1
|
Sanchez HA, Kraujaliene L, Verselis VK. A pore locus in the E1 domain differentially regulates Cx26 and Cx30 hemichannel function. J Gen Physiol 2024; 156:e202313502. [PMID: 39302316 DOI: 10.1085/jgp.202313502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Connexins (Cxs) function as gap junction (GJ) channels and hemichannels that mediate intercellular and transmembrane signaling, respectively. Here, we investigated the proximal segment of the first extracellular loop, E1, of two closely related Cxs, Cx26 and Cx30, that share widespread expression in the cochlea. Computational studies of Cx26 proposed that this segment of E1 contains a parahelix and functions in gating. The sequence of the parahelix is identical between Cx26 and Cx30 except for an Ala/Glu difference at position 49. We show through cysteine-scanning and mutational analyses that position 49 is pore-lining and interacts with the adjacent Asp50 residue to impact hemichannel functionality. When both positions 49 and 50 are charged, as occurs naturally in Cx30, the hemichannel function is dampened. Co-expression of Cx30 with Cx26(D50N), the most common mutation associated with keratitis-ichthyosis-deafness syndrome, results in robust hemichannel currents indicating that position 49-50 interactions are relevant in heteromerically assembled hemichannels. Cysteine substitution at position 49 in either Cx26 or Cx30 results in tonic inhibition of hemichannels, both through disulfide formation and high-affinity metal coordination, suggestive of a flexible region of the pore that can narrow substantially. These effects are absent in GJ channels, which exhibit wild-type functionality. Examination of postnatal cochlear explants suggests that Cx30 expression is associated with reduced propagation of Ca2+ waves. Overall, these data identify a pore locus in E1 of Cx26 and Cx30 that impacts hemichannel functionality and provide new considerations for understanding the roles of these connexins in cochlear function.
Collapse
Affiliation(s)
- Helmuth A Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso , Valparaíso, Chile
| | - Lina Kraujaliene
- Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Kraujaliene L, Kraujalis T, Snipas M, Verselis VK. An Ala/Glu difference in E1 of Cx26 and Cx30 contributes to their differential anionic permeabilities. J Gen Physiol 2024; 156:e202413600. [PMID: 39302317 PMCID: PMC11415307 DOI: 10.1085/jgp.202413600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Two closely related connexins, Cx26 and Cx30, share widespread expression in the cochlear cellular networks. Gap junction channels formed by these connexins have been shown to have different permeability profiles, with Cx30 showing a strongly reduced preference for anionic tracers. The pore-forming segment of the first extracellular loop, E1, identified by computational studies of the Cx26 crystal structure to form a parahelix and a narrowed region of the pore, differs at a single residue at position 49. Cx26 contains an Ala and Cx30, a charged Glu at this position, and cysteine scanning in hemichannels identified this position to be pore-lining. To assess whether the Ala/Glu difference affects permeability, we modeled and quantified Lucifer Yellow transfer between HeLa cell pairs expressing WT Cx26 and Cx30 and variants that reciprocally substituted Glu and Ala at position 49. Cx26(A49E) and Cx30(E49A) substitutions essentially reversed the Lucifer Yellow permeability profile when accounting for junctional conductance. Moreover, by using a calcein efflux assay in single cells, we observed a similar reduced anionic preference in undocked Cx30 hemichannels and a reversal with reciprocal Ala/Glu substitutions. Thus, our data indicate that Cx26 and Cx30 gap junction channels and undocked hemichannels retain similar permeability characteristics and that a single residue difference in their E1 domains can largely account for their differential permeabilities to anionic tracers. The higher anionic permeability of Cx26 compared with Cx30 suggests that these connexins may serve distinct signaling functions in the cochlea, perhaps reflected in the vastly higher prevalence of Cx26 mutations in human deafness.
Collapse
Affiliation(s)
- Lina Kraujaliene
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Applied Informatics, Kaunas University of Technology, Kaunas, Lithuania
| | - Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania
| | - Vytas K. Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Chen H, Li YX, Wong RS, Esseltine JL, Bai D. Genetically engineered human embryonic kidney cells as a novel vehicle for dual patch clamp study of human gap junction channels. Biochem J 2024; 481:741-758. [PMID: 38752978 PMCID: PMC11346430 DOI: 10.1042/bcj20240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.
Collapse
Affiliation(s)
- Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Yi X. Li
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Jessica L. Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B 3V6
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
4
|
Dadhich A, Bhargava S, Samdhani S, Malhotra B, Mathur P, Rawat A, Grover M. A Descriptive Observational Study of GJB2 and GJB6 Mutations in Familial Autosomal Recessive Non-syndromic Hearing Impairment. Indian J Otolaryngol Head Neck Surg 2023; 75:3575-3580. [PMID: 37974894 PMCID: PMC10645806 DOI: 10.1007/s12070-023-03948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 11/19/2023] Open
Abstract
Mutations in the genes, GJB2 and GJB6 play an important role in autosomal recessive, non-syndromic hearing loss. This study is aimed to detect the association of mutations in GJB2 and GJB6 genes in familial autosomal recessive non-syndromic hearing impairment cases. We included 26 families with at least two affected individuals having congenital bilateral, non-syndromic sensorineural hearing loss. Blood samples were drawn, DNA was extracted, and sent for multiplex PCR and Sanger sequencing. Of the 26 families analyzed, GJB2 mutations were detected in 9(34.6%) and GJB6 mutations were not detected in any of the families. GJB2 mutations are a major cause of congenital, non-syndromic hearing loss in this study population. This study also suggests that GJB6 mutations do not contribute to autosomal recessive non-syndromic hearing loss in the Indian population.
Collapse
Affiliation(s)
- Aakanksha Dadhich
- Department of Otorhinolaryngology and Head and Neck Surgery, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan 302004 India
| | - Shruti Bhargava
- Department of Pathology, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan 302004 India
| | - Sunil Samdhani
- Department of Otorhinolaryngology and Head and Neck Surgery, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan 302004 India
| | - Bharti Malhotra
- Department of Microbiology, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan 302004 India
| | - Priyanshu Mathur
- Department of Pediatrics, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan 302004 India
| | - Anshu Rawat
- Department of Otorhinolaryngology and Head and Neck Surgery, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan 302004 India
| | - Mohnish Grover
- Department of Otorhinolaryngology and Head and Neck Surgery, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan 302004 India
- Jaipur, India
| |
Collapse
|
5
|
Adams WP, Raisch TB, Zhao Y, Davalos R, Barrett S, King DR, Bain CB, Colucci-Chang K, Blair GA, Hanlon A, Lozano A, Veeraraghavan R, Wan X, Deschenes I, Smyth JW, Hoeker GS, Gourdie RG, Poelzing S. Extracellular Perinexal Separation Is a Principal Determinant of Cardiac Conduction. Circ Res 2023; 133:658-673. [PMID: 37681314 PMCID: PMC10561697 DOI: 10.1161/circresaha.123.322567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.
Collapse
Affiliation(s)
- William P. Adams
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Tristan B. Raisch
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Yajun Zhao
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Rafael Davalos
- School of Biomedical Engineering and Sciences, Virginia Tech
| | | | - D. Ryan King
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Chandra B. Bain
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Katrina Colucci-Chang
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Grace A. Blair
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Alexandra Hanlon
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Alicia Lozano
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Xiaoping Wan
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Isabelle Deschenes
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - James W. Smyth
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Department of Biological Sciences, College of Science, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Gregory S. Hoeker
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Robert G. Gourdie
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Steven Poelzing
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
6
|
Defourny J, Thiry M. Recent insights into gap junction biogenesis in the cochlea. Dev Dyn 2023; 252:239-246. [PMID: 36106826 DOI: 10.1002/dvdy.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022] Open
Abstract
In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Abbott AC, García IE, Villanelo F, Flores-Muñoz C, Ceriani R, Maripillán J, Novoa-Molina J, Figueroa-Cares C, Pérez-Acle T, Sáez JC, Sánchez HA, Martínez AD. Expression of KID syndromic mutation Cx26S17F produces hyperactive hemichannels in supporting cells of the organ of Corti. Front Cell Dev Biol 2023; 10:1071202. [PMID: 36699003 PMCID: PMC9868548 DOI: 10.3389/fcell.2022.1071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.
Collapse
Affiliation(s)
- Ana C. Abbott
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar, Chile
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile,Centro de Investigaciones en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tomas Pérez-Acle
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| |
Collapse
|
8
|
Abrams CK, Flores-Obando RE, Dungan GD, Cherepanova E, Freidin MM. Investigating oligodendrocyte connexins: Heteromeric interactions between Cx32 and mutant or wild-type forms of Cx47 do not contribute to or modulate gap junction function. Glia 2021; 69:1882-1896. [PMID: 33835612 DOI: 10.1002/glia.23999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/11/2022]
Abstract
Oligodendrocytes express two gap junction forming connexins, connexin 32 (Cx32) and Cx47; therefore, formation of heteromeric channels containing both Cx47 and Cx32 monomers might occur. Mutations in Cx47 cause both Pelizaeus-Merzbacher-like disease Type 1 (PMLD1) and hereditary spastic paraparesis Type 44 (SPG44) and heteromer formation between these mutants and Cx32 may contribute to the pathogenesis of these disorders. Here, we utilized electrophysiological and antibody-based techniques to examine this possibility. When cells expressing both Cx32 and Cx47 were paired with cells expressing either Cx32 or Cx47, properties were indistinguishable from those produced by cells expressing homotypic Cx32 or Cx47 channels. Similarly, pairing cells expressing both Cx32 and Cx47 with cells expressing Cx30 or Cx43 produced channels indistinguishable from heterotypic Cx32/Cx30 or Cx47/Cx43 channels, respectively. The same assessments were performed on cells expressing Cx32 and four mutant forms of Cx47 (p.I33M associated with SPG44 or p.P87S, p.Y269D or p.M283T associated with PMLD1). None of these mutants showed a functional effect on Cx32. Immunostained cells co-expressing Cx32WT (wild type) and Cx47WT showed a Pearson correlation coefficient close to zero, suggesting that any overlap was due to chance. p.Y269D showed a statistically significant negative correlation with Cx32, suggesting that Cx32 and this mutant overlap less than expected by chance. Co-immunoprecipitation of Cx32 with Cx47WT and mutants show only very low levels of co-immunoprecipitated protein. Overall, our data suggest that interactions between PMLD1 or SPG44 mutants and Cx32 gap junctions do not contribute to the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Gabriel D Dungan
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Elina Cherepanova
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
9
|
Fukunaga I, Oe Y, Danzaki K, Ohta S, Chen C, Shirai K, Kawano A, Ikeda K, Kamiya K. Modeling gap junction beta 2 gene-related deafness with human iPSC. Hum Mol Genet 2021; 30:1429-1442. [PMID: 33997905 DOI: 10.1093/hmg/ddab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
There are >120 forms of non-syndromic deafness associated with identified genetic loci. In particular, mutation of the gap junction beta 2 gene (GJB2), which encodes connexin (CX)26 protein, is the most frequent cause of hereditary deafness worldwide. We previously described an induction method to develop functional CX26 gap junction-forming cells from mouse-induced pluripotent stem cells (iPSCs) and generated in vitro models for GJB2-related deafness. However, functional CX26 gap junction-forming cells derived from human iPSCs or embryonic stem cells (ESCs) have not yet been reported. In this study, we generated human iPSC-derived functional CX26 gap junction-forming cells (iCX26GJCs), which have the characteristics of cochlear supporting cells. These iCX26GJCs had gap junction plaque-like formations at cell-cell borders and co-expressed several markers that are expressed in cochlear supporting cells. Furthermore, we generated iCX26GJCs derived from iPSCs from two patients with the most common GJB2 mutation in Asia, and these cells reproduced the pathology of GJB2-related deafness. These in vitro models may be useful for establishing optimal therapies and drug screening for various mutations in GJB2-related deafness.
Collapse
Affiliation(s)
- Ichiro Fukunaga
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan
| | - Yoko Oe
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan
| | - Keiko Danzaki
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan
| | - Sayaka Ohta
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan
| | - Cheng Chen
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan
| | - Kyoko Shirai
- Department of Otolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo 1600023, Japan
| | - Atsushi Kawano
- Department of Otolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo 1600023, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 1138421, Japan
| |
Collapse
|
10
|
Brancaccio M, Wolfes AC, Ness N. Astrocyte Circadian Timekeeping in Brain Health and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:87-110. [PMID: 34773228 DOI: 10.1007/978-3-030-81147-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marco Brancaccio
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Natalie Ness
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| |
Collapse
|
11
|
Naulin PA, Lozano B, Fuentes C, Liu Y, Schmidt C, Contreras JE, Barrera NP. Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging. J Biol Chem 2020; 295:16499-16509. [PMID: 32887797 PMCID: PMC7864052 DOI: 10.1074/jbc.ra119.012128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology.
Collapse
Affiliation(s)
- Pamela A Naulin
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Lozano
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Fuentes
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yu Liu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Carla Schmidt
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Beach R, Abitbol JM, Allman BL, Esseltine JL, Shao Q, Laird DW. GJB2 Mutations Linked to Hearing Loss Exhibit Differential Trafficking and Functional Defects as Revealed in Cochlear-Relevant Cells. Front Cell Dev Biol 2020; 8:215. [PMID: 32300592 PMCID: PMC7142214 DOI: 10.3389/fcell.2020.00215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
GJB2 gene (that encodes Cx26) mutations are causal of hearing loss highlighting the importance of Cx26-based channel signaling amongst the supporting cells in the organ of Corti. While the majority of these GJB2 mutations are inherited in an autosomal recessive manner, others are inherited in an autosomal dominant manner and lead to syndromic hearing loss as well as skin diseases. To assess if common or divergent mechanisms are at the root of GJB2-linked hearing loss, we expressed several mutants in cochlear-relevant HEI-OC1 cells derived from the developing organ of Corti. Since supporting cells of the mature mammalian organ of Corti have negligible Cx43, but HEI-OC1 cells are rich in Cx43, we first used CRISPR-Cas9 to ablate endogenous Cx43, thus establishing a connexin-deficient platform for controlled reintroduction of hearing-relevant connexins and Cx26 mutants. We found three distinct outcomes and cellular phenotypes when hearing loss-linked Cx26 mutants were expressed in cochlear-relevant cells. The dominant syndromic Cx26 mutant N54K had trafficking defects and did not fully prevent wild-type Cx26 gap junction plaque formation but surprisingly formed gap junctions when co-expressed with Cx30. In contrast, the dominant syndromic S183F mutant formed gap junctions incapable of transferring dye and, as expected, co-localized in the same gap junctions as wild-type Cx26 and Cx30, but also gained the capacity to intermix with Cx43 within gap junctions. Both recessive non-syndromic Cx26 mutants (R32H and R184P) were retained in intracellular vesicles including early endosomes and did not co-localize with Cx30. As might be predicted, none of the Cx26 mutants prevented Cx43 gap junction plaque formation in Cx43-rich HEI-OC1 cells while Cx43-ablation had little effect on the expression of reference genes linked to auditory cell differentiation. We conclude from our studies in cochlear-relevant cells that the selected Cx26 mutants likely evoke hearing loss via three unique connexin defects that are independent of Cx43 status.
Collapse
Affiliation(s)
- Rianne Beach
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Julia M. Abitbol
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian L. Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Jessica L. Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Lee MY, Wang HZ, White TW, Brooks T, Pittman A, Halai H, Petrova A, Xu D, Hart SL, Kinsler VA, Di WL. Allele-Specific Small Interfering RNA Corrects Aberrant Cellular Phenotype in Keratitis-Ichthyosis-Deafness Syndrome Keratinocytes. J Invest Dermatol 2019; 140:1035-1044.e7. [PMID: 31705875 DOI: 10.1016/j.jid.2019.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
Abstract
Keratitis-ichthyosis-deafness (KID) syndrome is a severe, untreatable condition characterized by ocular, auditory, and cutaneous abnormalities, with major complications of infection and skin cancer. Most cases of KID syndrome (86%) are caused by a heterozygous missense mutation (c.148G>A, p.D50N) in the GJB2 gene, encoding gap junction protein Cx26, which alters gating properties of Cx26 channels in a dominant manner. We hypothesized that a mutant allele-specific small interfering RNA could rescue the cellular phenotype in patient keratinocytes (KCs). A KID syndrome cell line (KID-KC) was established from primary patient KCs with a heterozygous p.D50N mutation. This cell line displayed impaired gap junction communication and hyperactive hemichannels, confirmed by dye transfer, patch clamp, and neurobiotin uptake assays. A human-murine chimeric skin graft model constructed with KID-KCs mimicked patient skin in vivo, further confirming the validity of these cells as a model. In vitro treatment with allele-specific small interfering RNA led to robust inhibition of the mutant GJB2 allele without altering expression of the wild-type allele. This corrected both gap junction and hemichannel activity. Notably, allele-specific small interfering RNA treatment caused only low-level off-target effects in KID-KCs, as detected by genome-wide RNA sequencing. Our data provide an important proof-of-concept and model system for the potential use of allele-specific small interfering RNA in treating KID syndrome and other dominant genetic conditions.
Collapse
Affiliation(s)
- Ming Yang Lee
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hong-Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Tony Brooks
- UCL Genomics, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alan Pittman
- Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; Genetics Research Centre, St George's, University of London, London, United Kingdom
| | - Heerni Halai
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anastasia Petrova
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Diane Xu
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Veronica A Kinsler
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Wei-Li Di
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
14
|
Fukunaga I, Fujimoto A, Hatakeyama K, Kurebayashi N, Ikeda K, Kamiya K. Generation of Functional CX26–Gap‐Junction‐Plaque‐Forming Cells with Spontaneous Ca
2+
Transients via a Gap Junction Characteristic of Developing Cochlea. ACTA ACUST UNITED AC 2019; 51:e100. [DOI: 10.1002/cpsc.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ichiro Fukunaga
- Department of OtorhinolaryngologyJuntendo University Faculty of Medicine Tokyo Japan
| | - Ayumi Fujimoto
- Department of OtorhinolaryngologyJuntendo University Faculty of Medicine Tokyo Japan
| | - Kaori Hatakeyama
- Department of OtorhinolaryngologyJuntendo University Faculty of Medicine Tokyo Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular PharmacologyJuntendo University Graduate School of Medicine Tokyo Japan
| | - Katsuhisa Ikeda
- Department of OtorhinolaryngologyJuntendo University Faculty of Medicine Tokyo Japan
| | - Kazusaku Kamiya
- Department of OtorhinolaryngologyJuntendo University Faculty of Medicine Tokyo Japan
| |
Collapse
|
15
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Recabal A, Elizondo-Vega R, Philippot C, Salgado M, López S, Palma A, Tarifeño-Saldivia E, Timmermann A, Seifert G, Caprile T, Steinhäuser C, García-Robles MA. Connexin-43 Gap Junctions Are Responsible for the Hypothalamic Tanycyte-Coupled Network. Front Cell Neurosci 2018; 12:406. [PMID: 30534054 PMCID: PMC6275304 DOI: 10.3389/fncel.2018.00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Tanycytes are hypothalamic radial glia-like cells that form the basal wall of the third ventricle (3V) where they sense glucose and modulate neighboring neuronal activity to control feeding behavior. This role requires the coupling of hypothalamic cells since transient decreased hypothalamic Cx43 expression inhibits the increase of brain glucose-induced insulin secretion. Tanycytes have been postulated as possible hypothalamic neuronal precursors due to their privileged position in the hypothalamus that allows them to detect mitogenic signals and because they share the markers and characteristics of neuronal precursors located in other neurogenic niches, including the formation of coupled networks through connexins. Using wild-type (WT), Cx30−/– and Cx30−/–, Cx43fl/fl:glial fibrillary acidic protein (GFAP)-Cre (double knockout, dKO) mouse lines, we demonstrated that tanycytes are highly coupled to each other and also give rise to a panglial network specifically through Cx43. Using the human GFAP (hGFAP)-enhanced green fluorescent protein (EGFP) transgenic mouse line, we provided evidence that the main parenchymal-coupled cells were astrocytes. In addition, electrophysiological parameters, such as membrane resistance, were altered when Cx43 was genetically absent or pharmacologically inhibited. Finally, in the dKO mouse line, we detected a significant decrease in the number of hypothalamic proliferative parenchymal cells. Our results demonstrate the importance of Cx43 in tanycyte homotypic and panglial coupling and show that Cx43 function influences the proliferative potential of hypothalamic cells.
Collapse
Affiliation(s)
- Antonia Recabal
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Roberto Elizondo-Vega
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Camille Philippot
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Magdiel Salgado
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Sergio López
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Alejandra Palma
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Teresa Caprile
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | | |
Collapse
|
17
|
A Cell Junctional Protein Network Associated with Connexin-26. Int J Mol Sci 2018; 19:ijms19092535. [PMID: 30150563 PMCID: PMC6163694 DOI: 10.3390/ijms19092535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
GJB2 mutations are the leading cause of non-syndromic inherited hearing loss. GJB2 encodes connexin-26 (CX26), which is a connexin (CX) family protein expressed in cochlea, skin, liver, and brain, displaying short cytoplasmic N-termini and C-termini. We searched for CX26 C-terminus binding partners by affinity capture and identified 12 unique proteins associated with cell junctions or cytoskeleton (CGN, DAAM1, FLNB, GAPDH, HOMER2, MAP7, MAPRE2 (EB2), JUP, PTK2B, RAI14, TJP1, and VCL) by using mass spectrometry. We show that, similar to other CX family members, CX26 co-fractionates with TJP1, VCL, and EB2 (EB1 paralogue) as well as the membrane-associated protein ASS1. The adaptor protein CGN (cingulin) co-immuno-precipitates with CX26, ASS1, and TJP1. In addition, CGN co-immunoprecipitation with CX30, CX31, and CX43 indicates that CX association is independent on the CX C-terminus length or sequence. CX26, CGN, FLNB, and DAMM1 were shown to distribute to the organ of Corti and hepatocyte plasma membrane. In the mouse liver, CX26 and TJP1 co-localized at the plasma membrane. In conclusion, CX26 associates with components of other membrane junctions that integrate with the cytoskeleton.
Collapse
|
18
|
Chen L, Su D, Li S, Guan L, Shi C, Li D, Hu S, Ma X. The connexin 46 mutant (V44M) impairs gap junction function causing congenital cataract. J Genet 2017; 96:969-976. [PMID: 29321356 DOI: 10.1007/s12041-017-0861-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Connexin 46 (Cx46) is important for gap junction channels formation which plays crucial role in the preservation of lens homeostasis and transparency. Previously, we have identified a missense mutation (p.V44M) of Cx46 in a congenital cataract family. This study aims at dissecting the potential pathogenesis of the causative mutant of cataract. Plasmids carrying wild-type (wt) and mutant (V44M) of Cx46 were constructed and expressed in Hela cells respectively.Western blotting and fluorescence microscopy were applied to analyse the expression and subcellular localization of recombinant proteins, respectively. Scrape loading dye transfer experiment was performed to detect the transfer capability of gap junction channels among cells expressed V44Mmutant. The results demonstrated that in transfected Hela cells, both wt-Cx46 and Cx46 V44M were localized abundantly in the plasma membrane. No significant difference was found between the protein expressions of the two types of Cx46. The fluorescent localization assay revealed the plaque formation, significantly reduced in the cells expressing Cx46 V44M. Immunoblotting analysis demonstrated that formation of Triton X-100 insoluble complex decreased obviously in mutant Cx46. Additionally, the scrape-loading dye-transfer experiment showed a lower dye diffusion distance of Cx46 V44M cells, which indicates that the gap junction intercellular communication activity was aberrant. Human Cx46 V44M mutant causing cataracts result in abnormally decreased formation of gap junction plaques and impaired gap junction channel function.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Ophthalmology, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157000, Heilongjiang Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nielsen BS, Alstrom JS, Nicholson BJ, Nielsen MS, MacAulay N. Permeant-specific gating of connexin 30 hemichannels. J Biol Chem 2017; 292:19999-20009. [PMID: 28982982 DOI: 10.1074/jbc.m117.805986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Gap junctions confer interconnectivity of the cytoplasm in neighboring cells via docking of two connexons expressed in each of the adjacent membranes. Undocked connexons, referred to as hemichannels, may open and connect the cytoplasm with the extracellular fluid. The hemichannel configuration of connexins (Cxs) displays isoform-specific permeability profiles that are not directly determined by the size and charge of the permeant. To further explore Ca2+-mediated gating and permeability features of connexin hemichannels, we heterologously expressed Cx30 hemichannels in Xenopus laevis oocytes. The sensitivity toward divalent cation-mediated gating differed between small atomic ions (current) and fluorescent dye permeants, indicating that these permeants are distinctly gated. Three aspartate residues in Cx30 (Asp-50, Asp-172, and Asp-179) have been implicated previously in the Ca2+ sensitivity of other hemichannel isoforms. Although the aspartate at position Asp-50 was indispensable for divalent cation-dependent gating of Cx30 hemichannels, substitutions of the two other residues had no significant effect on gating, illustrating differences in the gating mechanisms between connexin isoforms. Using the substituted cysteine accessibility method (SCAM), we evaluated the role of possible pore-lining residues in the permeation of ions and ethidium through Cx30 hemichannels. Of the cysteine-substituted residues, interaction of a proposed pore-lining cysteine at position 37 with the positively charged compound [2-(trimethylammonium)ethyl] methane thiosulfonate bromide (MTS-ET) increased Cx30-mediated currents with unperturbed ethidium permeability. In summary, our results demonstrate that the permeability of hemichannels is regulated in a permeant-specific manner and underscores that hemichannels are selective rather than non-discriminating and freely diffusable pores.
Collapse
Affiliation(s)
| | | | - Bruce J Nicholson
- Department of Biochemistry, School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
20
|
Verselis VK. Connexin hemichannels and cochlear function. Neurosci Lett 2017; 695:40-45. [PMID: 28917982 DOI: 10.1016/j.neulet.2017.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 01/01/2023]
Abstract
Connexins play vital roles in hearing, including promoting cochlear development and sustaining auditory function in the mature cochlea. Mutations in connexins expressed in the cochlear epithelium, Cx26 and Cx30, cause sensorineural deafness and in the case of Cx26, is one of the most common causes of non-syndromic, hereditary deafness. Connexins function as gap junction channels and as hemichannels, which mediate intercellular and transmembrane signaling, respectively. Both channel configurations can play important, but very different roles in the cochlea. The potential roles connexin hemichannels can play are discussed both in normal cochlear function and in promoting pathogenesis that can lead to hearing loss.
Collapse
Affiliation(s)
- Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
21
|
Liu W, Li H, Edin F, Brännström J, Glueckert R, Schrott-Fischer A, Molnar M, Pacholsky D, Pfaller K, Rask-Andersen H. Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea-a super-resolution structured illumination microscopy (SR-SIM) study. Ups J Med Sci 2017; 122:160-170. [PMID: 28513246 PMCID: PMC5649321 DOI: 10.1080/03009734.2017.1322645] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Mutations in the GJB2 gene, which encodes the Connexin26 (Cx26) protein, are the most common cause of childhood hearing loss in American and European populations. The cochlea contains a gap junction (GJ) network in the sensory epithelium and two connective tissue networks in the lateral wall and spiral limbus. The syncytia contain the GJ proteins beta 2 (GJB2/Cx26) and beta 6 (GJB6/Cx30). Our knowledge of their expression in humans is insufficient due to the limited availability of tissue. Here, we sought to establish the molecular arrangement of GJs in the epithelial network of the human cochlea using surgically obtained samples. METHODS We analyzed Cx26 and Cx30 expression in GJ networks in well-preserved adult human auditory sensory epithelium using confocal, electron, and super-resolution structured illumination microscopy (SR-SIM). RESULTS Cx30 plaques (<5 μm) dominated, while Cx26 plaques were subtle and appeared as 'mini-junctions' (2-300 nm). 3-D volume rendering of Z-stacks and orthogonal projections from single optical sections suggested that the GJs are homomeric/homotypic and consist of assemblies of identical GJs composed of either Cx26 or Cx30. Occasionally, the two protein types were co-expressed, suggesting functional cooperation. CONCLUSIONS Establishing the molecular composition and distribution of the GJ networks in the human cochlea may increase our understanding of the pathophysiology of Cx-related hearing loss. This information may also assist in developing future strategies to treat genetic hearing loss.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
| | - Hao Li
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
| | - Fredrik Edin
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
| | - Johan Brännström
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden;
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria;
| | | | - Matyas Molnar
- Science for Life Laboratory, BioVis Facility, Uppsala University, Uppsala, Sweden;
| | - Dirk Pacholsky
- Science for Life Laboratory, BioVis Facility, Uppsala University, Uppsala, Sweden;
| | - Kristian Pfaller
- Department of Histology and Molecular Cell Biology, Institute of Anatomy and Histology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden;
- CONTACT Helge Rask-Andersen Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| |
Collapse
|
22
|
Press E, Alaga KC, Barr K, Shao Q, Bosen F, Willecke K, Laird DW. Disease-linked connexin26 S17F promotes volar skin abnormalities and mild wound healing defects in mice. Cell Death Dis 2017; 8:e2845. [PMID: 28569788 PMCID: PMC5520893 DOI: 10.1038/cddis.2017.234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Several mutant mice have been generated to model connexin (Cx)-linked skin diseases; however, the role of connexins in skin maintenance and during wound healing remains to be fully elucidated. Here we generated a novel, viable, and fertile mouse (Cx26CK14-S17F/+) with the keratitis-ichthyosis-deafness mutant (Cx26S17F) driven by the cytokeratin 14 promoter. This mutant mouse mirrors several Cx26-linked human skin pathologies suggesting that the etiology of Cx26-linked skin disease indeed stems from epidermal expression of the Cx26 mutant. Cx26CK14-S17F/+ foot pad epidermis formed severe palmoplantar keratoderma, which expressed elevated levels of Cx26 and filaggrin. Primary keratinocytes isolated from Cx26CK14-S17F/+ neonates exhibited reduced gap junctional intercellular communication and migration. Furthermore, Cx26CK14-S17F/+ mouse skin wound closure was normal but repaired epidermis appeared hyperplastic with elevated expression of cytokeratin 6. Taken together, we suggest that the Cx26S17F mutant disturbs keratinocyte differentiation and epidermal remodeling following wound closure. We further posit that Cx26 contributes to epidermal homeostasis by regulating keratinocyte differentiation, and that mice harboring a disease-linked Cx26 mutant display epidermal abnormalities yet retain most wound healing properties.
Collapse
Affiliation(s)
- Eric Press
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Katanya C Alaga
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Kevin Barr
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Felicitas Bosen
- LIMES (Life and Medical Sciences Institute), Molecular Genetics, University of Bonn, Bonn, Germany
| | - Klaus Willecke
- LIMES (Life and Medical Sciences Institute), Molecular Genetics, University of Bonn, Bonn, Germany
| | - Dale W Laird
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
23
|
Mondal A, Sachse FB, Moreno AP. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge. Front Physiol 2017; 8:206. [PMID: 28428758 PMCID: PMC5382223 DOI: 10.3389/fphys.2017.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2017] [Indexed: 01/26/2023] Open
Abstract
Gap junction channels play a vital role in intercellular communication by connecting cytoplasm of adjoined cells through arrays of channel-pores formed at the common membrane junction. Their structure and properties vary depending on the connexin isoform(s) involved in forming the full gap junction channel. Lack of information on the molecular structure of gap junction channels has limited the development of computational tools for single channel studies. Currently, we rely on cumbersome experimental techniques that have limited capabilities. We have earlier reported a simplified Brownian dynamics gap junction pore model and demonstrated that variations in pore shape at the single channel level can explain some of the differences in permeability of heterotypic channels observed in in vitro experiments. Based on this computational model, we designed simulations to study the influence of pore shape, particle size and charge in homotypic and heterotypic pores. We simulated dye diffusion under whole cell voltage clamping. Our simulation studies with pore shape variations revealed a pore shape with maximal flux asymmetry in a heterotypic pore. We identified pore shape profiles that match the in silico flux asymmetry results to the in vitro results of homotypic and heterotypic gap junction formed out of Cx43 and Cx45. Our simulation results indicate that the channel's pore-shape established flux asymmetry and that flux asymmetry is primarily regulated by the sizes of the conical and/or cylindrical mouths at each end of the pore. Within the set range of particle size and charge, flux asymmetry was found to be independent of particle size and directly proportional to charge magnitude. While particle charge was vital to creating flux asymmetry, charge magnitude only scaled the observed flux asymmetry. Our studies identified the key factors that help predict asymmetry. Finally, we suggest the role of such flux asymmetry in creating concentration imbalances of messenger molecules in cardiomyocytes. We also assess the potency of fibroblasts in aggravating such imbalances through Cx43-Cx45 heterotypic channels in fibrotic heart tissue.
Collapse
Affiliation(s)
- Abhijit Mondal
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA
| | - Frank B Sachse
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA
| | - Alonso P Moreno
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA.,Department of Internal Medicine, Cardiology, University of UtahSalt Lake City, UT, USA
| |
Collapse
|
24
|
Fukunaga I, Fujimoto A, Hatakeyama K, Aoki T, Nishikawa A, Noda T, Minowa O, Kurebayashi N, Ikeda K, Kamiya K. In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca 2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Stem Cell Reports 2016; 7:1023-1036. [PMID: 27840044 PMCID: PMC5161531 DOI: 10.1016/j.stemcr.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Mutation of the Gap Junction Beta 2 gene (GJB2) encoding connexin 26 (CX26) is the most frequent cause of hereditary deafness worldwide and accounts for up to 50% of non-syndromic sensorineural hearing loss cases in some populations. Therefore, cochlear CX26-gap junction plaque (GJP)-forming cells such as cochlear supporting cells are thought to be the most important therapeutic target for the treatment of hereditary deafness. The differentiation of pluripotent stem cells into cochlear CX26-GJP-forming cells has not been reported. Here, we detail the development of a novel strategy to differentiate induced pluripotent stem cells into functional CX26-GJP-forming cells that exhibit spontaneous ATP- and hemichannel-mediated Ca2+ transients typical of the developing cochlea. Furthermore, these cells from CX26-deficient mice recapitulated the drastic disruption of GJPs, the primary pathology of GJB2-related hearing loss. These in vitro models should be useful for establishing inner-ear cell therapies and drug screening that target GJB2-related hearing loss. Mutation in GJB2 (CX26) is the most frequent cause of hereditary deafness worldwide Functional CX26-gap junction plaque (GJP)-forming cells were generated from iPSCs These cells exhibited spontaneous Ca2+ transients typical of the developing cochlea The drastic disruption of GJP was observed in in vitro disease model of GJB2 mutation
Collapse
Affiliation(s)
- Ichiro Fukunaga
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayumi Fujimoto
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Hatakeyama
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toru Aoki
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atena Nishikawa
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tetsuo Noda
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Osamu Minowa
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
25
|
Lemcke H, Peukert J, Voronina N, Skorska A, Steinhoff G, David R. Applying 3D-FRAP microscopy to analyse gap junction-dependent shuttling of small antisense RNAs between cardiomyocytes. J Mol Cell Cardiol 2016; 98:117-27. [DOI: 10.1016/j.yjmcc.2016.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
|
26
|
Pierucci F, Frati A, Squecco R, Lenci E, Vicenti C, Slavik J, Francini F, Machala M, Meacci E. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment. Arch Toxicol 2016; 91:749-760. [PMID: 27318803 DOI: 10.1007/s00204-016-1750-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
The non-dioxin-like environmental toxicant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153), member of a group of persistent organic pollutants wide-spread throughout the environment, reduces gap junction intercellular communication (GJIC), an event possibly associated with tumor promotion. Since very few studies have investigated the signaling effectors and mode(s) of action of PCB153, and it is known that the gap junction (GJ) protein Cx43 can be regulated by the bioactive sphingolipid (SL) sphingosine 1-phosphate (S1P), this in vitro study mainly addresses whether SL metabolism is affected by PCB153 in rat liver epithelial WB-F344 cells. PCB153 treatment obtained significant changes in the S1P/ceramide (Cer) ratio, known to be crucial in determining cell fate. In particular, an increase in S1P at 30 min and a decrease of the bioactive lipid at 3 h were observed, whereas Cer level increased at 1 h and 24 h. Notably, a time-dependent modulation of sphingosine kinase (SphK), the enzyme responsible for S1P synthesis, and of its regulators, ERK1/2 and protein phosphatase PP2A, supports the involvement of these signaling effectors in PCB153 toxicity. Electrophysiological analyses, furthermore, indicated that the lipophilic environmental toxicant significantly reduced GJ biophysical properties, affecting both voltage-dependent (such as those formed by Cx43 and/or Cx32) and voltage-independent channels, thereby demonstrating that PCB153 may act differently on GJs formed by distinct Cx isoforms. SphK down-regulation alone induced GJIC impairment, and, when combined with PCB153, the acute effect on GJ suppression was additive. Moreover, after enzyme-specific gene silencing, the SphK1 isoform appears to be responsible for down-regulating Cx43 expression, while being the target of PCB153 at short-term exposure. In conclusion, we provide the first evidence of novel effectors in PCB153 toxic action in rat liver stem-like cells, leading us to consider SLs as potential markers for preventing GJIC deregulation and, thus, the tumorigenic action elicited by this environmental toxicant.
Collapse
Affiliation(s)
- F Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - A Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - R Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - E Lenci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - C Vicenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - J Slavik
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - F Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - M Machala
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - E Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
27
|
Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties. J Invest Dermatol 2016; 136:225-235. [PMID: 26763442 PMCID: PMC4731051 DOI: 10.1038/jid.2015.389] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Mutations in GJB2 (Cx26) cause either deafness, or deafness associated with skin diseases. That different disorders can be caused by distinct mutations within the same gene suggests that unique channel activities are influenced by each class of mutation. We have examined the functional characteristics of two human mutations, Cx26-H73R and Cx26-S183F, causing palmoplantar keratoderma (PPK) and deafness. Both failed to form gap junction channels or hemichannels when expressed alone. Co-expression of the mutants with wild-type Cx43 showed a trans-dominant inhibition of Cx43 gap junction channels, without reductions in Cx43 protein synthesis. In addition, the presence of mutant Cx26 shifted Cx43 channel gating and kinetics towards a more Cx26-like behavior. Co-immunoprecipitation showed Cx43 being pulled down more efficiently with mutant Cx26, than wild-type, confirming the enhanced formation of heteromeric connexons. Finally, the formation of heteromeric connexons resulted in significantly increased Cx43 hemichannel activity in the presence of Cx26 mutants. These findings suggest a common mechanism whereby Cx26 mutations causing PPK and deafness trans-dominantly influence multiple functions of wild-type Cx43. They also implicate a role for aberrant hemichannel activity in the pathogenesis of PPK, and further highlight an emerging role for Cx43 in genetic skin diseases.
Collapse
|
28
|
Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication. Sci Rep 2016; 6:19884. [PMID: 26814383 PMCID: PMC4728487 DOI: 10.1038/srep19884] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Intercellular genetic communication is an essential requirement for coordination of cell proliferation and differentiation and has an important role in many cellular processes. Gap junction channels possess large pore allowing passage of ions and small molecules between cells. MicroRNAs (miRNAs) are small regulatory RNAs that can regulate gene expression broadly. Here, we report that miRNAs can pass through gap junction channels in a connexin-dependent manner. Connexin43 (Cx43) had higher permeability, whereas Cx30 showed little permeability to miRNAs. In the tested connexin cell lines, the permeability to miRNAs demonstrated: Cx43 > Cx26/30 > Cx26 > Cx31 > Cx30 = Cx-null. However, consistent with a uniform structure of miRNAs, there was no significant difference in permeability to different miRNAs. The passage is efficient; the miRNA level in the recipient cells could be up to 30% of the donor level. Moreover, the transferred miRNA is functional and could regulate gene expression in neighboring cells. Connexin mutation and gap junctional blockers could eliminate this miRNA intercellular transfer and gene regulation. These data reveal a novel mechanism for intercellular genetic communication. Given that connexin expression is cell-specific, this connexin-dependent, miRNA intercellular genetic communication may play an important role in synchronizing and coordinating proliferation and differentiation of specific cell types during multicellular organ development.
Collapse
|
29
|
Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, Minowa O, Ikeda K. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 2015; 24:3651-61. [PMID: 25801282 DOI: 10.1093/hmg/ddv109] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/17/2015] [Indexed: 11/12/2022] Open
Abstract
Hearing loss is the most widespread sensory disorder, with an incidence of congenital genetic deafness of 1 in 1600 children. For many ethnic populations, the most prevalent form of genetic deafness is caused by recessive mutations in the gene gap junction protein, beta 2, 26 kDa (GJB2), which is also known as connexin 26 (Cx26). Despite this knowledge, existing treatment strategies do not completely recover speech perception. Here we used a gene delivery system to rescue hearing in a mouse model of Gjb2 deletion. Mice lacking Cx26 are characterized by profound deafness from birth and improper development of cochlear cells. Cochlear delivery of Gjb2 using an adeno-associated virus significantly improved the auditory responses and development of the cochlear structure. Using gene replacement to restore hearing in a new mouse model of Gjb2-related deafness may lead to the development of therapies for human hereditary deafness.
Collapse
Affiliation(s)
- Takashi Iizuka
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Satoru Gotoh
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan
| | - Yoshinobu Sugitani
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan
| | - Masaaki Suzuki
- Department of Otolaryngology, Teikyo University Chiba Medical Center, Ichihara 299-0111, Japan and
| | - Tetsuo Noda
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan, Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Osamu Minowa
- Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 135-8550, Japan, Team for Advanced Development and Evaluation of Human Disease Models, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan,
| |
Collapse
|
30
|
Kelly JJ, Shao Q, Jagger DJ, Laird DW. Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions. J Cell Sci 2015; 128:3947-60. [DOI: 10.1242/jcs.174698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
In the present study we investigated the life-cycle, trafficking, assembly and cell surface dynamics of a poorly characterized connexin family member, connexin 30 (Cx30), which plays a critical role in skin health and hearing. Unexpectedly, Cx30 localization at the cell surface and gap junctional intercellular communication was not affected by prolonged treatments with the ER-Golgi transport inhibitor brefeldin-A or the protein synthesis inhibitor cycloheximide, whereas Cx43 was rapidly cleared. Fluorescent recovery after photobleaching revealed that Cx30 plaques were rebuilt from the outer edges in keeping with older channels residing in the inner core of the plaque. Expression of a dominant-negative form of Sar1 GTPase led to the accumulation of Cx30 within the ER in contrast to a report that Cx30 traffics via a Golgi-independent pathway. Co-expression of Cx30 with Cx43 revealed that these connexins segregate into distinct domains within common gap junction plaques suggesting their assembly is governed by different mechanisms. In summary, Cx30 was found to be an unusually stable, long-lived connexin (half-life >12 hrs), which may underlie its specific role in the epidermis and cochlea.
Collapse
Affiliation(s)
- John J. Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Teleki I, Szasz AM, Maros ME, Gyorffy B, Kulka J, Meggyeshazi N, Kiszner G, Balla P, Samu A, Krenacs T. Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis. PLoS One 2014; 9:e112541. [PMID: 25383624 PMCID: PMC4226536 DOI: 10.1371/journal.pone.0112541] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIMS Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers. MATERIALS AND METHODS Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models. RESULTS The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other's prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively. CONCLUSION Differential expression of Cx43 and Cx30 may serve as potential positive and negative prognostic markers, respectively, for a clinically relevant stratification of breast cancers.
Collapse
Affiliation(s)
- Ivett Teleki
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Mate Elod Maros
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Balazs Gyorffy
- MTA TTK Lendulet Cancer Biomarker Research Group, Budapest, Hungary
- 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Janina Kulka
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Nora Meggyeshazi
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergo Kiszner
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Peter Balla
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Aliz Samu
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tibor Krenacs
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- MTA-SE Tumor Progression Research Group, Budapest, Hungary
| |
Collapse
|
32
|
Hansen DB, Ye ZC, Calloe K, Braunstein TH, Hofgaard JP, Ransom BR, Nielsen MS, MacAulay N. Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels. J Biol Chem 2014; 289:26058-26073. [PMID: 25086040 DOI: 10.1074/jbc.m114.582155] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Astrocytes and neurons express several large pore (hemi)channels that may open in response to various stimuli, allowing fluorescent dyes, ions, and cytoplasmic molecules such as ATP and glutamate to permeate. Several of these large pore (hemi)channels have similar characteristics with regard to activation, permeability, and inhibitor sensitivity. Consequently, their behaviors and roles in astrocytic and neuronal (patho)physiology remain undefined. We took advantage of the Xenopus laevis expression system to determine the individual characteristics of several large pore channels in isolation. Expression of connexins Cx26, Cx30, Cx36, or Cx43, the pannexins Px1 or Px2, or the purinergic receptor P2X7 yielded functional (hemi)channels with isoform-specific characteristics. Connexin hemichannels had distinct sensitivity to alterations of extracellular Ca(2+) and their permeability to dyes and small atomic ions (conductance) were not proportional. Px1 and Px2 exhibited conductance at positive membrane potentials, but only Px1 displayed detectable fluorescent dye uptake. P2X7, in the absence of Px1, was permeable to fluorescent dyes in an agonist-dependent manner. The large pore channels displayed overlapping sensitivity to the inhibitors Brilliant Blue, gadolinium, and carbenoxolone. These results demonstrated isoform-specific characteristics among the large pore membrane channels; an open (hemi)channel is not a nonselective channel. With these isoform-specific properties in mind, we characterized the divalent cation-sensitive permeation pathway in primary cultured astrocytes. We observed no activation of membrane conductance or Cx43-mediated dye uptake in astrocytes nor in Cx43-expressing C6 cells. Our data underscore that although Cx43-mediated transport is observed in overexpressing cell systems, such transport may not be detectable in native cells under comparable experimental conditions.
Collapse
Affiliation(s)
- Daniel Bloch Hansen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Zu-Cheng Ye
- Department of Neurology, University of Washington, Seattle, Washington 98195
| | - Kirstine Calloe
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark, and
| | - Thomas Hartig Braunstein
- Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Johannes Pauli Hofgaard
- Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bruce R Ransom
- Department of Neurology, University of Washington, Seattle, Washington 98195
| | - Morten Schak Nielsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark,.
| |
Collapse
|
33
|
Griemsmann S, Höft SP, Bedner P, Zhang J, von Staden E, Beinhauer A, Degen J, Dublin P, Cope DW, Richter N, Crunelli V, Jabs R, Willecke K, Theis M, Seifert G, Kettenmann H, Steinhäuser C. Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells. Cereb Cortex 2014; 25:3420-33. [PMID: 25037920 DOI: 10.1093/cercor/bhu157] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The thalamus plays important roles as a relay station for sensory information in the central nervous system (CNS). Although thalamic glial cells participate in this activity, little is known about their properties. In this study, we characterized the formation of coupled networks between astrocytes and oligodendrocytes in the murine ventrobasal thalamus and compared these properties with those in the hippocampus and cortex. Biocytin filling of individual astrocytes or oligodendrocytes revealed large panglial networks in all 3 gray matter regions. Combined analyses of mice with cell type-specific deletion of connexins (Cxs), semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and western blotting showed that Cx30 is the dominant astrocytic Cx in the thalamus. Many thalamic astrocytes even lack expression of Cx43, while in the hippocampus astrocytic coupling is dominated by Cx43. Deletion of Cx30 and Cx47 led to complete loss of panglial coupling, which was restored when one allele of either Cxs was present. Immunohistochemistry revealed a unique antigen profile of thalamic glia and identified an intermediate cell type expressing both Olig2 and Cx43. Our findings further the emerging concept of glial heterogeneity across brain regions.
Collapse
Affiliation(s)
- Stephanie Griemsmann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Simon P Höft
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Jiong Zhang
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Elena von Staden
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Anna Beinhauer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Joachim Degen
- Life and Medical Sciences (LIMES) Institute, Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Pavel Dublin
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - David W Cope
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Nadine Richter
- Max-Delbrück-Center for Molecular Medicine, Cellular Neuroscience, 13092 Berlin, Germany
| | | | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Klaus Willecke
- Life and Medical Sciences (LIMES) Institute, Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine, Cellular Neuroscience, 13092 Berlin, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| |
Collapse
|
34
|
Berger AC, Kelly JJ, Lajoie P, Shao Q, Laird DW. Mutations in Cx30 that are linked to skin disease and non-syndromic hearing loss exhibit several distinct cellular pathologies. J Cell Sci 2014; 127:1751-64. [DOI: 10.1242/jcs.138230] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT
Connexin 30 (Cx30), a member of the large gap-junction protein family, plays a role in the homeostasis of the epidermis and inner ear through gap junctional intercellular communication (GJIC). Here, we investigate the underlying mechanisms of four autosomal dominant Cx30 gene mutations that are linked to hearing loss and/or various skin diseases. First, the T5M mutant linked to non-syndromic hearing loss formed functional gap junction channels and hemichannels, similar to wild-type Cx30. The loss-of-function V37E mutant associated with Clouston syndrome or keratitis-ichthyosis-deafness syndrome was retained in the endoplasmic reticulum and significantly induced apoptosis. The G59R mutant linked to the Vohwinkel and Bart-Pumphrey syndromes was retained primarily in the Golgi apparatus and exhibited loss of gap junction channel and hemichannel function but did not cause cell death. Lastly, the A88V mutant, which is linked to the development of Clouston syndrome, also significantly induced apoptosis but through an endoplasmic-reticulum-independent mechanism. Collectively, we discovered that four unique Cx30 mutants might cause disease through different mechanisms that also likely include their selective trans-dominant effects on coexpressed connexins, highlighting the overall complexity of connexin-linked diseases and the importance of GJIC in disease prevention.
Collapse
Affiliation(s)
- Amy C. Berger
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - John J. Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Dale W. Laird
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
35
|
Extracellular domains play different roles in gap junction formation and docking compatibility. Biochem J 2014; 458:1-10. [PMID: 24438327 DOI: 10.1042/bj20131162] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GJ (gap junction) channels mediate direct intercellular communication and play an important role in many physiological processes. Six connexins oligomerize to form a hemichannel and two hemichannels dock together end-to-end to form a GJ channel. Connexin extracellular domains (E1 and E2) have been shown to be important for the docking, but the molecular mechanisms behind the docking and formation of GJ channels are not clear. Recent developments in atomic GJ structure and functional studies on a series of connexin mutants revealed that E1 and E2 are likely to play different roles in the docking. Non-covalent interactions at the docking interface, including hydrogen bonds, are predicted to form between interdocked extracellular domains. Protein sequence alignment analysis on the docking compatible/incompatible connexins indicate that the E1 domain is important for the formation of the GJ channel and the E2 domain is important in the docking compatibility in heterotypic channels. Interestingly, the hydrogen-bond forming or equivalent residues in both E1 and E2 domains are mutational hot spots for connexin-linked human diseases. Understanding the molecular mechanisms of GJ docking can assist us to develop novel strategies in rescuing the disease-linked connexin mutants.
Collapse
|
36
|
Kamiya K, Yum SW, Kurebayashi N, Muraki M, Ogawa K, Karasawa K, Miwa A, Guo X, Gotoh S, Sugitani Y, Yamanaka H, Ito-Kawashima S, Iizuka T, Sakurai T, Noda T, Minowa O, Ikeda K. Assembly of the cochlear gap junction macromolecular complex requires connexin 26. J Clin Invest 2014; 124:1598-607. [PMID: 24590285 DOI: 10.1172/jci67621] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/02/2014] [Indexed: 12/18/2022] Open
Abstract
Hereditary deafness affects approximately 1 in 2,000 children. Mutations in the gene encoding the cochlear gap junction protein connexin 26 (CX26) cause prelingual, nonsyndromic deafness and are responsible for as many as 50% of hereditary deafness cases in certain populations. Connexin-associated deafness is thought to be the result of defective development of auditory sensory epithelium due to connexion dysfunction. Surprisingly, CX26 deficiency is not compensated for by the closely related connexin CX30, which is abundantly expressed in the same cochlear cells. Here, using two mouse models of CX26-associated deafness, we demonstrate that disruption of the CX26-dependent gap junction plaque (GJP) is the earliest observable change during embryonic development of mice with connexin-associated deafness. Loss of CX26 resulted in a drastic reduction in the GJP area and protein level and was associated with excessive endocytosis with increased expression of caveolin 1 and caveolin 2. Furthermore, expression of deafness-associated CX26 and CX30 in cell culture resulted in visible disruption of GJPs and loss of function. Our results demonstrate that deafness-associated mutations in CX26 induce the macromolecular degradation of large gap junction complexes accompanied by an increase in caveolar structures.
Collapse
|
37
|
Koval M, Molina SA, Burt JM. Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 2014; 588:1193-204. [PMID: 24561196 DOI: 10.1016/j.febslet.2014.02.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
This review is based in part on a roundtable discussion session: "Physiological roles for heterotypic/heteromeric channels" at the 2013 International Gap Junction Conference (IGJC 2013) in Charleston, South Carolina. It is well recognized that multiple connexins can specifically co-assemble to form mixed gap junction channels with unique properties as a means to regulate intercellular communication. Compatibility determinants for both heteromeric and heterotypic gap junction channel formation have been identified and associated with specific connexin amino acid motifs. Hetero-oligomerization is also a regulated process; differences in connexin quality control and monomer stability are likely to play integral roles to control interactions between compatible connexins. Gap junctions in oligodendrocyte:astrocyte communication and in the cardiovascular system have emerged as key systems where heterotypic and heteromeric channels have unique physiologic roles. There are several methodologies to study heteromeric and heterotypic channels that are best applied to either heterologous expression systems, native tissues or both. There remains a need to use and develop different experimental approaches in order to understand the prevalence and roles for mixed gap junction channels in human physiology.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States; Department of Cell Biology, Emory University, Atlanta, GA, United States.
| | - Samuel A Molina
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
38
|
Hansen DB, Braunstein TH, Nielsen MS, MacAulay N. Distinct permeation profiles of the connexin 30 and 43 hemichannels. FEBS Lett 2014; 588:1446-57. [PMID: 24503060 DOI: 10.1016/j.febslet.2014.01.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/10/2023]
Abstract
Connexin 43 (Cx43) hemichannels may form open channels in the plasma membrane when exposed to specific stimuli, e.g. reduced extracellular concentration of divalent cations, and allow passage of fluorescent molecules and presumably a range of smaller physiologically relevant molecules. However, the permeability profile of Cx43 hemichannels remains unresolved. Exposure of Cx43-expressing Xenopus laevis oocytes to divalent cation free solution induced a gadolinium-sensitive uptake of the fluorescent dye ethidium. In spite thereof, a range of biological molecules smaller than ethidium, such as glutamate, lactate, and glucose, did not permeate the pore whereas ATP did. In contrast, permeability of glutamate, glucose and ATP was observed in oocytes expressing Cx30. Exposure to divalent cation free solutions induced a robust membrane conductance in Cx30-expressing oocytes but none in Cx43-expressing oocytes. C-terminally truncated Cx43 (M257) displayed increased dye uptake and, unlike wild type Cx43 channels, conducted current. Neither Cx30 nor Cx43 acted as water channels in their hemichannel configuration. Our results demonstrate that connexin hemichannels have isoform-specific permeability profiles and that dye uptake cannot be equaled to permeability of smaller physiologically relevant molecules in given settings.
Collapse
Affiliation(s)
- Daniel Bloch Hansen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Hartig Braunstein
- Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten Schak Nielsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
39
|
Meigh L, Greenhalgh SA, Rodgers TL, Cann MJ, Roper DI, Dale N. CO₂directly modulates connexin 26 by formation of carbamate bridges between subunits. eLife 2013; 2:e01213. [PMID: 24220509 PMCID: PMC3821526 DOI: 10.7554/elife.01213] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Homeostatic regulation of the partial pressure of CO2 (PCO2) is vital for life. Sensing of pH has been proposed as a sufficient proxy for determination of PCO2 and direct CO2-sensing largely discounted. Here we show that connexin 26 (Cx26) hemichannels, causally linked to respiratory chemosensitivity, are directly modulated by CO2. A ‘carbamylation motif’, present in CO2-sensitive connexins (Cx26, Cx30, Cx32) but absent from a CO2-insensitive connexin (Cx31), comprises Lys125 and four further amino acids that orient Lys125 towards Arg104 of the adjacent subunit of the connexin hexamer. Introducing the carbamylation motif into Cx31 created a mutant hemichannel (mCx31) that was opened by increases in PCO2. Mutation of the carbamylation motif in Cx26 and mCx31 destroyed CO2 sensitivity. Course-grained computational modelling of Cx26 demonstrated that the proposed carbamate bridge between Lys125 and Arg104 biases the hemichannel to the open state. Carbamylation of Cx26 introduces a new transduction principle for physiological sensing of CO2. DOI:http://dx.doi.org/10.7554/eLife.01213.001 A number of gaseous molecules, including nitric oxide and carbon monoxide, play important roles in many cellular processes by acting as signalling molecules. Surprisingly, however, it has long been assumed that carbon dioxide – a gaseous molecule that is produced during cellular metabolism – is not a signalling molecule. Controlling the concentration of carbon dioxide (CO2) in a biological system is essential to sustain life, and it was thought that the body used pH – which is the concentration of hydrogen ions – as a proxy for the level of CO2. The concentration of CO2 is related to pH because CO2 reacts with water to form carbonic acid, which quickly breaks down to form hydrogen ions and bicarbonate ions. This close relationship has led many researchers to equate pH-sensing with CO2-sensing, and to suggest that a physiological receptor for CO2 does not exist. Recent research into structures called connexin hemichannels has challenged this view. Researchers found that when pH levels were held constant, increasing the level of CO2 caused the structures to open up, suggesting that CO2 could be directly detected by the hemichannels. Each hemichannel contains six connexin subunits, but the details of how the CO2 molecules interact with the individual connexin subunits to open up the hemichannels remained mysterious. Now Meigh et al. show that CO2 molecules bind to a specific amino acid (lysine) at a particular place (residue 125) in one of the connexin subunits to form a carbamate group. This group then interacts with the amino acid (arginine) at residue 104 in a neighbouring connexin subunit to form a carbamate bridge between the two subunits. This leads to structural changes that cause the gap junction hemichannels to open and release signals that can activate other cells. Since connexin hemichannels are found throughout the human body, these results suggest that CO2 might act as a signalling molecule in processes as diverse as the control of blood flow, breathing, hearing and reproduction. DOI:http://dx.doi.org/10.7554/eLife.01213.002
Collapse
Affiliation(s)
- Louise Meigh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Dunn CA, Lampe PD. Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci 2013; 127:455-64. [PMID: 24213533 DOI: 10.1242/jcs.142497] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The proteins that form vertebrate gap junctions, the connexins, are highly regulated and have short (<2 hour) half-lives. Phosphorylation of connexin43 (Cx43) affects gap junction assembly, channel gating and turnover. After finding dramatic effects on gap junctions with Akt inhibitors, we created an antibody specific for Cx43 phosphorylated on S373, a potential Akt substrate. We found S373 phosphorylation in cells and skin or heart almost exclusively in larger gap-junctional structures that increased dramatically after wounding or hypoxia. We were able to mechanistically show that Akt-dependent phosphorylation of S373 increases gap junction size and communication by completely eliminating the interaction between Cx43 and ZO-1. Thus, phosphorylation on S373 acts as a molecular 'switch' to rapidly increase gap-junctional communication, potentially leading to initiation of activation and migration of keratinocytes or ischemic injury response in the skin and the heart, respectively.
Collapse
Affiliation(s)
- Clarence A Dunn
- Translational Research Program, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
41
|
Ceriani F, Mammano F. A rapid and sensitive assay of intercellular coupling by voltage imaging of gap junction networks. Cell Commun Signal 2013; 11:78. [PMID: 24144139 PMCID: PMC3819673 DOI: 10.1186/1478-811x-11-78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
Background A variety of mechanisms that govern connexin channel gating and permeability regulate coupling in gap junction networks. Mutations in connexin genes have been linked to several pathologies, including cardiovascular anomalies, peripheral neuropathy, skin disorders, cataracts and deafness. Gap junction coupling and its patho–physiological alterations are commonly assayed by microinjection experiments with fluorescent tracers, which typically require several minutes to allow dye transfer to a limited number of cells. Comparable or longer time intervals are required by fluorescence recovery after photobleaching experiments. Paired electrophysiological recordings have excellent time resolution but provide extremely limited spatial information regarding network connectivity. Results Here, we developed a rapid and sensitive method to assay gap junction communication using a combination of single cell electrophysiology, large–scale optical recordings and a digital phase–sensitive detector to extract signals with a known frequency from Vf2.1.Cl, a novel fluorescent sensor of plasma membrane potential. Tests performed in HeLa cell cultures confirmed that suitably encoded Vf2.1.Cl signals remained confined within the network of cells visibly interconnected by fluorescently tagged gap junction channels. We used this method to visualize instantly intercellular connectivity over the whole field of view (hundreds of cells) in cochlear organotypic cultures from postnatal mice. A simple resistive network model reproduced accurately the spatial dependence of the electrical signals throughout the cellular network. Our data suggest that each pair of cochlear non−sensory cells of the lesser epithelial ridge is coupled by ~1500 gap junction channels, on average. Junctional conductance was reduced by 14% in cochlear cultures harboring the T5M mutation of connexin30, which induces a moderate hearing loss in connexin30T5M/T5M knock–in mice, and by 91% in cultures from connexin30−/− mice, which are profoundly deaf. Conclusions Our methodology allows greater sensitivity (defined as the minimum magnitude of input signal required to produce a specified output signal having a specified signal−to−noise ratio) and better time resolution compared to classical tracer–based techniques. It permitted us to dynamically visualize intercellular connectivity down to the 10th order in non−sensory cell networks of the developing cochlea. We believe that our approach is of general interest and can be seamlessly extended to a variety of biological systems, as well as to other connexin−related disease conditions.
Collapse
Affiliation(s)
| | - Fabio Mammano
- Dipartimento di Fisica e Astronomia "G, Galilei", Università di Padova, Padova 35131, Italy.
| |
Collapse
|
42
|
Rash JR, Curti S, Vanderpool KGV, Kamasawa N, Nannapaneni S, Palacios-Prado N, Flores CE, Yasumura T, O’Brien J, Lynn BD, Bukauskas F, Nagy JI, Pereda AE. Molecular and functional asymmetry at a vertebrate electrical synapse. Neuron 2013; 79:957-69. [PMID: 24012008 PMCID: PMC4020187 DOI: 10.1016/j.neuron.2013.06.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 12/20/2022]
Abstract
Electrical synapses are abundant in the vertebrate brain, but their functional and molecular complexities are still poorly understood. We report here that electrical synapses between auditory afferents and goldfish Mauthner cells are constructed by apposition of hemichannels formed by two homologs of mammalian connexin 36 (Cx36) and that, while Cx35 is restricted to presynaptic hemiplaques, Cx34.7 is restricted to postsynaptic hemiplaques, forming heterotypic junctions. This molecular asymmetry is associated with rectification of electrical transmission that may act to promote cooperativity between auditory afferents. Our data suggest that, in similarity to pre- and postsynaptic sites at chemical synapses, one side in electrical synapses should not necessarily be considered the mirror image of the other. While asymmetry based on the presence of two Cx36 homologs is restricted to teleost fish, it might also be based on differences in posttranslational modifications of individual connexins or in the complement of gap junction-associated proteins.
Collapse
Affiliation(s)
- John R. Rash
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - Sebastian Curti
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kimberly G. V. Vanderpool
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | | | - Srikant Nannapaneni
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Nicolas Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Carmen E. Flores
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas Yasumura
- Department of Biomedical Sciences and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - John O’Brien
- University of Texas Health Science Center, Houston, Texas, USA
| | - Bruce D. Lynn
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Feliksas Bukauskas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - James I. Nagy
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
43
|
Gap junctions and blood-tissue barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:260-80. [PMID: 23397629 DOI: 10.1007/978-1-4614-4711-5_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gap junction is a cell-cell communication junction type found in virtually all mammalian epithelia and endothelia and provides the necessary "signals" to coordinate physiological events to maintain the homeostasis of an epithelium and/or endothelium under normal physiological condition and following changes in the cellular environment (e.g., stimuli from stress, growth, development, inflammation, infection). Recent studies have illustrated the significance of this junction type in the maintenance of different blood-tissue barriers, most notably the blood-brain barrier and blood-testis barrier, which are dynamic ultrastructures, undergoing restructuring in response to stimuli from the environment. In this chapter, we highlight and summarize the latest findings in the field regarding how changes at the gap junction, such as the result of a knock-out, knock-down, knock-in, or gap junction inhibition and/or its activation via the use of inhibitors and/or activators, would affect the integrity or permeability of the blood-tissue barriers. These findings illustrate that much research is needed to delineate the role of gap junction in the blood-tissue barriers, most notably its likely physiological role in mediating or regulating the transport of therapeutic drugs across the blood-tissue barriers.
Collapse
|
44
|
Forge A, Jagger DJ, Kelly JJ, Taylor RR. Connexin30 mediated intercellular communication plays an essential role in epithelial repair in the cochlea. J Cell Sci 2013; 126:1703-12. [DOI: 10.1242/jcs.125476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A role for connexin (Cx) 30 in epithelial repair following injury was examined in the organ of Corti, the sensory epithelium of the cochlea. In this tissue, lesions caused by loss of the sensory hair cells are closed by the supporting cells that surround each one. Gap junctions in which Cx30 is the predominant connexin are large and numerous between supporting cells. In mice carrying a deletion in the gene (Gjb6) that encodes Cx30, the size and number of gap junction plaques, and the extent of dye transfer, between supporting cells was greatly reduced compared with normal animals. This corresponded with unique peculiarities of the lesion closure events during the progressive hair cell loss that occurs in these animals in comparison with other models of hair cell loss whether acquired or as a result of a mutation. Only one, rather than all, of the supporting cells that contacted an individual dying hair closed the lesion, indicating disturbance of the co-ordination of cellular responses. The cell shape changes that the supporting cells normally undergo during repair of the organ of Corti did not occur, and there was disruption of the migratory activities that normally lead to the replacement of a columnar epithelium with a squamous-like one. These observations demonstrate a role for Cx30 and intercellular communication in regulating repair responses in an epithelial tissue.
Collapse
|
45
|
Abstract
In this review, we briefly summarize what is known about the properties of the three families of gap junction proteins, connexins, innexins and pannexins, emphasizing their importance as intercellular channels that provide ionic and metabolic coupling and as non-junctional channels that can function as a paracrine signaling pathway. We discuss that two distinct groups of proteins form gap junctions in deuterostomes (connexins) and protostomes (innexins), and that channels formed of the deuterostome homologues of innexins (pannexins) differ from connexin channels in terms of important structural features and activation properties. These differences indicate that the two families of gap junction proteins serve distinct, complementary functions in deuterostomes. In several tissues, including the CNS, both connexins and pannexins are involved in intercellular communication, but have different roles. Connexins mainly contribute by forming the intercellular gap junction channels, which provide for junctional coupling and define the communication compartments in the CNS. We also provide new data supporting the concept that pannexins form the non-junctional channels that play paracrine roles by releasing ATP and, thus, modulating the range of the intercellular Ca(2+)-wave transmission between astrocytes in culture.
Collapse
|
46
|
Mammano F. ATP-dependent intercellular Ca2+ signaling in the developing cochlea: facts, fantasies and perspectives. Semin Cell Dev Biol 2012; 24:31-9. [PMID: 23022499 DOI: 10.1016/j.semcdb.2012.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Hearing relies on a sensitive mechanoelectrical transduction process in the cochlea of the inner ear. The cochlea contains sensory, secretory, neural, supporting and epithelial cells which are all essential to the sound transduction process. It is well known that a complex extracellular purinergic signaling system contributes to cochlear homeostasis, altering cochlear sensitivity and neural output via ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors. This review focuses on the emerging roles of ATP that are currently under investigation in the developing sensory epithelium, with particular emphasis on the link between ATP release, Ca(2+) signaling, the expression and function of gap junction proteins connexin26 and connexin30, and the acquisition of hearing.
Collapse
Affiliation(s)
- Fabio Mammano
- Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, 35131 Padova, Italy.
| |
Collapse
|
47
|
Zheng J, Liu W, Fan Y, Ye X, Xia W, Wang H, Shi J, Xu G, Li H. Suppression of connexin 26 is related to protease-activated receptor 2-mediated pathway in patients with allergic rhinitis. Am J Rhinol Allergy 2012; 26:e5-9. [PMID: 22391066 DOI: 10.2500/ajra.2012.26.3740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Connexin (Cx) 26 plays a key role in maintaining the integrity of tight junctions. However, the expression and modulation of Cx26 in allergic rhinitis (AR) has not been well understood. METHODS We detected the expression of Cx26 in house-dust mite (HDM)-sensitized AR patients and investigated the Cx26 production and modulation in primary human nasal epithelial cells (HNECs) and BEAS-2B cells after treatment with the allergen Der p 1 from Dermatophagoides pteronyssinus. RESULTS We found that the mRNA and protein levels of Cx26 were significantly down-regulated in AR patients compared with the control. Der p 1 was found to induce protease-activated receptor 2 (PAR2) expression and suppress Cx26 production significantly in vitro. PAR2 siRNA was shown to prevent the suppression of Cx26 induced by Der p 1 in BEAS-2B cells. CONCLUSION The suppression of Cx26 in HDM-sensitized AR patients is related to a PAR2-mediated pathway and might serve during the initiation and maintenance of AR. Targeting the PAR2-mediated Cx26 suppression may be a potential means of preventing allergic sensitization.
Collapse
Affiliation(s)
- Jing Zheng
- Allergy and Cancer Center, Otorhinolaryngology Hospital, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xu J, Nicholson BJ. The role of connexins in ear and skin physiology - functional insights from disease-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:167-78. [PMID: 22796187 DOI: 10.1016/j.bbamem.2012.06.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/23/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
Defects in several different connexins have been associated with several different diseases. The most common of these is deafness, where a few mutations in connexin (Cx) 26 have been found to contribute to over 50% of the incidence of non-syndromic deafness in different human populations. Other mutations in Cx26 or Cx30 have also been associated with various skin phenotypes linked to deafness (palmoplanta keratoderma, Bart-Pumphrey syndrome, Vohwinkel syndrome, keratitis-ichthyosis-deafness syndrome, etc.). The large array of disease mutants offers unique opportunities to gain insights into the underlying function of gap junction proteins and their channels in the normal and pathogenic physiologies of the cochlea and epidermis. This review focuses on those mutants where the impact on channel function has been assessed, and correlated with the disease phenotype, or organ function in knock-out mouse models. These approaches have provided evidence supporting a role of gap junctions and hemichannels in K(+) removal and recycling in the ear, as well as possible roles for nutrient passage, in the cochlea. In contrast, increases in hemichannel opening leading to increased cell death, were associated with several keratitis-ichthyosis-deafness syndrome skin disease/hearing mutants. In addition to providing clues for therapeutic strategies, these findings allow us to better understand the specific functions of connexin channels that are important for normal tissue function. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Ji Xu
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
49
|
Ceriani F, Mammano F. Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications. Cell Commun Signal 2012; 10:20. [PMID: 22788415 PMCID: PMC3408374 DOI: 10.1186/1478-811x-10-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022] Open
Abstract
Calcium ions (Ca2+) regulate numerous and diverse aspects of cochlear and vestibular physiology. This review focuses on the Ca2+ control of mechanotransduction and synaptic transmission in sensory hair cells, as well as on Ca2+ signalling in non-sensory cells of the developing cochlea.
Collapse
Affiliation(s)
- Federico Ceriani
- Dipartimento di Fisica e Astronomia "G, Galilei", Università di Padova, 35131, Padova, Italy.
| | | |
Collapse
|
50
|
Ek-Vitorin JF, Burt JM. Structural basis for the selective permeability of channels made of communicating junction proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:51-68. [PMID: 22342665 DOI: 10.1016/j.bbamem.2012.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/24/2012] [Accepted: 02/01/2012] [Indexed: 01/08/2023]
Abstract
The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation. Because gap junctions are permeable to many substances, it is sensible to inquire whether and how each open state influences the intercellular diffusion of molecules as valuable as, but less readily detected than current-carrying ions. Presumably, structural changes perceived as shifts in channel conductivity would significantly alter the transjunctional diffusion of molecules whose limiting diameter approximates the pore's limiting diameter. Moreover, changes in junctional permeability to some molecules might occur without evident changes in conductivity, either at macroscopic or single channel level. Open gap junction channels allow the exchange of cytoplasmic permeants between contacting cells by simple diffusion. The identity of such permeants, and the functional circumstances and consequences of their junctional exchange presently constitute the most urgent (and demanding) themes of the field. Here, we consider the necessity for regulating this exchange, the possible mechanism(s) and structural elements likely involved in such regulation, and how regulatory phenomena could be perceived as changes in chemical vs. electrical coupling; an overall reflection on our collective knowledge of junctional communication is then applied to suggest new avenues of research. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|