1
|
Nieto-Felipe J, Macias-Díaz A, Jimenez-Velarde V, Lopez JJ, Salido GM, Smani T, Jardin I, Rosado JA. Feedback modulation of Orai1α and Orai1β protein content mediated by STIM proteins. J Cell Physiol 2024:e31450. [PMID: 39359018 DOI: 10.1002/jcp.31450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Store-operated Ca2+ entry is a mechanism controlled by the filling state of the intracellular Ca2+ stores, predominantly the endoplasmic reticulum (ER), where ER-resident proteins STIM1 and STIM2 orchestrate the activation of Orai channels in the plasma membrane, and Orai1 playing a predominant role. Two forms of Orai1, Orai1α and Orai1β, have been identified, which arises the question whether they are equally regulated by STIM proteins. We demonstrate that STIM1 preferentially activates Orai1α over STIM2, yet both STIM proteins similarly activate Orai1β. Under resting conditions, there is a pronounced association between STIM2 and Orai1α. STIM1 and STIM2 are also shown to influence the protein levels of the Orai1 variants, independently of Ca2+ influx, via lysosomal degradation. Interestingly, Orai1α and Orai1β appear to selectively regulate the protein level of STIM1, but not STIM2. These observations offer crucial insights into the regulatory dynamics between STIM proteins and Orai1 variants, enhancing our understanding of the intricate processes that fine-tune intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Joel Nieto-Felipe
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Alvaro Macias-Díaz
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Vanesa Jimenez-Velarde
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, Seville, Spain
| | - Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| |
Collapse
|
2
|
Jardin I, Alvarado S, Sanchez-Collado J, Nieto-Felipe J, Lopez JJ, Salido GM, Rosado JA. Functional differences in agonist-induced plasma membrane expression of Orai1α and Orai1β. J Cell Physiol 2023; 238:2050-2062. [PMID: 37332264 DOI: 10.1002/jcp.31055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Orai1 is the pore-forming subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channels involved in a variety of cellular functions. Two Orai1 variants have been identified, the long form, Orai1α, containing 301 amino acids, and the short form, Orai1β, which arises from alternative translation initiation from methionines 64 or 71, in Orai1α. Orai1 is mostly expressed in the plasma membrane, but a subset of Orai1 is located in intracellular compartments. Here we show that Ca2+ store depletion leads to trafficking and insertion of compartmentalized Orai1α in the plasma membrane via a mechanism that is independent on changes in cytosolic free-Ca2+ concentration, as demonstrated by cell loading with the fast intracellular Ca2+ chelator dimethyl BAPTA in the absence of extracellular Ca2+ . Interestingly, thapsigargin (TG) was found to be unable to induce translocation of Orai1β to the plasma membrane when expressed individually; by contrast, when Orai1β is co-expressed with Orai1α, cell treatment with TG induced rapid trafficking and insertion of compartmentalized Orai1β in the plasma membrane. Translocation of Orai1 forms to the plasma membrane was found to require the integrity of the actin cytoskeleton. Finally, expression of a dominant negative mutant of the small GTPase ARF6, and ARF6-T27N, abolished the translocation of compartmentalized Orai1 variants to the plasma membrane upon store depletion. These findings provide new insights into the mechanism that regulate the plasma membrane abundance of Orai1 variants after Ca2+ store depletion.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Sandra Alvarado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| |
Collapse
|
3
|
Manning D, Barrett-Jolley R, Evans RL, Dart C. TRPC1 channel clustering during store-operated Ca 2+ entry in keratinocytes. Front Physiol 2023; 14:1141006. [PMID: 36950299 PMCID: PMC10025536 DOI: 10.3389/fphys.2023.1141006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Skin is the largest organ in the human body with ∼95% of its surface made up of keratinocytes. These cells maintain a healthy skin barrier through regulated differentiation driven by Ca2+-transcriptional coupling. Many important skin conditions arise from disruption of this process although not all stages are fully understood. We know that elevated extracellular Ca2+ at the skin surface is detected by keratinocyte Gαq-coupled receptors that signal to empty endoplasmic reticulum Ca2+ stores. Orai channel store-operated Ca2+ entry (SOCE) and Ca2+ influx via "canonical" transient receptor potential (TRPC)-composed channels then activates transcription factors that drive differentiation. While STIM-mediated activation of Orai channels following store depletion is well defined, how TRPC channels are activated is less clear. Multiple modes of TRPC channel activation have been proposed, including 1) independent TRPC activation by STIM, 2) formation of Orai-TRPC-STIM complexes, and 3) the insertion of constitutively-active TRPC channels into the membrane during SOCE. To help distinguish between these models, we used high-resolution microscopy of intact keratinocyte (HaCaT) cells and immunogold transmission electron microscopy (TEM) of HaCaT plasma membrane sheets. Our data shows no evidence of significant insertion of Orai1 or TRPC subunits into the membrane during SOCE. Analysis of transmission electron microscopy data shows that during store-depletion and SOCE, Orai1 and TRPC subunits form separate membrane-localized clusters that migrate towards each other. This clustering of TRPC channel subunits in keratinocytes may support the formation of TRPC-STIM interactions at ER-plasma membrane junctions that are distinct from Orai-STIM junctions.
Collapse
Affiliation(s)
- Declan Manning
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard L. Evans
- Unilever Research & Development, Port Sunlight Laboratory, Wirral, United Kingdom
| | - Caroline Dart
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Caroline Dart,
| |
Collapse
|
4
|
Humer C, Romanin C, Höglinger C. Highlighting the Multifaceted Role of Orai1 N-Terminal- and Loop Regions for Proper CRAC Channel Functions. Cells 2022; 11:371. [PMID: 35159181 PMCID: PMC8834118 DOI: 10.3390/cells11030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Orai1, the Ca2+-selective pore in the plasma membrane, is one of the key components of the Ca2+release-activated Ca2+ (CRAC) channel complex. Activated by the Ca2+ sensor in the endoplasmic reticulum (ER) membrane, stromal interaction molecule 1 (STIM1), via direct interaction when ER luminal Ca2+ levels recede, Orai1 helps to maintain Ca2+ homeostasis within a cell. It has already been proven that the C-terminus of Orai1 is indispensable for channel activation. However, there is strong evidence that for CRAC channels to function properly and maintain all typical hallmarks, such as selectivity and reversal potential, additional parts of Orai1 are needed. In this review, we focus on these sites apart from the C-terminus; namely, the second loop and N-terminus of Orai1 and on their multifaceted role in the functioning of CRAC channels.
Collapse
Affiliation(s)
| | | | - Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (C.R.)
| |
Collapse
|
5
|
Wu B, Woo JS, Vila P, Jew M, Leung J, Sun Z, Srikanth S, Gwack Y. NKD2 mediates stimulation-dependent ORAI1 trafficking to augment Ca 2+ entry in T cells. Cell Rep 2021; 36:109603. [PMID: 34433025 PMCID: PMC8435239 DOI: 10.1016/j.celrep.2021.109603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023] Open
Abstract
Sustained activation of the Ca2+-release-activated Ca2+ (CRAC) channel is pivotal for effector T cell responses. The mechanisms underlying this sustainability remain poorly understood. We find that plasma membrane localization of ORAI1, the pore subunit of CRAC channels, is limited in effector T cells, with a significant fraction trapped in intracellular vesicles. From a targeted screen, we identify an essential component of ORAI1+ vesicles, naked cuticle homolog 2 (NKD2). Mechanistically, NKD2, an adaptor molecule activated by signaling pathways downstream of T cell receptors, orchestrates trafficking and insertion of ORAI1+ vesicles to the plasma membrane. Together, our findings suggest that T cell receptor (TCR)-stimulation-dependent insertion of ORAI1 into the plasma membrane is essential for sustained Ca2+ signaling and cytokine production in T cells.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Pamela Vila
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA,Present address: Olive View-UCLA Medical Center, 14445 Olive View Drive, Sylmar, CA 91342, USA
| | - Marcus Jew
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA,Present address: Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Jennifer Leung
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA,Present address: Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zuoming Sun
- Department of Molecular Imaging & Therapy, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA.
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA.
| |
Collapse
|
6
|
Berlansky S, Humer C, Sallinger M, Frischauf I. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. Int J Mol Sci 2021; 22:E471. [PMID: 33466526 PMCID: PMC7796502 DOI: 10.3390/ijms22010471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.
Collapse
Affiliation(s)
| | | | | | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (S.B.); (C.H.); (M.S.)
| |
Collapse
|
7
|
Hodeify R, Nandakumar M, Own M, Courjaret RJ, Graumann J, Hubrack SZ, Machaca K. The CCT chaperonin is a novel regulator of Ca 2+ signaling through modulation of Orai1 trafficking. SCIENCE ADVANCES 2018; 4:eaau1935. [PMID: 30263962 PMCID: PMC6157965 DOI: 10.1126/sciadv.aau1935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 05/23/2023]
Abstract
Store-operated Ca2+ entry (SOCE) encodes a range of cellular responses downstream of Ca2+ influx through the SOCE channel Orai1. Orai1 recycles at the plasma membrane (PM), with ~40% of the total Orai1 pool residing at the PM at steady state. The mechanisms regulating Orai1 recycling remain poorly understood. We map the domains in Orai1 that are required for its trafficking to and recycling at the PM. We further identify, using biochemical and proteomic approaches, the CCT [chaperonin-containing TCP-1 (T-complex protein 1)] chaperonin complex as a novel regulator of Orai1 recycling by primarily regulating Orai1 endocytosis. We show that Orai1 interacts with CCT through its intracellular loop and that inhibition of CCT-Orai1 interaction increases Orai1 PM residence. This increased residence is functionally significant as it results in prolonged Ca2+ signaling, early formation of STIM1-Orai1 puncta, and more rapid activation of NFAT (nuclear factor of activated T cells) downstream of SOCE. Therefore, the CCT chaperonin is a novel regulator of Orai1 trafficking and, as such, a modulator of Ca2+ signaling and effector activation kinetics.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Manjula Nandakumar
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Maryam Own
- Medical Program, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Raphael J. Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Johannes Graumann
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Satanay Z. Hubrack
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
8
|
Tam KC, Ali E, Hua J, Chataway T, Barritt GJ. Evidence for the interaction of peroxiredoxin-4 with the store-operated calcium channel activator STIM1 in liver cells. Cell Calcium 2018; 74:14-28. [PMID: 29804005 DOI: 10.1016/j.ceca.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ entry through store-operated Ca2+ channels (SOCs) in the plasma membrane (PM) of hepatocytes plays a central role in the hormonal regulation of liver metabolism. SOCs are composed of Orai1, the channel pore protein, and STIM1, the activator protein, and are regulated by hormones and reactive oxygen species (ROS). In addition to Orai1, STIM1 also interacts with several other intracellular proteins. Most previous studies of the cellular functions of Orai1 and STIM1 have employed immortalised cells in culture expressing ectopic proteins tagged with a fluorescent polypeptide such as GFP. Little is known about the intracellular distributions of endogenous Orai1 and STIM1. The aims are to determine the intracellular distribution of endogenous Orai1 and STIM1 in hepatocytes and to identify novel STIM1 binding proteins. Subcellular fractions of rat liver were prepared by homogenisation and differential centrifugation. Orai1 and STIM1 were identified and quantified by western blot. Orai1 was found in the PM (0.03%), heavy (44%) and light (27%) microsomal fractions, and STIM1 in the PM (0.09%), and heavy (85%) and light (13%) microsomal fractions. Immunoprecipitation of STIM1 followed by LC/MS or western blot identified peroxiredoxin-4 (Prx-4) as a potential STIM1 binding protein. Prx-4 was found principally in the heavy microsomal fraction. Knockdown of Prx-4 using siRNA, or inhibition of Prx-4 using conoidin A, did not affect Ca2+ entry through SOCs but rendered SOCs susceptible to inhibition by H2O2. It is concluded that, in hepatocytes, a considerable proportion of endogenous Orai1 and STIM1 is located in the rough ER. In the rough ER, STIM1 interacts with Prx-4, and this interaction may contribute to the regulation by ROS of STIM1 and SOCs.
Collapse
Affiliation(s)
- Ka Cheung Tam
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Eunus Ali
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jin Hua
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Tim Chataway
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Greg J Barritt
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
9
|
Münzer P, Liu G, Towhid S, Karathanos A, Tavlaki E, Geisler T, Seizer P, May A, Bigalke B, Borst O, Gawaz M, Tolios A, Gatidis S, Lang F. Increased platelet Ca2+ channel Orai1 expression upon platelet activation and in patients with acute myocardial infarction. Thromb Haemost 2017; 110:386-9. [DOI: 10.1160/th12-09-0701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 05/05/2013] [Indexed: 11/05/2022]
|
10
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
11
|
Derler I, Jardin I, Stathopulos PB, Muik M, Fahrner M, Zayats V, Pandey SK, Poteser M, Lackner B, Absolonova M, Schindl R, Groschner K, Ettrich R, Ikura M, Romanin C. Cholesterol modulates Orai1 channel function. Sci Signal 2016; 9:ra10. [PMID: 26814231 DOI: 10.1126/scisignal.aad7808] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca(2+) release-activated Ca(2+) (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca(2+) entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cells expressing these cholesterol-binding-deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE.
Collapse
Affiliation(s)
- Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria.
| | - Isaac Jardin
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Martin Muik
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Vasilina Zayats
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-373 33 Nové Hrady, Czech Republic
| | - Saurabh K Pandey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-373 33 Nové Hrady, Czech Republic
| | - Michael Poteser
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/4, 8010 Graz, Austria
| | - Barbara Lackner
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Marketa Absolonova
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Rainer Schindl
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/4, 8010 Graz, Austria
| | - Rüdiger Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, CZ-373 33 Nové Hrady, Czech Republic
| | - Mitsu Ikura
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria.
| |
Collapse
|
12
|
Hodeify R, Selvaraj S, Wen J, Arredouani A, Hubrack S, Dib M, Al-Thani SN, McGraw T, Machaca K. A STIM1-dependent 'trafficking trap' mechanism regulates Orai1 plasma membrane residence and Ca²⁺ influx levels. J Cell Sci 2015; 128:3143-54. [PMID: 26116575 DOI: 10.1242/jcs.172320] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
The key proteins mediating store-operated Ca(2+) entry (SOCE) are the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the plasma membrane Ca(2+)-selective channel Orai1. Here, we quantitatively dissect Orai1 trafficking dynamics and show that Orai1 recycles rapidly at the plasma membrane (Kex≃0.1 min(-1)), with ∼40% of the total Orai1 pool localizing to the plasma membrane at steady state. A subset of intracellular Orai1 localizes to a sub-plasmalemal compartment. Store depletion is coupled to Orai1 plasma membrane enrichment in a STIM1-dependent fashion. This is due to trapping of Orai1 into cortical ER STIM1 clusters, leading to its removal from the recycling pool and enrichment at the plasma membrane. Interestingly, upon high STIM1 expression, Orai1 is trapped into STIM1 clusters intracellularly, thus preventing its plasma membrane enrichment following store depletion. Consistent with this, STIM1 knockdown prevents trapping of excess Orai1 into limiting STIM1 clusters in the cortical ER. SOCE-dependent Ca(2+) influx shows a similar biphasic dependence on the Orai1:STIM1 ratio. Therefore, a STIM1-dependent Orai1 'trafficking trap' mechanism controls Orai1 plasma membrane enrichment and SOCE levels, thus modulating the SOCE 'bandwidth' for downstream signaling.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Physiology & Biophysics, Weill Cornell Medical College in Qatar, PO Box 24144, Qatar
| | - Senthil Selvaraj
- Department of Physiology & Biophysics, Weill Cornell Medical College in Qatar, PO Box 24144, Qatar
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, 10021 USA
| | - Abdelilah Arredouani
- Department of Physiology & Biophysics, Weill Cornell Medical College in Qatar, PO Box 24144, Qatar
| | - Satanay Hubrack
- Department of Physiology & Biophysics, Weill Cornell Medical College in Qatar, PO Box 24144, Qatar
| | - Maya Dib
- Department of Physiology & Biophysics, Weill Cornell Medical College in Qatar, PO Box 24144, Qatar
| | - Sara N Al-Thani
- Department of Physiology & Biophysics, Weill Cornell Medical College in Qatar, PO Box 24144, Qatar
| | - Timothy McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, 10021 USA
| | - Khaled Machaca
- Department of Physiology & Biophysics, Weill Cornell Medical College in Qatar, PO Box 24144, Qatar
| |
Collapse
|
13
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
14
|
Apodaca G, Brown WJ. Membrane traffic research: challenges for the next decade. Front Cell Dev Biol 2014; 2:52. [PMID: 25364759 PMCID: PMC4207031 DOI: 10.3389/fcell.2014.00052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023] Open
Affiliation(s)
- Gerard Apodaca
- The Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh Pittsburgh, PA, USA
| | - William J Brown
- Molecular Biology and Genetics, Cornell University Ithaca, NY, USA
| |
Collapse
|
15
|
Baskaran P, Thyagarajan B. Acute and chronic effects of botulinum neurotoxin a on the mammalian neuromuscular junction. Muscle Nerve 2014; 50:206-15. [PMID: 24218344 DOI: 10.1002/mus.24119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/30/2013] [Accepted: 11/07/2013] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Botulinum neurotoxin A (BoNT/A) cleaves SNAP-25 and inhibits acetylcholine (ACh) release at the neuromuscular junctions (NMJ) to cause neuroparalysis. Previous reports indicate a dyssynchrony between the inhibitory effect of BoNT/A on ACh release and SNAP-25 cleavage. METHODS We tested the in vitro (acute; 90 min) and in vivo (chronic; 12 h) effects of BoNT/A on stimulus-evoked ACh release (SEAR), twitch tension, and SNAP-25 cleavage in isolated extensor digitorum longus (EDL) nerve-muscle preparations (NMP). RESULTS In vitro or in vivo BoNT/A poisoning inhibited SEAR and twitch tension. Conversely, SNAP-25 cleavage and inhibition of spontaneous release frequency were observed only in NMP poisoned with BoNT/A in vivo. Moreover, chronic treatment of BoNT/A inhibited ionomycin stimulated Ca(2+) signals in Neuro 2a cells. CONCLUSIONS These results demonstrate that the inhibition of SEAR precedes SNAP-25 cleavage and suggest involvement of a more complex mechanism for the inhibitory effect of BoNT/A at the NMJ.
Collapse
Affiliation(s)
- Padmamalini Baskaran
- School of Pharmacy, 1000 East University Avenue, University of Wyoming, Laramie, Wyoming, 82071
| | | |
Collapse
|
16
|
STIM1 and Orai1 mediate thrombin-induced Ca2+ influx in rat cortical astrocytes. Cell Calcium 2012; 52:457-67. [DOI: 10.1016/j.ceca.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/25/2012] [Accepted: 08/08/2012] [Indexed: 12/23/2022]
|
17
|
Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012; 13:549-65. [PMID: 22914293 DOI: 10.1038/nrm3414] [Citation(s) in RCA: 523] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal interaction molecule (STIM) proteins function in cells as dynamic coordinators of cellular calcium (Ca(2+)) signals. Spanning the endoplasmic reticulum (ER) membrane, they sense tiny changes in the levels of Ca(2+) stored within the ER lumen. As ER Ca(2+) is released to generate primary Ca(2+) signals, STIM proteins undergo an intricate activation reaction and rapidly translocate into junctions formed between the ER and the plasma membrane. There, STIM proteins tether and activate the highly Ca(2+)-selective Orai channels to mediate finely controlled Ca(2+) signals and to homeostatically balance cellular Ca(2+). Details are emerging on the remarkable organization within these STIM-induced junctional microdomains and the identification of new regulators and alternative target proteins for STIM.
Collapse
Affiliation(s)
- Jonathan Soboloff
- Department of Biochemistry, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
18
|
López JJ, Dionisio N, Berna-Erro A, Galán C, Salido GM, Rosado JA. Two-pore channel 2 (TPC2) modulates store-operated Ca2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1976-83. [DOI: 10.1016/j.bbamcr.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
|
20
|
Lewis RS. Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003970. [PMID: 21791698 DOI: 10.1101/cshperspect.a003970] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Store-operated calcium channels (SOCs) are a nearly ubiquitous Ca(2+) entry pathway stimulated by numerous cell surface receptors via the reduction of Ca(2+) concentration in the ER. The discovery of STIM proteins as ER Ca(2+) sensors and Orai proteins as structural components of the Ca(2+) release-activated Ca(2+) (CRAC) channel, a prototypic SOC, opened the floodgates for exploring the molecular mechanism of this pathway and its functions. This review focuses on recent advances made possible by the use of STIM and Orai as molecular tools. I will describe our current understanding of the store-operated Ca(2+) entry mechanism and its emerging roles in physiology and disease, areas of uncertainty in which further progress is needed, and recent findings that are opening new directions for research in this rapidly growing field.
Collapse
Affiliation(s)
- Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305, USA.
| |
Collapse
|
21
|
Omilusik K, Priatel J, Chen X, Wang Y, Xu H, Choi K, Gopaul R, McIntyre-Smith A, Teh HS, Tan R, Bech-Hansen N, Waterfield D, Fedida D, Hunt S, Jefferies W. The CaV1.4 Calcium Channel Is a Critical Regulator of T Cell Receptor Signaling and Naive T Cell Homeostasis. Immunity 2011; 35:349-60. [DOI: 10.1016/j.immuni.2011.07.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 06/09/2011] [Accepted: 07/22/2011] [Indexed: 12/12/2022]
|
22
|
Balghi H, Robert R, Rappaz B, Zhang X, Wohlhuter-Haddad A, Evagelidis A, Luo Y, Goepp J, Ferraro P, Roméo P, Trebak M, Wiseman PW, Thomas DY, Hanrahan JW. Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways. FASEB J 2011; 25:4274-91. [PMID: 21873556 DOI: 10.1096/fj.11-187682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR). The most common mutation, ΔF508, causes retention of CFTR in the endoplasmic reticulum (ER). Some CF abnormalities can be explained by altered Ca(2+) homeostasis, although it remains unknown how CFTR influences calcium signaling. This study examined the novel hypothesis that store-operated calcium entry (SOCE) through Orai1 is abnormal in CF. The significance of Orai1-mediated SOCE for increased interleukin-8 (IL-8) expression in CF was also investigated. CF and non-CF human airway epithelial cell line and primary cells (obtained at lung transplantation) were used in Ca(2+) imaging, electrophysiology, and fluorescence imaging experiments to explore differences in Orai1 function in CF vs. non-CF cells. Protein expression and localization was assessed by Western blots, cell surface biotinylation, ELISA, and image correlation spectroscopy (ICS). We show here that store-operated Ca(2+) entry (SOCE) is elevated in CF human airway epithelial cells (hAECs; ≈ 1.8- and ≈ 2.5-fold for total Ca(2+)(i) increase and Ca(2+) influx rate, respectively, and ≈ 2-fold increase in the I(CRAC) current) and is caused by increased exocytotic insertion (≈ 2-fold) of Orai1 channels into the plasma membrane, which is normalized by rescue of ΔF508-CFTR trafficking to the cell surface. Augmented SOCE in CF cells is a major factor leading to increased IL-8 secretion (≈ 2-fold). CFTR normally down-regulates the Orai1/stromal interaction molecule 1 (STIM1) complex, and loss of this inhibition due to the absence of CFTR at the plasma membrane helps to explain the potentiated inflammatory response in CF cells.
Collapse
Affiliation(s)
- Haouaria Balghi
- Department of Physiology, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
A Synthetic Photoactivated Protein to Generate Local or Global Ca2+ Signals. ACTA ACUST UNITED AC 2011; 18:880-90. [DOI: 10.1016/j.chembiol.2011.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/04/2011] [Accepted: 04/22/2011] [Indexed: 01/30/2023]
|
24
|
Madl J, Weghuber J, Fritsch R, Derler I, Fahrner M, Frischauf I, Lackner B, Romanin C, Schütz GJ. Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem 2010; 285:41135-42. [PMID: 20961852 PMCID: PMC3003411 DOI: 10.1074/jbc.m110.177881] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/05/2010] [Indexed: 01/11/2023] Open
Abstract
Store-operated calcium entry is essential for many signaling processes in nonexcitable cells. The best studied store-operated calcium current is the calcium release-activated calcium (CRAC) current in T-cells and mast cells, with Orai1 representing the essential pore forming subunit. Although it is known that functional CRAC channels in store-depleted cells are composed of four Orai1 subunits, the stoichiometric composition in quiescent cells is still discussed controversially: both a tetrameric and a dimeric stoichiometry of resting state Orai1 have been reported. We obtained here robust and similar FRET values on labeled tandem repeat constructs of Orai1 before and after store depletion, suggesting an unchanged tetrameric stoichiometry. Moreover, we directly visualized the stoichiometry of mobile Orai1 channels in live cells using a new single molecule recording modality that combines single molecule tracking and brightness analysis. By alternating imaging and photobleaching pulses, we recorded trajectories of single, fluorescently labeled Orai1 channels, with each trajectory consisting of bright and dim segments, corresponding to higher and lower numbers of colocalized active GFP label. The according brightness values were used for global fitting and statistical analysis, yielding a tetrameric subunit composition of mobile Orai1 channels in resting cells.
Collapse
Affiliation(s)
- Josef Madl
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Julian Weghuber
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Reinhard Fritsch
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Isabella Derler
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Marc Fahrner
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Irene Frischauf
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Barbara Lackner
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Christoph Romanin
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | - Gerhard J. Schütz
- From the Biophysics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| |
Collapse
|
25
|
Yu F, Sun L, Machaca K. Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. ACTA ACUST UNITED AC 2010; 191:523-35. [PMID: 21041445 PMCID: PMC3003315 DOI: 10.1083/jcb.201006022] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The egg's competency to activate at fertilization and transition to embryogenesis is dependent on its ability to generate a fertilization-specific Ca(2+) transient. To endow the egg with this capacity, Ca(2+) signals remodel during oocyte maturation, including inactivation of the primary Ca(2+) influx pathway store-operated Ca(2+) entry (SOCE). SOCE inactivation is coupled to internalization of the SOCE channel, Orai1. In this study, we show that Orai1 internalizes during meiosis through a caveolin (Cav)- and dynamin-dependent endocytic pathway. Cav binds to Orai1, and we map a Cav consensus-binding site in the Orai1 N terminus, which is required for Orai1 internalization. Furthermore, at rest, Orai1 actively recycles between an endosomal compartment and the cell membrane through a Rho-dependent endocytic pathway. A significant percentage of total Orai1 is intracellular at steady state. Store depletion completely shifts endosomal Orai1 to the cell membrane. These results define vesicular trafficking mechanisms in the oocyte that control Orai1 subcellular localization at steady state, during meiosis, and after store depletion.
Collapse
Affiliation(s)
- Fang Yu
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | | | | |
Collapse
|
26
|
Galan C, Woodard GE, Dionisio N, Salido GM, Rosado JA. Lipid rafts modulate the activation but not the maintenance of store-operated Ca(2+) entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1083-93. [PMID: 20600358 DOI: 10.1016/j.bbamcr.2010.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/02/2010] [Accepted: 06/11/2010] [Indexed: 11/15/2022]
Abstract
Different studies have reported that proteins involved in Ca(2+) entry are localized in discrete plasma membrane domains known as lipid rafts, which have been suggested to support store-operated Ca(2+) entry by facilitating STIM1 clustering in endoplasmic reticulum-plasma membrane junctions as well as the interaction of STIM1 with TRPC1. Here we report that treatment of HEK293 cells with thapsigargin (TG) results in the activation of Ca(2+) entry with two components, an early, La(3+)-sensitive, component and a late component that shows both La(3+)-sensitive and -insensitive constituents. Preincubation with methyl-beta-cyclodextrin (MbetaCD) prevented TG-induced activation of Ca(2+) entry but, in contrast, enhanced this process after its activation. Addition of MbetaCD after store depletion did not modify the La(3+)-sensitive store-operated divalent cation entry but increased La(3+)-insensitive non-capacitative Ca(2+) entry. Cell stimulation with TG results in a transient increase in Orai1 co-immunoprecipitation with STIM1, TRPC1 and TRPC6. TG-induced association of these proteins was significantly attenuated by preincubation for 30 min with MbetaCD, without altering surface expression of Orai1 or TRPCs. In contrast, the association of Orai1 with STIM1 or TRPC1 was unaffected when MbetaCD was added after store depletion with TG. Addition of MbetaCD to TG-treated cells promoted dissociation between Orai1 and TRPC6, as well as non-capacitative Ca(2+) entry. TRPC6 expression silencing indicates that MbetaCD-enhanced non-capacitative Ca(2+) entry was mediated by TRPC6. In conclusion, lipid raft domains are necessary for the activation but not the maintenance of SOCE probably due to the support of the formation of Ca(2+) signalling complexes involving Orai1, TRPCs and STIM1.
Collapse
Affiliation(s)
- Carmen Galan
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10071 Caceres, Spain
| | | | | | | | | |
Collapse
|
27
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
28
|
Woodard GE, López JJ, Jardín I, Salido GM, Rosado JA. TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. J Biol Chem 2009; 285:8045-53. [PMID: 20022948 DOI: 10.1074/jbc.m109.033605] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a body of evidence suggesting that Ca(2+) handling proteins assemble into signaling complexes required for a fine regulation of Ca(2+) signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca(2+)-permeable channels mediating Ca(2+) entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP(3)Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP(3)Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP(3)Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP(3)R, but not with the type II IP(3)R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP(3)R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP(3)R, as well as Ca(2+) release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP(3)R complex, where TRPC3 plays a central role. This Ca(2+) signaling complex might be important for both agonist-induced Ca(2+) release and entry.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892-2560, USA
| | | | | | | | | |
Collapse
|
29
|
Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca(2+) entry pathways. Biochem J 2009; 420:267-76. [PMID: 19260825 DOI: 10.1042/bj20082179] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRPC (canonical transient receptor potential) channel subunits have been shown to assemble into homo- or hetero-meric channel complexes, including different Ca2+-handling proteins, required for the activation of CCE (capacitative Ca2+ entry) or NCCE (non-CCE) pathways. In the present study we found evidence for the dynamic interaction between endogenously expressed hTRPC6 (human TRPC6) with either both Orai1 and STIM1 (stromal interaction molecule 1) or hTRPC3 to participate in CCE or NCCE. Electrotransjection of cells with an anti-hTRPC6 antibody, directed towards the C-terminal region, reduces CCE induced by TPEN [N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine], which reduces the intraluminal free Ca2+ concentration. Cell stimulation with thrombin or extensive Ca2+-store depletion by TG (thapsigargin)+ionomycin enhanced the interaction between hTRPC6 and the CCE proteins Orai1 and STIM1. In contrast, stimulation with the diacylglycerol analogue OAG (1-oleoyl-2-acetyl-sn-glycerol) displaces hTRPC6 from Orai1 and STIM1 and enhances the association between hTRPC6 and hTRPC3. The interaction between hTRPC6 and hTRPC3 was abolished by dimethyl-BAPTA [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid] loading, which indicates that this phenomenon is Ca2+-dependent. These findings support the hypothesis that hTRPC6 participates both in CCE and NCCE through its interaction with the Orai1-STIM1 complex or hTRPC3 respectively.
Collapse
|
30
|
Chiu TY, Teng HC, Huang PC, Kao FJ, Yang DM. Dominant Role of Orai1 with STIM1 on the Cytosolic Entry and Cytotoxicity of Lead Ions. Toxicol Sci 2009; 110:353-62. [DOI: 10.1093/toxsci/kfp099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Salido GM, Sage SO, Rosado JA. Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 2009; 21:457-61. [PMID: 19049864 DOI: 10.1016/j.cellsig.2008.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/10/2008] [Indexed: 01/02/2023]
|