1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
James RS, Seebacher F, Tallis J. Can animals tune tissue mechanics in response to changing environments caused by anthropogenic impacts? J Exp Biol 2023; 226:287009. [PMID: 36779312 DOI: 10.1242/jeb.245109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.
Collapse
Affiliation(s)
- Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
3
|
Richard NA, Koehle MS. Influence and Mechanisms of Action of Environmental Stimuli on Work Near and Above the Severe Domain Boundary (Critical Power). SPORTS MEDICINE - OPEN 2022; 8:42. [PMID: 35347469 PMCID: PMC8960528 DOI: 10.1186/s40798-022-00430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Abstract
Abstract
The critical power (CP) concept represents the uppermost rate of steady state aerobic metabolism during work. Work above CP is limited by a fixed capacity (W′) with exercise intensity being an accelerant of its depletion rate. Exercise at CP is a considerable insult to homeostasis and any work done above it will rapidly become intolerable. Humans live and exercise in situations of hypoxia, heat, cold and air pollution all of which impose a new environmental stress in addition to that of exercise. Hypoxia disrupts the oxygen cascade and consequently aerobic energy production, whereas heat impacts the circulatory system’s ability to solely support exercise performance. Cold lowers efficiency and increases the metabolic cost of exercise, whereas air pollution negatively impacts the respiratory system. This review will examine the effects imposed by environmental conditions on CP and W′ and describe the key physiological mechanisms which are affected by the environment.
Graphical Abstract
Collapse
|
4
|
Caremani M, Marcello M, Morotti I, Pertici I, Squarci C, Reconditi M, Bianco P, Piazzesi G, Lombardi V, Linari M. The force of the myosin motor sets cooperativity in thin filament activation of skeletal muscles. Commun Biol 2022; 5:1266. [DOI: 10.1038/s42003-022-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractContraction of striated muscle is regulated by a dual mechanism involving both thin, actin-containing filament and thick, myosin-containing filament. Thin filament is activated by Ca2+ binding to troponin, leading to tropomyosin displacement that exposes actin sites for interaction with myosin motors, extending from the neighbouring stress-activated thick filaments. Motor attachment to actin contributes to spreading activation along the thin filament, through a cooperative mechanism, still unclear, that determines the slope of the sigmoidal relation between isometric force and pCa (−log[Ca2+]), estimated by Hill coefficient nH. We use sarcomere-level mechanics in demembranated fibres of rabbit skeletal muscle activated by Ca2+ at different temperatures (12–35 °C) to show that nH depends on the motor force at constant number of attached motors. The definition of the role of motor force provides fundamental constraints for modelling the dynamics of thin filament activation and defining the action of small molecules as possible therapeutic tools.
Collapse
|
5
|
James RS, Tallis J. The likely effects of thermal climate change on vertebrate skeletal muscle mechanics with possible consequences for animal movement and behaviour. CONSERVATION PHYSIOLOGY 2019; 7:coz066. [PMID: 31687144 PMCID: PMC6822537 DOI: 10.1093/conphys/coz066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 05/05/2023]
Abstract
Climate change can involve alteration in the local temperature that an animal is exposed to, which in turn may affect skeletal muscle temperature. The underlying effects of temperature on the mechanical performance of skeletal muscle can affect organismal performance in key activities, such as locomotion and fitness-related behaviours, including prey capture and predator avoidance. The contractile performance of skeletal muscle is optimized within a specific thermal range. An increased muscle temperature can initially cause substantial improvements in force production, faster rates of force generation, relaxation, shortening, and production of power output. However, if muscle temperature becomes too high, then maximal force production and power output can decrease. Any deleterious effects of temperature change on muscle mechanics could be exacerbated by other climatic changes, such as drought, altered water, or airflow regimes that affect the environment the animal needs to move through. Many species will change their location on a daily, or even seasonal basis, to modulate the temperature that they are exposed to, thereby improving the mechanical performance of their muscle. Some species undergo seasonal acclimation to optimize muscle mechanics to longer-term changes in temperature or undergo dormancy to avoid extreme climatic conditions. As local climate alters, species either cope with the change, adapt, avoid extreme climate, move, or undergo localized extinction events. Given that such outcomes will be determined by organismal performance within the thermal environment, the effects of climate change on muscle mechanics could have a major impact on the ability of a population to survive in a particular location.
Collapse
Affiliation(s)
- Rob S James
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Corresponding author: Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, CV1 5FB Coventry, UK.
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
6
|
Ranatunga KW. Temperature Effects on Force and Actin⁻Myosin Interaction in Muscle: A Look Back on Some Experimental Findings. Int J Mol Sci 2018; 19:E1538. [PMID: 29786656 PMCID: PMC5983754 DOI: 10.3390/ijms19051538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/23/2023] Open
Abstract
Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption.
Collapse
Affiliation(s)
- K W Ranatunga
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
7
|
Ranatunga KW, Offer G. The force-generation process in active muscle is strain sensitive and endothermic: a temperature-perturbation study. ACTA ACUST UNITED AC 2017; 220:4733-4742. [PMID: 29084851 DOI: 10.1242/jeb.167197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022]
Abstract
In experiments on active muscle, we examined the tension decline and its temperature sensitivity at the onset of ramp shortening and at a range of velocities. A segment (∼1.5 mm long) of a skinned muscle fibre isolated from rabbit psoas muscle was held isometrically (sarcomere length ∼2.5 µm) at 8-9°C, maximally Ca2+-activated and a ramp shortening applied. The tension decline with a ramp shortening showed an early decrease of slope (the P1 transition) followed by a slower decrease in slope (the P2 transition) to the steady (isotonic) force. The tension level at the initial P1 transition and the time to that transition decreased as the velocity was increased; the length change to this transition increased with shortening velocity to a steady value of ∼8 nm half-sarcomere-1 A small, rapid, temperature jump (T-jump) (3-4°C, <0.2 ms) applied coincident with the onset of ramp shortening showed force enhancement by T-jump and changed the tension decline markedly. Analyses showed that the rate of T-jump-induced force rise increased linearly with increase of shortening velocity. These results provide crucial evidence that the strain-sensitive cross-bridge force generation, or a step closely coupled to it, is endothermic.
Collapse
Affiliation(s)
- K W Ranatunga
- Muscle Contraction Group, School of Physiology, Pharmacology & Neurosciences, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Gerald Offer
- Muscle Contraction Group, School of Physiology, Pharmacology & Neurosciences, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
8
|
Rassier DE. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells. Am J Physiol Cell Physiol 2017; 313:C134-C145. [PMID: 28539306 DOI: 10.1152/ajpcell.00050.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022]
Abstract
Muscle contraction is commonly associated with the cross-bridge and sliding filament theories, which have received strong support from experiments conducted over the years in different laboratories. However, there are studies that cannot be readily explained by the theories, showing 1) a plateau of the force-length relation extended beyond optimal filament overlap, and forces produced at long sarcomere lengths that are higher than those predicted by the sliding filament theory; 2) passive forces at long sarcomere lengths that can be modulated by activation and Ca2+, which changes the force-length relation; and 3) an unexplained high force produced during and after stretch of activated muscle fibers. Some of these studies even propose "new theories of contraction." While some of these observations deserve evaluation, many of these studies present data that lack a rigorous control and experiments that cannot be repeated in other laboratories. This article reviews these issues, looking into studies that have used intact and permeabilized fibers, myofibrils, isolated sarcomeres, and half-sarcomeres. A common mechanism associated with sarcomere and half-sarcomere length nonuniformities and a Ca2+-induced increase in the stiffness of titin is proposed to explain observations that derive from these studies.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Kochubei PV, Bershitsky SY. Possible Cause of Nonlinear Tension Rise in Activated Muscle Fiber during Stretching. Bull Exp Biol Med 2016; 162:11-13. [PMID: 27878491 DOI: 10.1007/s10517-016-3532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/29/2022]
Abstract
Tension in contracting muscle fiber under conditions of ramp stretching rapidly increases, but after reaching a critical stretch Pc sharply decreases. To find out the cause of these changes in muscle fiber tension, we stopped stretching before and after reaching Pc and left the fiber stretched for 50 msec. After rapid tension drop, the transient tension rise not accompanied by fiber stiffness increase was observed only in fibers heated to 25°C and stretched to Pc. Under other experimental conditions, this growth was absent. We suppose that stretch of the fiber to Pc induces transition of stereo-specifically attached myosin heads to pre-power stroke state and when the stretching is stopped, they make their step on actin and generate force. When the tension reaches Pc, all stereospecifically attached myosin heads turn out to be non-stereospecifically, or weakly attached to actin, and are unable to make the force-generating step.
Collapse
Affiliation(s)
- P V Kochubei
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russia.
| | - S Yu Bershitsky
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
10
|
Minozzo FC, Altman D, Rassier DE. MgADP activation contributes to force enhancement during fast stretch of isolated skeletal myofibrils. Biochem Biophys Res Commun 2015; 463:1129-34. [PMID: 26095850 DOI: 10.1016/j.bbrc.2015.06.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND When an activated muscle is rapidly stretched, force rises and peaks while muscle lengthens. The peak force is normally called critical-force (Pc). The mechanism behind this increase in force is not well understood, but it has been associated with crossbridges operating in different states. METHODS Myofibrils were attached between a cantilever and a micro-needle, and activated with Ca(2+) or MgADP. During activation, the myofibrils were stretched by 3% SLo at 10 SLo·s(-1). A crossbridge model was developed to better understand the effects of MgADP in myofibrils activation. RESULTS Despite a similar stretch magnitude, MgADP activation produced a higher Pc (1.37 ± 0.07 P/Po) than Ca(2+) activation (Pc = 1.23 ± 0.03 P/Po). These results suggest that myofibrils activated with MgADP become stiffer than myofibrils activated with Ca(2+). CONCLUSIONS MgADP induces a fraction of crossbridges to form a "rigor-like" state that precedes ADP release, and that may not contribute to isometric forces. Such interpretation was strengthened by the results obtained with the developed crossbridge model, which showed that MgADP bias crossbridges into the rigor-like state. This state would be crucial to initiate a cooperative activation of crossbridges and actin, and to resist to unbinding from actin when the myofibrils are stretched. SIGNIFICANCE Our results suggest a new mechanism contributing for force output during stretch, which underlies basic mechanisms of muscle contraction.
Collapse
Affiliation(s)
- Fábio C Minozzo
- Department of Kinesiology and Physical Education, McGill University, Canada
| | - David Altman
- Department of Physics, Willamette University, Salem, OR, USA
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Canada; Department of Physics, McGill University, Canada; Department of Physiology, McGill University, Canada.
| |
Collapse
|
11
|
Zhao C, Swank DM. An embryonic myosin isoform enables stretch activation and cyclical power in Drosophila jump muscle. Biophys J 2014; 104:2662-70. [PMID: 23790374 DOI: 10.1016/j.bpj.2013.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022] Open
Abstract
The mechanism behind stretch activation (SA), a mechanical property that increases muscle force and oscillatory power generation, is not known. We used Drosophila transgenic techniques and our new muscle preparation, the jump muscle, to determine if myosin heavy chain isoforms influence the magnitude and rate of SA force generation. We found that Drosophila jump muscles show very low SA force and cannot produce positive power under oscillatory conditions at pCa 5.0. However, we transformed the jump muscle to be moderately stretch-activatable by replacing its myosin isoform with an embryonic isoform (EMB). Expressing EMB, jump muscle SA force increased by 163% and it generated net positive power. The rate of SA force development decreased by 58% with EMB expression. Power generation is Pi dependent as >4 mM Pi was required for positive power from EMB. Pi increased EMB SA force, but not wild-type SA force. Our data suggest that when muscle expressing EMB is stretched, EMB is more easily driven backward to a weakly bound state than wild-type jump muscle. This increases the number of myosin heads available to rapidly bind to actin and contribute to SA force generation. We conclude that myosin heavy chain isoforms influence both SA kinetics and SA force, which can determine if a muscle is capable of generating oscillatory power at a fixed calcium concentration.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | |
Collapse
|
12
|
Nocella M, Cecchi G, Bagni MA, Colombini B. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers. PLoS One 2013; 8:e78918. [PMID: 24147145 PMCID: PMC3798468 DOI: 10.1371/journal.pone.0078918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i) initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii) the second phase is due to the delayed reduction of Ca(2+) release and /or reduction of the Ca(2+) sensitivity of the myofibrils due to high [Pi]i.
Collapse
Affiliation(s)
- Marta Nocella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Cecchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
13
|
A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. J Comp Physiol B 2013; 183:723-33. [PMID: 23483325 DOI: 10.1007/s00360-013-0748-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.
Collapse
|
14
|
Nocella M, Colombini B, Benelli G, Cecchi G, Bagni MA, Bruton J. Force decline during fatigue is due to both a decrease in the force per individual cross-bridge and the number of cross-bridges. J Physiol 2011; 589:3371-81. [PMID: 21540343 DOI: 10.1113/jphysiol.2011.209874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fatigue occurring during exercise can be defined as the inability to maintain the initial force or power output. As fatigue becomes pronounced, force and maximum velocity of shortening are greatly reduced and force relaxation is prolonged. In principle, force loss during fatigue can result from a decrease in the number of cross-bridges generating force or a decrease of the individual cross-bridge force or to both mechanisms. The present experiments were made to investigate this point in single fibres or small fibre bundles isolated from flexor digitorum brevis (FDB) of C57BL/6 mice at 22-24◦C. During a series of 105 tetanic contractions, we measured force and fibre stiffness by applying small sinusoidal length oscillations at 2.5 or 4 kHz frequency to the activated preparation and measuring the resulting force changes. Stiffness data were corrected for the influence of compliance in series with the cross-bridge ensemble. The results show that the force decline during the first 20 tetani is due to the reduction of force developed by the individual cross-bridges and thereafter as fatigue becomes more severe, the number of cross-bridges decreases. In spite of the force reduction in the early phase of fatigue, there was an increased rate of tetanic force development and relaxation. In the latter stages of fatigue, the rate of force development and relaxation became slower. Thus, the start of fatigue is characterised by decreased cross-bridge force development and as fatigue becomes more marked, the number of cross-bridges decreases. These findings are discussed in the context of the current hypotheses about fatigue mechanisms.
Collapse
Affiliation(s)
- Marta Nocella
- Department of Physiological Sciences, Universit`a degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Florence, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Crossbridge and filament compliance in muscle: implications for tension generation and lever arm swing. J Muscle Res Cell Motil 2010; 31:245-65. [PMID: 21132353 DOI: 10.1007/s10974-010-9232-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
The stiffness of myosin heads attached to actin is a crucial parameter in determining the kinetics and mechanics of the crossbridge cycle. It has been claimed that the stiffness of myosin heads in the anterior tibialis muscle of the common frog (Rana temporaria) is as high as 3.3 pN/nm, substantially higher than its value in rabbit muscle (~1.7 pN/nm). However, the crossbridge stiffness measurement has a large error since the contribution of crossbridges to half-sarcomere compliance is obtained by subtracting from the half-sarcomere compliance the contributions of the thick and thin filaments, each with a substantial error. Calculation of its value for isometric contraction also depends on the fraction of heads that are attached, for which there is no consensus. Surprisingly, the stiffness of the myosin head from the edible frog, Rana esculenta, determined in the same manner, is only 60% of that in Rana temporaria. In our view it is unlikely that the value of such a crucial parameter could differ so substantially between two frog species. Since the means of the myosin head stiffness in these two species are not significantly different, we suggest that the best estimate of the stiffness of the myosin heads for frog muscle is the average of these data, a value similar to that for rabbit muscle. This would allow both frog and rabbit muscles to operate the same low-cooperativity mechanism for the crossbridge cycle with only one or two tension-generating steps. We review evidence that much of the compliance of the myosin head is located in the pliant region where the lever arm emerges from the converter and propose that tension generation ("tensing") caused by the rotation and movement of the converter is a separate event from the passive swinging of the lever arm in its working stroke in which the strain energy stored in the pliant region is used to do work.
Collapse
|
16
|
Minozzo FC, Rassier DE. Effects of blebbistatin and Ca2+ concentration on force produced during stretch of skeletal muscle fibers. Am J Physiol Cell Physiol 2010; 299:C1127-35. [DOI: 10.1152/ajpcell.00073.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When activated muscle fibers are stretched at low speeds [≤2 optimal length ( Lo)/s], force increases in two phases, marked by a change in slope [critical force (Pc)] that happens at a critical sarcomere length extension ( Lc). Some studies attribute Pc to the number of attached cross bridges before stretch, while others attribute it to cross bridges in a pre-power-stroke state. In this study, we reinvestigated the mechanisms of forces produced during stretch by altering either the number of cross bridges attached to actin or the cross-bridge state before stretch. Two sets of experiments were performed: 1) activated fibers were stretched by 3% Lo at speeds of 1.0, 2.0, and 3.0 Lo/s in different pCa2+ (4.5, 5.0, 5.5, 6.0), or 2) activated fibers were stretched by 3% Lo at 2 Lo/s in pCa2+ 4.5 containing either 5 μM blebbistatin(+/−) or its inactive isomer (+/+). All stretches started at a sarcomere length (SL) of 2.5 μm. When fibers were activated at a pCa2+ of 4.5, Pc was 2.47 ± 0.11 maximal force developed before stretch (Po) and decreased with lower concentrations of Ca2+. Lc was not Ca2+ dependent; the pooled experiments provided a Lc of 14.34 ± 0.34 nm/half-sarcomere (HS). Pc and Lc did not change with velocities of stretch. Fibers activated in blebbistatin(+/−) showed a higher Pc (2.94 ± 0.17 Po) and Lc (16.30 ± 0.38 nm/HS) than control fibers (Pc 2.31 ± 0.08 Po; Lc 14.05 ± 0.63 nm/HS). The results suggest that forces produced during stretch are caused by both the number of cross bridges attached to actin and the cross bridges in a pre-power-stroke state. Such cross bridges are stretched by large amplitudes before detaching from actin and contribute significantly to the force developed during stretch.
Collapse
Affiliation(s)
- Fabio C. Minozzo
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Ranatunga KW. Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies. J Physiol 2010; 588:3657-70. [PMID: 20660565 PMCID: PMC2998218 DOI: 10.1113/jphysiol.2010.194001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/19/2010] [Indexed: 11/08/2022] Open
Abstract
The basic characteristics of the process of force and power generation in active muscle that have emerged from temperature studies are examined. This is done by reviewing complementary findings from temperature-dependence studies and rapid temperature-jump (T-jump) experiments and from intact and skinned fast mammalian muscle fibres. In isometric muscle, a small T-jump leads to a characteristic rise in force showing that crossbridge force generation is endothermic (heat absorbed) and associated with increased entropy (disorder). The sensitivity of the T-jump force generation to added inorganic phosphate (Pi) indicates that a T-jump enhances an early step in the actomyosin (crossbridge) ATPase cycle before Pi-release. During muscle lengthening when steady force is increased, the T-jump force generation is inhibited. Conversely, during shortening when steady force is decreased, the T-jump force generation is enhanced in a velocity-dependent manner, showing that T-jump force generation is strain sensitive. Within the temperature range of ∼5–35◦C, the temperature dependence of steady active force is sigmoidal both in isometric and in shortening muscle. However, in shortening muscle, the endothermic character of force generation becomes more pronounced with increased velocity and this can, at least partly, account for the marked increase with warming of the mechanical power output of active muscle.
Collapse
Affiliation(s)
- K W Ranatunga
- Muscle Contraction Group, Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
18
|
Cross-bridge properties in single intact frog fibers studied by fast stretches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [PMID: 20824527 DOI: 10.1007/978-1-4419-6366-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Cross-bridges properties were measured under different experimental conditions by applying fast stretches to activated skeletal frog muscle fiber to -forcibly detach the cross-bridge ensemble. This allowed to measure the tension needed to detach the cross-bridges, P(c), and the sarcomere elongation at the rupture force, L(c). These two parameters are expected to be correlated with cross-bridges number (P(c)) and their mean extension (L(c)). Conditions investigated were: tetanus rise and plateau under normal Ringer and Ringer containing different BDM -concentrations, hyper (1.4T) and hypotonic (0.8T) solutions, 5 and 14 degrees C temperature. P(c) was linearly correlated with the tension (P) developed by the fibers under all the conditions examined, however the ratio P(c)/P changed depending on conditions being greater at low temperature and higher tonicity. These results indicate that, (a) P(c) can be used as a measure of attached cross-bridge number and (b) the force developed by the individual cross-bridge increases at high temperature and low tonicity. L(c) was not affected by tension developed, however it changed under different conditions, being greater at low temperature and high tonicity. These findings, suggests, in agreement with P(c) data, that cross-bridge extension is smaller at low temperature and high tonicity. By comparing these data with tetanic tension we concluded that potentiation or depression induced on tetanic force by tonicity or temperature changes are entirely accounted for by changes of the force developed by the individual cross-bridge.
Collapse
|
19
|
Colombini B, Nocella M, Benelli G, Cecchi G, Griffiths PJ, Bagni MA. Reversal of the myosin power stroke induced by fast stretching of intact skeletal muscle fibers. Biophys J 2010; 97:2922-9. [PMID: 19948121 DOI: 10.1016/j.bpj.2009.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022] Open
Abstract
Force generation and movement in skeletal muscle result from a cyclical interaction of overlapping myosin and actin filaments that permits the free energy of ATP hydrolysis to be converted into mechanical work. The rapid force recovery that occurs after a step release imposed on a muscle is thought to result from a synchronized tilting of myosin lever arms toward a position of lower free energy (the power stroke). We investigated the power stroke mechanism in intact muscle fibers of Rana esculenta using a fast stretch to detach forcibly cross-bridges. Stretches were applied either with or without a conditioning step release. Cross-bridge rupture tension was not significantly influenced by the release, whereas sarcomere elongation at the rupture point increased immediately after the release and returned to the prerelease condition within 15-20 ms, following a slower time course compared to the recovery of tension. These observations suggest that the rupture force of a bridge is unaltered by a conditioning release, but rupture must first be preceded by a power stroke reversal, which restores the prepower stroke state. The sarcomere extension at the rupture point indicates both the extent of this power stroke reversal and the time course of strained bridge replenishment.
Collapse
Affiliation(s)
- Barbara Colombini
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Ranatunga KW, Roots H, Offer GW. Temperature jump induced force generation in rabbit muscle fibres gets faster with shortening and shows a biphasic dependence on velocity. J Physiol 2010; 588:479-93. [PMID: 19948657 PMCID: PMC2825612 DOI: 10.1113/jphysiol.2009.179200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 11/17/2009] [Indexed: 11/08/2022] Open
Abstract
We examined the tension responses to ramp shortening and rapid temperature jump (<0.2 ms, 3-4 degrees C T-jump) in maximally Ca(2+)-activated rabbit psoas muscle fibres at 8-9 degrees C (the fibre length (L(0)) was approximately 1.5 mm and sarcomere length 2.5 microm). The aim was to investigate the strain sensitivity of crossbridge force generation in muscle. The T-jump induced tension rise was examined during steady shortening over a wide range of velocities (V) approaching the V(max) (V range approximately 0.01 to approximately 1.5 L(0) s(1)). In the isometric state, a T-jump induced a biphasic tension rise consisting of a fast (approximately 50 s(1), phase 2b) and a slow (approximately 10 s(1), phase 3) component, but if treated as monophasic the rate was approximately 20 s(1). During steady shortening the T-jump tension rise was monophasic; the rate of tension rise increased linearly with shortening velocity, and near V(max) it was approximately 200 s(1), approximately 10x faster than in the isometric state. Relative to the tension reached after the T-jump, the amplitude increased with shortening velocity, and near V(max) it was 4x larger than in the isometric state. Thus, the temperature sensitivity of muscle force is markedly increased with velocity during steady shortening, as found in steady state experiments. The rate of tension decline during ramp shortening also increased markedly with increase of velocity. The absolute amplitude of T-jump tension rise was larger than that in the isometric state at the low velocities (<0.5 L(0) s(1)) but decreased to below that of the isometric state at the higher velocities. Such a biphasic velocity dependence of the absolute amplitude of T-jump tension rise implies interplay between, at least, two processes that have opposing effects on the tension output as the shortening velocity is increased, probably enhancement of crossbridge force generation and faster (post-stroke) crossbridge detachment by negative strain. Overall, our results show that T-jump force generation is strain sensitive and becomes considerably faster when exposed to negative strain. Thus the crossbridge force generation step in muscle is both temperature sensitive (endothermic) and strain sensitive.
Collapse
Affiliation(s)
- K W Ranatunga
- Muscle Contraction Group, Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
21
|
Sunyer R, Trepat X, Fredberg JJ, Farré R, Navajas D. The temperature dependence of cell mechanics measured by atomic force microscopy. Phys Biol 2009; 6:025009. [PMID: 19571363 PMCID: PMC3932184 DOI: 10.1088/1478-3975/6/2/025009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.
Collapse
Affiliation(s)
- R Sunyer
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
| | - X Trepat
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - J J Fredberg
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - R Farré
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - D Navajas
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
| |
Collapse
|
22
|
Rassier DE. Pre-power stroke cross bridges contribute to force during stretch of skeletal muscle myofibrils. Proc Biol Sci 2008; 275:2577-86. [PMID: 18664437 DOI: 10.1098/rspb.2008.0719] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When activated skeletal muscle is stretched, force increases in two phases. This study tested the hypothesis that the increase in stretch force during the first phase is produced by pre-power stroke cross bridges. Myofibrils were activated in sarcomere lengths (SLs) between 2.2 and 2.5 microm, and stretched by approximately 5-15 per cent SL. When stretch was performed at 1 microms-1SL-1, the transition between the two phases occurred at a critical stretch (SLc) of 8.4+/-0.85 nm half-sarcomere (hs)-1 and the force (critical force; Fc) was 1.62+/-0.24 times the isometric force (n=23). At stretches performed at a similar velocity (1 microms-1SL-1), 2,3-butanedione monoxime (BDM; 1 mM) that biases cross bridges into pre-power stroke states decreased the isometric force to 21.45+/-9.22 per cent, but increased the relative Fc to 2.35+/-0.34 times the isometric force and increased the SLc to 14.6+/-0.6 nm hs-1 (n=23), suggesting that pre-power stroke cross bridges are largely responsible for stretch forces.
Collapse
Affiliation(s)
- Dilson E Rassier
- Department of Kinesiology and Physical Education (Faculty of Education), McGill University, 475 Pine Avenue West, Montreal, Quebec, Canada.
| |
Collapse
|