1
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
2
|
Kharrati-Koopaee H, Ebrahimie E, Dadpasand M, Niazi A, Tian R, Esmailizadeh A. Gene network analysis to determine the effect of hypoxia-associated genes on brain damages and tumorigenesis using an avian model. J Genet Eng Biotechnol 2021; 19:100. [PMID: 34236536 PMCID: PMC8266987 DOI: 10.1186/s43141-021-00184-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypoxia refers to the condition of low oxygen pressure in the atmosphere and characterization of response to hypoxia as a biological complex puzzle, is challenging. Previously, we carried out a comparative genomic study by whole genome resequencing of highland and lowland Iranian native chickens to identify genomic variants associated with hypoxia conditions. Based on our previous findings, we used chicken as a model and the identified hypoxia-associated genes were converted to human's orthologs genes to construct the informative gene network. The main goal of this study was to visualize the features of diseases due to hypoxia-associated genes by gene network analysis. RESULTS It was found that hypoxia-associated genes contained several gene networks of disorders such as Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and cancers. We found that biological pathways are involved in mitochondrion dysfunctions including peroxynitrous acid production denoted in brain injuries. Lewy body and neuromelanin were reported as key symptoms in Parkinson disease. Furthermore, calmodulin, and amyloid precursor protein were detected as leader proteins in Alzheimer's diseases. Dexamethasone was reported as the candidate toxic drug under the hypoxia condition that implicates diabetes, osteoporosis, and neurotoxicity. Our results suggested DNA damages caused by the high doses of UV radiation in high-altitude conditions, were associated with breast cancer, ovarian cancer, and colorectal cancer. CONCLUSIONS Our results showed that hypoxia-associated genes were enriched in several gene networks of disorders including Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and different types of cancers. Furthermore, we suggested, UV radiation and low oxygen conditions in high-altitude regions may be responsible for the variety of human diseases.
Collapse
Affiliation(s)
- Hamed Kharrati-Koopaee
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mohammad Dadpasand
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Rugang Tian
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
4
|
Carbajo JM, Maraver F. Salt water and skin interactions: new lines of evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1345-1360. [PMID: 29675710 DOI: 10.1007/s00484-018-1545-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.
Collapse
Affiliation(s)
- Jose Manuel Carbajo
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Francisco Maraver
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain.
- Professional School of Medical Hydrology, Faculty of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|
6
|
Leiva-Salcedo E, Riquelme D, Cerda O, Stutzin A. TRPM4 activation by chemically- and oxygen deprivation-induced ischemia and reperfusion triggers neuronal death. Channels (Austin) 2017; 11:624-635. [PMID: 28876976 DOI: 10.1080/19336950.2017.1375072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cerebral ischemia-reperfusion injury triggers a deleterious process ending in neuronal death. This process has two components, a glutamate-dependent and a glutamate-independent mechanism. In the glutamate-independent mechanism, neurons undergo a slow depolarization eventually leading to neuronal death. However, little is known about the molecules that take part in this process. Here we show by using mice cortical neurons in culture and ischemia-reperfusion protocols that TRPM4 is fundamental for the glutamate-independent neuronal damage. Thus, by blocking excitotoxicity, we reveal a slow activating, glibenclamide- and 9-phenanthrol-sensitive current, which is activated within 5 min upon ischemia-reperfusion onset. TRPM4 shRNA-based silenced neurons show a reduced ischemia-reperfusion induced current and depolarization. Neurons were protected from neuronal death up to 3 hours after the ischemia-reperfusion challenge. The activation of TRPM4 during ischemia-reperfusion injury involves the increase in both, intracellular calcium and H2O2, which may act together to produce a sustained activation of the channel.
Collapse
Affiliation(s)
- Elías Leiva-Salcedo
- a Departamento de Biología , Facultad de Química y Biología, Universidad de Santiago de Chile , Santiago , Chile
| | - Denise Riquelme
- a Departamento de Biología , Facultad de Química y Biología, Universidad de Santiago de Chile , Santiago , Chile
| | - Oscar Cerda
- b Programa de Biología Celular y Molecular , Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.,c Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Chile , Santiago , Chile
| | - Andrés Stutzin
- d Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| |
Collapse
|
7
|
Abstract
Activation of ion channels and pores are essential steps during regulated cell death. Channels and pores participate in execution of apoptosis, necroptosis and other forms of caspase-independent cell death. Within the program of regulated cell death, these channels are strategically located. Ion channels can shrink cells and drive them towards apoptosis, resulting in silent, i.e. immunologically unrecognized cell death. Alternatively, activation of channels can induce cell swelling, disintegration of the cell membrane, and highly immunogenic necrotic cell death. The underlying cell death pathways are not strictly separated as identical stimuli may induce cell shrinkage and apoptosis when applied at low strength, but may also cause cell swelling at pronounced stimulation, resulting in regulated necrosis. Nevertheless, the precise role of ion channels during regulated cell death is far from being understood, as identical channels may support regulated death in some cell types, but may cause cell proliferation, cancer development, and metastasis in others. Along this line, the phospholipid scramblase and Cl(-)/nonselective channel anoctamin 6 (ANO6) shows interesting features, as it participates in apoptotic cell death during lower levels of activation, thereby inducing cell shrinkage. At strong activation, e.g. by stimulation of purinergic P2Y7 receptors, it participates in pore formation, causes massive membrane blebbing, cell swelling, and membrane disintegration. The LRRC8 proteins deserve much attention as they were found to have a major role in volume regulation, apoptotic cell shrinkage and resistance towards anticancer drugs.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
8
|
Jovanovic ZD, Stanojevic MB, Nedeljkov VB. The neurotoxic effects of hydrogen peroxide and copper in Retzius nerve cells of the leech Haemopis sanguisuga. Biol Open 2016; 5:381-8. [PMID: 26935393 PMCID: PMC4890660 DOI: 10.1242/bio.014936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and the generation of reactive oxygen species (ROS) play an important role in cellular damage. Electrophysiological analyses have shown that membrane transport proteins are susceptible to ROS. In the present study, oxidative stress was induced in Retzius nerve cells of the leechHaemopis sanguisugaby bath application of 1 mM of hydrogen peroxide (H2O2) and 0.02 mM of copper (Cu) for 20 min. The H2O2/Cu(II) produced considerable changes in the electrical properties of the Retzius nerve cells. Intracellular recording of the resting membrane potential revealed that the neuronal membrane was depolarized in the presence of H2O2/Cu(II). We found that the amplitude of action potentials decreased, while the duration augmented in a progressive way along the drug exposure time. The combined application of H2O2and Cu(II) caused an initial excitation followed by depression of the spontaneous electrical activity. Voltage-clamp recordings revealed a second effect of the oxidant, a powerful inhibition of the outward potassium channels responsible for the repolarization of action potentials. The neurotoxic effect of H2O2/Cu(II) on the spontaneous spike electrogenesis and outward K(+)current of Retzius nerve cells was reduced in the presence of hydroxyl radical scavengers, dimethylthiourea and dimethyl sulfoxide, but not mannitol. This study provides evidence for the oxidative modification of outward potassium channels in Retzius nerve cells. The oxidative mechanism of the H2O2/Cu(II) system action on the electrical properties of Retzius neurons proposed in this study might have a wider significance, referring not only to leeches but also to mammalian neurons.
Collapse
Affiliation(s)
- Zorica D Jovanovic
- Department of Pathological Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija B Stanojevic
- Institute for Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladimir B Nedeljkov
- Institute for Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. J Transl Med 2014; 94:1068-82. [PMID: 25068653 DOI: 10.1038/labinvest.2014.100] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022] Open
Abstract
During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-β1 and TGF-β2 and p38 MAPK phosphorylation. Downregulation of TGF-β1 and TGF-β2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-β secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-β-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.
Collapse
|
10
|
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1259-70. [PMID: 24520019 DOI: 10.1093/jxb/eru004] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrolyte leakage accompanies plant response to stresses, such as salinity, pathogen attack, drought, heavy metals, hyperthermia, and hypothermia; however, the mechanism and physiological role of this phenomenon have only recently been clarified. Accumulating evidence shows that electrolyte leakage is mainly related to K(+) efflux from plant cells, which is mediated by plasma membrane cation conductances. Recent studies have demonstrated that these conductances include components with different kinetics of activation and cation selectivity. Most probably they are encoded by GORK, SKOR, and annexin genes. Hypothetically, cyclic nucleotide-gated channels and ionotropic glutamate receptors can also be involved. The stress-induced electrolyte leakage is usually accompanied by accumulation of reactive oxygen species (ROS) and often results in programmed cell death (PCD). Recent data strongly suggest that these reactions are linked to each other. ROS have been shown to activate GORK, SKOR, and annexins. ROS-activated K(+) efflux through GORK channels results in dramatic K(+) loss from plant cells, which stimulates proteases and endonucleases, and promotes PCD. This mechanism is likely to trigger plant PCD under severe stress. However, in moderate stress conditions, K(+) efflux could play an essential role as a 'metabolic switch' in anabolic reactions, stimulating catabolic processes and saving 'metabolic' energy for adaptation and repair needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, 220030, Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
11
|
Echeverría C, Montorfano I, Sarmiento D, Becerra A, Nuñez-Villena F, Figueroa XF, Cabello-Verrugio C, Elorza AA, Riedel C, Simon F. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells. J Cell Mol Med 2013; 17:800-14. [PMID: 23635013 PMCID: PMC3823184 DOI: 10.1111/jcmm.12066] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/24/2013] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is crucial in endotoxaemia-derived sepsis syndrome pathogenesis. It is well accepted that lipopolysaccharide (LPS) induces endothelial dysfunction through immune system activation. However, LPS can also directly generate actions in endothelial cells (ECs) in the absence of participation by immune cells. Although interactions between LPS and ECs evoke endothelial death, a significant portion of ECs are resistant to LPS challenge. However, the mechanism that confers endothelial resistance to LPS is not known. LPS-resistant ECs exhibit a fibroblast-like morphology, suggesting that these ECs enter a fibrotic programme in response to LPS. Thus, our aim was to investigate whether LPS is able to induce endothelial fibrosis in the absence of immune cells and explore the underlying mechanism. Using primary cultures of ECs and culturing intact blood vessels, we demonstrated that LPS is a crucial factor to induce endothelial fibrosis. We demonstrated that LPS was able and sufficient to promote endothelial fibrosis, in the absence of immune cells through an activin receptor-like kinase 5 (ALK5) activity-dependent mechanism. LPS-challenged ECs showed an up-regulation of both fibroblast-specific protein expression and extracellular matrix proteins secretion, as well as a down-regulation of endothelial markers. These results demonstrate that LPS is a crucial factor in inducing endothelial fibrosis in the absence of immune cells through an ALK5-dependent mechanism. It is noteworthy that LPS-induced endothelial fibrosis perpetuates endothelial dysfunction as a maladaptive process rather than a survival mechanism for protection against LPS. These findings are useful in improving current treatment against endotoxaemia-derived sepsis syndrome and other inflammatory diseases.
Collapse
Affiliation(s)
- César Echeverría
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Simon F, Varela D, Cabello-Verrugio C. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 2013; 25:1614-24. [PMID: 23602937 DOI: 10.1016/j.cellsig.2013.03.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
The transient receptor potential melastatin (TRPM) protein family is an extensive group of ion channels expressed in several types of mammalian cells. Many studies have shown that these channels are crucial for performing several physiological functions. Additionally, a large body of evidence indicates that these channels are also involved in numerous human diseases, known as channelopathies. A characteristic event frequently observed during pathological states is the raising in intracellular oxidative agents over reducing molecules, shifting the redox balance and inducing oxidative stress. In particular, three members of the TRPM subfamily, TRPM2, TRPM4 and TRPM7, share the remarkable feature that their activities are modulated by oxidative stress. Because of the increase in oxidative stress, these TRPM channels function aberrantly, promoting the onset and development of diseases. Increases, absences, or modifications in the function of these redox-modulated TRPM channels are associated with cell dysfunction and human pathologies. Therefore, the effect of oxidative stress on ion channels becomes an essential part of the pathogenic mechanism. Thus, oxidative stress-modulated ion channels are more susceptible to generating pathological states than oxidant-independent channels. This review examines the most relevant findings regarding the participation of the oxidative stress-modulated TRPM ion channels, TRPM2, TRPM4, and TRPM7, in human diseases. In addition, the potential roles of these channels as therapeutic tools and targets for drug design are discussed.
Collapse
Affiliation(s)
- Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Avenida Republica 239, 8370146, Santiago, Chile.
| | | | | |
Collapse
|
13
|
Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S. Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. PLANT, CELL & ENVIRONMENT 2013; 36:844-55. [PMID: 23046313 DOI: 10.1111/pce.12020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transition metals such as copper can interact with ascorbate or hydrogen peroxide to form highly reactive hydroxyl radicals (OH(•) ), with numerous implications to membrane transport activity and cell metabolism. So far, such interaction was described for extracellular (apoplastic) space but not cytosol. Here, a range of advanced electrophysiological and imaging techniques were applied to Arabidopsis thaliana plants differing in their copper-transport activity: Col-0, high-affinity copper transporter COPT1-overexpressing (C1(OE) ) seedlings, and T-DNA COPT1 insertion mutant (copt1). Low Cu concentrations (10 µm) stimulated a dose-dependent Gd(3+) and verapamil sensitive net Ca(2+) influx in the root apex but not in mature zone. C1(OE) also showed a fivefold higher Cu-induced K(+) efflux at the root tip level compared with Col-0, and a reduction in basal peroxide accumulation at the root tip after copper exposure. Copper caused membrane disruptions of the root apex in C1(OE) seedlings but not in copt1 plants; this damage was prevented by pretreatment with Gd(3+) . Our results suggest that copper transport into cytosol in root apex results in hydroxyl radical generation at the cytosolic side, with a consequent regulation of plasma membrane OH(•) -sensitive Ca(2+) and K(+) transport systems.
Collapse
Affiliation(s)
- Ana Rodrigo-Moreno
- Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra E-08193, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Rodrigo-Moreno A, Poschenrieder C, Shabala S. Transition metals: a double edge sward in ROS generation and signaling. PLANT SIGNALING & BEHAVIOR 2013; 8:e23425. [PMID: 23333964 PMCID: PMC3676510 DOI: 10.4161/psb.23425] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transition metals such as Iron (Fe) and Copper (Cu) are essential for plant cell development. At the same time, due their capability to generate hydroxyl radicals they can be potentially toxic to plant metabolism. Recent works on hydroxyl-radical activation of ion transporters suggest that hydroxyl radicals generated by transition metals could play an important role in plant growth and adaptation to imbalanced environments. In this mini-review, the relation between transition metals uptake and utilization and oxidative stress-activated ion transport in plant cells is analyzed, and a new model depicting both apoplastic and cytosolic mode of ROS signaling to plasma membrane transporters is suggested.
Collapse
Affiliation(s)
- Ana Rodrigo-Moreno
- LINV; Plant, Soil & Environmental Science; University of Firenze; Viale delle idee; Sesto Fiorentino (FI), Italy
| | - Charlotte Poschenrieder
- Fisiología Vegetal; Facultad de Biociencias; Universidad Autónoma de Barcelona; Bellaterra, Spain
| | - Sergey Shabala
- School of Agricultural Sciences; University of Tasmania; Hobart, TAS Australia
- Correspondence to: Sergey Shabala,
| |
Collapse
|
15
|
Simard JM, Woo SK, Gerzanich V. Transient receptor potential melastatin 4 and cell death. Pflugers Arch 2012; 464:573-82. [PMID: 23065026 PMCID: PMC3513597 DOI: 10.1007/s00424-012-1166-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
Abstract
Cell death proceeds by way of a variety of “cell death subroutines,” including several types of “apoptosis,” “regulated necrosis,” and others. “Accidental necrosis” due to profound adenosine triphosphate (ATP) depletion or oxidative stress is distinguished from regulated necrosis by the absence of death receptor signaling. However, both accidental and regulated necrosis have in common the process of “oncosis,” a physiological process characterized by Na+ influx and cell volume increase that, in necrotic cell death, is required to produce the characteristic features of membrane blebbing and membrane rupture. Here, we review emerging evidence that the monovalent cation channel, transient receptor potential melastatin 4 (TRPM4), is involved in the cell death process of oncosis. Potential involvement of TRPM4 in oncosis is suggested by the fact that the two principal regulators of TRPM4, intracellular ATP and Ca2+, are both altered during necrosis in the direction that causes TRPM4 channel opening. Under physiological conditions, activation of TRPM4 promotes Na+ influx and cell depolarization. Under pathological conditions, unchecked activation of TRPM4 leads to Na+ overload, cell volume increase, blebbing and cell membrane rupture, the latter constituting the irreversible end stage of necrosis. Emerging data indicate that TRPM4 plays a crucial role as end executioner in the accidental necrotic death of ATP-depleted or redox-challenged endothelial and epithelial cells, both in vitro and in vivo. Future studies will be needed to determine whether TRPM4 also plays a role in regulated necrosis and apoptosis.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201-1595, USA.
| | | | | |
Collapse
|
16
|
Echeverría C, Becerra A, Nuñez-Villena F, Muñoz-Castro A, Stehberg J, Zheng Z, Arratia-Perez R, Simon F, Ramírez-Tagle R. The paramagnetic and luminescent [Re6Se8I6]3− cluster. Its potential use as an antitumoral and biomarker agent. NEW J CHEM 2012. [DOI: 10.1039/c2nj21016a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Nuñez-Villena F, Becerra A, Echeverría C, Briceño N, Porras O, Armisén R, Varela D, Montorfano I, Sarmiento D, Simon F. Increased expression of the transient receptor potential melastatin 7 channel is critically involved in lipopolysaccharide-induced reactive oxygen species-mediated neuronal death. Antioxid Redox Signal 2011; 15:2425-38. [PMID: 21539414 DOI: 10.1089/ars.2010.3825] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To assess the mechanisms involved in lipopolysaccharide (LPS)-induced neuronal cell death, we examined the cellular consequences of LPS exposure in differentiated PC12 neurons and primary hippocampal neurons. RESULTS Our data show that LPS is able to induce PC12 neuronal cell death without the participation of glial cells. Neuronal cell death was mediated by an increase in cellular reactive oxygen species (ROS) levels. Considering the prevalent role of specific ion channels in mediating the deleterious effect of ROS, we assessed their contribution to this process. Neurons exposed to LPS showed a significant intracellular Ca(2+) overload, and nonselective cationic channel blockers inhibited LPS-induced neuronal death. In particular, we observed that both LPS and hydrogen peroxide exposure strongly increased the expression of the transient receptor protein melastatin 7 (TRPM7), which is an ion channel directly implicated in neuronal cell death. Further, both LPS-induced TRPM7 overexpression and LPS-induced neuronal cell death were decreased with dithiothreitol, dipheniliodonium, and apocynin. Finally, knockdown of TRPM7 expression using small interference RNA technology protected primary hippocampal neurons and differentiated PC12 neurons from the LPS challenge. INNOVATION This is the first report showing that TRPM7 is a key protein involved in neuronal death after LPS challenge. CONCLUSION We conclude that LPS promotes an abnormal ROS-dependent TRPM7 overexpression, which plays a crucial role in pathologic events, thus leading to neuronal dysfunction and death.
Collapse
Affiliation(s)
- Felipe Nuñez-Villena
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Varešlija D, Tipton KF, Della Corte L. Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 2011; 68:2067-79. [PMID: 21533983 PMCID: PMC11114910 DOI: 10.1007/s00018-011-0682-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/27/2011] [Accepted: 03/29/2011] [Indexed: 12/16/2022]
Abstract
The so-called reactive oxygen species (ROS) are defined as oxygen-containing species that are more reactive than O(2) itself, which include hydrogen peroxide and superoxide. Although these are quite stable, they may be converted in the presence of transition metal ions, such as Fe(II), to the highly reactive oxygen species (hROS). hROS may exist as free hydroxyl radicals (HO·), as bound ("crypto") radicals or as Fe(IV)-oxo (ferryl) species and the somewhat less reactive, non-radical species, singlet oxygen. This review outlines the processes by which hROS may be formed, their damaging potential, and the evidence that they might have signaling functions. Since our understanding of the formation and actions of hROS depends on reliable procedures for their detection, particular attention is given to procedures for hROS detection and quantitation and their applicability to in vivo studies.
Collapse
Affiliation(s)
- Wolfhardt Freinbichler
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Maria A. Colivicchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Chiara Stefanini
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Loria Bianchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
- Present Address: Azienda USL 3 di Pistoia, 51100 Pistoia, Italy
| | - Chiara Ballini
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Bashkim Misini
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Peter Weinberger
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Wolfgang Linert
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Damir Varešlija
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | - Keith F. Tipton
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | - Laura Della Corte
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
19
|
Jimenez V, Henriquez M, Galanti N, Riquelme G. Electrophysiological characterization of potassium conductive pathways in Trypanosoma cruzi. J Cell Biochem 2011; 112:1093-102. [DOI: 10.1002/jcb.23023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Simon F, Leiva-Salcedo E, Armisén R, Riveros A, Cerda O, Varela D, Eguiguren AL, Olivero P, Stutzin A. Hydrogen peroxide removes TRPM4 current desensitization conferring increased vulnerability to necrotic cell death. J Biol Chem 2010; 285:37150-8. [PMID: 20884614 DOI: 10.1074/jbc.m110.155390] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Necrosis is associated with an increase in plasma membrane permeability, cell swelling, and loss of membrane integrity with subsequent release of cytoplasmic constituents. Severe redox imbalance by overproduction of reactive oxygen species is one of the main causes of necrosis. Here we demonstrate that H(2)O(2) induces a sustained activity of TRPM4, a Ca(2+)-activated, Ca(2+)-impermeant nonselective cation channel resulting in an increased vulnerability to cell death. In HEK 293 cells overexpressing TRPM4, H(2)O(2) was found to eliminate in a dose-dependent manner TRPM4 desensitization. Site-directed mutagenesis experiments revealed that the Cys(1093) residue is crucial for the H(2)O(2)-mediated loss of desensitization. In HeLa cells, which endogenously express TRPM4, H(2)O(2) elicited necrosis as well as apoptosis. H(2)O(2)-mediated necrosis but not apoptosis was abolished by replacement of external Na(+) ions with sucrose or the non-permeant cation N-methyl-d-glucamine and by knocking down TRPM4 with a shRNA directed against TRPM4. Conversely, transient overexpression of TRPM4 in HeLa cells in which TRPM4 was previously silenced re-established vulnerability to H(2)O(2)-induced necrotic cell death. In addition, HeLa cells exposed to H(2)O(2) displayed an irreversible loss of membrane potential, which was prevented by TRPM4 knockdown.
Collapse
Affiliation(s)
- Felipe Simon
- Centro de Estudios Moleculares de la Célula and Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av Independencia 1027, Independencia 838-0543, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 2010; 123:1468-79. [PMID: 20375061 DOI: 10.1242/jcs.064352] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethylammonium, Ba(2+), Cs(+) and free-radical scavengers. The channel was not found in the gork1-1 mutant, which lacks a major plasma-membrane outwardly rectifying K(+) channel. In intact Arabidopsis roots, both HRs and stress induced a dramatic K(+) efflux that was much smaller in gork1-1 plants. Tests with electron paramagnetic resonance spectroscopy showed that NaCl can stimulate HR generation in roots and this might lead to K(+)-channel activation. In animals, activation of K(+)-efflux channels by HRs can trigger programmed cell death (PCD). PCD symptoms in Arabidopsis roots developed much more slowly in gork1-1 and wild-type plants treated with K(+)-channel blockers or HR scavengers. Therefore, similar to animal counterparts, plant HR-activated K(+) channels are also involved in PCD. Overall, this study provides new insight into the regulation of plant cation transport by ROS and demonstrates possible physiological properties of plant HR-activated K(+) channels.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Biological Sciences, University of Essex, Colchester, Essex CO4 5AP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sarna LK, Wu N, Hwang SY, Siow YL, O K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophagesThis article is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:369-78. [DOI: 10.1139/y09-136] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress and amplified redox signaling contribute to the pathogenesis of many human diseases including atherosclerosis. The superoxide-generating phagocytic NADPH oxidase is a key source of oxidative stress in the developing atheroma. The aim of the present study was to examine the effect of berberine, a plant-derived alkaloid, on NADPH oxidase-mediated superoxide anion production in macrophages. Lipopolysaccharide (LPS) treatment activated NADPH oxidase in THP-1 monocyte-derived macrophages and increased the intracellular level of superoxide anions. Preincubation of cells with berberine demonstrated a concentration-dependent (10–50 µmol/L) and time-dependent (6–24 h) inhibition of superoxide anion generation in LPS-stimulated macrophages. Cell viability tests confirmed that berberine, at concentrations sufficient for inhibiting NADPH oxidase-mediated superoxide anion generation in macrophages, did not affect cell viability. Real-time PCR analysis revealed that addition of berberine to the culture medium was able to reduce gp91phox mRNA expression in LPS-treated cells. Berberine also restored superoxide dismutase (SOD) activity, which was found to be inhibited by LPS treatment. In conclusion, results from the present study demonstrate that berberine can effectively reduce intracellular superoxide levels in LPS- stimulated macrophages. Such a restoration of cellular redox by berberine is mediated by its selective inhibition of gp91phox expression and enhancement of SOD activity. The therapeutic relevance of berberine in the prevention and management of atherosclerosis remains to be further investigated.
Collapse
Affiliation(s)
- Lindsei K. Sarna
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Agriculture and Agri-Food Canada
| | - Nan Wu
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Agriculture and Agri-Food Canada
| | - Sun-Young Hwang
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Agriculture and Agri-Food Canada
| | - Yaw L. Siow
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Agriculture and Agri-Food Canada
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Agriculture and Agri-Food Canada
| |
Collapse
|
23
|
Reactive Oxygen Species, Oxidative Stress and Plant Ion Channels. ION CHANNELS AND PLANT STRESS RESPONSES 2010. [DOI: 10.1007/978-3-642-10494-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens 2009; 27:1202-16. [PMID: 19307985 DOI: 10.1097/hjh.0b013e328329e31c] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Endothelial dysfunction is a crucial step in the pathogenesis of cardiovascular diseases. Reactive oxygen species (ROS) generated in response to lipopolysaccharide (LPS) during sepsis promotes progressive endothelial failure. Typically, LPS-stimulated leukocytes produce pro-inflammatory cytokines, which trigger endothelial ROS production through NAD(P)H oxidase (Nox) activation, in a process that takes hours. Noteworthy, endothelial cells exposed to LPS may also generate ROS in just a few minutes. However, the mechanisms underlying this early event and its deleterious effect in endothelial function are unknown. Here, we investigated the mechanisms of early LPS-induced ROS generation and its effect in endothelial cell viability. METHODS Human umbilical vein endothelial cells were exposed to LPS for 1-40 min to study ROS generation, cytokines expression, and signaling transduction by confocal microscopy, real-time PCR (RT-PCR), western blot, and immunoprecipation. Fourty-eight hour treatments were used to determine cell death by MTT assay, cell counting, and flow cytometry. Contribution of specific Nox isoform was evaluated using a siRNAs approach. RESULTS LPS rapidly evoked a cytokine-independent ROS production, eliciting a rapid increase in p47phox phosphorylation by a phospholipase C/conventional protein kinase C and PI3-K signaling. It is noteworthy that the early LPS-induced ROS production triggered significant endothelial necrosis, which was prevented by a previous, but not a posterior, antioxidant treatment. The early LPS-induced ROS production as well as endothelial necrosis was totally dependent of Nox2 and Nox4 activity. CONCLUSION Endothelial cells exposure to LPS triggers an early ROS production. Remarkably, this single early ROS production is enough to generate extensive endothelial cell death by necrosis dependent on the activity of Nox2 and Nox4. Because, in sepsis, ROS production can cause endothelial dysfunction, results here provided may be relevant when considering the development of strategies for sepsis therapy.
Collapse
|
25
|
Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1275-312. [PMID: 18377233 DOI: 10.1089/ars.2007.1886] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Centro FONDAP de Estudios Moleculares de la Célula and Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
26
|
Villena J, Henriquez M, Torres V, Moraga F, Díaz-Elizondo J, Arredondo C, Chiong M, Olea-Azar C, Stutzin A, Lavandero S, Quest AFG. Ceramide-induced formation of ROS and ATP depletion trigger necrosis in lymphoid cells. Free Radic Biol Med 2008; 44:1146-60. [PMID: 18191646 DOI: 10.1016/j.freeradbiomed.2007.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 10/16/2007] [Accepted: 12/07/2007] [Indexed: 02/07/2023]
Abstract
In lymphocytes, Fas activation leads to both apoptosis and necrosis, whereby the latter form of cell death is linked to delayed production of endogenous ceramide and is mimicked by exogenous administration of long- and short-chain ceramides. Here molecular events associated with noncanonical necrotic cell death downstream of ceramide were investigated in A20 B lymphoma and Jurkat T cells. Cell-permeable, C6-ceramide (C6), but not dihydro-C6-ceramide (DH-C6), induced necrosis in a time- and dose-dependent fashion. Rapid formation of reactive oxygen species (ROS) within 30 min of C6 addition detected by a dihydrorhodamine fluorescence assay, as well as by electron spin resonance, was accompanied by loss of mitochondrial membrane potential. The presence of N-acetylcysteine or ROS scavengers like Tiron, but not Trolox, attenuated ceramide-induced necrosis. Alternatively, adenovirus-mediated expression of catalase in A20 cells also attenuated cell necrosis but not apoptosis. Necrotic cell death observed following C6 exposure was associated with a pronounced decrease in ATP levels and Tiron significantly delayed ATP depletion in both A20 and Jurkat cells. Thus, apoptotic and necrotic death induced by ceramide in lymphocytes occurs via distinct mechanisms. Furthermore, ceramide-induced necrotic cell death is linked here to loss of mitochondrial membrane potential, production of ROS, and intracellular ATP depletion.
Collapse
Affiliation(s)
- Joan Villena
- Centro FONDAP Estudios Moleculares de la Celula (CEMC), Instituto Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 2007; 87:165-217. [PMID: 17237345 DOI: 10.1152/physrev.00021.2006] [Citation(s) in RCA: 1056] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of cation channels that are mostly permeable to both monovalent and divalent cations. The 28 mammalian TRP channels can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are expressed in almost every tissue and cell type and play an important role in the regulation of various cell functions. Currently, significant scientific effort is being devoted to understanding the physiology of TRP channels and their relationship to human diseases. At this point, only a few channelopathies in which defects in TRP genes are the direct cause of cellular dysfunction have been identified. In addition, mapping of TRP genes to susceptible chromosome regions (e.g., translocations, breakpoint intervals, increased frequency of polymorphisms) has been considered suggestive of the involvement of these channels in hereditary diseases. Moreover, strong indications of the involvement of TRP channels in several diseases come from correlations between levels of channel expression and disease symptoms. Finally, TRP channels are involved in some systemic diseases due to their role as targets for irritants, inflammation products, and xenobiotic toxins. The analysis of transgenic models allows further extrapolations of TRP channel deficiency to human physiology and disease. In this review, we provide an overview of the impact of TRP channels on the pathogenesis of several diseases and identify several TRPs for which a causal pathogenic role might be anticipated.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KULeuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
28
|
Zhang WZ, Venardos K, Chin-Dusting J, Kaye DM. Adverse effects of cigarette smoke on NO bioavailability: role of arginine metabolism and oxidative stress. Hypertension 2006; 48:278-85. [PMID: 16801489 DOI: 10.1161/01.hyp.0000231509.27406.42] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial dysfunction is a hallmark of cardiovascular disease, and the l-arginine:NO pathway plays a critical role in determining endothelial function. Recent studies suggest that smoking, a well-recognized risk factor for vascular disease, may interfere with l-arginine and NO metabolism; however, this remains poorly characterized. Accordingly, we performed a series of complementary in vivo and in vitro studies to elucidate the mechanism by which cigarette smoke adversely affects endothelial function. In current smokers, plasma levels of asymmetrical dimethyl-arginine (ADMA) were 80% higher (P = 0.01) than nonsmokers, whereas citrulline (17%; P < 0.05) and N-hydroxy-l-arginine (34%; P < 0.05) were significantly lower. Exposure to 10% cigarette smoke extract (CSE) significantly affected endothelial arginine metabolism with reductions in the intracellular content of citrulline (81%), N-hydroxy-l-arginine (57%), and arginine (23%), while increasing ADMA (129%). CSE significantly inhibited (38%) arginine uptake in conjunction with a 34% reduction in expression of the arginine transporter, CAT1. In conjunction with these studies, CSE significantly reduced the activity of eNOS and NO production by endothelial cells, while stimulating the production of reactive oxygen species. In conclusion, cigarette smoke adversely affects the endothelial l-arginine NO synthase pathway, resulting in reducing NO production and elevated oxidative stress. In conjunction, exposure to cigarette smoke increases ADMA concentration, the latter being a risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Wei-Zheng Zhang
- Wynn Department of Metabolic Cardiology, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia
| | | | | | | |
Collapse
|
29
|
Castro J, Ruminot I, Porras OH, Flores CM, Hermosilla T, Verdugo E, Venegas F, Härtel S, Michea L, Barros LF. ATP steal between cation pumps: a mechanism linking Na+ influx to the onset of necrotic Ca2+ overload. Cell Death Differ 2006; 13:1675-85. [PMID: 16410794 DOI: 10.1038/sj.cdd.4401852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We set out to identify molecular mechanisms underlying the onset of necrotic Ca(2+) overload, triggered in two epithelial cell lines by oxidative stress or metabolic depletion. As reported earlier, the overload was inhibited by extracellular Ca(2+) chelation and the cation channel blocker gadolinium. However, the surface permeability to Ca(2+) was reduced by 60%, thus discarding a role for Ca(2+) channel/carrier activation. Instead, we registered a collapse of the plasma membrane Ca(2+) ATPase (PMCA). Remarkably, inhibition of the Na(+)/K(+) ATPase rescued the PMCA and reverted the Ca(2+) rise. Thermodynamic considerations suggest that the Ca(2+) overload develops when the Na(+)/K(+) ATPase, by virtue of the Na(+) overload, clamps the ATP phosphorylation potential below the minimum required by the PMCA. In addition to providing the mechanism for the onset of Ca(2+) overload, the crosstalk between cation pumps offers a novel explanation for the role of Na(+) in cell death.
Collapse
Affiliation(s)
- J Castro
- Centro de Estudios Científicos CECS, Casilla 1469, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hetz CA, Torres V, Quest AFG. Beyond apoptosis: nonapoptotic cell death in physiology and disease. Biochem Cell Biol 2005; 83:579-88. [PMID: 16234846 DOI: 10.1139/o05-065] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apoptosis is a morphologically defined form of programmed cell death (PCD) that is mediated by the activation of members of the caspase family. Analysis of death-receptor signaling in lymphocytes has revealed that caspase-dependent signaling pathways are also linked to cell death by nonapoptotic mechanisms, indicating that apoptosis is not the only form of PCD. Under physiological and pathological conditions, cells demonstrate a high degree of flexibility in cell-death responses, as is reflected in the existence of a variety of mechanisms, including necrosis-like PCD, autophagy (or type II PCD), and accidental necrosis. In this review, we discuss recent data suggesting that canonical apoptotic pathways, including death-receptor signaling, control caspase-dependent and -independent cell-death pathways.Key words: apoptosis, necrosis, nonapoptotic programmed cell death, death receptors, ceramides.
Collapse
Affiliation(s)
- Claudio A Hetz
- Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|