1
|
Cheng PF, Yuan-He, Ge MM, Ye DW, Chen JP, Wang JX. Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain. Curr Neuropharmacol 2024; 22:1960-1985. [PMID: 37921169 PMCID: PMC11333790 DOI: 10.2174/1570159x22999231024140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023] Open
Abstract
Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.
Collapse
Affiliation(s)
- Peng-Fei Cheng
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuan-He
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Chen
- Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jin-Xi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
2
|
Leyfer D, Fetterman JL. Beyond MitoCarta-expanding the list of candidate proteins involved in mitochondrial functions using a biological network approach. NAR Genom Bioinform 2023; 5:lqad107. [PMID: 39314263 PMCID: PMC11418223 DOI: 10.1093/nargab/lqad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 09/25/2024] Open
Abstract
Mitochondrial diseases are the result of pathogenic variants in genes involved in the diverse functions of the mitochondrion. A comprehensive list of mitochondrial genes is needed to improve gene prioritization in the diagnosis of mitochondrial diseases and development of therapeutics that modulate mitochondrial function. MitoCarta is an experimentally derived catalog of proteins localized to mitochondria. We sought to expand this list of mitochondrial proteins to identify proteins that may not be localized to the mitochondria yet perform important mitochondrial functions. We used a computational approach to assign statistical significance to the overlap between STRING database gene network neighborhoods and MitoCarta proteins. Using a data-driven stringent significance threshold, 2059 proteins that were not located in MitoCarta were identified, which we termed mitochondrial proximal (MitoProximal) proteins. We identified all of the oxidative phosphorylation complex subunits and 90% of 149 genes that contain confirmed oxidative phosphorylation disease causal variants, lending validation to our methodology. Among the MitoProximal proteins, 134 are annotated to be localized to mitochondria but are not in the MitoCarta 3.0 database. We extend MitoCarta nearly 3-fold, generating a more comprehensive list of mitochondrial genes, a resource to facilitate the identification of pathogenic variants in mitochondrial and metabolic diseases.
Collapse
Affiliation(s)
- Dmitriy Leyfer
- Translational Sciences Department, Mitobridge, division of Astellas, Cambridge, MA 02138, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Gambarotto L, Metti S, Corpetti M, Baraldo M, Sabatelli P, Castagnaro S, Cescon M, Blaauw B, Bonaldo P. Sustained oral spermidine supplementation rescues functional and structural defects in COL6-deficient myopathic mice. Autophagy 2023; 19:3221-3229. [PMID: 37528588 PMCID: PMC10621270 DOI: 10.1080/15548627.2023.2241125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
COL6 (collagen type VI)-related myopathies (COL6-RM) are a distinct group of inherited muscle disorders caused by mutations of COL6 genes and characterized by early-onset muscle weakness, for which no cure is available yet. Key pathophysiological features of COL6-deficient muscles involve impaired macroautophagy/autophagy, mitochondrial dysfunction, neuromuscular junction fragmentation and myofiber apoptosis. Targeting autophagy by dietary means elicited beneficial effects in both col6a1 null (col6a1-/-) mice and COL6-RM patients. We previously demonstrated that one-month per os administration of the nutraceutical spermidine reactivates autophagy and ameliorates myofiber defects in col6a1-/- mice but does not elicit functional improvement. Here we show that a 100-day-long spermidine regimen is able to rescue muscle strength in col6a1-/- mice, with also a beneficial impact on mitochondria and neuromuscular junction integrity, without any noticeable side effects. Altogether, these data provide a rationale for the application of spermidine in prospective clinical trials for COL6-RM.Abbreviations: AChR: acetylcholine receptor; BTX: bungarotoxin; CNF: centrally nucleated fibers; Colch: colchicine; COL6: collagen type VI; COL6-RM: COL6-related myopathies; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NMJ: neuromuscular junction; Spd: spermidine; SQSTM1/p62: sequestosome 1; TA: tibialis anterior; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Samuele Metti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Matteo Corpetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Baraldo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics ”Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
| | - Silvia Castagnaro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Xu YH, Xu JB, Chen LL, Su W, Zhu Q, Tong GL. Protective mechanisms of quercetin in neonatal rat brain injury induced by hypoxic-ischemic brain damage (HIBD). Food Sci Nutr 2023; 11:7649-7663. [PMID: 38107093 PMCID: PMC10724619 DOI: 10.1002/fsn3.3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is a leading cause of infant mortality worldwide. This study explored whether quercetin (Que) exerts neuroprotective effects in a rat model of HIBD. A total of 36 seven-day-old Sprague-Dawley rats were divided into control, Que, HI, and HI + Que groups. The Rice method was used to establish HIBD in HI and HI + Que rats, which were treated with hypoxia (oxygen concentration of 8%) for 2 h after ligation of the left common carotid artery. The rats in the HI + Que group were intraperitoneally injected with Que (30 mg/kg) 1 h before hypoxia, and the rats in the Que group were only injected with the same amount of Que. Brain tissues were harvested 24 h postoperation and assessed by hematoxylin and eosin staining, 2,3,5-triphenyltetrazolium chloride staining, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay; relative gene and protein levels were evaluated by RT-qPCR, IHC, or western blot (WB) assay. Brain tissue morphologies were characterized by transmission electron microscopy (TEM); LC3B protein levels were assessed by immunofluorescence staining. Escape latencies and platform crossing times were significantly improved (p < .05) in HI + Que groups; infarct volume significantly decreased (p < .001), whereas the numbers of autophagic bodies and apoptotic cells increased and decreased, respectively. Meanwhile, NLRX1, ATG7, and Beclin1 expressions were significantly upregulated, and mTOR and TIM23 expressions, LC3B protein level, and LC 3II/LC 3I ratio were significantly downregulated. Que exerted neuroprotective effects in a rat model of HIBD by regulating NLRX1 and autophagy.
Collapse
Affiliation(s)
- Yan-Hong Xu
- Anhui Provincial Children's Hospital Hefei China
| | - Jin-Bo Xu
- Anhui Provincial Children's Hospital Hefei China
| | - Lu-Lu Chen
- Anhui Provincial Children's Hospital Hefei China
| | - Wei Su
- Anhui Provincial Children's Hospital Hefei China
| | - Qing Zhu
- Anhui Provincial Children's Hospital Hefei China
| | | |
Collapse
|
5
|
Wang Y, Guo L, Zhang Z, Fu S, Huang P, Wang A, Liu M, Ma X. A bibliometric analysis of myocardial ischemia/reperfusion injury from 2000 to 2023. Front Cardiovasc Med 2023; 10:1180792. [PMID: 37383699 PMCID: PMC10293770 DOI: 10.3389/fcvm.2023.1180792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Background Myocardial ischemia/reperfusion injury (MIRI) refers to the more severe damage that occurs in the previously ischemic myocardium after a short-term interruption of myocardial blood supply followed by restoration of blood flow within a certain period of time. MIRI has become a major challenge affecting the therapeutic efficacy of cardiovascular surgery. Methods A scientific literature search on MIRI-related papers published from 2000 to 2023 in the Web of Science Core Collection database was conducted. VOSviewer was used for bibliometric analysis to understand the scientific development and research hotspots in this field. Results A total of 5,595 papers from 81 countries/regions, 3,840 research institutions, and 26,202 authors were included. China published the most papers, but the United States had the most significant influence. Harvard University was the leading research institution, and influential authors included Lefer David J., Hausenloy Derek J., Yellon Derek M., and others. All keywords can be divided into four different directions: risk factors, poor prognosis, mechanisms and cardioprotection. Conclusion Research on MIRI is flourishing. It is necessary to conduct an in-depth investigation of the interaction between different mechanisms and multi-target therapy will be the focus and hotspot of MIRI research in the future.
Collapse
Affiliation(s)
- Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangqing Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
6
|
Yu H, Jia X, Niu H, Xie L, Du B, Pang Y, Xu X, Li J. miR-23a regulates the disease resistance of grass carp (Ctenopharyngodon idella) by targeting autophagy-related genes, ATG3 and ATG12. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108812. [PMID: 37172750 DOI: 10.1016/j.fsi.2023.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
miRNAs play a key role in the autophagy process. In recent years, the emerging role of autophagy in regulating immune response has attracted increasing attention. Since then, specific miRNAs have also been found to play an immune function indirectly by modulating autophagy as well. This study proved that miR-23a could downregulate grass carp autophagy simultaneously by targeting ATG3 and ATG12. Besides, both ATG3 and ATG12 mRNA levels were increased in kidney and intestine after being infected by Aeromonas hydrophila; yet almost at the same time, miR-23a was decreased. Besides, we illustrated that grass carp miR-23a could affect antimicrobial capacity, proliferation, migration, and antiapoptotic abilities of CIK cells. These results indicate that miR-23a was related to grass carp autophagy and plays an important role in antimicrobial immunity through targeting ATG3 and ATG12, which provides important information on autophagy-related miRNAs about the defense and immune mechanisms against pathogens in teleost.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Huiqin Niu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifang Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Sawaged S, Mota T, Piplani H, Thakur R, Lall D, McCabe E, Seo S, Sutterwala FS, Feuer R, Gottlieb RA, Sin J. TBK1 and GABARAP family members suppress Coxsackievirus B infection by limiting viral production and promoting autophagic degradation of viral extracellular vesicles. PLoS Pathog 2022; 18:e1010350. [PMID: 36044516 PMCID: PMC9469980 DOI: 10.1371/journal.ppat.1010350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/13/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy. Coxsackievirus B (CVB) is a significant human enterovirus that can cause myocarditis, meningitis, and pancreatitis. The subversion of host immunity and mechanisms of viral dissemination are critical factors which promote pathogenesis. We had previously reported that following infection, CVB becomes engulfed by autophagosomes which evade lysosomal degradation and instead get released as infectious extracellular vesicles (EVs). In this current study, we report that in addition to its traditional role in interferon-mediated antiviral signaling, TANK-binding kinase (TBK1) is crucial in limiting viral production and EV-based viral egress through the autophagy pathway. Indeed, in the absence of TBK1, we observe (i) a disruption in autophagic flux, (ii) significant increases in intracellular viral burden and viral EV release, and (iii) elevated viral load in both in vitro and in vivo models of infection. EVs isolated from TBK1-deficient cells or mice treated with the TBK1-inhibitor Amlexanox were more infectious compared to controls. In all, the dual role TBK1 plays in suppressing viral escape in addition to mediating antiviral immunity makes it a promising therapeutic target for the treatment of CVB infection.
Collapse
Affiliation(s)
- Savannah Sawaged
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Thomas Mota
- The Center for Neural Science and Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Honit Piplani
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Reetu Thakur
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Deepti Lall
- The Center for Neural Science and Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Elizabeth McCabe
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Soojung Seo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Fayyaz S. Sutterwala
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ralph Feuer
- The Integrated Regenerative Research Institute at San Diego State University, San Diego, California, United States of America
| | - Roberta A. Gottlieb
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jon Sin
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
- * E-mail:
| |
Collapse
|
8
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
9
|
kianmehr P, Azarbayjani MA, Peeri M, Farzanegi P. The effects of aerobic exercise training with octopamine supplementation on cardiomyocyte apoptosis induced by deep-frying oil: The role of caspase and procaspase 3. Clin Nutr ESPEN 2022; 49:529-535. [PMID: 35623862 DOI: 10.1016/j.clnesp.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
|
10
|
Li L, Thompson J, Hu Y, Lesnefsky EJ, Willard B, Chen Q. Calpain-mediated protein targets in cardiac mitochondria following ischemia-reperfusion. Sci Rep 2022; 12:138. [PMID: 34997008 PMCID: PMC8741987 DOI: 10.1038/s41598-021-03947-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Calpain 1 and 2 (CPN1/2) are calcium-dependent cysteine proteases that exist in cytosol and mitochondria. Pharmacologic inhibition of CPN1/2 decreases cardiac injury during ischemia (ISC)-reperfusion (REP) by improving mitochondrial function. However, the protein targets of CPN1/2 activation during ISC-REP are unclear. CPN1/2 include a large subunit and a small regulatory subunit 1 (CPNS1). Genetic deletion of CPNS1 eliminates the activities of both CPN1 and CPN2. Conditional cardiomyocyte specific CPNS1 deletion mice were used in the present study to clarify the role of CPN1/2 activation in mitochondrial damage during ISC-REP with an emphasis on identifying the potential protein targets of CPN1/2. Isolated hearts from wild type (WT) or CPNS1 deletion mice underwent 25 min in vitro global ISC and 30 min REP. Deletion of CPNS1 led to decreased cytosolic and mitochondrial calpain 1 activation compared to WT. Cardiac injury was decreased in CPNS1 deletion mice following ISC-REP as shown by the decreased infarct size compared to WT. Compared to WT, mitochondrial function was improved in CPNS1 deletion mice following ischemia-reperfusion as shown by the improved oxidative phosphorylation and decreased susceptibility to mitochondrial permeability transition pore opening. H2O2 generation was also decreased in mitochondria from deletion mice following ISC-REP compared to WT. Deletion of CPNS1 also resulted in less cytochrome c and truncated apoptosis inducing factor (tAIF) release from mitochondria. Proteomic analysis of the isolated mitochondria showed that deletion of CPNS1 increased the content of proteins functioning in regulation of mitochondrial calcium homeostasis (paraplegin and sarcalumenin) and complex III activity. These results suggest that activation of CPN1 increases cardiac injury during ischemia-reperfusion by impairing mitochondrial function and triggering cytochrome c and tAIF release from mitochondria into cytosol.
Collapse
Affiliation(s)
- Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jeremy Thompson
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
11
|
Chen Y, Zhu X, Ye F, Wang H, Wan X, Zhang T, Wang Y, Wang Y, Zhao X, Bai X, Xiao Y, Sun X. Malondialdehyde-Modified Photoreceptor Outer Segments Promote Choroidal Neovascularization in Mice. Transl Vis Sci Technol 2022; 11:12. [PMID: 35015060 PMCID: PMC8762676 DOI: 10.1167/tvst.11.1.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to establish a novel choroidal neovascularization (CNV) mouse model through subretinally injecting malondialdehyde (MDA)-modified photoreceptor outer segments (POS), which was more consistent with the pathogenesis of wet age-related macular degeneration (AMD). Methods MDA-modified POS were subretinally injected in C57BL/6J mice. Four weeks later, to assess the volume of CNV and the morphology of retinal pigment epithelium (RPE), isolectin B4 and zonula occludens-1 antibody were used for immunostaining. Fundus fluorescent angiography and optical coherence tomography imaging were used to describe the morphologic features of CNV. Transepithelial resistance was measured on polarized ARPE-19 cells. Vascular endothelial growth factor levels in the cell culture medium were detected by enzyme-linked immunosorbent assay. The protein and messenger RNA expression levels of autophagy markers were measured using Western blot and quantitative polymerase chain reaction. Results CNV and RPE atrophy were successfully induced in the mouse model. MDA-modified POS also significantly increased the expression of vascular endothelial growth factor and disrupted cell junctions in RPE cells. In addition, MDA-modified POS induced autophagy–lysosomal impairment in RPE cells. Conclusions Subretinal injection of MDA-modified POS may generate a feasible CNV model that simulates the AMD pathological process. Translational Relevance This study expands the understanding of the role of MDA in AMD pathogenesis, which provides a potential therapeutic target of AMD.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xinyue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Fuxiang Ye
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Yimin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xiaohuan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xinyue Bai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Yushu Xiao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
12
|
Li P, Yao LY, Jiang YJ, Wang DD, Wang T, Wu YP, Li BX, Li XT. Soybean isoflavones protect SH-SY5Y neurons from atrazine-induced toxicity by activating mitophagy through stimulation of the BEX2/BNIP3/NIX pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112886. [PMID: 34673406 DOI: 10.1016/j.ecoenv.2021.112886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Atrazine (ATR) is a widely used herbicide that can induce the degeneration of dopaminergic (DAergic) neurons in the substantia nigra, resulting in a Parkinson's disease-like syndrome. Despite the high risk of environmental exposure, few studies have investigated strategies for the prevention of ATR neurotoxicity. Our previous studies demonstrated that ATR can impair mitochondrial function, leading to metabolic failure. Cells maintain mitochondrial quality through selective autophagic elimination, termed mitophagy. Soybean isoflavones (SI) possess multiple beneficial bioactivities, including preservation of mitochondria function, so it was hypothesized that SI can protect neurons against ATR toxicity by promoting mitophagy. Pretreatment of SH-SY5Y neurons with SI prevented ATR-induced metabolic failure and cytotoxicity as assessed by intracellular ATP, Na+-K+-ATPase activity, mitochondrial membrane potential, and cell viability assays. The neuroprotective efficacy of SI was superior to the major individual components genistein, daidzein, and glycitein. Ultrastructural analyses revealed that ATR induced mitochondrial damage, while SI promoted the sequestration of damaged mitochondria into autophagic vesicles. Soybean isoflavones also induced mitophagy as evidenced by upregulated expression of BNIP3/NIX, BEX2, and LC3-II, while co-treatment with the mitophagy inhibitor Mdivi-1 blocked SI-mediated neuroprotection and prevented SI from reversing ATR-induced BEX2 downregulation. Furthermore, BEX2 knockdown inhibited SI-induced activation of the BNIP3/NIX pathway, mitophagy, and neuroprotection. These findings suggest that SI protects against ATR-induced mitochondrial dysfunction and neurotoxicity by activating the BEX2/BNIP3/NIX pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| | - Li-Yan Yao
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| | - Yu-Jia Jiang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| | - Dan-Dan Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| | - Ting Wang
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| | - Yan-Ping Wu
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| | - Bai-Xiang Li
- Department of Hygienic Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| | - Xue-Ting Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province 150081, China.
| |
Collapse
|
13
|
de la Rubia Ortí JE, Fernández D, Platero F, García-Pardo MP. Can Ketogenic Diet Improve Alzheimer's Disease? Association With Anxiety, Depression, and Glutamate System. Front Nutr 2021; 8:744398. [PMID: 34778340 PMCID: PMC8579917 DOI: 10.3389/fnut.2021.744398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Alzheimer's disease is the most common neurodegenerative disorder in our society, mainly characterized by loss of cognitive function. However, other symptoms such as anxiety and depression have been described in patients. The process is mediated by alterations in the synaptic and extrasynaptic activity of the neurotransmitter glutamate, which are linked to a hypometabolism of glucose as the main source of brain energy. In that respect, Ketogenic diet (KD) has been proposed as a non-pharmacological treatment serving as an alternative energy source to the neurons increasing the fat percentage and reducing the carbohydrates percentage, showing promising results to improve the cognitive symptoms associated with different neurodegenerative disorders, including AD. However, the association of this type of diet with emotional symptoms and the modulation of glutamate neurotransmission systems after this dietary reduction of carbohydrates are unknown. Objective: The aim of this short review is to provide update studies and discuss about the relationship between KD, anxiety, depression, and glutamate activity in AD patients. Discussion: The main results suggest that the KD is an alternative energy source for neurons in AD with positive consequences for the brain at different levels such as epigenetic, metabolic and signaling, and that the substitution of carbohydrates for fats is also associated with emotional symptoms and glutamate activity in AD.
Collapse
Affiliation(s)
| | - David Fernández
- Department of Nursing, Catholic University of Valencia, Valencia, Spain
| | - Félix Platero
- Department of Medicine, University of Valencia, Valencia, Spain
| | | |
Collapse
|
14
|
Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. Biomolecules 2021; 11:biom11101511. [PMID: 34680144 PMCID: PMC8534032 DOI: 10.3390/biom11101511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.
Collapse
|
15
|
The potentials of distinct functions of autophagy to be targeted for attenuation of myocardial ischemia/reperfusion injury in preclinical studies: an up-to-date review. J Physiol Biochem 2021; 77:377-404. [PMID: 34173955 DOI: 10.1007/s13105-021-00824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Despite remarkable advances in our knowledge about the function of autophagy in myocardial ischemia/reperfusion (I/R) injury, the debate continues over whether autophagy is protective or deleterious in cardiac I/R. Due to the complexity of autophagy signaling, autophagy can play a dual role in the pathological processes of myocardial I/R injury. Thus, more researches are needed to shed light on the complex roles of autophagy in cardioprotection for the future clinical development. Such researches can lead to the finding of new therapeutic strategies for improving cardiac I/R outcomes in patients. Several preclinical studies have targeted autophagy flux as a beneficial strategy against myocardial I/R injury. In this review, we aimed to discuss the complex contribution of autophagy in myocardial I/R injury, as well as the therapeutic agents that have been shown to be useful in reducing myocardial I/R injury by targeting autophagy. For this reason, we provided an updated summary of the data from in vivo, ex vivo, and in vitro experimental studies about the therapeutic agents that exert positive effects against myocardial I/R injury by modulating autophagy flux. By addressing these valuable studies, we try to provide a motivation for the promising hypothesis of "autophagy modulation as a therapeutic strategy against cardiac I/R" in the future clinical studies.
Collapse
|
16
|
Kim AK, Kwon DW, Yeom E, Lee KP, Kwon KS, Yu K, Lee KS. Lipophorin receptor 1 (LpR1) in Drosophila muscle influences life span by regulating mitochondrial aging. Biochem Biophys Res Commun 2021; 568:95-102. [PMID: 34217014 DOI: 10.1016/j.bbrc.2021.06.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Sarcopenia is a syndrome characterized by progressive loss of muscle mass and function during aging. Although mitochondrial dysfunction and related metabolic defects precede age-related changes in muscle, their contributions to muscle aging are still not well known. In this study, we used a Drosophila model to investigate the role of lipophorin receptors (LpRs), a Drosophila homologue of the mammalian very low-density lipoprotein receptor (VLDLR), in mitochondrial dynamics and muscle aging. Muscle-specific knockdown of LpR1 or LpR2 resulted in mitochondrial dysfunction and reduced proteostasis, which contributed to muscle aging. Activation of AMP-activated protein kinase (AMPK) ameliorated muscle dysfunction induced by LpR1 knockdown. These results suggest that LpR1/VLDLR is a novel key target that modulates age-dependent lipid remodeling and muscle homeostasis.
Collapse
Affiliation(s)
- Ae-Kyeong Kim
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea
| | - Dae-Woo Kwon
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Tunneling Nanotube Research Cnter, Korea University, Seoul, 02841, South Korea
| | - Kwang-Pyo Lee
- Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Aging Research Center, KRIBB, Daejeon, 34141, South Korea; Aventi Inc. Daejeon, 34141, South Korea
| | - Ki-Sun Kwon
- Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Aging Research Center, KRIBB, Daejeon, 34141, South Korea; Aventi Inc. Daejeon, 34141, South Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Convergence Research Center of Dementia, KIST, Seoul, 02792, South Korea.
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea.
| |
Collapse
|
17
|
Bittencourt TL, da Silva Prata RB, de Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP, Pinheiro RO. Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Front Immunol 2021; 12:674241. [PMID: 34113346 PMCID: PMC8185338 DOI: 10.3389/fimmu.2021.674241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic mycobacteria species may subvert the innate immune mechanisms and can modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial infection may present different clinical presentations and it is associated with stigma, deformity, and disability. The understanding of the immunopathogenic mechanisms related to mycobacterial infection in human skin is of pivotal importance to identify targets for new therapeutic strategies. The occurrence of reactional episodes and relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the absence of effective drugs to treat mycobacterial cutaneous infection increased the interest in the development of therapies based on repurposed drugs against mycobacteria. The mechanism of action of many of these therapies evaluated is linked to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal degradation pathway that has been associated with the control of the mycobacterial bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous mycobacterial infection and discuss the perspectives of autophagy as a target for drug development and repurposing against cutaneous mycobacterial infection.
Collapse
Affiliation(s)
| | | | | | | | - Margareth Pretti Dalcolmo
- Helio Fraga Reference Center, Sergio Arouca National School of Public Health, Fiocruz, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
19
|
Song SB, Park JS, Jang SY, Hwang ES. Nicotinamide Treatment Facilitates Mitochondrial Fission through Drp1 Activation Mediated by SIRT1-Induced Changes in Cellular Levels of cAMP and Ca 2. Cells 2021; 10:cells10030612. [PMID: 33802063 PMCID: PMC7999186 DOI: 10.3390/cells10030612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial autophagy (or mitophagy) is essential for mitochondrial quality control, which is critical for cellular and organismal health by attenuating reactive oxygen species generation and maintaining bioenergy homeostasis. Previously, we showed that mitophagy is activated in human cells through SIRT1 activation upon treatment of nicotinamide (NAM). Further, mitochondria are maintained as short fragments in the treated cells. In the current study, molecular pathways for NAM-induced mitochondrial fragmentation were sought. NAM treatment induced mitochondrial fission, at least in part by activating dynamin-1-like protein (Drp1), and this was through attenuation of the inhibitory phosphorylation at serine 637 (S637) of Drp1. This Drp1 hypo-phosphorylation was attributed to SIRT1-mediated activation of AMP-activated protein kinase (AMPK), which in turn induced a decrease in cellular levels of cyclic AMP (cAMP) and protein kinase A (PKA) activity, a kinase targeting S637 of Drp1. Furthermore, in NAM-treated cells, cytosolic Ca2+ was highly maintained; and, as a consequence, activity of calcineurin, a Drp1-dephosphorylating phosphatase, is expected to be elevated. These results suggest that NAD+-mediated SIRT1 activation facilitates mitochondrial fission through activation of Drp1 by suppressing its phosphorylation and accelerating its dephosphorylation. Additionally, it is suggested that there is a cycle of mitochondrial fragmentation and cytosolic Ca2+-mediated Drp1 dephosphorylation that may drive sustained mitochondrial fragmentation.
Collapse
|
20
|
Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev 2021; 66:101250. [PMID: 33388396 DOI: 10.1016/j.arr.2020.101250] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Myocardial infarction (MI) is the irreversible death of cardiomyocyte secondary to prolonged lack of oxygen or fresh blood supply. Historically considered as merely cardiomyocyte powerhouse that manufactures ATP and other metabolites, mitochondrion is recently being identified as a signal regulator that is implicated in the crosstalk and signal integration of cardiomyocyte contraction, metabolism, inflammation, and death. Mitochondria quality surveillance is an integrated network system modifying mitochondrial structure and function through the coordination of various processes including mitochondrial fission, fusion, biogenesis, bioenergetics, proteostasis, and degradation via mitophagy. Mitochondrial fission favors the elimination of depolarized mitochondria through mitophagy, whereas mitochondrial fusion preserves the mitochondrial network upon stress through integration of two or more small mitochondria into an interconnected phenotype. Mitochondrial biogenesis represents a regenerative program to replace old and damaged mitochondria with new and healthy ones. Mitochondrial bioenergetics is regulated by a metabolic switch between glucose and fatty acid usage, depending on oxygen availability. To maintain the diversity and function of mitochondrial proteins, a specialized protein quality control machinery regulates protein dynamics and function through the activity of chaperones and proteases, and induction of the mitochondrial unfolded protein response. In this review, we provide an overview of the molecular mechanisms governing mitochondrial quality surveillance and highlight the most recent preclinical and clinical therapeutic approaches to restore mitochondrial fitness during both MI and post-MI heart failure.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Yeung AWK, Tzvetkov NT, Georgieva MG, Ognyanov IV, Kordos K, Jóźwik A, Kühl T, Perry G, Petralia MC, Mazzon E, Atanasov AG. Reactive Oxygen Species and Their Impact in Neurodegenerative Diseases: Literature Landscape Analysis. Antioxid Redox Signal 2021; 34:402-420. [PMID: 32030995 DOI: 10.1089/ars.2019.7952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The excessive production of reactive oxygen species (ROS) has been linked to neurodegenerative diseases (NDs), and, therefore, many scientific works were published on the impact of ROS on the development of prevalent NDs, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Since quantitative and qualitative bibliometric analyses in this research area have not yet been done, the aim of this work is to explore the scientific literature implying ROS in NDs and to identify the major contributors, mainstream research themes, and topics on the rise. Recent Advances: Overall, 22,885 publications were identified and analyzed within the Web of Science (WoS) Core Collection electronic database (Clarivate Analytics, Philadelphia, PA). Most of the manuscripts were published in the 21st century. The publications were mainly related to the WoS categories Neurosciences and Biochemistry molecular biology. The United States is the major contributor, harboring the most productive authors and institutions. China, South Korea, and India have emerged as upcoming major contributors in the 2010s. Two most productive journals were Journal of Neurochemistry and Free Radical Biology and Medicine. Critical Issues: AD, PD, and amyotrophic lateral sclerosis were much more investigated than multiple sclerosis and Huntington's disease. Vitamin E and curcumin were frequently mentioned as potential antioxidant therapeutics, but their efficacy in treating NDs requires more clinical studies, since the existing evidence was mainly from in vitro experiments and in vivo animal studies. Future Directions: Mitochondrial dysfunction, autophagy, and nuclear factor erythroid 2-related factor 2 were among the author keywords with rising prevalence. Further research in these directions should advance our understanding of the mechanism and treatment of NDs. Antioxid. Redox Signal. 34, 402-420.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev," Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev," Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan V Ognyanov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev," Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Karolina Kordos
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Artur Jóźwik
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | | | | | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria.,Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W, Wei H, Ta N, Fan Y, Liu Y, Wang X, Wang J, Pan X, Liao X, Zhu Y, Chen Q. Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep 2021; 22:e50629. [PMID: 33554448 DOI: 10.15252/embr.202050629] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Mitophagy is an essential cellular autophagic process that selectively removes superfluous and damaged mitochondria, and it is coordinated with mitochondrial biogenesis to fine tune the quantity and quality of mitochondria. Coordination between these two opposing processes to maintain the functional mitochondrial network is of paramount importance for normal cellular and organismal metabolism. However, the underlying mechanism is not completely understood. Here we report that PGC-1α and nuclear respiratory factor 1 (NRF1), master regulators of mitochondrial biogenesis and metabolic adaptation, also transcriptionally upregulate the gene encoding FUNDC1, a previously characterized mitophagy receptor, in response to cold stress in brown fat tissue. NRF1 binds to the classic consensus site in the promoter of Fundc1 to upregulate its expression and to enhance mitophagy through its interaction with LC3. Specific knockout of Fundc1 in BAT results in reduced mitochondrial turnover and accumulation of functionally compromised mitochondria, leading to impaired adaptive thermogenesis. Our results demonstrate that FUNDC1-dependent mitophagy is directly coupled with mitochondrial biogenesis through the PGC-1α/NRF1 pathway, which dictates mitochondrial quantity, quality, and turnover and contributes to adaptive thermogenesis.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Di Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huifang Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Na Ta
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Fan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujiao Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
24
|
Thompson J, Maceyka M, Chen Q. Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart. Mech Ageing Dev 2020; 192:111380. [PMID: 33045249 DOI: 10.1016/j.mad.2020.111380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Severity of cardiovascular disease increases markedly in elderly patients. In addition, many therapeutic strategies that decrease cardiac injury in adult patients are invalid in elderly patients. Thus, it is a challenge to protect the aged heart in the context of underlying chronic or acute cardiac diseases including ischemia-reperfusion injury. The cause(s) of this age-related increased damage remain unknown. Aging impairs the function of the mitochondrial electron transport chain (ETC), leading to decreased energy production and increased oxidative stress due to generation of reactive oxygen species (ROS). Additionally, ROS-induced oxidative stress can increase cardiac injury during ischemia-reperfusion by potentiating mitochondrial permeability transition pore (MPTP) opening. Aging leads to increased endoplasmic reticulum (ER) stress, which contributes to mitochondrial dysfunction, including reduced function of the ETC. The activation of both cytosolic and mitochondrial calcium-activated proteases termed calpains leads to mitochondrial dysfunction and decreased ETC function. Intriguingly, mitochondrial ROS generation also induces ER stress, highlighting the dynamic interaction between mitochondria and ER. Here, we discuss the role of ER stress in sensitizing and potentiating mitochondrial dysfunction in response to ischemia-reperfusion, and the promising potential therapeutic benefit of inhibition of ER stress and / or calpains to attenuate cardiac injury in elderly patients.
Collapse
Affiliation(s)
- Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Michael Maceyka
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
25
|
Pyrroloquinoline Quinone Inhibits Rotenone-Induced Microglia Inflammation by Enhancing Autophagy. Molecules 2020; 25:molecules25194359. [PMID: 32977419 PMCID: PMC7582530 DOI: 10.3390/molecules25194359] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a feature common to neurodegenerative diseases, such as Parkinson’s disease (PD), which might be responsive to therapeutic intervention. Rotenone has been widely used to establish PD models by inducing mitochondrial dysfunction and inflammation. Our previous studies have reported that pyrroloquinoline quinone (PQQ), a naturally occurring redox cofactor, could prevent mitochondrial dysfunction in rotenone induced PD models by regulating mitochondrial functions. In the present study, we aimed to investigate the effect of PQQ on neuroinflammation and the mechanism involved. BV2 microglia cells were pre-treated with PQQ followed by rotenone incubation. The data showed that PQQ did not affect the cell viability of BV2 cells treated with rotenone, while the conditioned medium (CM) of BV2 cells pre-treated with PQQ significantly increased cell viability of SH-SY5Y cells. In rotenone-treated BV2 cells, PQQ dose-dependently decreased lactate dehydrogenase (LDH) release and suppressed the up-regulation of pro-inflammation factors, such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in the cultured media, as well as nitric oxide (NO) release induced by rotenone. PQQ pretreatment also increased the ratio of LC3-II/LC3-I and expression of Atg5 in BV2 cells stimulated with rotenone. Additionally, the autophagosome observed by transmission electron microscopy (TEM) and co-localization of mitochondria with lysosomes indicated that mitophagy was induced by PQQ in rotenone-injured BV2 cells, and the PINK1/parkin mediated mitophagy pathway was regulated by PQQ. Further, autophagy inhibitor, 3-methyladenine (3-MA), partially abolished the neuroprotective effect of PQQ and attenuated the inhibition of inflammation with PQQ pretreatment. Taken together, our data extend our understanding of the neuroprotective effect of PQQ against rotenone-induced injury and provide evidence that autophagy enhancement might be a novel therapeutic strategy for PD treatment.
Collapse
|
26
|
Carotenoid metabolism in mitochondrial function. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Mitochondria are highly dynamic organelles that are found in most eukaryotic organisms. It is broadly accepted that mitochondria originally evolved from prokaryotic bacteria, e.g. proteobacteria. The mitochondrion has its independent genome that encodes 37 genes, including 13 genes for oxidative phosphorylation. Accumulative evidence demonstrates that mitochondria are not only the powerhouse of the cells by supplying adenosine triphosphate, but also exert roles as signalling organelles in the cell fate and function. Numerous factors can affect mitochondria structurally and functionally. Carotenoids are a large group of fat-soluble pigments commonly found in our diets. Recently, much attention has been paid in carotenoids as dietary bioactives in mitochondrial structure and function in human health and disease, though the mechanistic research is limited. Here, we update the recent progress in mitochondrial functioning as signalling organelles in human health and disease, summarize the potential roles of carotenoids in regulation of mitochondrial redox homeostasis, biogenesis, and mitophagy, and discuss the possible approaches for future research in carotenoid regulation of mitochondrial function.
Collapse
|
27
|
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Front Cell Dev Biol 2020; 8:467. [PMID: 32671064 PMCID: PMC7326955 DOI: 10.3389/fcell.2020.00467] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are highly plastic and dynamic organelles that have graded responses to the changing cellular, environmental, and developmental cues. Mitochondria undergo constant mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy, which coordinately control mitochondrial morphology, quantity, quality, turnover, and inheritance. Mitophagy is a cellular process that selectively removes the aged and damaged mitochondria via the specific sequestration and engulfment of mitochondria for subsequent lysosomal degradation. It plays a pivotal role in reinstating cellular homeostasis in normal physiology and conditions of stress. Damaged mitochondria may either instigate innate immunity through the overproduction of ROS or the release of mtDNA, or trigger cell death through the release of cytochrome c and other apoptogenic factors when mitochondria damage is beyond repair. Distinct molecular machineries and signaling pathways are found to regulate these mitochondrial dynamics and behaviors. It is less clear how mitochondrial behaviors are coordinated at molecular levels. BCL2 family proteins interact within family members to regulate mitochondrial outer membrane permeabilization and apoptosis. They were also described as global regulators of mitochondrial homeostasis and mitochondrial fate through their interaction with distinct partners including Drp1, mitofusins, PGAM5, and even LC3 that involved mitochondrial dynamics and behaviors. In this review, we summarize recent findings on molecular pathways governing mitophagy and its coordination with other mitochondrial behaviors, which together determine cellular fate.
Collapse
Affiliation(s)
- Kaili Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhui Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Oliver Kepp
- Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, UMR 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
28
|
Waldman M, Arad M, Abraham NG, Hochhauser E. The Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α-Heme Oxygenase 1 Axis, a Powerful Antioxidative Pathway with Potential to Attenuate Diabetic Cardiomyopathy. Antioxid Redox Signal 2020; 32:1273-1290. [PMID: 32027164 PMCID: PMC7232636 DOI: 10.1089/ars.2019.7989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Significance: From studies of diabetic animal models, the downregulation of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-heme oxygenase 1 (HO-1) axis appears to be a crucial event in the development of obesity and diabetic cardiomyopathy (DCM). In this review, we discuss the role of metabolic and biochemical stressors in the rodent and human pathophysiology of DCM. A crucial contributor for many cardiac pathologies is excessive production of reactive oxygen species (ROS) pathologies, which lead to extensive cellular damage by impairing mitochondrial function and directly oxidizing DNA, proteins, and lipid membranes. We discuss the role of ROS production and inflammatory pathways with multiple contributing and confounding factors leading to DCM. Recent Advances: The relevant biochemical pathways that are critical to a therapeutic approach to treat DCM, specifically caloric restriction and its relation to the PGC-1α-HO-1 axis in the attenuation of DCM, are elucidated. Critical Issues: The increased prevalence of diabetes mellitus type 2, a major contributor to unique cardiomyopathy characterized by cardiomyocyte hypertrophy with no effective clinical treatment. This review highlights the role of mitochondrial dysfunction in the development of DCM and potential oxidative targets to attenuate oxidative stress and attenuate DCM. Future Directions: Targeting the PGC-1α-HO-1 axis is a promising approach to ameliorate DCM through improvement in mitochondrial function and antioxidant defenses. A pharmacological inducer to activate PGC-1α and HO-1 described in this review may be a promising therapeutic approach in the clinical setting.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Michael Arad
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Inter-Organelle Membrane Contact Sites and Mitochondrial Quality Control during Aging: A Geroscience View. Cells 2020; 9:cells9030598. [PMID: 32138154 PMCID: PMC7140483 DOI: 10.3390/cells9030598] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction and failing mitochondrial quality control (MQC) are major determinants of aging. Far from being standalone organelles, mitochondria are intricately related with cellular other compartments, including lysosomes. The intimate relationship between mitochondria and lysosomes is reflected by the fact that lysosomal degradation of dysfunctional mitochondria is the final step of mitophagy. Inter-organelle membrane contact sites also allow bidirectional communication between mitochondria and lysosomes as part of nondegradative pathways. This interaction establishes a functional unit that regulates metabolic signaling, mitochondrial dynamics, and, hence, MQC. Contacts of mitochondria with the endoplasmic reticulum (ER) have also been described. ER-mitochondrial interactions are relevant to Ca2+ homeostasis, transfer of phospholipid precursors to mitochondria, and integration of apoptotic signaling. Many proteins involved in mitochondrial contact sites with other organelles also participate to degradative MQC pathways. Hence, a comprehensive assessment of mitochondrial dysfunction during aging requires a thorough evaluation of degradative and nondegradative inter-organelle pathways. Here, we present a geroscience overview on (1) degradative MQC pathways, (2) nondegradative processes involving inter-organelle tethering, (3) age-related changes in inter-organelle degradative and nondegradative pathways, and (4) relevance of MQC failure to inflammaging and age-related conditions, with a focus on Parkinson’s disease as a prototypical geroscience condition.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Hélio José Coelho-Junior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (R.C.); (R.B.); Tel.: +39-(06)-3015-5559 (R.C. & R.B.); Fax: +39-(06)-3051-911 (R.C. & R.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
30
|
Zhang M, Jiang N, Chu Y, Postnikova O, Varghese R, Horvath A, Cheema AK, Golestaneh N. Dysregulated metabolic pathways in age-related macular degeneration. Sci Rep 2020; 10:2464. [PMID: 32051464 PMCID: PMC7016007 DOI: 10.1038/s41598-020-59244-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration is a major cause of vision impairment in the Western world among people of 55 years and older. Recently we have shown that autophagy is dysfunctional in the retinal pigment epithelium (RPE) of the AMD donor eyes (AMD RPE). We also showed increased reactive oxygen (ROS) production, increased cytoplasmic glycogen accumulation, mitochondrial dysfunction and disintegration, and enlarged and annular LAMP-1-positive organelles in AMD RPE. However, the underlying mechanisms inducing these abnormalities remain to be elucidated. Here, by performing a comprehensive study, we show increased PAPR2 expression, deceased NAD+, and SIRT1, increased PGC-1α acetylation (inactive form), lower AMPK activity, and overactive mTOR pathway in AMD RPE as compared to normal RPE. Metabolomics and lipidomics revealed dysregulated metabolites in AMD RPE as compared to normal RPE, including glycerophospholipid metabolism, involved in autophagy, lipid, and protein metabolisms, glutathione, guanosine, and L-glutamic acid, which are implicated in protection against oxidative stress and neurotoxicity, further supporting our observations. Our data show dysregulated metabolic pathways as important contributors to AMD pathophysiology, and facilitate the development of new treatment strategies for this debilitating disease of the visual system.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Nisi Jiang
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Yi Chu
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga Postnikova
- Laboratory of Retinal Cell & Molecular Biology (HNW28), NIH/NEI, Bethesda, MD, 20814, USA
| | - Rency Varghese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, 20037, USA
| | - Amrita K Cheema
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.,Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Nady Golestaneh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neurology, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
31
|
Sun W, Wang Y, Zheng Y, Quan N. The Emerging Role of Sestrin2 in Cell Metabolism, and Cardiovascular and Age-Related Diseases. Aging Dis 2020; 11:154-163. [PMID: 32010489 PMCID: PMC6961765 DOI: 10.14336/ad.2019.0320] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/24/2019] [Indexed: 12/17/2022] Open
Abstract
Sestrins (Sesns), including Sesn1, Sesn2, and Sesn3, are cysteine sulfinyl reductases that play critical roles in the regulation of peroxide signaling and oxidant defense. Sesn2 is thought to regulate cell growth, metabolism, and survival response to various stresses, and act as a positive regulator of autophagy. The anti-oxidative and anti-aging roles of Sesn2 have been the focus of many recent studies. The role of Sesn2 in cellular metabolism and cardiovascular and age-related diseases must be analyzed and discussed. In this review, we discuss the physiological and pathophysiological roles and signaling pathways of Sesn2 in different stress-related conditions, such as oxidative stress, genotoxic stress, and hypoxia. Sesn2 is also involved in aging, cancer, diabetes, and ischemic heart disease. Understanding the actions of Sesn2 in cell metabolism and age-related diseases will provide new evidence for future experimental research and aid in the development of novel therapeutic strategies for Sesn2-related diseases.
Collapse
Affiliation(s)
- Wanqing Sun
- 1Cardiovascular Center, First Affiliated Hospital of Jilin University, Changchun, Jilin, China.,2Fuwai Hospital, National Center of Cardiovascular Diseases, Beijing, China
| | - Yishi Wang
- 3Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Zheng
- 1Cardiovascular Center, First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Nanhu Quan
- 1Cardiovascular Center, First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Park SY, Koh HC. FUNDC1 regulates receptor-mediated mitophagy independently of the PINK1/Parkin-dependent pathway in rotenone-treated SH-SY5Y cells. Food Chem Toxicol 2020; 137:111163. [PMID: 32001317 DOI: 10.1016/j.fct.2020.111163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Upon mitochondrial stress, PINK1 and Parkin cooperatively mediate a response that removes damaged mitochondria. In addition to the PINK1/Parkin pathway, the FUNDC1, mitophagy receptor regulates mitochondrial clearance. It is not clear whether these systems coordinate to mediate mitophagy in response to stress. Rotenone caused an increase in LC3II expression, and FUNDC1-knocked down cells showed remarkably reduced LC3 expression compared to control cells. In addition, treatment of cells with autophagy flux inhibitor, chloroquine, induced further accumulation of LC3-II, suggesting that mitophagy induced by rotenone is due to involvement of mitochondrial FUNDC1. Rotenone treatment resulted in PINK1 stabilization on the outer mitochondrial membrane and a subsequent increase in recruitment of Parkin from the cytosol to the abnormal mitochondria, as well as physical interaction of PINK1 with Parkin in the mitochondria of rotenone-treated cells. Interestingly, knockdown of FUNDC1 did not alter PINK1/Parkin expression in the mitochondrial fraction of rotenone-treated cells. Our findings indicate that FUNDC1 involves in receptor-mediated mitophagy separately from PINK1/Parkin-dependent mitophagy. Furthermore, inhibiting mitophagy by FUNDC1 or PINK1 knockdown accelerated rotenone-induced cytotoxicity. Taken together, our findings suggest that rotenone can be induced both receptor-mediated and PINK1/Parkin-dependent mitophagy for mitochondrial clearance, and that mitophagy by removing damaged mitochondria, has cytoprotective effects.
Collapse
Affiliation(s)
- Si Yeon Park
- Department of Pharmacology, College of Medicine, Hanyang University, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Kim D, Cho J, Kang H. Protective effect of exercise training against the progression of Alzheimer’s disease in 3xTg-AD mice. Behav Brain Res 2019; 374:112105. [DOI: 10.1016/j.bbr.2019.112105] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
|
34
|
Lanzillotta C, Di Domenico F, Perluigi M, Butterfield DA. Targeting Mitochondria in Alzheimer Disease: Rationale and Perspectives. CNS Drugs 2019; 33:957-969. [PMID: 31410665 PMCID: PMC6825561 DOI: 10.1007/s40263-019-00658-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders, including Alzheimer disease (AD). Mitochondria-the power station of the organism-can affect several different cellular activities, including abnormal cellular energy generation, response to toxic insults, regulation of metabolism, and execution of cell death. In AD subjects, mitochondria are characterized by impaired function such as lowered oxidative phosphorylation, decreased adenosine triphosphate production, significant increased reactive oxygen species generation, and compromised antioxidant defense. The current review discusses the most relevant mitochondrial defects that are considered to play a significant role in AD and that may offer promising therapeutic targets for the treatment/prevention of AD. In addition, we discuss mechanisms of action and translational potential of some promising mitochondrial and bioenergetic therapeutics for AD including compounds able to potentiate energy production, antioxidants to scavenge reactive oxygen species and reduce oxidative damage, glucose metabolism, and candidates that target mitophagy. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials. Thus, there is an urgent need to better understand the mechanisms regulating mitochondrial homeostasis in order to identify powerful drug candidates that target 'in and out' the mitochondria to preserve cognitive functions.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
35
|
Chen Q, Thompson J, Hu Y, Dean J, Lesnefsky EJ. Inhibition of the ubiquitous calpains protects complex I activity and enables improved mitophagy in the heart following ischemia-reperfusion. Am J Physiol Cell Physiol 2019; 317:C910-C921. [PMID: 31411917 DOI: 10.1152/ajpcell.00190.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of calpain 1 (CPN1) and calpain 2 (CPN2) contributes to cardiac injury during ischemia (ISC) and reperfusion (REP). Complex I activity is decreased in heart mitochondria following ISC-REP. CPN1 and CPN2 are ubiquitous calpains that exist in both cytosol (cs)-CPN1 and 2 and mitochondria (mit)-CPN1 and 2. Recent work shows that the complex I subunit (NDUFS7) is a potential substrate of the mit-CPN1. We asked whether ISC-REP led to decreased complex I activity via proteolysis of the NDUFS7 subunit via activation of mit-CPN1 and -2. Activation of cs-CPN1 and -2 decreases mitophagy in hepatocytes following ISC-REP. We asked whether activation of cs-CPN1 and -2 impaired mitophagy in the heart following ISC-REP. Buffer-perfused rat hearts underwent 25 min of global ISC and 30 min of REP. MDL-28170 (MDL; 10 µM) was used to inhibit CPN1 and -2. Cytosol, subsarcolemmal mitochondria (SSM), and interfibrillar mitochondria (IFM) were isolated at the end of heart perfusion. Cardiac ISC-REP led to decreased complex I activity with a decrease in the content of NDUFS7 in both SSM and IFM. ISC-REP also resulted in a decrease in cytosolic beclin-1 content, a key component of the autophagy pathway required to form autophagosomes. MDL treatment protected the contents of cytosolic beclin-1 and mitochondrial NDUFS7 in hearts following ISC-REP. These results support that activation of both cytosolic and mitochondrial calpains impairs mitochondria during cardiac ISC-REP. Mitochondria-localized calpains impair complex I via cleavage of a key subunit. Activation of cytosolic calpains contributes to mitochondrial dysfunction by impairing removal of the impaired mitochondria through depletion of a key component of the mitophagy process.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Ying Hu
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph Dean
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
36
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
37
|
Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal 2019; 13:303-318. [PMID: 30719617 DOI: 10.1007/s12079-019-00507-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 01/20/2023] Open
Abstract
Mitochondria, the dynamic organelles and power house of eukaryotic cells function as metabolic hubs of cells undergoing continuous cycles of fusion and fission. Recent findings have made it increasingly apparent that mitochondria essentially involved in energy production have evolved as principal intracellular signaling platforms regulating not only innate immunity but also inflammatory responses. Perturbations in mitochondrial dynamics, including fusion/fission, electron transport chain (ETC) architecture and cristae organization have now been actively correlated to modulate metabolic activity and immune function of innate and adaptive immune cells. Several newly identified mitochondrial proteins in mitochondrial outer membrane such as mitochondrial antiviral signaling protein (MAVS) and with mitochondrial DNA acting as danger-associated molecular pattern (DAMP) and mitochondrial ROS generated from mitochondrial sources have potentially established mitochondria as key signaling platforms in antiviral immunity in vertebrates and thereby orchestrating adaptive immune cell activations respectively. A thorough understanding of emerging and intervening role of mitochondria in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation has gained lucidity in recent years that advocates the imposing functions of mitochondria in innate immunity. Fascinatingly, also how the signals stemming from the endoplasmic reticulum co-operate with the mitochondria to activate the NLRP3 inflammasome is now looked ahead as a stage to unravel as to how different mitochondrial and associated organelle stress responses co-operate to bring about inflammatory consequences. This has also opened avenues of research for revealing mitochondrial targets that could be exploited for development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders. Thus, this review explores our current understanding of intricate interplay between mitochondria and other cellular processes like autophagy in controlling mitochondrial homeostasis and regulation of innate immunity and inflammatory responses.
Collapse
|
38
|
Marques-Aleixo I, Santos-Alves E, Torrella JR, Oliveira PJ, Magalhães J, Ascensão A. Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling. Cardiovasc Toxicol 2019; 18:43-55. [PMID: 28536949 DOI: 10.1007/s12012-017-9412-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cross-tolerance effect of exercise against heart mitochondrial-mediated quality control, remodeling and death-related mechanisms associated with sub-chronic Doxorubicin (DOX) treatment is yet unknown. We therefore analyzed the effects of two distinct chronic exercise models (endurance treadmill training-TM and voluntary free wheel activity-FW) performed during the course of the sub-chronic DOX treatment on mitochondrial susceptibility to permeability transition pore (mPTP), apoptotic and autophagic signaling and mitochondrial dynamics. Male Sprague-Dawley rats were divided into six groups (n = 6 per group): saline sedentary (SAL + SED), SAL + TM (12-weeks treadmill), SAL + FW (12-weeks voluntary free-wheel), DOX + SED [7-weeks sub-chronic DOX treatment (2 mg kg-1 week-1)], DOX + TM and DOX + FW. Apoptotic signaling and mPTP regulation were followed by measuring caspase 3, 8 and 9 activities, Bax, Bcl2, CypD, ANT, and cophilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3, Beclin1, Pink1, Parkin and p62)-related proteins were semi-quantified. DOX treatment results in augmented mPTP susceptibility and apoptotic signaling (caspases 3, 8 and 9 and Bax/Bcl2 ratio). Moreover, DOX decreased the expression of fusion-related proteins (Mfn1, Mfn2, OPA1), increased DRP1 and the activation of auto(mito)phagy signaling. TM and FW prevented DOX-increased mPTP susceptibility and apoptotic signaling, alterations in mitochondrial dynamics and inhibits DOX-induced increases in auto(mito)phagy signaling. Collectively, our results suggest that both used chronic exercise models performed before and during the course of sub-chronic DOX treatment limit cardiac mitochondrial-driven apoptotic signaling and regulate alterations in mitochondrial dynamics and auto(mito)phagy in DOX-treated animals.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.,Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J R Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - P J Oliveira
- CNC - Centre for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
| |
Collapse
|
39
|
Medroxyprogesterone effects on colony growth, autophagy and mitochondria of C6 glioma cells are augmented with tibolone and temozolomide. Clin Neurol Neurosurg 2019; 177:77-85. [DOI: 10.1016/j.clineuro.2018.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/07/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
|
40
|
Autophagy in Development and Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:469-487. [PMID: 31776999 DOI: 10.1007/978-981-15-0602-4_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is crucial in the differentiation and development of both mammals and invertebrates, as a rapid response to environmental and hormonal stimuli. Autophagy is also important for intracellular renewal, maintaining the health of terminally differentiated cells. Studies of Drosophila, Caenorhabditis elegans, and other species revealed abnormal autophagy lead to developmental and differential abnormality, including those in salivary glands and midgut development, protein aggregation, removal of apoptotic cell corpses, and development of dauer and synapse. Autophagy also participates in the development of mammalian embryos before implantation into the uterus, adaption to the nascent hunger environment, blood cells production, and cell differentiation in adipogenesis. Autophagy found in various stem cells, like hematopoietic stem cells, bone marrow mesenchymal stem cells and neural stem cells (NSCs), is tightly associated with their self-renewal, directed differentiation, and senescence.
Collapse
|
41
|
Zidovudine-Mediated Autophagy Inhibition Enhances Mitochondrial Toxicity in Muscle Cells. Antimicrob Agents Chemother 2018; 63:AAC.01443-18. [PMID: 30373793 DOI: 10.1128/aac.01443-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTI), such as zidovudine (AZT), are constituents of HIV-1 therapy and are used for the prevention of mother-to-child transmission. Prolonged thymidine analogue exposure has been associated with mitochondrial toxicities to heart, liver, and skeletal muscle. We hypothesized that the thymidine analogue AZT might interfere with autophagy in myocytes, a lysosomal degradation pathway implicated in the regulation of mitochondrial recycling, cell survival, and the pathogenesis of myodegenerative diseases. The impact of AZT and lamivudine (3TC) on C2C12 myocyte autophagy was studied using various methods based on LC3-green fluorescent protein overexpression or LC3 staining in combination with Western blotting, flow cytometry, and confocal and electron microscopy. Lysosomal and mitochondrial functions were studied using appropriate staining for lysosomal mass, acidity, cathepsin activity, as well as mitochondrial mass and membrane potential in combination with flow cytometry and confocal microscopy. AZT, but not 3TC, exerted a significant dose- and time-dependent inhibitory effect on late stages of autophagosome maturation, which was reversible upon mTOR inhibition. Inhibition of late autophagy at therapeutic drug concentrations led to dysfunctional mitochondrial accumulation with membrane hyperpolarization and increased reactive oxygen species (ROS) generation and, ultimately, compromised cell viability. These AZT effects could be readily replicated by pharmacological and genetic inhibition of myocyte autophagy and, most importantly, could be rescued by pharmacological stimulation of autophagolysosomal biogenesis. Our data suggest that the thymidine analogue AZT inhibits autophagy in myocytes, which in turn leads to the accumulation of dysfunctional mitochondria with increased ROS generation and compromised cell viability. This novel mechanism could contribute to our understanding of the long-term side effects of antiviral agents.
Collapse
|
42
|
Cadete VJJ, Vasam G, Menzies KJ, Burelle Y. Mitochondrial quality control in the cardiac system: An integrative view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:782-796. [PMID: 30472159 DOI: 10.1016/j.bbadis.2018.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023]
Abstract
Recent studies have led to the discovery of multiple mitochondrial quality control (mQC) processes that operate at various scales, ranging from the degradation of proteins by mitochondrial proteases to the degradation of selected cargos or entire organelles in lysosomes. While the mechanisms governing these mQC processes are progressively being delineated, their role and importance remain unclear. Converging evidence however point to a complex system whereby multiple and partly overlapping processes are recruited to orchestrate a cell type specific mQC response that is adapted to the physiological state and level of stress encountered. Knowledge gained from basic model systems of mQC therefore need to be integrated within organ-specific (patho)physiological frameworks. Building on this notion, this article focuses on mQC in the heart, where developmental metabolic reprogramming, sustained contraction, and multiple pathophysiological conditions pose broadly different constraints. We provide an overview of current knowledge of mQC processes, and discuss their implication in cardiac mQC under normal and diseased conditions.
Collapse
Affiliation(s)
- Virgilio J J Cadete
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
43
|
Combination of Coenzyme Q 10 Intake and Moderate Physical Activity Counteracts Mitochondrial Dysfunctions in a SAMP8 Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8936251. [PMID: 30473743 PMCID: PMC6220380 DOI: 10.1155/2018/8936251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Aging skeletal muscles are characterized by a progressive decline in muscle mass and muscular strength. Such muscular dysfunctions are usually associated with structural and functional alterations of skeletal muscle mitochondria. The senescence-accelerated mouse-prone 8 (SAMP8) model, characterized by premature aging and high degree of oxidative stress, was used to investigate whether a combined intervention with mild physical exercise and ubiquinol supplementation was able to improve mitochondrial function and preserve skeletal muscle health during aging. 5-month-old SAMP8 mice, in a presarcopenia phase, have been randomly divided into 4 groups (n = 10): untreated controls and mice treated for two months with either physical exercise (0.5 km/h, on a 5% inclination, for 30 min, 5/7 days per week), ubiquinol 10 (500 mg/kg/day), or a combination of exercise and ubiquinol. Two months of physical exercise significantly increased mitochondrial damage in the muscles of exercised mice when compared to controls. On the contrary, ubiquinol and physical exercise combination significantly improved the overall status of the skeletal muscle, preserving mitochondrial ultrastructure and limiting mitochondrial depolarization induced by physical exercise alone. Accordingly, combination treatment while promoting mitochondrial biogenesis lowered autophagy and caspase 3-dependent apoptosis. In conclusion, the present study shows that ubiquinol supplementation counteracts the deleterious effects of physical exercise-derived ROS improving mitochondrial functionality in an oxidative stress model, such as SAMP8 in the presarcopenia phase.
Collapse
|
44
|
Abstract
PURPOSE OF THE REVIEW Proinflammatory cytokines are consistently elevated in congestive heart failure. In the current review, we provide an overview on the current understanding of how tumor necrosis factor-α (TNFα), a key proinflammatory cytokine, potentiates heart failure by overwhelming the anti-inflammatory responses disrupting the homeostasis. RECENT FINDINGS Studies have shown co-relationship between severity of heart failure and levels of the proinflammatory cytokine TNFα and one of its secondary mediators interleukin-6 (IL-6), suggesting their potential as biomarkers. Recent efforts have focused on understanding the mechanisms of how proinflammatory cytokines contribute towards cardiac dysfunction and failure. In addition, how unchecked proinflammatory cytokines and their cross-talk with sympathetic system overrides the anti-inflammatory response underlying failure. The review offers insights on how TNFα and IL-6 contribute to cardiac dysfunction and failure. Furthermore, this provides a forum to begin the discussion on the cross-talk between sympathetic drive and proinflammatory cytokines and its determinant role in deleterious outcomes.
Collapse
Affiliation(s)
- Sarah M Schumacher
- NB50, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sathyamangla V Naga Prasad
- NB50, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
45
|
Ding J, Cong YF, Liu B, Miao J, Wang L. Aberrant Protein Turn-Over Associated With Myofibrillar Disorganization in FHL1 Knockout Mice. Front Genet 2018; 9:273. [PMID: 30083183 PMCID: PMC6065255 DOI: 10.3389/fgene.2018.00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the FHL1 gene, and FHL1 protein deletion, are associated with rare hereditary myopathies and cardiomyopathies. FHL1-null mice develop age-dependent myopathy and increased autophagic activity. However, the molecular pathway involved in contractile function and increased autophagic activity in the FHL1-null mouse has not yet been fully elucidated. In this study, FHL1 protein was knocked out in mice using Transcription Activator-like Effector Nucleases (TALENs) and the IRS1-FOXO1/mTOR signaling pathway was investigated in skeletal muscles and heart. TALEN constructs caused targeted mutations in 30% of newborn mice; these mutations caused a deletion of 1–13 base pairs which blocked synthesis of the full-length FHL1 protein. Furthermore, 2.5-month old FHL1-null male mice were not prone to global muscular fatigue when compared with WT littermates, but histological analysis and ultrastructural analysis by transmission electron microscopy confirmed the presence of myofibrillar disorganization and the accumulation of autophagosome or autolysosome-like structures in FHL1-null mice. Moreover, autophagy and mitophagy were both activated in FHL1 KO mice and the degradation of autophagic lysosomes was impeded. Enhanced autophagic activity in FHL1 KO mice was induced by FOXO1 up-regulation and protein synthesis was increased via mTOR. The cytoskeletal proteins, MYBPC2 and LDB3, were involved in the formation of pathological changes in FHL1 KO mice. Markers of early differentiation (MEF2C and MYOD1) and terminal differentiation (total MYH) were both up-regulated in tibialis anterior (TA) muscles in FHL1 KO mice. The number of type I and type II fibers increased in FHL1-null TA muscles, but the number of type| | b, and type | | d fibers were both reduced in FHL1-null TA muscles. The results obtained from the heart were consistent with those from the skeletal muscle and indicated autophagic activation by FOXO1 and an increase in protein synthesis via mTOR also occurred in the heart tissue of FHL1 knockout mice. In conclusion, aberrant protein turn-over associated with myofibrillar disorganization in FHL1 knockout mice. the up-regulation of FOXO1 was associated with enhanced autophagic activity and pathological changes in the muscle fibers of FHL1 KO mice. These results indicated that autophagy activated by FOXO1 is a promising therapeutic target for hereditary myopathies and cardiomyopathies induced by FHL1.
Collapse
Affiliation(s)
- Jingjing Ding
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Yan Fei Cong
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Bo Liu
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Jianing Miao
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| | - Lili Wang
- Medical Research Center of Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
46
|
Abstract
Obesity, which has become a major global epidemic, is associated with numerous comorbidities and nearly every chronic condition. Mitochondria play a central role in this disorder, as they control cell metabolism, regulating important processes, such as ATP production, lipid β-oxidation, oxidative stress, and inflammation. MicroRNAs (miRs) have been shown to regulate many biological processes associated with obesity, comprising adipocyte differentiation, insulin action, and fat metabolism. In addition, recent studies have confirmed that miRs are important regulators of mitochondrial function by either directly modulating mitochondrial proteins or targeting mitochondrial regulators, thereby modulating metabolic process in the context of obesity. In this review, we describe the different roles of mitochondria in obesity, specifically in adipose tissue, and those miRs that are involved in mitochondrial dysfunction in this disease.
Collapse
Affiliation(s)
- Mora Murri
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| | - Hamid El Azzouzi
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University , Maastricht , The Netherlands
| |
Collapse
|
47
|
Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3617508. [PMID: 29849885 PMCID: PMC5907404 DOI: 10.1155/2018/3617508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.
Collapse
|
48
|
Santos AL, Sinha S, Lindner AB. The Good, the Bad, and the Ugly of ROS: New Insights on Aging and Aging-Related Diseases from Eukaryotic and Prokaryotic Model Organisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1941285. [PMID: 29743972 PMCID: PMC5878877 DOI: 10.1155/2018/1941285] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with the accumulation of cellular damage over the course of a lifetime. This process is promoted in large part by reactive oxygen species (ROS) generated via cellular metabolic and respiratory pathways. Pharmacological, nonpharmacological, and genetic interventions have been used to target cellular and mitochondrial networks in an effort to decipher aging and age-related disorders. While ROS historically have been viewed as a detrimental byproduct of normal metabolism and associated with several pathologies, recent research has revealed a more complex and beneficial role of ROS in regulating metabolism, development, and lifespan. In this review, we summarize the recent advances in ROS research, focusing on both the beneficial and harmful roles of ROS, many of which are conserved across species from bacteria to humans, in various aspects of cellular physiology. These studies provide a new context for our understanding of the parts ROS play in health and disease. Moreover, we highlight the utility of bacterial models to elucidate the molecular pathways by which ROS mediate aging and aging-related diseases.
Collapse
Affiliation(s)
- Ana L. Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sanchari Sinha
- Defence Institute of Physiology and Allied Sciences, DRDO, New Delhi, India
| | - Ariel B. Lindner
- Institut National de la Santé et de la Recherche Médicale, U1001 & Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
49
|
Tam BT, Yu AP, Tam EW, Monks DA, Wang XP, Pei XM, Koh SP, Sin TK, Law HKW, Ugwu FN, Supriya R, Yung BY, Yip SP, Wong SC, Chan LW, Lai CW, Ouyang P, Siu PM. Ablation of Bax and Bak protects skeletal muscle against pressure-induced injury. Sci Rep 2018; 8:3689. [PMID: 29487339 PMCID: PMC5829134 DOI: 10.1038/s41598-018-21853-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/06/2017] [Indexed: 01/23/2023] Open
Abstract
Pressure-induced injury (PI), such as a pressure ulcer, in patients with limited mobility is a healthcare issue worldwide. PI is an injury to skin and its underlying tissue such as skeletal muscle. Muscle compression, composed of mechanical deformation of muscle and external load, leads to localized ischemia and subsequent unloading reperfusion and, hence, a pressure ulcer in bed-bound patients. Although the gross factors involved in PI have been identified, little is known about the exact disease mechanism or its links to apoptosis, autophagy and inflammation. Here, we report that PI is mediated by intrinsic apoptosis and exacerbated by autophagy. Conditional ablation of Bax and Bak activates the Akt-mTOR pathway and Bnip3-mediated mitophagy and preserves mitochondrial contents in compressed muscle. Moreover, we find that the presence/absence of Bax and Bak alters the roles and functions of autophagy in PI. Our results suggest that manipulating apoptosis and autophagy are potential therapeutic targets for treatment and prevention of PI.
Collapse
Affiliation(s)
- Bjorn T Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Angus P Yu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric W Tam
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Douglas A Monks
- Department of Cell and Systems Biology & Department of Psychology, University of Toronto, Toronto, Canada
| | - Xu P Wang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao M Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Su P Koh
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Thomas K Sin
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Helen K W Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Felix N Ugwu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Rashmi Supriya
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shea P Yip
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - S C Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lawrence W Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Christopher W Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pin Ouyang
- Department of Anatomy & Transgenic Mouse Core Laboratory, Chang Gung University, Taoyuan, Taiwan
| | - Parco M Siu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Sun X, Yang X, Zhao Y, Li Y, Guo L. Effects of 17β-Estradiol on Mitophagy in the Murine MC3T3-E1 Osteoblast Cell Line is Mediated via G Protein-Coupled Estrogen Receptor and the ERK1/2 Signaling Pathway. Med Sci Monit 2018; 24:903-911. [PMID: 29438359 PMCID: PMC5819311 DOI: 10.12659/msm.908705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Osteoporosis is associated with 17β-estradiol deficiency. The G protein-coupled receptor 30 (GPR30) is known to be an estrogen-responsive receptor, but its role in the degradation of mitochondria in osteoblasts by autophagy, or mitophagy, remains unclear. The aim of this in vitro study was to evaluate the effects of 17β-estradiol, GPR30, and its signaling pathway, on mitophagy in the murine MC3T3-E1 osteoblast cell line. Material/Methods In the murine MC3T3-E1 osteoblast cell line, cells were treated with 17β-estradiol, or G15, a selective GPR30 antagonist, or U0126, a mitogen-activated protein (MAP) kinase (ERK1/2) inhibitor, or with vehicle as control. The expression of GPR30 was determined by Western blot, reverse transcription-polymerase chain reaction (RT-PCR), and confocal immunofluorescence imaging. Cell morphology and mitochondrial autophagosomes were identified using transmission electron microscopy (TEM). Phosphorylation of the mitophagy markers, heat shock protein 60 (Hsp60), translocase of outer membrane (Tom)20, and microtubule-associated protein 1A/1B-light chain 3 (LC3) were determined by Western blot, and cell proliferation was determined using the bromodeoxyuridine (BrdU) assay. Results The optimum concentration of 17β-estradiol that resulted in GPR30 expression in MC3T3-E1 cells was 10−7 M, which led to the accumulation of mitochondrial autophagosomes and increased protein phosphorylation levels of Hsp60, Tom20, and LC3. In cells pretreated with G15 or U0126, 17β-estradiol treatment did not increase mitophagy in MC3T3-E1 cells. Conclusions In murine osteoblasts cultured in vitro, treatment with 17β-estradiol resulted in the expression of GPR30 and enhanced mitophagy through the GPR30 and ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xuhao Yang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yinan Li
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|