1
|
Seika P, Janikova M, Asokan S, Janovicova L, Csizmadia E, O’Connell M, Robson SC, Glickman J, Wegiel B. Free heme exacerbates colonic injury induced by anti-cancer therapy. Front Immunol 2023; 14:1184105. [PMID: 37342339 PMCID: PMC10277564 DOI: 10.3389/fimmu.2023.1184105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Gastrointestinal inflammation and bleeding are commonly induced by cancer radiotherapy and chemotherapy but mechanisms are unclear. We demonstrated an increased number of infiltrating heme oxygenase-1 positive (HO-1+) macrophages (Mø, CD68+) and the levels of hemopexin (Hx) in human colonic biopsies from patients treated with radiation or chemoradiation versus non-irradiated controls or in the ischemic intestine compared to matched normal tissues. The presence of rectal bleeding in these patients was also correlated with higher HO-1+ cell infiltration. To functionally assess the role of free heme released in the gut, we employed myeloid-specific HO-1 knockout (LysM-Cre : Hmox1flfl), hemopexin knockout (Hx-/-) and control mice. Using LysM-Cre : Hmox1flfl conditional knockout (KO) mice, we showed that a deficiency of HO-1 in myeloid cells led to high levels of DNA damage and proliferation in colonic epithelial cells in response to phenylhydrazine (PHZ)-induced hemolysis. We found higher levels of free heme in plasma, epithelial DNA damage, inflammation, and low epithelial cell proliferation in Hx-/- mice after PHZ treatment compared to wild-type mice. Colonic damage was partially attenuated by recombinant Hx administration. Deficiency in Hx or Hmox1 did not alter the response to doxorubicin. Interestingly, the lack of Hx augmented abdominal radiation-mediated hemolysis and DNA damage in the colon. Mechanistically, we found an altered growth of human colonic epithelial cells (HCoEpiC) treated with heme, corresponding to an increase in Hmox1 mRNA levels and heme:G-quadruplex complexes-regulated genes such as c-MYC, CCNF, and HDAC6. Heme-treated HCoEpiC cells exhibited growth advantage in the absence or presence of doxorubicin, in contrast to poor survival of heme-stimulated RAW247.6 Mø. In summary, our data indicate that accumulation of heme in the colon following hemolysis and/or exposure to genotoxic stress amplifies DNA damage, abnormal proliferation of epithelial cells, and inflammation as a potential etiology for gastrointestinal syndrome (GIS).
Collapse
Affiliation(s)
- Philippa Seika
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Sahana Asokan
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mckenzie O’Connell
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Dang D, Meng Z, Zhang C, Li Z, Wei J, Wu H. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. FASEB J 2022; 36:e22649. [PMID: 36383399 DOI: 10.1096/fj.202200853rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Transfusion-associated necrotising enterocolitis (TANEC) is a life-threatening disease with a poor prognosis in preterm infants. This study explored whether and how heme induces ferroptosis in TANEC gut injury. A TANEC mouse model and a cell culture system for heme and Caco-2 cells were established. Ferroptosis was assessed by measuring iron and malondialdehyde (MDA) levels and mitochondrial morphology in intestinal tissues and Caco-2 cells. Mitochondrial dysfunction was evaluated by measuring mitochondrial reactive oxygen species (ROS) production and membrane potential using JC-1. The intestinal injury grade was higher in the anemia-transfusion group than in the control group (p < .0001). Higher intestinal iron concentration (p < .0001), elevated levels of lipid peroxidation MDA (p = .0021), and ferroptotic mitochondrial morphological changes were found in mice of the anemia-transfusion group; specific ferroptosis inhibitor could alleviate anemia-transfusion gut injury, suggesting that ferroptosis play a role in the TANEC gut injury. Next, we explored whether heme released by hemolysis of erythrocytes induces ferroptosis in intestinal epithelial cells in vitro. The viability of Caco-2 cells significantly decreased after heme treatment (p < .0001). Iron accumulation, MDA elevated levels, and mitochondrial dysfunction also existed in the co-culture system, which ferroptosis inhibitors could reduce. In summary, ferroptosis was discovered in TANEC, and heme could induce ferroptosis in intestinal epithelial cells via mitochondrial dysfunction. Heme-inducing ferroptosis may be a possible mechanism and therapeutic target for TANEC.
Collapse
Affiliation(s)
- Dan Dang
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital of Jilin University, Changchun, China
| | - Chuan Zhang
- Department of Pediatric Surgery, First Hospital of Jilin University, Changchun, China
| | - Zhenyu Li
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Jiaqi Wei
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Hui Wu
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Ruiz-Limón P, Mena-Vázquez N, Moreno-Indias I, Manrique-Arija S, Lisbona-Montañez JM, Cano-García L, Tinahones FJ, Fernández-Nebro A. Collinsella is associated with cumulative inflammatory burden in an established rheumatoid arthritis cohort. Biomed Pharmacother 2022; 153:113518. [DOI: 10.1016/j.biopha.2022.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
|
4
|
Succar BB, Saldanha-Gama RFG, Valle AS, Wermelinger LS, Barja-Fidalgo C, Kurtenbach E, Zingali RB. The recombinant disintegrin, jarastatin, inhibits platelet adhesion and endothelial cell migration. Toxicon 2022; 217:87-95. [PMID: 35981667 DOI: 10.1016/j.toxicon.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Integrins are transmembrane heterodimeric glycoproteins, present in most cell types that act as mechanoreceptors, connecting extracellular matrix proteins to the cytoskeleton of the cell, mediating several physiological and pathological processes. The disintegrins are peptides capable of modulating the activity of integrins, such as αIIbβ3, responsible for the platelet aggregation and αvβ3, related to angiogenesis. The aim of this study was to produce the recombinant disintegrin jarastatin (rJast), to evaluate its secondary structure and biological activity. rJast was expressed in the yeast Komagataella phaffii (earlier Pichia pastoris) purified using molecular exclusion chromatography and the internal sequence and molecular mass were confirmed by mass spectrometry. The yield was approximately 40 mg/L of culture. rJast inhibited platelet aggregation induced by 2-4 μM ADP, 10 nM thrombin, and 1 μg/mL collagen (IC50 of 244.8 nM, 166.3 nM and 223.5 nM, respectively). It also blocked the adhesion of platelets to collagen under continuous flow in approximately 60% when used 1 μM. We also evaluated the effect of rJast on HMEC-1 cells. rJast significantly inhibited the adhesion of these cells to vitronectin, as well as cell migration (IC50 1.77 μM) without changing the viability. Conclusions: rJast was successfully expressed with activity in human platelets aggregation identical to the native molecule. Also, rJast inhibits adhesion and migration of endothelial cells. Thus, being relevant for the development of anti-thrombotic and anti-angiogenic drugs.
Collapse
Affiliation(s)
- Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil
| | - Roberta F G Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Aline Sol Valle
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Luciana Serrão Wermelinger
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Eleonora Kurtenbach
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil.
| |
Collapse
|
5
|
Jiang Y, Duan LJ, Pi J, Le YZ, Fong GH. Dependence of Retinal Pigment Epithelium Integrity on the NRF2-Heme Oxygenase-1 Axis. Invest Ophthalmol Vis Sci 2022; 63:30. [PMID: 36036912 PMCID: PMC9434985 DOI: 10.1167/iovs.63.9.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Tight junctions (TJs) form the structural basis of retinal pigment epithelium (RPE) barrier functions. Although oxidative stress contributes to age-related macular degeneration, it is unclear how RPE TJ integrity is controlled by redox balance. In this study, we investigated the protective roles of nuclear factor erythroid 2–related factor 2 (NRF2), a transcription factor, and heme oxygenase-1 (HO1), a heme-degrading enzyme encoded by the NRF2 target gene HMOX1. Methods ARPE19 cell cultures and mice, including wild-type, Nrf2−/−, and RPE-specific NRF2-deficient mice, were treated with chemicals that impose oxidative stress or impact heme metabolism. In addition, NRF2 and HO1 expression in ARPE19 cells was knocked down by siRNA. TJ integrity was examined by anti–zonula occludens-1 staining of cultured cells or flatmount RPE tissues from mice. RPE barrier functions were evaluated by transepithelium electrical resistance in ARPE19 cells and immunofluorescence staining for albumin or dextran in eye histological sections. Results TJ structures and RPE barrier functions were compromised due to oxidant exposure and NRF2 deficiency but were rescued by HO1 inducer. Furthermore, treatment with HO1 inhibitor or heme precursor is destructive to TJ structures and RPE barrier properties. Interestingly, both NRF2 and HO1 were upregulated under oxidative stress, probably as an adaptive response to mitigate oxidant-inflicted damages. Conclusions Our data indicate that the NRF2–HO1 axis protects TJ integrity and RPE barrier functions by driving heme degradation.
Collapse
Affiliation(s)
- Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States.,Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States
| | - Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yun-Zheng Le
- Departments of Medicine, Cell Biology, and Ophthalmology and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States.,Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States
| |
Collapse
|
6
|
Ul Islam T, Wang Y, Aggarwal I, Cui Z, Eslami Amirabadi H, Garg H, Kooi R, Venkataramanachar BB, Wang T, Zhang S, Onck PR, den Toonder JMJ. Microscopic artificial cilia - a review. LAB ON A CHIP 2022; 22:1650-1679. [PMID: 35403636 PMCID: PMC9063641 DOI: 10.1039/d1lc01168e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 05/14/2023]
Abstract
Cilia are microscopic hair-like external cell organelles that are ubiquitously present in nature, also within the human body. They fulfill crucial biological functions: motile cilia provide transportation of fluids and cells, and immotile cilia sense shear stress and concentrations of chemical species. Inspired by nature, scientists have developed artificial cilia mimicking the functions of biological cilia, aiming at application in microfluidic devices like lab-on-chip or organ-on-chip. By actuating the artificial cilia, for example by a magnetic field, an electric field, or pneumatics, microfluidic flow can be generated and particles can be transported. Other functions that have been explored are anti-biofouling and flow sensing. We provide a critical review of the progress in artificial cilia research and development as well as an evaluation of its future potential. We cover all aspects from fabrication approaches, actuation principles, artificial cilia functions - flow generation, particle transport and flow sensing - to applications. In addition to in-depth analyses of the current state of knowledge, we provide classifications of the different approaches and quantitative comparisons of the results obtained. We conclude that artificial cilia research is very much alive, with some concepts close to industrial implementation, and other developments just starting to open novel scientific opportunities.
Collapse
Affiliation(s)
- Tanveer Ul Islam
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Ye Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Ishu Aggarwal
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Zhiwei Cui
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Hossein Eslami Amirabadi
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Hemanshul Garg
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roel Kooi
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Bhavana B Venkataramanachar
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Tongsheng Wang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| | - Shuaizhong Zhang
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Wang J, Sun J, Sun L, Ye Y, Chen H, Xiao J, He G, Hu J, Chen G, Zhou H, Dong X, Ma W, Zhang B, Liu T. The Seroprevalence of Dengue Virus Infection and Its Association With Iron (Fe) Level in Pregnant Women in Guangzhou, China. Front Med (Lausanne) 2021; 8:759728. [PMID: 34957145 PMCID: PMC8702999 DOI: 10.3389/fmed.2021.759728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Dengue fever is regarded as the most prevalent mosquito-borne viral disease in humans. However, information of dengue virus (DENV) infection in pregnant women and the influence factors remain unclear. In this study, we extracted information of 2,076 pregnant women from the Prenatal Environment and Offspring Health (PEOH) birth cohort conducted since 2016 in Guangzhou, China. Peripheral blood and clean midstream urine samples of participants were collected during their hospitalization for childbirth. Indirect enzyme-linked immunosorbent assay (ELISA) was used to detect immunoglobulin G (IgG) antibodies of DENV in serum samples, and inductively coupled plasma mass spectrometry (ICP-MS) was applied to determine the Fe concentrations in the urine samples, which were then adjusted for by urine creatinine and transformed by natural logarithm (ln-Fe). The seroprevalence of DENV IgG antibody in all included participants was 2.22% (46/2,076). We observed higher seroprevalence of IgG antibody in women aged ≥35 years (2.9%), education ≤ 12 years (2.5%), yearly income per capita <100,000 yuan (2.4%), no use of air-conditioner (2.4%), no use of mosquito coils (2.3%), and no exercise during pregnancy (4.1%). A U-shaped relationship was found between ln-Fe concentration and the risk of positive IgG antibody. Compared with women with ln-Fe concentration of 2.0–2.9 μg/g creatinine, slightly higher risks of positive IgG antibody were found among women with ≤2.0 (RR = 4.16, 95% CI: 0.78, 19.91), 3.0–3.9 (RR = 1.93, 95% CI: 0.65, 7.08), 4.0–4.9 (RR = 2.19, 95% CI: 0.65, 8.51), and ≥5.0 μg/g creatinine of ln-Fe (RR = 2.42, 95% CI: 0.46, 11.33). Our findings suggested that the seroprevalence of dengue IgG antibody in pregnant women was comparable to the general population in Guangzhou, China. The risk of DENV infection may be associated with maternal demographic characteristics and behaviors. Both maternal low and high Fe concentrations may be positively associated with the risk of DENV infection.
Collapse
Affiliation(s)
- Jiong Wang
- School of Public Health, Southern Medical University, Guangzhou, China.,Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yufeng Ye
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guanhao He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guimin Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - He Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.,School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
The Landscape of Interactions between Hypoxia-Inducible Factors and Reactive Oxygen Species in the Gastrointestinal Tract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8893663. [PMID: 33542787 PMCID: PMC7843172 DOI: 10.1155/2021/8893663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract (GT) is the major organ involved in digestion, absorption, and immunity, which is prone to oxidative destruction by high levels of reactive oxygen species (ROS) from luminal oxidants, such as food, drugs, and pathogens. Excessive ROS will lead to oxidative stresses and disrupt essential biomolecules, which also act as cellular signaling molecules in response to growth factors, hormones, and oxygen tension changes. Hypoxia-inducible factors (HIFs) are critical regulators mediating responses to cellular oxygen tension changes, which are also involved in energy metabolism, immunity, renewal, and microbial homeostasis in the GT. This review discusses interactions between HIF (mainly HIF-1α) and ROS and relevant diseases in the GT combined with our lab's work. It might help to develop new therapies for gastrointestinal diseases associated with ROS and HIF-1α.
Collapse
|
9
|
Wang Z, Gao J, Teng H, Peng J. RETRACTED ARTICLE: Role of aminolevulinic acid synthase 1 in doxorubicin-induced oxidative stress to the ardiomyocyte. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2231. [PMID: 31907585 DOI: 10.1007/s00210-019-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Zuoyan Wang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Junyi Gao
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Haobo Teng
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Jianjun Peng
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China.
| |
Collapse
|
10
|
Prestes EB, Alves LS, Rodrigues DAS, Dutra FF, Fernandez PL, Paiva CN, Kagan JC, Bozza MT. Mitochondrial Reactive Oxygen Species Participate in Signaling Triggered by Heme in Macrophages and upon Hemolysis. THE JOURNAL OF IMMUNOLOGY 2020; 205:2795-2805. [PMID: 33037139 DOI: 10.4049/jimmunol.1900886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Hemolysis causes an increase of intravascular heme, oxidative damage, and inflammation in which macrophages play a critical role. In these cells, heme can act as a prototypical damage-associated molecular pattern, inducing TLR4-dependent cytokine production through the MyD88 pathway, independently of TRIF. Heme promotes reactive oxygen species (ROS) generation independently of TLR4. ROS and TNF production contribute to heme-induced necroptosis and inflammasome activation; however, the role of ROS in proinflammatory signaling and cytokine production remains unknown. In this study, we demonstrate that heme activates at least three signaling pathways that contribute to a robust MAPK phosphorylation and cytokine expression in mouse macrophages. Although heme did not induce a detectable Myddosome formation, the TLR4/MyD88 axis was important for phosphorylation of p38 and secretion of cytokines. ROS generation and spleen tyrosine kinase (Syk) activation induced by heme were critical for most proinflammatory signaling pathways, as the antioxidant N-acetyl-l-cysteine and a Syk inhibitor differentially blocked heme-induced ROS, MAPK phosphorylation, and cytokine production in macrophages. Early generated mitochondrial ROS induced by heme was Syk dependent, selectively promoted the phosphorylation of ERK1/2 without affecting JNK or p38, and contributed to CXCL1 and TNF production. Finally, lethality caused by sterile hemolysis in mice required TLR4, TNFR1, and mitochondrial ROS, supporting the rationale to target these pathways to mitigate tissue damage of hemolytic disorders.
Collapse
Affiliation(s)
- Elisa B Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Letícia S Alves
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Danielle A S Rodrigues
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Fabianno F Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Patricia L Fernandez
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, 0843-01103 Panama City, Panama; and
| | - Claudia N Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| |
Collapse
|
11
|
Sweeny EA, Schlanger S, Stuehr DJ. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 2020; 36:101656. [PMID: 32738790 PMCID: PMC7394750 DOI: 10.1016/j.redox.2020.101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturation, and specifically its response to changes in intracellular heme levels have remained unclear. Here we establish an experimental system in mammalian cells that allows us to probe the influence of heme availability on ROS production by NOX5. We identified a mode of dynamic regulatory control over NOX5 activity through modulation of its heme saturation and oligomeric state by intracellular heme levels and Hsp90 binding. This regulatory mechanism allows for fine-tuning and reversible modulation of NOX5 activity in response to stimuli.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
12
|
Bozza MT, Jeney V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front Immunol 2020; 11:1323. [PMID: 32695110 PMCID: PMC7339442 DOI: 10.3389/fimmu.2020.01323] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Damage associated molecular patterns (DAMPs) are endogenous molecules originate from damaged cells and tissues with the ability to trigger and/or modify innate immune responses. Upon hemolysis hemoglobin (Hb) is released from red blood cells (RBCs) to the circulation and give a rise to the production of different Hb redox states and heme which can act as DAMPs. Heme is the best characterized Hb-derived DAMP that targets different immune and non-immune cells. Heme is a chemoattractant, activates the complement system, modulates host defense mechanisms through the activation of innate immune receptors and the heme oxygenase-1/ferritin system, and induces innate immune memory. The contribution of oxidized Hb forms is much less studied, but some evidence show that these species might play distinct roles in intravascular hemolysis-associated pathologies independently of heme release. This review aims to summarize our current knowledge about the formation and pro-inflammatory actions of heme and other Hb-derived DAMPs.
Collapse
Affiliation(s)
- Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Rocco-Machado N, Cosentino-Gomes D, Nascimento MT, Paes-Vieira L, Khan YA, Mittra B, Andrews NW, Meyer-Fernandes JR. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity. Free Radic Biol Med 2019; 143:341-353. [PMID: 31446054 DOI: 10.1016/j.freeradbiomed.2019.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023]
Abstract
Leishmania amazonensis is one of leishmaniasis' causative agents, a disease that has no cure and leads to the appearance of cutaneous lesions. Recently, our group showed that heme activates a Na+/K+ ATPase in these parasites through a signaling cascade involving hydrogen peroxide (H2O2) generation. Heme has a pro-oxidant activity and signaling capacity, but the mechanism by which this molecule increases H2O2 levels in L. amazonensis has not been elucidated. Here we investigated the source of H2O2 stimulated by heme, ruling out the participation of mitochondria and raising the possibility of a role for a NADPH oxidase (Nox) activity. Despite the absence of a classical Nox sequence in trypanosomatid genomes, L. amazonensis expresses a surface ferric iron reductase (LFR1). Interestingly, Nox enzymes are thought to have evolved from ferric iron reductases because they share same core domain and are very similar in structure. The main difference is that Nox catalyses electron flow from NADPH to oxygen, generating reactive oxygen species (ROS), while ferric iron reductase promotes electron flow to ferric iron, generating ferrous iron. Using L. amazonensis overexpressing or knockout for LFR1 and heterologous expression of LFR1 in mammalian embryonic kidney (HEK 293) cells, we show that this enzyme is bifunctional, being able to generate both ferrous iron and H2O2. It was previously described that protozoans knockout for LFR1 have their differentiation to virulent forms (amastigote and metacyclic promastigote) impaired. In this work, we observed that LFR1 overexpression stimulates protozoan differentiation to amastigote forms, reinforcing the importance of this enzyme in L. amazonensis life cycle regulation. Thus, we not only identified a new source of ROS production in Leishmania, but also described, for the first time, an enzyme with both ferric iron reductase and Nox activities.
Collapse
Affiliation(s)
- N Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - D Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of Chemistry, Department of Biochemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - M T Nascimento
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - L Paes-Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Y A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - B Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, 20742, College Park, MD, United States
| | - J R Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Kim H, Yin K, Falcon DM, Xue X. The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol Appl Pharmacol 2019; 374:77-85. [PMID: 31054940 DOI: 10.1016/j.taap.2019.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023]
Abstract
Several large epidemiological and animal studies demonstrate a direct correlation between dietary heme iron intake and/or systemic iron levels and cancer risk in several cancers including colorectal cancer (CRC). However, the precise mechanisms for how heme iron contributes to CRC and how cancer cells respond to heme iron-induced stress are still unclear. Previously we have shown that one of the stress-inducible proteins, Sestrin2 (SESN2), is a novel tumor suppressor in colon by limiting endoplasmic reticulum stress and mammalian target of rapamycin complex 1 (mTORC1) signaling and tumor growth. But the relationship between heme iron and SESN2, especially in the context of colon carcinogenesis, was not investigated previously. Here, we found that hemin dose-dependently increased SESN2 expression in an oxidative stress and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2, NRF2)-dependent manner. Since SESN2 overexpression reduced hemin-induced oxidative stress, SESN2 could be an important target of NRF2 exerting antioxidant function. Indeed, expression of several oxidative stress responsive proteins such as NRF2 and its target genes was reduced by SESN2. Although we formerly reported that SESN2 expression was reduced after p53 mutation in colon tumors, mouse colon tumors, which have intact p53 and NRF2, induced SESN2 expression in response to iron stimulus. Although SESN2 overexpression decreased murine colon tumor cell growth both in vitro and in vivo, it rendered colon cancer cells more resistant to hemin-induced apoptosis and therefore promoted tumor growth during hemin treatment. Taken together, although SESN2 generally suppresses tumorigenesis, it can produce tumor-promoting role in iron-rich environment by suppressing oxidative stress-associated cancer cell death.
Collapse
Affiliation(s)
- Hyeoncheol Kim
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Kunlun Yin
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Daniel M Falcon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, United States of America.
| |
Collapse
|
15
|
Berger M, de Moraes JA, Beys-da-Silva WO, Santi L, Terraciano PB, Driemeier D, Cirne-Lima EO, Passos EP, Vieira MAR, Barja-Fidalgo TC, Guimarães JA. Renal and vascular effects of kallikrein inhibition in a model of Lonomia obliqua venom-induced acute kidney injury. PLoS Negl Trop Dis 2019; 13:e0007197. [PMID: 30763408 PMCID: PMC6392336 DOI: 10.1371/journal.pntd.0007197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/27/2019] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lonomia obliqua venom is nephrotoxic and acute kidney injury (AKI) is the main cause of death among envenomed victims. Mechanism underlying L. obliqua-induced AKI involves renal hypoperfusion, inflammation, tubular necrosis and loss of glomerular filtration and tubular reabsorption capacities. In the present study, we aimed to investigate the contribution of kallikrein to the hemodynamic instability, inflammation and consequent renal and vascular impairment. METHODOLOGY/PRINCIPAL FINDINGS Addition of L. obliqua venom to purified prekallikrein and human plasma in vitro or to vascular smooth muscle cells (VSMC) in culture, was able to generate kallikrein in a dose-dependent manner. Injected in rats, the venom induced AKI and increased kallikrein levels in plasma and kidney. Kallikrein inhibition by aprotinin prevented glomerular injury and the decrease in glomerular filtration rate, restoring fluid and electrolyte homeostasis. The mechanism underlying these effects was associated to lowering renal inflammation, with decrease in pro-inflammatory cytokines and matrix metalloproteinase expression, reduced tubular degeneration, and protection against oxidative stress. Supporting the key role of kallikrein, we demonstrated that aprotinin inhibited effects directly associated with vascular injury, such as the generation of intracellular reactive oxygen species (ROS) and migration of VSMC induced by L. obliqua venom or by diluted plasma obtained from envenomed rats. In addition, kallikrein inhibition also ameliorated venom-induced blood incoagulability and decreased kidney tissue factor expression. CONCLUSIONS/SIGNIFICANCE These data indicated that kallikrein and consequently kinin release have a key role in kidney injury and vascular remodeling. Thus, blocking kallikrein may be a therapeutic alternative to control the progression of venom-induced AKI and vascular disturbances.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| | - João Alfredo de Moraes
- Laboratório de Biologia REDOX, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Walter Orlando Beys-da-Silva
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Departamento de Patologia Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Laboratório de Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Jorge Almeida Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular de Molecular (PPGBCM), Centro de Biotecnologia (Cbiot-UFRGS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Gáll T, Pethő D, Nagy A, Hendrik Z, Méhes G, Potor L, Gram M, Åkerström B, Smith A, Nagy P, Balla G, Balla J. Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Front Physiol 2018; 9:1595. [PMID: 30515102 PMCID: PMC6255930 DOI: 10.3389/fphys.2018.01595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulation of damaged or misfolded proteins resulted from oxidative protein modification induces endoplasmic reticulum (ER) stress by activating the pathways of unfolded protein response. In pathologic hemolytic conditions, extracellular free hemoglobin is submitted to rapid oxidation causing heme release. Resident cells of atherosclerotic lesions, after intraplaque hemorrhage, are exposed to heme leading to oxidative injury. Therefore, we raised the question whether heme can also provoke ER stress. Smooth muscle cells are one of the key players of atherogenesis; thus, human aortic smooth muscle cells (HAoSMCs) were selected as a model cell to reveal the possible link between heme and ER stress. Using immunoblotting, quantitative polymerase chain reaction and immunocytochemistry, we quantitated the markers of ER stress. These were: phosphorylated eIF2α, Activating transcription factor-4 (ATF4), DNA-damage-inducible transcript 3 (also known as C/EBP homology protein, termed CHOP), X-box binding protein-1 (XBP1), Activating transcription factor-6 (ATF6), GRP78 (glucose-regulated protein, 78kDa) and heme responsive genes heme oxygenase-1 and ferritin. In addition, immunohistochemistry was performed on human carotid artery specimens from patients who had undergone carotid endarterectomy. We demonstrate that heme increases the phosphorylation of eiF2α in HAoSMCs and the expression of ATF4. Heme also enhances the splicing of XBP1 and the proteolytic cleavage of ATF6. Consequently, there is up-regulation of target genes increasing both mRNA and protein levels of CHOP and GRP78. However, TGFβ and collagen type I decreased. When the heme binding proteins, alpha-1-microglobulin (A1M) and hemopexin (Hpx) are present in cell media, the ER stress provoked by heme is inhibited. ER stress pathways are also retarded by the antioxidant N-acetyl cysteine (NAC) indicating that reactive oxygen species are involved in heme-induced ER stress. Consistent with these findings, elevated expression of the ER stress marker GRP78 and CHOP were observed in smooth muscle cells of complicated lesions with hemorrhage compared to either atheromas or healthy arteries. In conclusion, heme triggers ER stress in a time- and dose-dependent manner in HAoSMCs. A1M and Hpx as well as NAC effectively hamper heme-induced ER stress, supporting their use as a potential therapeutic approach to reverse such a deleterious effects of heme toxicity.
Collapse
Affiliation(s)
- Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Magnus Gram
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Ann Smith
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Péter Nagy
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Li G, Xue H, Fan Z, Bai Y. Impact of heme on specific antibody production in mice: promotive, inhibitive or null outcome is determined by its concentration. Heliyon 2017; 3:e00303. [PMID: 28560357 PMCID: PMC5435615 DOI: 10.1016/j.heliyon.2017.e00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Free heme is an endogenous danger signal that provokes innate immunity. Active innate immunity provides a precondition of an effective adaptive immune response. However, heme catabolites, CO, biliverdin and bilirubin trigger immunosuppression. Furthermore, free heme induces expression of heme oxygenase-1 to increase production of CO, biliverdin and bilirubin. As such, free heme can play a paradoxical role in adaptive immunity. What is the outcome of the animal immune response to an antigen in the presence of free heme? This question remains to be explored. Here, we report the immunization results of rats and mice after intraperitoneal injection of formulations containing BSA and heme. When the heme concentrations were below 1 μM, between 1 μM and 5 μM and above 5 μM, production of anti-BSA IgG and IgM was unaffected, enhanced and suppressed, respectively. The results suggest that heme can influence adaptive immunity by double concentration-thresholds. If the heme concentrations are less than the first threshold, there is no effect on adaptive immunity; if the concentrations are more than the first but less than the second threshold, there is promotion effect; and if the concentrations are more than the second threshold, there is an inhibitory effect. A hypothesis is also presented here to explain the mechanism.
Collapse
Affiliation(s)
- Guofu Li
- Experimental Training Center, Sun Yat-Sen University, Zhuhai, China, 519082
| | - Haiyan Xue
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Zeng Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| | - Yun Bai
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China, 510275
| |
Collapse
|
18
|
Domazetovic V, Fontani F, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Estrogen inhibits starvation-induced apoptosis in osteocytes by a redox-independent process involving association of JNK and glutathione S-transferase P1-1. FEBS Open Bio 2017; 7:705-718. [PMID: 28469982 PMCID: PMC5407897 DOI: 10.1002/2211-5463.12216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
Estrogen deficiency causes bone loss as a result of microdamage, oxidative stress, and osteocyte apoptosis. A relationship between oxidative stress‐induced apoptosis, c‐Jun N‐terminal kinase (JNK) activation, and expression of factors involved in bone remodeling has been demonstrated in osteocytes. However, the molecular regulation of these events in osteocytes treated with 17β‐estradiol (17β‐E2) remains unexplored. The MLO‐Y4 murine osteocyte‐like cell line was used as a model to study starvation‐induced apoptosis and ROS production during 17β‐E2 treatment. Expression of glutathione S‐transferase P1‐1 (GSTP1‐1), receptor activator kB ligand (RANKL), osteoprotegerin (OPG), sclerostin, and kinases activation were measured by western blot. In addition, the GSTP1‐1/JNK association was assessed by immunoprecipitation, and GSTP1‐1 involvement in the osteocyte response to 17β‐E2 was detected by specific siRNA transfection. 17β‐E2 prevents starvation‐induced apoptosis (DNA fragmentation and caspase activation), the increase in sclerostin expression and the RANKL/OPG ratio, which are all related to JNK activation due to oxidative stress in osteocytes. This occurs through GSTP1‐1 overexpression, which can inhibit JNK activation by formation of a GSTP1‐1/JNK complex. No early antioxidant action of 17β‐E2 has been found but the estrogen effect is similar to N‐acetylcysteine which, by increasing the intracellular redox state, maintains JNK bound to GSTP1‐1. Thus, the antiapoptotic and osteogenic effect of 17β‐E2 in MLO‐Y4 occurs by a redox‐independent process involving GSTP1‐1/JNK association. This study clarifies at molecular level the effect of 17β‐E2 on osteocyte activity and identifies a possible role of GSTP1‐1 and JNK activity in bone remodeling and repair mechanisms.
Collapse
Affiliation(s)
- Vladana Domazetovic
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (Biochemistry section) University of Florence Italy
| | - Filippo Fontani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (Biochemistry section) University of Florence Italy
| | - Gemma Marcucci
- Department of Surgery and Translational Medicine (Endocrinology Section) University of Florence Italy
| | - Teresa Iantomasi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (Biochemistry section) University of Florence Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine (Endocrinology Section) University of Florence Italy
| | - Maria Teresa Vincenzini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" (Biochemistry section) University of Florence Italy
| |
Collapse
|
19
|
Protein aggregation as a cellular response to oxidative stress induced by heme and iron. Proc Natl Acad Sci U S A 2016; 113:E7474-E7482. [PMID: 27821769 DOI: 10.1073/pnas.1608928113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis.
Collapse
|
20
|
Ferreira Eduardo da Costa A, Alfredo Moraes J, Silva Santos de Oliveira J, Hanthequeste Bittencourt Dos Santos M, da Silva Santos G, Barja-Fidalgo C, Luiza Mattos-Guaraldi A, Emy Nagao P. Reactive oxygen species involved in apoptosis induction of human respiratory epithelial (A549) cells by Streptococcus agalactiae. MICROBIOLOGY-SGM 2015; 162:94-99. [PMID: 26490153 DOI: 10.1099/mic.0.000202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus; GBS) is an important pathogen and is associated with pneumonia, sepsis and meningitis in neonates and adults. GBS infections induce cytotoxicity of respiratory epithelial cells (A549) with generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (ψm). The apoptosis of A549 cells by GBS was dependent on the activation of caspase-3 and caspase-9 with increased pro-apoptotic Bim and Bax molecules and decreased Bcl-2 pro-survival protein. Treatment of infected A549 cells with ROS inhibitors (diphenyleniodonium chloride or apocynin) prevented intracellular ROS production and apoptosis. Consequently, oxidative stress is included among the cellular events leading to apoptosis during GBS human invasive infections.
Collapse
Affiliation(s)
- Andréia Ferreira Eduardo da Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - João Alfredo Moraes
- Laboratory of Biochemical and Cellular Pharmacology, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Jessica Silva Santos de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Gabriela da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Christina Barja-Fidalgo
- Laboratory of Biochemical and Cellular Pharmacology, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luiza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Rocco-Machado N, Cosentino-Gomes D, Meyer-Fernandes JR. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis. PLoS One 2015; 10:e0129604. [PMID: 26070143 PMCID: PMC4466535 DOI: 10.1371/journal.pone.0129604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023] Open
Abstract
Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.
Collapse
Affiliation(s)
- Nathália Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| | - Daniela Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| |
Collapse
|
22
|
Malaguti C, La Guardia PG, Leite ACR, Oliveira DN, de Lima Zollner RL, Catharino RR, Vercesi AE, Oliveira HCF. Oxidative stress and susceptibility to mitochondrial permeability transition precedes the onset of diabetes in autoimmune non-obese diabetic mice. Free Radic Res 2014; 48:1494-504. [DOI: 10.3109/10715762.2014.966706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Abstract
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.
Collapse
|
24
|
Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol 2014; 5:115. [PMID: 24904418 PMCID: PMC4035012 DOI: 10.3389/fphar.2014.00115] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases.
Collapse
Affiliation(s)
- Fabianno F. Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
25
|
Esworthy RS, Kim BW, Chow J, Shen B, Doroshow JH, Chu FF. Nox1 causes ileocolitis in mice deficient in glutathione peroxidase-1 and -2. Free Radic Biol Med 2014; 68:315-25. [PMID: 24374371 PMCID: PMC3943970 DOI: 10.1016/j.freeradbiomed.2013.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023]
Abstract
We previously reported that mice deficient in two Se-dependent glutathione peroxidases, GPx1 and GPx2, have spontaneous ileocolitis. Disease severity depends on mouse genetic background. Whereas C57BL/6J (B6) GPx1/2-double-knockout (DKO) mice have moderate ileitis and mild colitis, 129S1Svlm/J (129) DKO mice have severe ileocolitis. Because GPx's are antioxidant enzymes, we hypothesized that elevated reactive oxygen species trigger inflammation in these DKO mice. To test whether NADPH oxidase 1 (Nox1) contributes to colitis, we generated B6 triple-KO (TKO) mice to study their phenotype. Because the Nox1 gene is X-linked, we analyzed the effects of Nox1 on male B6 TKO mice and female B6 DKO mice with the Nox1(+/-) (het-TKO) genotype. We found that the male TKO and female het-TKO mice are virtually disease-free when monitored from 8 through 50 days of age. Male TKO and female het-TKO mice have nearly no signs of disease (e.g., lethargy and perianal alopecia) that are often exhibited in the DKO mice; further, the slower growth rate of DKO mice is almost completely eliminated in male TKO and female het-TKO mice. Male TKO and female het-TKO mice no longer have the shortened small intestine present in the DKO mice. Finally, the pathological characteristics of the DKO ileum, including the high level of crypt apoptosis (analyzed by apoptotic figures, TUNEL, and cleaved caspase-3 immunohistochemical staining), high numbers of Ki-67-positive crypt epithelium cells, and elevated levels of monocytes expressing myeloperoxidase, are all significantly decreased in male TKO mice. The attenuated ileal and colonic pathology is also evident in female het-DKO mice. Furthermore, the male DKO ileum has eightfold higher TNF cytokine levels than TKO ileum. Nox1 mRNA is highly elevated in both B6 and 129 DKO ileum compared to wild-type mouse ileum. Taking these results together, we propose that ileocolitis in the DKO mice is caused by Nox1, which is induced by TNF. The milder disease in female het-TKO intestine is probably due to random or imprinted X-chromosome inactivation, which produces mosaic Nox1 expression.
Collapse
Affiliation(s)
- Robert S Esworthy
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Byung-Wook Kim
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Joni Chow
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | - Fong-Fong Chu
- Department of Radiation Biology and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|