1
|
Williamson G, Bizior A, Harris T, Pritchard L, Hoskisson P, Javelle A. Biological ammonium transporters from the Amt/Mep/Rh superfamily: mechanism, energetics, and technical limitations. Biosci Rep 2024; 44:BSR20211209. [PMID: 38131184 PMCID: PMC10794816 DOI: 10.1042/bsr20211209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life and is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. Remarkably, despite a high structural conservation in all domains of life, these proteins have gained various biological functions during evolution. It is tempting to hypothesise that the physiological functions gained by these proteins may be explained at least in part by differences in the energetics of their translocation mechanisms. Therefore, in this review, we will explore our current knowledge of energetics of the Amt/Mep/Rh family, discuss variations in observations between different organisms, and highlight some technical drawbacks which have hampered effects at mechanistic characterisation. Through the review, we aim to provide a comprehensive overview of current understanding of the mechanism of transport of this unique and extraordinary Amt/Mep/Rh superfamily of ammonium transporters.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| |
Collapse
|
2
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Abdulnour‐Nakhoul S, Hering‐Smith K, Hamm LL, Nakhoul NL. Effects of chronic hypercapnia on ammonium transport in the mouse kidney. Physiol Rep 2019; 7:e14221. [PMID: 31456326 PMCID: PMC6712239 DOI: 10.14814/phy2.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/24/2022] Open
Abstract
Hypercapnia and subsequent respiratory acidosis are serious complications in many patients with respiratory disorders. The acute response to hypercapnia is buffering of H+ by hemoglobin and cellular proteins but this effect is limited. The chronic response is renal compensation that increases HCO3- reabsorption, and stimulates urinary excretion of titratable acids (TA) and NH4+ . However, the main effective pathway is the excretion of NH4+ in the collecting duct. Our hypothesis is that, the renal NH3 /NH4+ transporters, Rhbg and Rhcg, in the collecting duct mediate this response. The effect of hypercapnia on these transporters is unknown. We conducted in vivo experiments on mice subjected to chronic hypercapnia. One group breathed 8% CO2 and the other breathed normal air as control (0.04% CO2 ). After 3 days, the mice were euthanized and kidneys, blood, and urine samples were collected. We used immunohistochemistry and Western blot analysis to determine the effects of high CO2 on localization and expression of the Rh proteins, carbonic anhydrase IV, and pendrin. In hypercapnic animals, there was a significant increase in urinary NH4+ excretion but no change in TA. Western blot analysis showed a significant increase in cortical expression of Rhbg (43%) but not of Rhcg. Expression of CA-IV was increased but pendrin was reduced. These data suggest that hypercapnia leads to compensatory upregulation of Rhbg that contributes to excretion of NH3 /NH4+ in the kidney. These studies are the first to show a link among hypercapnia, NH4+ excretion, and Rh expression.
Collapse
Affiliation(s)
- Solange Abdulnour‐Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Kathleen Hering‐Smith
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - L. Lee Hamm
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Nazih L. Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| |
Collapse
|
4
|
Bai X, Moraes TF, Reithmeier RAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol 2018; 34:1-32. [PMID: 29651895 DOI: 10.1080/09687688.2018.1448123] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human solute carriers (SLCs) comprise over 400 different transporters, organized into 65 families ( http://slc.bioparadigms.org/ ) based on their sequence homology and transport function. SLCs are responsible for transporting extraordinarily diverse solutes across biological membranes, including inorganic ions, amino acids, lipids, sugars, neurotransmitters and drugs. Most of these membrane proteins function as coupled symporters (co-transporters) utilizing downhill ion (H+ or Na+) gradients as the driving force for the transport of substrate against its concentration gradient into cells. Other members work as antiporters (exchangers) that typically contain a single substrate-binding site with an alternating access mode of transport, while a few members exhibit channel-like properties. Dysfunction of SLCs is correlated with numerous human diseases and therefore they are potential therapeutic drug targets. In this review, we identified all of the SLC crystal structures that have been determined, most of which are from prokaryotic species. We further sorted all the SLC structures into four main groups with different protein folds and further discuss the well-characterized MFS (major facilitator superfamily) and LeuT (leucine transporter) folds. This review provides a systematic analysis of the structure, molecular basis of substrate recognition and mechanism of action in different SLC family members.
Collapse
Affiliation(s)
- Xiaoyun Bai
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| | - Trevor F Moraes
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| | | |
Collapse
|
5
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
6
|
Abdulnour-Nakhoul S, Le T, Rabon E, Hamm LL, Nakhoul NL. Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein. Am J Physiol Renal Physiol 2016; 311:F1280-F1293. [PMID: 27681563 PMCID: PMC5210199 DOI: 10.1152/ajprenal.00556.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/21/2016] [Indexed: 11/22/2022] Open
Abstract
Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH3/NH4+ transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH4+ We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH3/NH4+ and methyl amine (MA)/methyl ammonium (MA+)-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H2O. In H183 and W230 mutants, NH4+-induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH3/NH4+- and MA/MA+-induced decrease in pHs to the level observed in H2O-injected oocytes. Mutations of F128 did not significantly affect transport of NH3 or NH4+ These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.
Collapse
Affiliation(s)
- Solange Abdulnour-Nakhoul
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Trang Le
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Edd Rabon
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Lee Hamm
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nazih L Nakhoul
- Southeast Louisiana Veterans Health Care Network and Department of Medicine, Section of Nephrology, Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Wood CM, Giacomin M. Feeding through your gills and turning a toxicant into a resource: how the dogfish shark scavenges ammonia from its environment. J Exp Biol 2016; 219:3218-3226. [DOI: 10.1242/jeb.145268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/02/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Nitrogen (N) appears to be a limiting dietary resource for elasmobranchs, required not only for protein growth but also for urea-based osmoregulation. Building on recent evidence that the toxicant ammonia can be taken up actively at the gills of the shark and made into the valuable osmolyte urea, we demonstrate that the uptake exhibits classic Michaelis–Menten saturation kinetics with an affinity constant (Km) of 379 µmol l−1, resulting in net N retention at environmentally realistic ammonia concentrations (100–400 µmol l−1) and net N loss through stimulated urea-N excretion at higher levels. Ammonia-N uptake rate increased or decreased with alterations in seawater pH, but the changes were much less than predicted by the associated changes in seawater PNH3, and more closely paralleled changes in seawater NH4+ concentration. Ammonia-N uptake rate was insensitive to amiloride (0.1 mmol l−1) or to a 10-fold elevation in seawater K+ concentration (to 100 mmol l−1), suggesting that the mechanism does not directly involve Na+ or K+ transporters, but was inhibited by blockade of glutamine synthetase, the enzyme that traps ammonia-N to fuel the ornithine–urea cycle. High seawater ammonia inhibited uptake of the ammonia analogue [14C]methylamine. The results suggest that branchial ammonia-N uptake may significantly supplement dietary N intake, amounting to about 31% of the nitrogen acquired from the diet. They further indicate the involvement of Rh glycoproteins (ammonia channels), which are expressed in dogfish gills, in normal ammonia-N uptake and retention.
Collapse
Affiliation(s)
- Chris M. Wood
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada V0R 1B0
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Marina Giacomin
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada V0R 1B0
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
8
|
Abstract
Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.
Collapse
Affiliation(s)
- L Lee Hamm
- Department of Medicine, Section of Nephrology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and Medicine Service, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| | - Nazih Nakhoul
- Department of Medicine, Section of Nephrology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and Medicine Service, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| | - Kathleen S Hering-Smith
- Department of Medicine, Section of Nephrology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and Medicine Service, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| |
Collapse
|
9
|
Caner T, Abdulnour-Nakhoul S, Brown K, Islam MT, Hamm LL, Nakhoul NL. Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins. Am J Physiol Cell Physiol 2015; 309:C747-58. [PMID: 26354748 DOI: 10.1152/ajpcell.00085.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023]
Abstract
In this study we characterized ammonia and ammonium (NH3/NH4(+)) transport by the rhesus-associated (Rh) glycoproteins RhAG, Rhbg, and Rhcg expressed in Xenopus oocytes. We used ion-selective microelectrodes and two-electrode voltage clamp to measure changes in intracellular pH, surface pH, and whole cell currents induced by NH3/NH4(+) and methyl amine/ammonium (MA/MA(+)). These measurements allowed us to define signal-specific signatures to distinguish NH3 from NH4(+) transport and to determine how transport of NH3 and NH4(+) differs among RhAG, Rhbg, and Rhcg. Our data indicate that expression of Rh glycoproteins in oocytes generally enhanced NH3/NH4(+) transport and that cellular changes induced by transport of MA/MA(+) by Rh proteins were different from those induced by transport of NH3/NH4(+). Our results support the following conclusions: 1) RhAG and Rhbg transport both the ionic NH4(+) and neutral NH3 species; 2) transport of NH4(+) is electrogenic; 3) like Rhbg, RhAG transport of NH4(+) masks NH3 transport; and 4) Rhcg is likely to be a predominantly NH3 transporter, with no evidence of enhanced NH4(+) transport by this transporter. The dual role of Rh proteins as NH3 and NH4(+) transporters is a unique property and may be critical in understanding how transepithelial secretion of NH3/NH4(+) occurs in the renal collecting duct.
Collapse
Affiliation(s)
- Tolga Caner
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange Abdulnour-Nakhoul
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Karen Brown
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - M Toriqul Islam
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Lee Hamm
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nazih L Nakhoul
- Section of Nephrology, Department of Medicine, and Department of Physiology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
10
|
Mechanism of NH 4 + Recruitment and NH 3 Transport in Rh Proteins. Structure 2015; 23:1550-1557. [DOI: 10.1016/j.str.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 01/19/2023]
|
11
|
Zhang W, Ogando DG, Bonanno JA, Obukhov AG. Human SLC4A11 Is a Novel NH3/H+ Co-transporter. J Biol Chem 2015; 290:16894-905. [PMID: 26018076 DOI: 10.1074/jbc.m114.627455] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Indexed: 12/13/2022] Open
Abstract
SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na(+), H(+) (OH(-)), bicarbonate, borate, and NH4 (+). Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4 (+), Na(+), and H(+) contributions to electrogenic ion transport through SLC4A11 stably expressed in Na(+)/H(+) exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4 (+)]o, and current amplitudes varied with the [H(+)] gradient. These currents were relatively unaffected by removal of Na(+), K(+), or Cl(-) from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H(+)-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H(+)). NH3-dependent currents were insensitive to 10 μM ethyl-isopropyl amiloride or 100 μM 4,4'- diisothiocyanatostilbene-2,2'-disulfonic acid. We propose that SLC4A11 is an NH3/2H(+) co-transporter exhibiting unique characteristics.
Collapse
Affiliation(s)
- Wenlin Zhang
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Diego G Ogando
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Joseph A Bonanno
- From the School of Optometry, Indiana University Bloomington, Bloomington, Indiana 47405 and
| | - Alexander G Obukhov
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
12
|
Weiner ID, Verlander JW. Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 2014; 306:F1107-20. [PMID: 24647713 PMCID: PMC4024734 DOI: 10.1152/ajprenal.00013.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and
| |
Collapse
|
13
|
Nakhoul NL, Lee Hamm L. The challenge of determining the role of Rh glycoproteins in transport of NH3and NH4+. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/wmts.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nazih L. Nakhoul
- Department of Physiology; Tulane University Medical School; New Orleans LA USA
- Department of Medicine, Section of Nephrology; Tulane University Medical School; New Orleans LA USA
| | - L. Lee Hamm
- Department of Medicine, Section of Nephrology; Tulane University Medical School; New Orleans LA USA
| |
Collapse
|
14
|
Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid-base transport. Mol Aspects Med 2013; 34:629-37. [PMID: 23506896 DOI: 10.1016/j.mam.2012.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/16/2012] [Indexed: 01/06/2023]
Abstract
The mammalian Rh glycoproteins belong to the solute transporter family SLC42 and include RhAG, present in red blood cells, and two non-erythroid members RhBG and RhCG that are expressed in various tissues, including kidney, liver, skin and the GI tract. The Rh proteins in the red blood cell form an "Rh complex" made up of one D-subunit, one CE-subunit and two RhAG subunits. The Rh complex has a well-known antigenic effect but also contributes to the stability of the red cell membrane. RhBG and RhCG are related to the NH4(+) transporters of the yeast and bacteria but their exact function is yet to be determined. This review describes the expression and molecular properties of these membrane proteins and their potential role as NH3/NH4(+) and CO2 transporters. The likelihood that these proteins transport gases such as CO2 or NH3 is novel and significant. The review also describes the physiological importance of these proteins and their relevance to human disease.
Collapse
|
15
|
Bishop JM, Lee HW, Handlogten ME, Han KH, Verlander JW, Weiner ID. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia. Am J Physiol Renal Physiol 2013; 304:F422-31. [PMID: 23220726 PMCID: PMC3566498 DOI: 10.1152/ajprenal.00301.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022] Open
Abstract
The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K(+)-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.
Collapse
Affiliation(s)
- Jesse M Bishop
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
17
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
18
|
Stewart AK, Shmukler BE, Vandorpe DH, Rivera A, Heneghan JF, Li X, Hsu A, Karpatkin M, O'Neill AF, Bauer DE, Heeney MM, John K, Kuypers FA, Gallagher PG, Lux SE, Brugnara C, Westhoff CM, Alper SL. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S. Am J Physiol Cell Physiol 2011; 301:C1325-43. [PMID: 21849667 PMCID: PMC3233792 DOI: 10.1152/ajpcell.00054.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.
Collapse
Affiliation(s)
- Andrew K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Genetet S, Ripoche P, Picot J, Bigot S, Delaunay J, Armari-Alla C, Colin Y, Mouro-Chanteloup I. Human RhAG ammonia channel is impaired by the Phe65Ser mutation in overhydrated stomatocytic red cells. Am J Physiol Cell Physiol 2011; 302:C419-28. [PMID: 22012326 DOI: 10.1152/ajpcell.00092.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In red cells, Rh-associated glycoprotein (RhAG) acts as an ammonia channel, as demonstrated by stopped-flow analysis of ghost intracellular pH (pH(i)) changes. Recently, overhydrated hereditary stomatocytosis (OHSt), a rare dominantly inherited hemolytic anemia, was found to be associated with a mutation (Phe65Ser or Ile61Arg) in RHAG. Ghosts from the erythrocytes of four of the OHSt patients with a Phe65Ser mutation were resealed with a pH-sensitive probe and submitted to ammonium gradients. Alkalinization rate constants, reflecting NH(3) transport through the channel and NH(3) diffusion unmediated by RhAG, were deduced from time courses of fluorescence changes. After subtraction of the constant value found for Rh(null) lacking RhAG, we observed that alkalinization rate constant values decreased ∼50% in OHSt compared with those of controls. Similar RhAG expression levels were found in control and OHSt. Since half of the expressed RhAG in OHSt most probably corresponds to the mutated form of RhAG, as expected from the OHSt heterozygous status, this dramatic decrease can be therefore related to the loss of function of the Phe65Ser-mutated RhAG monomer.
Collapse
|
20
|
Lee S, Choi I. Sodium-bicarbonate cotransporter NBCn1/Slc4a7 inhibits NH4Cl-mediated inward current in Xenopus oocytes. Exp Physiol 2011; 96:745-55. [PMID: 21571816 DOI: 10.1113/expphysiol.2011.057844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The electroneutral Na(+)-HCO(3)(-) cotransporter NBCn1 (SLC4A7) contributes to intracellular pH maintenance and transepithelial HCO(3)(-) movement. In this study, we expressed NBCn1 in Xenopus oocytes and examined the effect of NBCn1 on oocyte NH(4)(+) transport by analysing changes in membrane potential, current and intracellular pH mediated by NH(4)Cl. In the presence of HCO(3)(-)/CO(2), applying NH(4)Cl (20 mm) produced intracellular acidification of oocytes. The acidification was faster in oocytes expressing NBCn1 than in control oocytes injected with water; however, NH(4)Cl-mediated membrane depolarization was smaller in oocytes expressing NBCn1. In HCO(3)(-)/CO(2)-free solution, NH(4)Cl produced a smaller inward current in NBCn1-expressing oocytes (56% inhibition by 20 mm NH(4)Cl, measured at --60 mV), while minimally affecting intracellular acidification. The inhibition of the current by NBCn1 was unaffected when BaCl(2) replaced KCl. Current-voltage relationships showed a positive and nearly linear relationship between NH(4)Cl-mediated current and voltage, which was markedly reduced by NBCn1. Large basal currents (before NH(4)Cl exposure) were produced in NBCn1-expressing oocytes owing to the previously characterized channel-like activity of NBCn1. Inhibiting this channel-like activity by Na(+) removal abolished the inhibitory effect of NBCn1 on NH(4)Cl-mediated currents. The currents were progressively reduced over 72-120 h after NBCn1 cRNA injection, during which the channel-like activity was high. These results indicate that NBCn1 stimulates NH(4)(+) transport by its Na(+)-HCO(3)(-) cotransport activity, while reducing NH(4)(+) conductance by its channel-like activity.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
21
|
Nakhoul NL, Abdulnour-Nakhoul SM, Schmidt E, Doetjes R, Rabon E, Hamm LL. pH sensitivity of ammonium transport by Rhbg. Am J Physiol Cell Physiol 2010; 299:C1386-97. [PMID: 20810915 DOI: 10.1152/ajpcell.00211.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rhbg is a membrane glycoprotein that is involved in NH(3)/NH(4)(+) transport. Several models have been proposed to describe Rhbg, including an electroneutral NH(4)(+)/H(+) exchanger, a uniporter, an NH(4)(+) channel, or even a gas channel. In this study, we characterized the pH sensitivity of Rhbg expressed in Xenopus oocytes. We used two-electrode voltage clamp and ion-selective microelectrodes to measure NH(4)(+)-induced [and methyl ammonium (MA(+))] currents and changes in intracellular pH (pH(i)), respectively. In oocytes expressing Rhbg, 5 mM NH(4)Cl (NH(3)/NH(4)(+)) at extracellular pH (pH(o)) of 7.5 induced an inward current, decreased pH(i), and depolarized the cell. Raising pH(o) to 8.2 significantly enhanced the NH(4)(+)-induced current and pH(i) changes, whereas decreasing bath pH to 6.5 inhibited these changes. Lowering pH(i) (decreased by butyrate) also inhibited the NH(4)(+)-induced current and pH(i) decrease. In oocytes expressing Rhbg, 5 mM methyl amine hydrochloride (MA/MA(+)), often used as an NH(4)Cl substitute, induced an inward current, a pH(i) increase (not a decrease), and depolarization of the cell. Exposing the oocyte to MA/MA(+) at alkaline bath pH (8.2) enhanced the MA(+)-induced current, whereas lowering bath pH to 6.5 inhibited the MA(+) current completely. Exposing the oocyte to MA/MA(+) at low pH(i) abolished the MA(+)-induced current and depolarization; however, pH(i) still increased. These data indicate that 1) transport of NH(4)(+) and MA/MA(+) by Rhbg is pH sensitive; 2) electrogenic NH(4)(+) and MA(+) transport are stimulated by alkaline pH(o) but inhibited by acidic pH(i) or pH(o); and 3) electroneutral transport of MA by Rhbg is likely but is less sensitive to pH changes.
Collapse
Affiliation(s)
- Nazih L Nakhoul
- Section of Nephrology, Department of Medicine, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | |
Collapse
|