1
|
Chen M, Zhang M, Yin L, Ma L, Ding R, Zheng T, Yue Q, Lui S, Sun H. Medical image foundation models in assisting diagnosis of brain tumors: a pilot study. Eur Radiol 2024; 34:6667-6679. [PMID: 38627290 DOI: 10.1007/s00330-024-10728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES To build self-supervised foundation models for multicontrast MRI of the whole brain and evaluate their efficacy in assisting diagnosis of brain tumors. METHODS In this retrospective study, foundation models were developed using 57,621 enhanced head MRI scans through self-supervised learning with a pretext task of cross-contrast context restoration with two different content dropout schemes. Downstream classifiers were constructed based on the pretrained foundation models and fine-tuned for brain tumor detection, discrimination, and molecular status prediction. Metrics including accuracy, sensitivity, specificity, and area under the ROC curve (AUC) were used to evaluate the performance. Convolutional neural networks trained exclusively on downstream task data were employed for comparative analysis. RESULTS The pretrained foundation models demonstrated their ability to extract effective representations from multicontrast whole-brain volumes. The best classifiers, endowed with pretrained weights, showed remarkable performance with accuracies of 94.9, 92.3, and 80.4%, and corresponding AUC values of 0.981, 0.972, and 0.852 on independent test datasets in brain tumor detection, discrimination, and molecular status prediction, respectively. The classifiers with pretrained weights outperformed the convolutional classifiers trained from scratch by approximately 10% in terms of accuracy and AUC across all tasks. The saliency regions in the correctly predicted cases are mainly clustered around the tumors. Classifiers derived from the two dropout schemes differed significantly only in the detection of brain tumors. CONCLUSIONS Foundation models obtained from self-supervised learning have demonstrated encouraging potential for scalability and interpretability in downstream brain tumor-related tasks and hold promise for extension to neurological diseases with diffusely distributed lesions. CLINICAL RELEVANCE STATEMENT The application of our proposed method to the prediction of key molecular status in gliomas is expected to improve treatment planning and patient outcomes. Additionally, the foundation model we developed could serve as a cornerstone for advancing AI applications in the diagnosis of brain-related diseases.
Collapse
Affiliation(s)
- Mengyao Chen
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | | | - Lijuan Yin
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Renxing Ding
- IT center, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Zheng
- IT center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Wang H, Chen X, He L, Ding H, Xie M, Cai J. A head-to-head comparison of computed tomography- and magnetic resonance imaging-based radiomics in assessing pediatric peripheral neuroblastic tumor cell behavior. Abdom Radiol (NY) 2024; 49:2942-2952. [PMID: 38900321 DOI: 10.1007/s00261-024-04411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To compare the performance of radiomics from contrast-enhanced computed tomography (CECT) and non-contrast magnetic resonance imaging (MRI) in assessing cellular behavior in pediatric peripheral neuroblastic tumors (PNTs). MATERIALS AND METHODS A retrospective analysis of 81 PNT patients who underwent venous phase CECT, T1-weighted imaging (T1WI), and T2-weighted imaging (T2WI) scans was conducted. The patients were classified into neuroblastoma and ganglioneuroblastoma/ganglioneuroma based on their pathological subtypes. Additionally, they were categorized into favorable histology and unfavorable histology according to the International Neuroblastoma Pathology Classification (INPC). Tumor regions of interest were segmented on CECT, axial T1WI, and axial T2WI images, and radiomics models were developed based on the selected radiomics features. Following five-fold cross-validation, the performance of the radiomics models derived from CECT and MRI was compared using the area under the receiver operating characteristic curve (AUC) and accuracy. RESULTS For discriminating pathological subtypes, the AUC for CECT radiomics models ranged from 0.765 to 0.870, with an accuracy range of 0.728 to 0.815. In contrast, the AUC for MRI radiomics models ranged from 0.549 to 0.748, with an accuracy range of 0.531 to 0.778. Regarding the discrimination of INPC subgroups, the AUC for CECT radiomics models ranged from 0.503 to 0.759, with an accuracy range of 0.432 to 0.741. Meanwhile, the AUC for MRI radiomics models ranged from 0.512 to 0.739, with an accuracy range of 0.605 to 0.815. CONCLUSIONS CECT radiomics outperforms non-contrast MRI radiomics in evaluating pathological subtypes. When assessing INPC subgroups, CECT radiomics demonstrates comparability with non-contrast MRI radiomics.
Collapse
Affiliation(s)
- Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
| | - Xin Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
| | - Hao Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
| | - Mingye Xie
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China.
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
3
|
Mandal S, Chakraborty S, Tariq MA, Ali K, Elavia Z, Khan MK, Garcia DB, Ali S, Al Hooti J, Kumar DV. Artificial Intelligence and Deep Learning in Revolutionizing Brain Tumor Diagnosis and Treatment: A Narrative Review. Cureus 2024; 16:e66157. [PMID: 39233936 PMCID: PMC11372433 DOI: 10.7759/cureus.66157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The emergence of artificial intelligence (AI) in the medical field holds promise in improving medical management, particularly in personalized strategies for the diagnosis and treatment of brain tumors. However, integrating AI into clinical practice has proven to be a challenge. Deep learning (DL) is very convenient for extracting relevant information from large amounts of data that has increased in medical history and imaging records, which shortens diagnosis time, that would otherwise overwhelm manual methods. In addition, DL aids in automated tumor segmentation, classification, and diagnosis. DL models such as the Brain Tumor Classification Model and the Inception-Resnet V2, or hybrid techniques that enhance these functions and combine DL networks with support vector machine and k-nearest neighbors, identify tumor phenotypes and brain metastases, allowing real-time decision-making and enhancing preoperative planning. AI algorithms and DL development facilitate radiological diagnostics such as computed tomography, positron emission tomography scans, and magnetic resonance imaging (MRI) by integrating two-dimensional and three-dimensional MRI using DenseNet and 3D convolutional neural network architectures, which enable precise tumor delineation. DL offers benefits in neuro-interventional procedures, and the shift toward computer-assisted interventions acknowledges the need for more accurate and efficient image analysis methods. Further research is needed to realize the potential impact of DL in improving these outcomes.
Collapse
Affiliation(s)
- Shobha Mandal
- Internal Medicine, Guthrie Robert Packer Hospital, Sayre, USA
| | - Subhadeep Chakraborty
- Electronics and Communication, Maulana Abul Kalam Azad University of Technology, West Bengal, IND
| | | | - Kamran Ali
- Internal Medicine, United Medical and Dental College, Karachi, PAK
| | - Zenia Elavia
- Medical School, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| | - Misbah Kamal Khan
- Internal Medicine, Peoples University of Medical and Health Sciences, Nawabshah, PAK
| | | | - Sofia Ali
- Medical School, Peninsula Medical School, Plymouth, GBR
| | | | - Divyanshi Vijay Kumar
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| |
Collapse
|
4
|
Bhatia A, Khalvati F, Ertl-Wagner BB. Artificial Intelligence in the Future Landscape of Pediatric Neuroradiology: Opportunities and Challenges. AJNR Am J Neuroradiol 2024; 45:549-553. [PMID: 38176730 PMCID: PMC11288527 DOI: 10.3174/ajnr.a8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 01/06/2024]
Abstract
This paper will review how artificial intelligence (AI) will play an increasingly important role in pediatric neuroradiology in the future. A safe, transparent, and human-centric AI is needed to tackle the quadruple aim of improved health outcomes, enhanced patient and family experience, reduced costs, and improved well-being of the healthcare team in pediatric neuroradiology. Equity, diversity and inclusion, data safety, and access to care will need to always be considered. In the next decade, AI algorithms are expected to play an increasingly important role in access to care, workflow management, abnormality detection, classification, response prediction, prognostication, report generation, as well as in the patient and family experience in pediatric neuroradiology. Also, AI algorithms will likely play a role in recognizing and flagging rare diseases and in pattern recognition to identify previously unknown disorders. While AI algorithms will play an important role, humans will not only need to be in the loop, but in the center of pediatric neuroimaging. AI development and deployment will need to be closely watched and monitored by experts in the field. Patient and data safety need to be at the forefront, and the risks of a dependency on technology will need to be contained. The applications and implications of AI in pediatric neuroradiology will differ from adult neuroradiology.
Collapse
Affiliation(s)
- Aashim Bhatia
- From the Children's Hospital of Philadelphia (A.B.), Philadelphia, Pennsylvania
| | - Farzad Khalvati
- Hospital for Sick Children (F.K., B.B.E.-W.), Toronto, Ontario, Canada
| | | |
Collapse
|
5
|
Fatania K, Frood R, Mistry H, Short SC, O’Connor J, Scarsbrook AF, Currie S. Tumour Size and Overall Survival in a Cohort of Patients with Unifocal Glioblastoma: A Uni- and Multivariable Prognostic Modelling and Resampling Study. Cancers (Basel) 2024; 16:1301. [PMID: 38610979 PMCID: PMC11011077 DOI: 10.3390/cancers16071301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Published models inconsistently associate glioblastoma size with overall survival (OS). This study aimed to investigate the prognostic effect of tumour size in a large cohort of patients diagnosed with GBM and interrogate how sample size and non-linear transformations may impact on the likelihood of finding a prognostic effect. In total, 279 patients with a IDH-wildtype unifocal WHO grade 4 GBM between 2014 and 2020 from a retrospective cohort were included. Uni-/multivariable association between core volume, whole volume (CV and WV), and diameter with OS was assessed with (1) Cox proportional hazard models +/- log transformation and (2) resampling with 1,000,000 repetitions and varying sample size to identify the percentage of models, which showed a significant effect of tumour size. Models adjusted for operation type and a diameter model adjusted for all clinical variables remained significant (p = 0.03). Multivariable resampling increased the significant effects (p < 0.05) of all size variables as sample size increased. Log transformation also had a large effect on the chances of a prognostic effect of WV. For models adjusted for operation type, 19.5% of WV vs. 26.3% log-WV (n = 50) and 69.9% WV and 89.9% log-WV (n = 279) were significant. In this large well-curated cohort, multivariable modelling and resampling suggest tumour volume is prognostic at larger sample sizes and with log transformation for WV.
Collapse
Affiliation(s)
- Kavi Fatania
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds LS1 3EX, UK (A.F.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK;
| | - Russell Frood
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds LS1 3EX, UK (A.F.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK;
| | - Hitesh Mistry
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.)
| | - Susan C. Short
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK;
- Department of Oncology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds LS9 7TF, UK
| | - James O’Connor
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.)
- Department of Radiology, The Christie Hospital, Manchester M20 4BX, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SM2 5NG, UK
| | - Andrew F. Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds LS1 3EX, UK (A.F.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK;
| | - Stuart Currie
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds LS1 3EX, UK (A.F.S.); (S.C.)
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9TJ, UK;
| |
Collapse
|
6
|
Belge Bilgin G, Bilgin C, Burkett BJ, Orme JJ, Childs DS, Thorpe MP, Halfdanarson TR, Johnson GB, Kendi AT, Sartor O. Theranostics and artificial intelligence: new frontiers in personalized medicine. Theranostics 2024; 14:2367-2378. [PMID: 38646652 PMCID: PMC11024845 DOI: 10.7150/thno.94788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
The field of theranostics is rapidly advancing, driven by the goals of enhancing patient care. Recent breakthroughs in artificial intelligence (AI) and its innovative theranostic applications have marked a critical step forward in nuclear medicine, leading to a significant paradigm shift in precision oncology. For instance, AI-assisted tumor characterization, including automated image interpretation, tumor segmentation, feature identification, and prediction of high-risk lesions, improves diagnostic processes, offering a precise and detailed evaluation. With a comprehensive assessment tailored to an individual's unique clinical profile, AI algorithms promise to enhance patient risk classification, thereby benefiting the alignment of patient needs with the most appropriate treatment plans. By uncovering potential factors unseeable to the human eye, such as intrinsic variations in tumor radiosensitivity or molecular profile, AI software has the potential to revolutionize the prediction of response heterogeneity. For accurate and efficient dosimetry calculations, AI technology offers significant advantages by providing customized phantoms and streamlining complex mathematical algorithms, making personalized dosimetry feasible and accessible in busy clinical settings. AI tools have the potential to be leveraged to predict and mitigate treatment-related adverse events, allowing early interventions. Additionally, generative AI can be utilized to find new targets for developing novel radiopharmaceuticals and facilitate drug discovery. However, while there is immense potential and notable interest in the role of AI in theranostics, these technologies do not lack limitations and challenges. There remains still much to be explored and understood. In this study, we investigate the current applications of AI in theranostics and seek to broaden the horizons for future research and innovation.
Collapse
Affiliation(s)
| | - Cem Bilgin
- Department of Radiology, Mayo Clinic Rochester, MN, USA
| | | | - Jacob J. Orme
- Department of Oncology, Mayo Clinic Rochester, MN, USA
| | | | | | | | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic Rochester, MN, USA
- Department of Immunology, Mayo Clinic Rochester, MN, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic Rochester, MN, USA
- Department of Oncology, Mayo Clinic Rochester, MN, USA
- Department of Urology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
7
|
Cui L, Qin Z, Sun S, Feng W, Hou M, Yu D. Diffusion-weighted imaging-based radiomics model using automatic machine learning to differentiate cerebral cystic metastases from brain abscesses. J Cancer Res Clin Oncol 2024; 150:132. [PMID: 38492096 PMCID: PMC10944436 DOI: 10.1007/s00432-024-05642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES To develop a radiomics model based on diffusion-weighted imaging (DWI) utilizing automated machine learning method to differentiate cerebral cystic metastases from brain abscesses. MATERIALS AND METHODS A total of 186 patients with cerebral cystic metastases (n = 98) and brain abscesses (n = 88) from two clinical institutions were retrospectively included. The datasets (129 from institution A) were randomly portioned into separate 75% training and 25% internal testing sets. Radiomics features were extracted from DWI images using two subregions of the lesion (cystic core and solid wall). A thorough image preprocessing method was applied to DWI images to ensure the robustness of radiomics features before feature extraction. Then the Tree-based Pipeline Optimization Tool (TPOT) was utilized to search for the best optimized machine learning pipeline, using a fivefold cross-validation in the training set. The external test set (57 from institution B) was used to evaluate the model's performance. RESULTS Seven distinct TPOT models were optimized to distinguish between cerebral cystic metastases and abscesses either based on different features combination or using wavelet transform. The optimal model demonstrated an AUC of 1.00, an accuracy of 0.97, sensitivity of 1.00, and specificity of 0.93 in the internal test set, based on the combination of cystic core and solid wall radiomics signature using wavelet transform. In the external test set, this model reached 1.00 AUC, 0.96 accuracy, 1.00 sensitivity, and 0.93 specificity. CONCLUSION The DWI-based radiomics model established by TPOT exhibits a promising predictive capacity in distinguishing cerebral cystic metastases from abscesses.
Collapse
Affiliation(s)
- Linyang Cui
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Department of Radiology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, 264400, Shandong, China
| | - Zheng Qin
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Siyuan Sun
- Qilu Pharmaceutical Co., Ltd, Jinan, 250100, Shandong, China
| | - Weihua Feng
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Mingyuan Hou
- Department of Imaging, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, 264200, Shandong, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Najafian K, Rehany B, Nowakowski A, Ghazimoghadam S, Pierre K, Zakarian R, Al-Saadi T, Reinhold C, Babajani-Feremi A, Wong JK, Guiot MC, Lacasse MC, Lam S, Siegel PM, Petrecca K, Dankner M, Forghani R. Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans. Neurooncol Adv 2024; 6:vdae200. [PMID: 39679176 PMCID: PMC11639946 DOI: 10.1093/noajnl/vdae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Background Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination. Methods From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction. Results Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%. Conclusions ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases.
Collapse
Affiliation(s)
- Keyhan Najafian
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Augmented Intelligence and Precision Health Laboratory, McGill University. Montreal, Quebec, Canada
| | - Benjamin Rehany
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Augmented Intelligence and Precision Health Laboratory, McGill University. Montreal, Quebec, Canada
| | - Alexander Nowakowski
- Division of Clinical and Translational Research, Rosalind and Morris Goodman Cancer Institute, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Saba Ghazimoghadam
- Augmented Intelligence and Precision Health Laboratory, McGill University. Montreal, Quebec, Canada
| | - Kevin Pierre
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rita Zakarian
- Department of Radiology, AdventHealth Medical Group, Maitland, Florida, USA
- Augmented Intelligence and Precision Health Laboratory, McGill University. Montreal, Quebec, Canada
| | - Tariq Al-Saadi
- Department of Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Caroline Reinhold
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Augmented Intelligence and Precision Health Laboratory, McGill University. Montreal, Quebec, Canada
| | - Abbas Babajani-Feremi
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Joshua K Wong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Marie-Christine Guiot
- Department of Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Marie-Constance Lacasse
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Stephanie Lam
- Department of Radiology, Université de Montréal, Montreal, Quebec, Canada
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter M Siegel
- Division of Clinical and Translational Research, Rosalind and Morris Goodman Cancer Institute, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Kevin Petrecca
- Department of Neurosurgery, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Matthew Dankner
- Division of Clinical and Translational Research, Rosalind and Morris Goodman Cancer Institute, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Augmented Intelligence and Precision Health Laboratory, McGill University. Montreal, Quebec, Canada
| | - Reza Forghani
- Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Radiology, AdventHealth Medical Group, Maitland, Florida, USA
- Augmented Intelligence and Precision Health Laboratory, McGill University. Montreal, Quebec, Canada
| |
Collapse
|
9
|
Akkurt BH, Spille DC, Peetz-Dienhart S, Kiolbassa NM, Mawrin C, Musigmann M, Heindel WL, Paulus W, Stummer W, Mannil M, Brokinkel B. Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas. Cancers (Basel) 2023; 15:4415. [PMID: 37686690 PMCID: PMC10486806 DOI: 10.3390/cancers15174415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE In meningiomas, TERT promotor mutations are rare but qualify the diagnosis of anaplasia, directly impacting adjuvant therapy. Effective screening for patients at risk for promotor mutations could enable more targeted molecular analyses and improve diagnosis and treatment. METHODS Semiautomatic segmentation of intracranial grade 2/3 meningiomas was performed on preoperative magnetic resonance imaging. Discriminatory power to predict TERT promoter mutations was analyzed using a random forest algorithm with an increasing number of radiomic features. Two final models with five and eight features with both fixed and differing radiomics features were developed and adjusted to eliminate random effects and to avoid overfitting. RESULTS A total of 117 image sets including training (N = 94) and test data (N = 23) were analyzed. To eliminate random effects and demonstrate the robustness of our approach, data partitioning and subsequent model development and testing were repeated a total of 100 times (each time with repartitioned training and independent test data). The established five- and eight-feature models with both fixed and different radiomics features enabled the prediction of TERT with similar but excellent performance. The five-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 91.8%/94.3%, mean accuracy of 85.5%/88.9%, mean sensitivity of 88.6%/91.4%, mean specificity of 83.2%/87.0%, and a mean Cohen's Kappa of 71.0%/77.7%. The eight-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 92.7%/94.6%, mean accuracy of 87.3%/88.9%, mean sensitivity of 89.6%/90.6%, mean specificity of 85.5%/87.5%, and a mean Cohen's Kappa of 74.4%/77.6%. Of note, the addition of further features of up to N = 8 only slightly increased the performance. CONCLUSIONS Radiomics-based machine learning enables prediction of TERT promotor mutation status in meningiomas with excellent discriminatory performance. Future analyses in larger cohorts should include grade 1 lesions as well as additional molecular alterations.
Collapse
Affiliation(s)
- Burak Han Akkurt
- Department of Radiology, University Hospital Muenster, DE-48149 Muenster, Germany (M.M.)
| | | | - Susanne Peetz-Dienhart
- Institute of Neuropathology, University Hospital Muenster, DE-48149 Muenster, Germany (W.P.)
| | - Nora Maren Kiolbassa
- Department of Neurosurgery, University Hospital Muenster, DE-48149 Muenster, Germany
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Manfred Musigmann
- Department of Radiology, University Hospital Muenster, DE-48149 Muenster, Germany (M.M.)
| | | | - Werner Paulus
- Institute of Neuropathology, University Hospital Muenster, DE-48149 Muenster, Germany (W.P.)
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, DE-48149 Muenster, Germany
| | - Manoj Mannil
- Department of Radiology, University Hospital Muenster, DE-48149 Muenster, Germany (M.M.)
- Institute for Diagnostic and Interventional Radiology, Caritas-Hospital, DE-97980 Bad Mergentheim, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Muenster, DE-48149 Muenster, Germany
- Institute of Neuropathology, University Hospital Muenster, DE-48149 Muenster, Germany (W.P.)
| |
Collapse
|
10
|
Wu L, Wu H, Li C, Zhang B, Li X, Zhen Y, Li H. Radiomics in colorectal cancer. IRADIOLOGY 2023; 1:236-244. [DOI: 10.1002/ird3.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2024]
Abstract
AbstractColorectal cancer (CRC) is a global health challenge with high morbidity and mortality. Radiomics, an emerging field, utilizes quantitative imaging features extracted from medical images for CRC diagnosis, staging, treatment response assessment, and prognostication. This review highlights the potential of radiomics for personalized CRC management. Radiomics enables noninvasive tumor characterization, aiding in early detection and accurate diagnosis, and it can be used to predict tumor stage, lymph node involvement, and prognosis. Furthermore, radiomics guides personalized therapies by assessing the treatment response and identifying patients who could benefit. Challenges include standardizing imaging protocols and analysis techniques. Robust validation frameworks and user‐friendly software are needed for the integration of radiomics into clinical practice. Despite challenges, radiomics offers valuable insights into tumor biology, treatment response, and prognosis in CRC. Overcoming technical and clinical hurdles will unlock its full potential in CRC management.
Collapse
Affiliation(s)
- Long Wu
- Department of Anus and Intestinal Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Huan Wu
- Department of Infectious Diseases The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy Free University of Berlin Berlin Germany
| | - Baofang Zhang
- Department of Infectious Diseases The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Xiaoyun Li
- Department of Anus and Intestinal Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Yunhuan Zhen
- Department of Anus and Intestinal Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Haiyang Li
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| |
Collapse
|
11
|
Priya S, Dhruba DD, Sorensen E, Aher PY, Narayanasamy S, Nagpal P, Jacob M, Carter KD. ComBat Harmonization of Myocardial Radiomic Features Sensitive to Cardiac MRI Acquisition Parameters. Radiol Cardiothorac Imaging 2023; 5:e220312. [PMID: 37693205 PMCID: PMC10483256 DOI: 10.1148/ryct.220312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 09/12/2023]
Abstract
Purpose To investigate the effect of ComBat harmonization methods on the robustness of cardiac MRI-derived radiomic features to variations in imaging parameters. Materials and Methods This Health Insurance Portability and Accountability Act-compliant retrospective study used a publicly available data set of 11 healthy controls (mean age, 33 years ± 16 [SD]; six men) and five patients (mean age, 52 years ± 16; four men). A single midventricular short-axis section was acquired with 3-T MRI using cine balanced steady-state free precision, T1-weighted, T2-weighted, T1 mapping, and T2 mapping imaging sequences. Each sequence was acquired using baseline parameters and after variations in flip angle, spatial resolution, section thickness, and parallel imaging. Image registration was performed for all sequences at a per-individual level. Manual myocardial contouring was performed, and 1652 radiomic features per sequence were extracted using baseline and variations in imaging parameters. Radiomic feature stability to change in imaging parameters was assessed using Cohen d sensitivity. The stability of radiomic features was assessed both without and after ComBat harmonization of radiomic features. Three ComBat methods were studied: parametric, nonparametric, and Gaussian mixture model (GMM). Results For all sequences combined, 51.4% of features were robust to changes in imaging parameters when no ComBat method was applied. ComBat harmonization substantially increased the number of stable features to 95.1% (95% CI: 94.9, 95.3) when parametric ComBat was used and 90.9% (95% CI: 90.6, 91.2) when nonparametric ComBat was used. GMM combat resulted in only 52.6% stable features. Conclusion ComBat harmonization improved the stability of radiomic features to changes in imaging parameters across all cardiac MRI sequences.Keywords: Cardiac MRI, Radiomics, ComBat, Harmonization Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Eldon Sorensen
- From the Department of Radiology, University of Iowa Carver College
of Medicine, 200 Hawkins Dr, Iowa City, IA 52242 (S.P., S.N.); Department of
Electrical and Computer Engineering (D.D.D., M.J.) and Department of
Biostatistics (E.S., K.D.C.), University of Iowa, Iowa City, Iowa; Department of
Radiology, University of Miami, Miller School of Medicine, Miami, Fla (P.Y.A.);
and Department of Radiology, University of Wisconsin School of Medicine and
Public Health, Madison, Wis (P.N.)
| | - Pritish Y. Aher
- From the Department of Radiology, University of Iowa Carver College
of Medicine, 200 Hawkins Dr, Iowa City, IA 52242 (S.P., S.N.); Department of
Electrical and Computer Engineering (D.D.D., M.J.) and Department of
Biostatistics (E.S., K.D.C.), University of Iowa, Iowa City, Iowa; Department of
Radiology, University of Miami, Miller School of Medicine, Miami, Fla (P.Y.A.);
and Department of Radiology, University of Wisconsin School of Medicine and
Public Health, Madison, Wis (P.N.)
| | - Sabarish Narayanasamy
- From the Department of Radiology, University of Iowa Carver College
of Medicine, 200 Hawkins Dr, Iowa City, IA 52242 (S.P., S.N.); Department of
Electrical and Computer Engineering (D.D.D., M.J.) and Department of
Biostatistics (E.S., K.D.C.), University of Iowa, Iowa City, Iowa; Department of
Radiology, University of Miami, Miller School of Medicine, Miami, Fla (P.Y.A.);
and Department of Radiology, University of Wisconsin School of Medicine and
Public Health, Madison, Wis (P.N.)
| | - Prashant Nagpal
- From the Department of Radiology, University of Iowa Carver College
of Medicine, 200 Hawkins Dr, Iowa City, IA 52242 (S.P., S.N.); Department of
Electrical and Computer Engineering (D.D.D., M.J.) and Department of
Biostatistics (E.S., K.D.C.), University of Iowa, Iowa City, Iowa; Department of
Radiology, University of Miami, Miller School of Medicine, Miami, Fla (P.Y.A.);
and Department of Radiology, University of Wisconsin School of Medicine and
Public Health, Madison, Wis (P.N.)
| | - Mathews Jacob
- From the Department of Radiology, University of Iowa Carver College
of Medicine, 200 Hawkins Dr, Iowa City, IA 52242 (S.P., S.N.); Department of
Electrical and Computer Engineering (D.D.D., M.J.) and Department of
Biostatistics (E.S., K.D.C.), University of Iowa, Iowa City, Iowa; Department of
Radiology, University of Miami, Miller School of Medicine, Miami, Fla (P.Y.A.);
and Department of Radiology, University of Wisconsin School of Medicine and
Public Health, Madison, Wis (P.N.)
| | - Knute D. Carter
- From the Department of Radiology, University of Iowa Carver College
of Medicine, 200 Hawkins Dr, Iowa City, IA 52242 (S.P., S.N.); Department of
Electrical and Computer Engineering (D.D.D., M.J.) and Department of
Biostatistics (E.S., K.D.C.), University of Iowa, Iowa City, Iowa; Department of
Radiology, University of Miami, Miller School of Medicine, Miami, Fla (P.Y.A.);
and Department of Radiology, University of Wisconsin School of Medicine and
Public Health, Madison, Wis (P.N.)
| |
Collapse
|
12
|
Pierre K, Gupta M, Raviprasad A, Sadat Razavi SM, Patel A, Peters K, Hochhegger B, Mancuso A, Forghani R. Medical imaging and multimodal artificial intelligence models for streamlining and enhancing cancer care: opportunities and challenges. Expert Rev Anticancer Ther 2023; 23:1265-1279. [PMID: 38032181 DOI: 10.1080/14737140.2023.2286001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) has the potential to transform oncologic care. There have been significant developments in AI applications in medical imaging and increasing interest in multimodal models. These are likely to enable improved oncologic care through more precise diagnosis, increasingly in a more personalized and less invasive manner. In this review, we provide an overview of the current state and challenges that clinicians, administrative personnel and policy makers need to be aware of and mitigate for the technology to reach its full potential. AREAS COVERED The article provides a brief targeted overview of AI, a high-level review of the current state and future potential AI applications in diagnostic radiology and to a lesser extent digital pathology, focusing on oncologic applications. This is followed by a discussion of emerging approaches, including multimodal models. The article concludes with a discussion of technical, regulatory challenges and infrastructure needs for AI to realize its full potential. EXPERT OPINION There is a large volume of promising research, and steadily increasing commercially available tools using AI. For the most advanced and promising precision diagnostic applications of AI to be used clinically, robust and comprehensive quality monitoring systems and informatics platforms will likely be required.
Collapse
Affiliation(s)
- Kevin Pierre
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manas Gupta
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
| | - Abheek Raviprasad
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Seyedeh Mehrsa Sadat Razavi
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Anjali Patel
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Keith Peters
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bruno Hochhegger
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Anthony Mancuso
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Reza Forghani
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA
- Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
13
|
Cui J, Miao X, Yanghao X, Qin X. Bibliometric research on the developments of artificial intelligence in radiomics toward nervous system diseases. Front Neurol 2023; 14:1171167. [PMID: 37360350 PMCID: PMC10288367 DOI: 10.3389/fneur.2023.1171167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing interest suggests that the widespread application of radiomics has facilitated the development of neurological disease diagnosis, prognosis, and classification. The application of artificial intelligence methods in radiomics has increasingly achieved outstanding prediction results in recent years. However, there are few studies that have systematically analyzed this field through bibliometrics. Our destination is to study the visual relationships of publications to identify the trends and hotspots in radiomics research and encourage more researchers to participate in radiomics studies. Methods Publications in radiomics in the field of neurological disease research can be retrieved from the Web of Science Core Collection. Analysis of relevant countries, institutions, journals, authors, keywords, and references is conducted using Microsoft Excel 2019, VOSviewer, and CiteSpace V. We analyze the research status and hot trends through burst detection. Results On October 23, 2022, 746 records of studies on the application of radiomics in the diagnosis of neurological disorders were retrieved and published from 2011 to 2023. Approximately half of them were written by scholars in the United States, and most were published in Frontiers in Oncology, European Radiology, Cancer, and SCIENTIFIC REPORTS. Although China ranks first in the number of publications, the United States is the driving force in the field and enjoys a good academic reputation. NORBERT GALLDIKS and JIE TIAN published the most relevant articles, while GILLIES RJ was cited the most. RADIOLOGY is a representative and influential journal in the field. "Glioma" is a current attractive research hotspot. Keywords such as "machine learning," "brain metastasis," and "gene mutations" have recently appeared at the research frontier. Conclusion Most of the studies focus on clinical trial outcomes, such as the diagnosis, prediction, and prognosis of neurological disorders. The radiomics biomarkers and multi-omics studies of neurological disorders may soon become a hot topic and should be closely monitored, particularly the relationship between tumor-related non-invasive imaging biomarkers and the intrinsic micro-environment of tumors.
Collapse
|
14
|
Noor J, Chaudhry A, Batool S. Microfluidic Technology, Artificial Intelligence, and Biosensors As Advanced Technologies in Cancer Screening: A Review Article. Cureus 2023; 15:e39634. [PMID: 37388583 PMCID: PMC10305590 DOI: 10.7759/cureus.39634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Cancer screening techniques aim to detect premalignant lesions and enable early intervention to delay the onset of cancer while keeping incidence constant. Technology advancements have led to the development of powerful tools such as microfluidic technology, artificial intelligence, machine learning algorithms, and electrochemical biosensors to aid in early cancer detection. Non-invasive cancer screening methods like virtual colonoscopy and endoscopic ultrasonography have also been developed to provide comprehensive pictures of organs and detect cancer early. This review article provides an overview of recent advances in cancer screening in microfluidic technology, artificial intelligence, and biomarkers through a narrative literature search. Microfluidic devices enable easy handling of sub-microliter volumes and have become a promising tool for cancer detection, drug screening, and modeling angiogenesis and metastasis in cancer research. Machine learning and artificial intelligence have shown high accuracy in oncology-related diagnostic imaging, reducing the manual steps in lesion detection and providing standardized and accurate results, with potential for global standardization in areas like colon polyps, breast cancer, and primary and metastatic brain cancer. A biomarker-based cancer diagnosis is promising for early detection and effective therapy, and electrochemical biosensors integrated with nanoparticles offer multiplexing and amplification capabilities. Understanding these advanced technologies' basics, achievements, and challenges is crucial for advancing their use in oncology.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| |
Collapse
|
15
|
Chiu FY, Yen Y. Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives. Biomark Res 2023; 11:35. [PMID: 36991494 DOI: 10.1186/s40364-023-00476-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Biomarker discovery and development are popular for detecting the subtle diseases. However, biomarkers are needed to be validated and approved, and even fewer are ever used clinically. Imaging biomarkers have a crucial role in the treatment of cancer patients because they provide objective information on tumor biology, the tumor's habitat, and the tumor's signature in the environment. Tumor changes in response to an intervention complement molecular and genomic translational diagnosis as well as quantitative information. Neuro-oncology has become more prominent in diagnostics and targeted therapies. The classification of tumors has been actively updated, and drug discovery, and delivery in nanoimmunotherapies are advancing in the field of target therapy research. It is important that biomarkers and diagnostic implements be developed and used to assess the prognosis or late effects of long-term survivors. An improved realization of cancer biology has transformed its management with an increasing emphasis on a personalized approach in precision medicine. In the first part, we discuss the biomarker categories in relation to the courses of a disease and specific clinical contexts, including that patients and specimens should both directly reflect the target population and intended use. In the second part, we present the CT perfusion approach that provides quantitative and qualitative data that has been successfully applied to the clinical diagnosis, treatment and application. Furthermore, the novel and promising multiparametric MR imageing approach will provide deeper insights regarding the tumor microenvironment in the immune response. Additionally, we briefly remark new tactics based on MRI and PET for converging on imaging biomarkers combined with applications of bioinformatics in artificial intelligence. In the third part, we briefly address new approaches based on theranostics in precision medicine. These sophisticated techniques merge achievable standardizations into an applicatory apparatus for primarily a diagnostic implementation and tracking radioactive drugs to identify and to deliver therapies in an individualized medicine paradigm. In this article, we describe the critical principles for imaging biomarker characterization and discuss the current status of CT, MRI and PET in finiding imaging biomarkers of early disease.
Collapse
Affiliation(s)
- Fang-Ying Chiu
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Center for Brain and Neurobiology Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Teaching and Research Headquarters for Sustainable Development Goals, Tzu Chi University, Hualien City, 970374, Taiwan.
| | - Yun Yen
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, 970374, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei City, 110301, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, 110301, Taiwan.
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, 116081, Taiwan.
| |
Collapse
|
16
|
Haneberg AG, Pierre K, Winter-Reinhold E, Hochhegger B, Peters KR, Grajo J, Arreola M, Asadizanjani N, Bian J, Mancuso A, Forghani R. Introduction to Radiomics and Artificial Intelligence: A Primer for Radiologists. Semin Roentgenol 2023; 58:152-157. [PMID: 37087135 DOI: 10.1053/j.ro.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 04/03/2023]
Abstract
Health informatics and artificial intelligence (AI) are expected to transform the healthcare enterprise and the future practice of radiology. There is an increasing body of literature on radiomics and deep learning/AI applications in medical imaging. There are also a steadily increasing number of FDA cleared AI applications in radiology. It is therefore essential for radiologists to have a basic understanding of these approaches, whether in academia or private practice. In this article, we will provide an overview of the field and familiarize the readers with the fundamental concepts behind these approaches.
Collapse
|
17
|
Chamroukhi F, Brivet S, Savadjiev P, Coates M, Forghani R. DECT-CLUST: Dual-Energy CT Image Clustering and Application to Head and Neck Squamous Cell Carcinoma Segmentation. Diagnostics (Basel) 2022; 12:diagnostics12123072. [PMID: 36553079 PMCID: PMC9776609 DOI: 10.3390/diagnostics12123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Dual-energy computed tomography (DECT) is an advanced CT computed tomography scanning technique enabling material characterization not possible with conventional CT scans. It allows the reconstruction of energy decay curves at each 3D image voxel, representing varied image attenuation at different effective scanning energy levels. In this paper, we develop novel unsupervised learning techniques based on mixture models and functional data analysis models to the clustering of DECT images. We design functional mixture models that integrate spatial image context in mixture weights, with mixture component densities being constructed upon the DECT energy decay curves as functional observations. We develop dedicated expectation-maximization algorithms for the maximum likelihood estimation of the model parameters. To our knowledge, this is the first article to develop statistical functional data analysis and model-based clustering techniques to take advantage of the full spectral information provided by DECT. We evaluate the application of DECT to head and neck squamous cell carcinoma. Current image-based evaluation of these tumors in clinical practice is largely qualitative, based on a visual assessment of tumor anatomic extent and basic one- or two-dimensional tumor size measurements. We evaluate our methods on 91 head and neck cancer DECT scans and compare our unsupervised clustering results to tumor contours traced manually by radiologists, as well as to several baseline algorithms. Given the inter-rater variability even among experts at delineating head and neck tumors, and given the potential importance of tissue reactions surrounding the tumor itself, our proposed methodology has the potential to add value in downstream machine learning applications for clinical outcome prediction based on DECT data in head and neck cancer.
Collapse
Affiliation(s)
- Faicel Chamroukhi
- IRT SystemX, 2 Boulevard Thomas Gobert, 91120 Palaiseau, France
- Correspondence:
| | - Segolene Brivet
- Electrical and Computer Engineering Department, McGill University, Montreal, QC H3A 0G4, Canada
| | - Peter Savadjiev
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology, McGill University, Montreal, QC H3G 1A4, Canada
| | - Mark Coates
- Electrical and Computer Engineering Department, McGill University, Montreal, QC H3A 0G4, Canada
| | - Reza Forghani
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology, McGill University, Montreal, QC H3G 1A4, Canada
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Saudargiene A, Radziunas A, Dainauskas JJ, Kucinskas V, Vaitkiene P, Pranckeviciene A, Laucius O, Tamasauskas A, Deltuva V. Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients. Front Neurosci 2022; 16:1028996. [PMID: 36312034 PMCID: PMC9606748 DOI: 10.3389/fnins.2022.1028996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purposeThe aim of the study is to predict the subthalamic nucleus (STN) deep brain stimulation (DBS) outcomes for Parkinson’s disease (PD) patients using the radiomic features extracted from pre-operative magnetic resonance images (MRI).MethodsThe study included 34 PD patients who underwent DBS implantation in the STN. Five patients (15%) showed poor DBS motor outcome. All together 9 amygdalar nuclei and 12 hippocampus subfields were segmented using Freesurfer 7.0 pipeline from pre-operative MRI images. Furthermore, PyRadiomics platform was used to extract 120 radiomic features for each nuclei and subfield resulting in 5,040 features. Minimum Redundancy Maximum Relevance (mRMR) feature selection method was employed to reduce the number of features to 20, and 8 machine learning methods (regularized binary logistic regression (LR), decision tree classifier (DT), linear discriminant analysis (LDA), naive Bayes classifier (NB), kernel support vector machine (SVM), deep feed-forward neural network (DNN), one-class support vector machine (OC-SVM), feed-forward neural network-based autoencoder for anomaly detection (DNN-A)) were applied to build the models for poor vs. good and very good STN-DBS motor outcome prediction.ResultsThe highest mean prediction accuracy was obtained using regularized LR (96.65 ± 7.24%, AUC 0.98 ± 0.06) and DNN (87.25 ± 14.80%, AUC 0.87 ± 0.18).ConclusionThe results show the potential power of the radiomic features extracted from hippocampus and amygdala MRI in the prediction of STN-DBS motor outcomes for PD patients.
Collapse
Affiliation(s)
- Ausra Saudargiene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Ausra Saudargiene,
| | - Andrius Radziunas
- Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Justinas J. Dainauskas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Kucinskas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Vaitkiene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aiste Pranckeviciene
- Department of Health Psychology, Faculty of Public Health, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ovidijus Laucius
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Arimantas Tamasauskas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytenis Deltuva
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
19
|
Fatania K, Mohamud F, Clark A, Nix M, Short SC, O'Connor J, Scarsbrook AF, Currie S. Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma-a systematic review. Eur Radiol 2022; 32:7014-7025. [PMID: 35486171 PMCID: PMC9474349 DOI: 10.1007/s00330-022-08807-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Radiomics is a promising avenue in non-invasive characterisation of diffuse glioma. Clinical translation is hampered by lack of reproducibility across centres and difficulty in standardising image intensity in MRI datasets. The study aim was to perform a systematic review of different methods of MRI intensity standardisation prior to radiomic feature extraction. METHODS MEDLINE, EMBASE, and SCOPUS were searched for articles meeting the following eligibility criteria: MRI radiomic studies where one method of intensity normalisation was compared with another or no normalisation, and original research concerning patients diagnosed with diffuse gliomas. Using PRISMA criteria, data were extracted from short-listed studies including number of patients, MRI sequences, validation status, radiomics software, method of segmentation, and intensity standardisation. QUADAS-2 was used for quality appraisal. RESULTS After duplicate removal, 741 results were returned from database and reference searches and, from these, 12 papers were eligible. Due to a lack of common pre-processing and different analyses, a narrative synthesis was sought. Three different intensity standardisation techniques have been studied: histogram matching (5/12), limiting or rescaling signal intensity (8/12), and deep learning (1/12)-only two papers compared different methods. From these studies, histogram matching produced the more reliable features compared to other methods of altering MRI signal intensity. CONCLUSION Multiple methods of intensity standardisation have been described in the literature without clear consensus. Further research that directly compares different methods of intensity standardisation on glioma MRI datasets is required. KEY POINTS • Intensity standardisation is a key pre-processing step in the development of robust radiomic signatures to evaluate diffuse glioma. • A minority of studies compared the impact of two or more methods. • Further research is required to directly compare multiple methods of MRI intensity standardisation on glioma datasets.
Collapse
Affiliation(s)
- Kavi Fatania
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
- Department of Radiology, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK.
| | | | - Anna Clark
- Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Michael Nix
- Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Susan C Short
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James O'Connor
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Radiology, The Christie Hospital, Manchester, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Andrew F Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Stuart Currie
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
20
|
Liu Q, Ding H. Application of Table Tennis Ball Trajectory and Rotation-Oriented Prediction Algorithm Using Artificial Intelligence. Front Neurorobot 2022; 16:820028. [PMID: 35645761 PMCID: PMC9131050 DOI: 10.3389/fnbot.2022.820028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
The present work aims to accelerate sports development in China and promote technological innovation in the artificial intelligence (AI) field. After analyzing the application and development of AI, it is introduced into sports and applied to table tennis competitions and training. The principle of the trajectory prediction of the table tennis ball (TTB) based on AI is briefly introduced. It is found that the difficulty of predicting TTB trajectories lies in rotation measurement. Accordingly, the rotation and trajectory of TTB are predicted using some AI algorithms. Specifically, a TTB detection algorithm is designed based on the Feature Fusion Network (FFN). For feature exaction, the cross-layer connection network is used to strengthen the learning ability of convolutional neural networks (CNNs) and streamline network parameters to improve the network detection response. The experimental results demonstrate that the trained CNN can reach a detection accuracy of over 98%, with a detection response within 5.3 ms, meeting the requirements of the robot vision system of the table tennis robot. By comparison, the traditional Color Segmentation Algorithm has advantages in detection response, with unsatisfactory detection accuracy, especially against TTB's color changes. Thus, the algorithm reported here can immediately hit the ball with high accuracy. The research content provides a reference for applying AI to TTB trajectory and rotation prediction and has significant value in popularizing table tennis.
Collapse
Affiliation(s)
| | - Hairong Ding
- Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
21
|
Afridi M, Jain A, Aboian M, Payabvash S. Brain Tumor Imaging: Applications of Artificial Intelligence. Semin Ultrasound CT MR 2022; 43:153-169. [PMID: 35339256 PMCID: PMC8961005 DOI: 10.1053/j.sult.2022.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Artificial intelligence has become a popular field of research with goals of integrating it into the clinical decision-making process. A growing number of predictive models are being employed utilizing machine learning that includes quantitative, computer-extracted imaging features known as radiomic features, and deep learning systems. This is especially true in brain-tumor imaging where artificial intelligence has been proposed to characterize, differentiate, and prognostication. We reviewed current literature regarding the potential uses of machine learning-based, and deep learning-based artificial intelligence in neuro-oncology as it pertains to brain tumor molecular classification, differentiation, and treatment response. While there is promising evidence supporting the use of artificial intelligence in neuro-oncology, there are still more investigations needed on a larger, multicenter scale along with a streamlined and standardized image processing workflow prior to its introduction in routine clinical decision-making protocol.
Collapse
Affiliation(s)
- Muhammad Afridi
- School of Osteopathic Medicine, Rowan University, Stratford, NJ
| | - Abhi Jain
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Mariam Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
22
|
Fatania K, Clark A, Frood R, Scarsbrook A, Al-Qaisieh B, Currie S, Nix M. Harmonisation of scanner-dependent contrast variations in magnetic resonance imaging for radiation oncology, using style-blind auto-encoders. Phys Imaging Radiat Oncol 2022; 22:115-122. [PMID: 35619643 PMCID: PMC9127401 DOI: 10.1016/j.phro.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background and purpose Magnetic Resonance Imaging (MRI) exhibits scanner dependent contrast, which limits generalisability of radiomics and machine-learning for radiation oncology. Current deep-learning harmonisation requires paired data, retraining for new scanners and often suffers from geometry-shift which alters anatomical information. The aim of this study was to investigate style-blind auto-encoders for MRI harmonisation to accommodate unpaired training data, avoid geometry-shift and harmonise data from previously unseen scanners. Materials and methods A style-blind auto-encoder, using adversarial classification on the latent-space, was designed for MRI harmonisation. The public CC359 T1-w MRI brain dataset includes six scanners (three manufacturers, two field strengths), of which five were used for training. MRI from all six (including one unseen) scanner were harmonised to common contrast. Harmonisation extent was quantified via Kolmogorov-Smirnov testing of residual scanner dependence of 3D radiomic features, and compared to WhiteStripe normalisation. Anatomical content preservation was measured through change in structural similarity index on contrast-cycling (δSSIM). Results The percentage of radiomics features showing statistically significant scanner-dependence was reduced from 41% (WhiteStripe) to 16% for white matter and from 39% to 27% for grey matter. δSSIM < 0.0025 on harmonisation and de-harmonisation indicated excellent anatomical content preservation. Conclusions Our method harmonised MRI contrast effectively, preserved critical anatomical details at high fidelity, trained on unpaired data and allowed zero-shot harmonisation. Robust and clinically translatable harmonisation of MRI will enable generalisable radiomic and deep-learning models for a range of applications, including radiation oncology treatment stratification, planning and response monitoring.
Collapse
Affiliation(s)
- Kavi Fatania
- Department of Radiology, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK
| | - Anna Clark
- Leeds Cancer Centre, Bexley Wing, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK
| | - Russell Frood
- Department of Radiology, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK
| | - Andrew Scarsbrook
- Department of Radiology, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK
| | - Bashar Al-Qaisieh
- Leeds Cancer Centre, Bexley Wing, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK
| | - Stuart Currie
- Department of Radiology, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK
| | - Michael Nix
- Leeds Cancer Centre, Bexley Wing, St James University Hospital Trust, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
23
|
Advancements in Oncology with Artificial Intelligence—A Review Article. Cancers (Basel) 2022; 14:cancers14051349. [PMID: 35267657 PMCID: PMC8909088 DOI: 10.3390/cancers14051349] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary With the advancement of artificial intelligence, including machine learning, the field of oncology has seen promising results in cancer detection and classification, epigenetics, drug discovery, and prognostication. In this review, we describe what artificial intelligence is and its function, as well as comprehensively summarize its evolution and role in breast, colorectal, and central nervous system cancers. Understanding the origin and current accomplishments might be essential to improve the quality, accuracy, generalizability, cost-effectiveness, and reliability of artificial intelligence models that can be used in worldwide clinical practice. Students and researchers in the medical field will benefit from a deeper understanding of how to use integrative AI in oncology for innovation and research. Abstract Well-trained machine learning (ML) and artificial intelligence (AI) systems can provide clinicians with therapeutic assistance, potentially increasing efficiency and improving efficacy. ML has demonstrated high accuracy in oncology-related diagnostic imaging, including screening mammography interpretation, colon polyp detection, glioma classification, and grading. By utilizing ML techniques, the manual steps of detecting and segmenting lesions are greatly reduced. ML-based tumor imaging analysis is independent of the experience level of evaluating physicians, and the results are expected to be more standardized and accurate. One of the biggest challenges is its generalizability worldwide. The current detection and screening methods for colon polyps and breast cancer have a vast amount of data, so they are ideal areas for studying the global standardization of artificial intelligence. Central nervous system cancers are rare and have poor prognoses based on current management standards. ML offers the prospect of unraveling undiscovered features from routinely acquired neuroimaging for improving treatment planning, prognostication, monitoring, and response assessment of CNS tumors such as gliomas. By studying AI in such rare cancer types, standard management methods may be improved by augmenting personalized/precision medicine. This review aims to provide clinicians and medical researchers with a basic understanding of how ML works and its role in oncology, especially in breast cancer, colorectal cancer, and primary and metastatic brain cancer. Understanding AI basics, current achievements, and future challenges are crucial in advancing the use of AI in oncology.
Collapse
|
24
|
Al Bulushi Y, Saint-Martin C, Muthukrishnan N, Maleki F, Reinhold C, Forghani R. Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis. Sci Rep 2022; 12:2962. [PMID: 35194075 PMCID: PMC8863781 DOI: 10.1038/s41598-022-06884-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Non-tuberculous mycobacterial (NTM) infection is an emerging infectious entity that often presents as lymphadenitis in the pediatric age group. Current practice involves invasive testing and excisional biopsy to diagnose NTM lymphadenitis. In this study, we performed a retrospective analysis of 249 lymph nodes selected from 143 CT scans of pediatric patients presenting with lymphadenopathy at the Montreal Children's Hospital between 2005 and 2018. A Random Forest classifier was trained on the ten most discriminative features from a set of 1231 radiomic features. The model classifying nodes as pyogenic, NTM, reactive, or proliferative lymphadenopathy achieved an accuracy of 72%, a precision of 68%, and a recall of 70%. Between NTM and all other causes of lymphadenopathy, the model achieved an area under the curve (AUC) of 89%. Between NTM and pyogenic lymphadenitis, the model achieved an AUC of 90%. Between NTM and the reactive and proliferative lymphadenopathy groups, the model achieved an AUC of 93%. These results indicate that radiomics can achieve a high accuracy for classification of NTM lymphadenitis. Such a non-invasive highly accurate diagnostic approach has the potential to reduce the need for invasive procedures in the pediatric population.
Collapse
Affiliation(s)
- Yarab Al Bulushi
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of McGill University Health Centre, 5252 Boulevard de Maisonneuve O, Montréal, QC, H4A 3S9, Canada
- Department of Radiology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Christine Saint-Martin
- Department of Radiology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Nikesh Muthukrishnan
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of McGill University Health Centre, 5252 Boulevard de Maisonneuve O, Montréal, QC, H4A 3S9, Canada
| | - Farhad Maleki
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of McGill University Health Centre, 5252 Boulevard de Maisonneuve O, Montréal, QC, H4A 3S9, Canada
| | - Caroline Reinhold
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of McGill University Health Centre, 5252 Boulevard de Maisonneuve O, Montréal, QC, H4A 3S9, Canada
- Department of Radiology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Reza Forghani
- Augmented Intelligence and Precision Health Laboratory (AIPHL), Department of Radiology and the Research Institute of McGill University Health Centre, 5252 Boulevard de Maisonneuve O, Montréal, QC, H4A 3S9, Canada.
- Department of Radiology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and Division of Medical Physics, University of Florida, PO Box 100374, Gainesville, FL, 32610-0374, USA.
| |
Collapse
|
25
|
Guan X, Qin T, Qi T. Precision Medicine in Lung Cancer Theranostics: Paving the Way from Traditional Technology to Advance Era. Cancer Control 2022. [PMCID: PMC8862127 DOI: 10.1177/10732748221077351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precision medicine for lung cancer theranostics is an advanced model combining prevention, diagnosis, and treatment for individual or specific population diseases to match individual patient differences. It involves collection and integration of genome, transcriptome, proteome, and metabolome features of lung cancer patients, combined with clinical characteristics. Subsequently, large data and artificial intelligence (AI) analysis have emerged to identify the most suitable therapeutic targets and personal treatment strategies for treatment of patients with lung cancer. We review the development and challenges associated with diagnosis and therapy of lung cancer from traditional technology, including immunotherapy prediction markers, liquid biopsy, surgery, and tumor immune microenvironment and patient-derived xenograft models, to AI in the era of precision medicine. AI has improved precision medicine and the predictive ability and accuracy of patient outcomes. Finally, we discuss some opportunities and challenges for lung cancer theranostics. Precision medicine in lung cancer can help us find the optimum treatment dose and time for a specific patient, which can advance the development of lung cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyong Guan
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Tian Qin
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Tao Qi
- Oncology Hematology Department, Xijing 986 Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
26
|
Krauze AV, Zhuge Y, Zhao R, Tasci E, Camphausen K. AI-Driven Image Analysis in Central Nervous System Tumors-Traditional Machine Learning, Deep Learning and Hybrid Models. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2022; 5:1-19. [PMID: 35106480 PMCID: PMC8802234 DOI: 10.26502/jbb.2642-91280046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interpretation of imaging in medicine in general and in oncology specifically remains problematic due to several limitations which include the need to incorporate detailed clinical history, patient and disease-specific history, clinical exam features, previous and ongoing treatment, and account for the dependency on reproducible human interpretation of multiple factors with incomplete data linkage. To standardize reporting, minimize bias, expedite management, and improve outcomes, the use of Artificial Intelligence (AI) has gained significant prominence in imaging analysis. In oncology, AI methods have as a result been explored in most cancer types with ongoing progress in employing AI towards imaging for oncology treatment, assessing treatment response, and understanding and communicating prognosis. Challenges remain with limited available data sets, variability in imaging changes over time augmented by a growing heterogeneity in analysis approaches. We review the imaging analysis workflow and examine how hand-crafted features also referred to as traditional Machine Learning (ML), Deep Learning (DL) approaches, and hybrid analyses, are being employed in AI-driven imaging analysis in central nervous system tumors. ML, DL, and hybrid approaches coexist, and their combination may produce superior results although data in this space is as yet novel, and conclusions and pitfalls have yet to be fully explored. We note the growing technical complexities that may become increasingly separated from the clinic and enforce the acute need for clinician engagement to guide progress and ensure that conclusions derived from AI-driven imaging analysis reflect that same level of scrutiny lent to other avenues of clinical research.
Collapse
Affiliation(s)
- A V Krauze
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - Y Zhuge
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - R Zhao
- University of British Columbia, Faculty of Medicine, 317 - 2194 Health Sciences Mall, Vancouver, Canada
| | - E Tasci
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - K Camphausen
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| |
Collapse
|
27
|
Nowakowski A, Lahijanian Z, Panet-Raymond V, Siegel PM, Petrecca K, Maleki F, Dankner M. Radiomics as an emerging tool in the management of brain metastases. Neurooncol Adv 2022; 4:vdac141. [PMID: 36284932 PMCID: PMC9583687 DOI: 10.1093/noajnl/vdac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.
Collapse
Affiliation(s)
- Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Zubin Lahijanian
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Valerie Panet-Raymond
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
28
|
Krauze AV, Camphausen K. Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition. Int J Mol Sci 2021; 22:13278. [PMID: 34948075 PMCID: PMC8703419 DOI: 10.3390/ijms222413278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Computational approaches including machine learning, deep learning, and artificial intelligence are growing in importance in all medical specialties as large data repositories are increasingly being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition and well positioned towards both the production and analysis of large-scale oncologic data with the potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The analysis of radiation therapy mediated treatment and the potential for computationally mediated analyses may lead to more precise therapy by employing large scale data. We analysed the state of the literature pertaining to large scale data, computational analysis, and the advancement of molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect existing and evolving approaches to realistic avenues for clinical implementation focusing on low grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG, rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how computational analysis and molecular science may synergistically drive advances in personalised radiation therapy (RT) and optimise patient outcomes.
Collapse
Affiliation(s)
- Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA;
| | | |
Collapse
|
29
|
Is It Worth Considering Multicentric High-Grade Glioma a Surgical Disease? Analysis of Our Clinical Experience and Literature Review. ACTA ACUST UNITED AC 2021; 7:523-532. [PMID: 34698304 PMCID: PMC8544720 DOI: 10.3390/tomography7040045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The simultaneous presence of multiple foci of high-grade glioma is a rare condition with a poor prognosis. By definition, if an anatomical connection through white matter bundles cannot be hypothesized, multiple lesions are defined as multicentric glioma (MC); on the other hand, when this connection exists, it is better defined as multifocal glioma (MF). Whether surgery can be advantageous for these patients has not been established yet. The aim of our study was to critically review our experience and to compare it to the existing literature. MATERIALS AND METHODS Retrospective analysis of patients operated on for MC HGG in two Italian institutions was performed. Distinction between MC and MF was achieved through revision of MR FLAIR images. Clinical and radiological preoperative and postoperative data were analyzed through chart revision and phone interviews. The same data were extracted from literature review. Univariate and multivariate analyses were conducted for the literature review only, and the null hypothesis was rejected for a p-value ≥ 0.05. RESULTS Sixteen patients met the inclusion criteria; male predominance and an average age of 66.5 years were detected. Sensory/motor deficit was the main onset symptom both in clinical study and literature review. A tendency to operate on the largest symptomatic lesion was reported and GTR was reached in the majority of cases. GBM was the histological diagnosis in most part of the patients. OS was 8.7 months in our series compared to 7.5 months from the literature review. Age ≤ 70 years, a postoperative KPS ≥ 70, a GTR/STR, a second surgery and adjuvant treatment were shown to be significantly associated with a better prognosis. Pathological examination revealed that MC HGG did not originate by LGG. CONCLUSIONS MC gliomas are rare conditions with high malignancy and a poor prognosis. A maximal safe resection should be attempted whenever possible, especially in younger patients with life-threatening large mass.
Collapse
|
30
|
Maleki F, Le WT, Sananmuang T, Kadoury S, Forghani R. Machine Learning Applications for Head and Neck Imaging. Neuroimaging Clin N Am 2021; 30:517-529. [PMID: 33039001 DOI: 10.1016/j.nic.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The head and neck (HN) consists of a large number of vital anatomic structures within a compact area. Imaging plays a central role in the diagnosis and management of major disorders affecting the HN. This article reviews the recent applications of machine learning (ML) in HN imaging with a focus on deep learning approaches. It categorizes ML applications in HN imaging into deep learning and traditional ML applications and provides examples of each category. It also discusses the main challenges facing the successful deployment of ML-based applications in the clinical setting and provides suggestions for addressing these challenges.
Collapse
Affiliation(s)
- Farhad Maleki
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology & Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada
| | - William Trung Le
- Polytechnique Montreal, PO Box 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7, Canada
| | - Thiparom Sananmuang
- Department of Diagnostic and Therapeutic Radiology and Research, Faculty of Medicine Ramathibodi Hospital, Ratchathewi, Bangkok 10400, Thailand
| | - Samuel Kadoury
- Polytechnique Montreal, PO Box 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7, Canada; CHUM Research Center, 900 St Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Reza Forghani
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Department of Radiology & Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Montreal, Quebec H4A 3S5, Canada; Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G1A4, Canada; Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, Suite 720, 5100 Maisonneuve Boulevard West, Montreal, Quebec H4A3T2, Canada; Department of Otolaryngology, Head and Neck Surgery, Royal Victoria Hospital, McGill University Health Centre, 1001 boul. Decarie Boulevard, Montreal, Quebec H3A 3J1, Canada.
| |
Collapse
|