuronavigation facilitated anatomic orientation during glioma resection. FSL-based probabilistic fiber tracking integrated sophisticated fiber tracking algorithms, including modeling of crossing fibers. Combination with navigated ultrasonography provided a three-dimensional estimation of intraoperative brain shift and, therefore, improved the reliability of neuronavigation.
Collapse
Affiliation(s)
| | - Thomas Linsenmann
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | | | - György A Homola
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas J Bartsch
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany; Center for Radiology, Bamberg, Germany; FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom; Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Abstract
The implementation of fiber tracking or tractography modules in commercial navigation systems resulted in a broad availability of visualization possibilities for major white matter tracts in the neurosurgical community. Unfortunately the implemented algorithms and tracking approaches do not represent the state of the art of tractography strategies and may lead to false tracking results. The application of advanced tractography techniques for neurosurgical procedures poses even additional challenges that relate to effects of the individual anatomy that might be altered by edema and tumor, to stereotactic inaccuracies due to image distortion, as well as to registration inaccuracies and brain shift.
Collapse
Affiliation(s)
- Christopher Nimsky
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany.
| | - Miriam Bauer
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| | - Barbara Carl
- Department of Neurosurgery, University Marburg, Baldingerstrasse, Marburg, 35033, Germany
| |
Collapse
|
46
|
R�ssler K, Sommer B, Grummich P, Hamer HM, Pauli E, Coras R, Bl�mcke I, Buchfelder M. Risk Reduction in Dominant Temporal Lobe Epilepsy Surgery Combining fMRI/DTI Maps, Neuronavigation and Intraoperative 1.5-Tesla MRI. Stereotact Funct Neurosurg 2015; 93:168-77. [DOI: 10.1159/000375173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022]
|
47
|
Margetis K, Rajappa P, Tsiouris AJ, Greenfield JP, Schwartz TH. Intraoperative stereotactic injection of Indigo Carmine dye to mark ill-defined tumor margins: a prospective phase I-II study. J Neurosurg 2015; 122:40-8. [PMID: 25361489 DOI: 10.3171/2014.9.jns14113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT A critical goal in neurosurgical oncology is maximizing the extent of tumor resection while minimizing the risk to normal white matter tracts. Frameless stereotaxy and white matter mapping are indispensable tools in this effort, but deep tumor margins may not be accurately defined because of the "brain shift" at the end of the operation. The authors investigated the safety and efficacy of a technique for marking the deep margins of intraaxial tumors with stereotactic injection of Indigo Carmine dye. METHODS Investigational New Drug study approval for a prospective study in adult patients with gliomas was obtained from the FDA (Investigational New Drug no. 112680). At surgery, 1-3 stereotactic injections of 0.01 ml of Indigo Carmine dye were performed through the initial bur holes into the deep tumor margins before elevation of the bone flap. White light microscopic resection was conducted in standard fashion by using frameless stereotactic navigation until the injected margins were identified. The resection of the injected tumor margins and the extent of resection of the whole tumor volume were determined by using postoperative volumetric MRI. RESULTS In total 17 injections were performed in 10 enrolled patients (6 male, 4 female), whose mean age was 49 years. For all patients, the injection points were identified intraoperatively and tumor was resected at these points. The staining pattern was reproducible; it was a sphere of stained tissue approximately 5 mm in diameter. A halo of stained tissue and a backflow of dye through the needle tract were also noted, but these were clearly distinct from the staining pattern of the injection point, which was vividly colored and demarcated. Postoperative MR images verified the resection of all injection points. The mean extent of resection of the tumor as a whole was 97.1%. For 1 patient, a brain abscess developed on postoperative Day 16 and needed additional surgical treatment. CONCLUSIONS Stereotactic injection of Indigo Carmine dye can be used to demarcate multiple deep tumor margins, which can be readily identified intraoperatively by using standard white light microscopy. This technique may enhance the accuracy of frameless stereotactic navigation and increase the extent of resection of intraaxial tumors.
Collapse
|
48
|
Weiss C, Tursunova I, Neuschmelting V, Lockau H, Nettekoven C, Oros-Peusquens AM, Stoffels G, Rehme AK, Faymonville AM, Shah NJ, Langen KJ, Goldbrunner R, Grefkes C. Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. NEUROIMAGE-CLINICAL 2015; 7:424-37. [PMID: 25685709 PMCID: PMC4314616 DOI: 10.1016/j.nicl.2015.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
Imaging of the course of the corticospinal tract (CST) by diffusion tensor imaging (DTI) is useful for function-preserving tumour surgery. The integration of functional localizer data into tracking algorithms offers to establish a direct structure–function relationship in DTI data. However, alterations of MRI signals in and adjacent to brain tumours often lead to spurious tracking results. We here compared the impact of subcortical seed regions placed at different positions and the influences of the somatotopic location of the cortical seed and clinical co-factors on fibre tracking plausibility in brain tumour patients. The CST of 32 patients with intracranial tumours was investigated by means of deterministic DTI and neuronavigated transcranial magnetic stimulation (nTMS). The cortical seeds were defined by the nTMS hot spots of the primary motor area (M1) of the hand, the foot and the tongue representation. The CST originating from the contralesional M1 hand area was mapped as intra-individual reference. As subcortical region of interests (ROI), we used the posterior limb of the internal capsule (PLIC) and/or the anterior inferior pontine region (aiP). The plausibility of the fibre trajectories was assessed by a-priori defined anatomical criteria. The following potential co-factors were analysed: Karnofsky Performance Scale (KPS), resting motor threshold (RMT), T1-CE tumour volume, T2 oedema volume, presence of oedema within the PLIC, the fractional anisotropy threshold (FAT) to elicit a minimum amount of fibres and the minimal fibre length. The results showed a higher proportion of plausible fibre tracts for the aiP-ROI compared to the PLIC-ROI. Low FAT values and the presence of peritumoural oedema within the PLIC led to less plausible fibre tracking results. Most plausible results were obtained when the FAT ranged above a cut-off of 0.105. In addition, there was a strong effect of somatotopic location of the seed ROI; best plausibility was obtained for the contralateral hand CST (100%), followed by the ipsilesional hand CST (>95%), the ipsilesional foot (>85%) and tongue (>75%) CST. In summary, we found that the aiP-ROI yielded better tracking results compared to the IC-ROI when using deterministic CST tractography in brain tumour patients, especially when the M1 hand area was tracked. In case of FAT values lower than 0.10, the result of the respective CST tractography should be interpreted with caution with respect to spurious tracking results. Moreover, the presence of oedema within the internal capsule should be considered a negative predictor for plausible CST tracking. Somatotopic CST tractography was done in 32 patients with eloquent brain tumours. Seeding ROIs were defined by navigated TMS of the M1 hot spot (hand, foot, tongue). Using the anterior pons as a second ROI yielded more plausible tracts than the PLIC. Low FAT and oedema of the internal capsule were negative predictors.
Collapse
Key Words
- ANOVA, analysis of variance
- APB, abductor pollicis brevis muscle
- AUC, area under the curve
- BOLD, blood oxygenation level dependent
- CST
- CST, corticospinal tract
- DTI
- DTI, diffusion tensor imaging
- FA(T), fractional anisotropy (threshold)
- FACT, fibre assignment by continuous tracking
- FMRI, functional magnetic resonance imaging
- FOV, field-of-view
- FWE, family-wise error
- Fractional anisotropy
- KPS, Karnofsky performance scale
- LDA/C, linear discriminant analysis/coefficient
- LT, lateral tongue muscle, anterior third
- M1, primary motor cortex
- MEP, motor evoked potential
- MFL, minimal fibre length
- MPRAGE, magnetization prepared rapid acquisition gradient echo (T1 MR sequence)
- OR, odd's ratio
- PLIC, posterior limb of the internal capsule
- PM, plantar muscle
- RMT, resting motor threshold
- ROI
- ROI, region-of-interest
- SD, standard deviation
- SE, standard error
- Somatotopic
- X-sq, X-squared (Pearson's chi-square test)
- aiP, anterior inferior pons
- nTMS
- nTMS, neuronavigated transcranial magnetic stimulation
- pxsq, p-value according to Pearson's chi-square test.
Collapse
Affiliation(s)
- Carolin Weiss
- Department of Neurosurgery, University of Cologne, Cologne 50924, Germany
| | - Irada Tursunova
- Department of Neurosurgery, University of Cologne, Cologne 50924, Germany ; Department of Neurosurgery, University of Cologne, Cologne 50924, Germany
| | | | - Hannah Lockau
- Department of Radiology, University of Cologne, Cologne 50937, Germany
| | - Charlotte Nettekoven
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany
| | | | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany
| | - Anne K Rehme
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany ; Department of Neurology, University of Cologne, Cologne 50924, Germany
| | | | - N Jon Shah
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany ; Department of Neurology, University Clinic Aachen, RWTH Aachen University, Aachen 52074, Germany
| | - Karl Josef Langen
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany
| | - Roland Goldbrunner
- Department of Neurosurgery, University of Cologne, Cologne 50924, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich 52425, Germany ; Department of Neurology, University of Cologne, Cologne 50924, Germany
| |
Collapse
|
49
|
|
50
|
Chang EF, Raygor KP, Berger MS. Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 2014; 122:250-61. [PMID: 25423277 DOI: 10.3171/2014.10.jns132647] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classic models of language organization posited that separate motor and sensory language foci existed in the inferior frontal gyrus (Broca's area) and superior temporal gyrus (Wernicke's area), respectively, and that connections between these sites (arcuate fasciculus) allowed for auditory-motor interaction. These theories have predominated for more than a century, but advances in neuroimaging and stimulation mapping have provided a more detailed description of the functional neuroanatomy of language. New insights have shaped modern network-based models of speech processing composed of parallel and interconnected streams involving both cortical and subcortical areas. Recent models emphasize processing in "dorsal" and "ventral" pathways, mediating phonological and semantic processing, respectively. Phonological processing occurs along a dorsal pathway, from the posterosuperior temporal to the inferior frontal cortices. On the other hand, semantic information is carried in a ventral pathway that runs from the temporal pole to the basal occipitotemporal cortex, with anterior connections. Functional MRI has poor positive predictive value in determining critical language sites and should only be used as an adjunct for preoperative planning. Cortical and subcortical mapping should be used to define functional resection boundaries in eloquent areas and remains the clinical gold standard. In tracing the historical advancements in our understanding of speech processing, the authors hope to not only provide practicing neurosurgeons with additional information that will aid in surgical planning and prevent postoperative morbidity, but also underscore the fact that neurosurgeons are in a unique position to further advance our understanding of the anatomy and functional organization of language.
Collapse
Affiliation(s)
- Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | | |
Collapse
|