1
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
2
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
3
|
Guan P, Liang Y, Wang N. Fasudil alleviates pressure overload-induced heart failure by activating Nrf2-mediated antioxidant responses. J Cell Biochem 2018; 119:6452-6460. [PMID: 29323739 DOI: 10.1002/jcb.26662] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The RhoA/Rho-kinase cascade plays an important role in many aspects of cardiovascular function. This study aims to investigate the protective effects of fasudil, a Rho-kinase inhibitor, on pressure overload induced heart failure in rats. Pressure overload induced heart failure was induced in SD rats by banding the abdominal aorta for 8 weeks. The rats were divided into four groups: Sham, TAC, TAC plus low dose of fasudil, and TAC plus high dose of fasudil group. Low dose and high dose fasudil were 5 and 10 mg/kg/day, respectively. Rats in the Sham and TAC groups were treated with vehicle. Fasudil effectively inhibited TAC-induced heart failure, as evaluated by echocardiography and transmission electron microscopy. Fasudil could significantly promote superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity and significantly decrease malondialdehyde (MDA) content in a dose-dependent maner in TAC rats. Consistently, fasudil evoked significant nuclear translocation of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) with increased DNA/promoter binding and transactivation of Nrf2 targets. In addition, fasudil increased the content of iron as well as transferrin receptor 1 (TfR1) in TAC rats. A mild oxidative stress induced by iron may activate the antioxidant enzymes by feedback response. Taken together, these results indicate that the protective effect of fasudil may be due to its strong antioxidative activities which related with the activated Nrf2 and its down-regulated genes. These findings provide a new treatment concept and support the benefit of fasudil treatment in heart failure.
Collapse
Affiliation(s)
- Peng Guan
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yingran Liang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Na Wang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Olgar Y, Celen MC, Yamasan BE, Ozturk N, Turan B, Ozdemir S. Rho-kinase inhibition reverses impaired Ca 2+ handling and associated left ventricular dysfunction in pressure overload-induced cardiac hypertrophy. Cell Calcium 2017; 67:81-90. [PMID: 29029794 DOI: 10.1016/j.ceca.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/24/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
|
5
|
Takeshita N, Hasegawa M, Sasaki K, Seki D, Seiryu M, Miyashita S, Takano I, Oyanagi T, Miyajima Y, Takano-Yamamoto T. In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab 2017; 35:40-51. [PMID: 26825658 DOI: 10.1007/s00774-016-0737-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
Sutures are fibrous tissues that connect bones in craniofacial skeletal complexes. Cranio- and dentofacial skeletal deformities in infant and adolescent patients can be treated by applying tensile force to sutures to induce sutural bone formation. The early gene expression induced by mechanical stress is essential for bone formation in long bones; however, early gene expression during sutural bone formation induced by tensile force is poorly characterized. In vivo studies are essential to evaluate molecular responses to mechanical stresses in heterogeneous cell populations, such as sutures. In this paper we examined in vivo early gene expression and the underlying regulatory mechanism for this expression in tensile-force-applied cranial sutures, focusing on genes involved in vascularization. Tensile force upregulated expression of vascular factors, such as vascular endothelial growth factor (Vegf) and endothelial cell markers, in sutures within 3 h. The expression of connective tissue growth factor (Ctgf) and Rho-associated coiled-coil containing protein kinase 2 (Rock2) was also upregulated by tensile force. A CTGF-neutralizing antibody and the ROCK inhibitor, Y-27632, abolished tensile-force-induced Vegf expression. Moreover, tensile force activated extracellular signal-related kinase 1/2 (ERK1/2) signaling in sagittal sutures, and the ERK1/2 inhibitor, U0126, partially inhibited tensile-force-induced Ctgf expression. These results indicate that tensile force induces in vivo gene expression associated with vascularization early in tensile-force-induced sutural bone formation. Moreover, the early induction of Vegf gene expression is regulated by CTGF and ROCK2.
Collapse
Affiliation(s)
- Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masakazu Hasegawa
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Daisuke Seki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunro Miyashita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ikuko Takano
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Miyajima
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
6
|
Abstract
In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.
Collapse
|
7
|
Iwaz JA, Lee E, Aramin H, Romero D, Iqbal N, Kawahara M, Khusro F, Knight B, Patel MV, Sharma S, Maisel AS. New Targets in the Drug Treatment of Heart Failure. Drugs 2015; 76:187-201. [DOI: 10.1007/s40265-015-0498-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Cotecchia S, Del Vescovo CD, Colella M, Caso S, Diviani D. The alpha1-adrenergic receptors in cardiac hypertrophy: signaling mechanisms and functional implications. Cell Signal 2015; 27:1984-93. [PMID: 26169957 DOI: 10.1016/j.cellsig.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy.
| | - Cosmo Damiano Del Vescovo
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefania Caso
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy; Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Dario Diviani
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| |
Collapse
|
9
|
Kaneko-Kawano T, Suzuki K. Mechanical stress regulates gene expression via Rho/Rho-kinase signaling pathway. ACTA ACUST UNITED AC 2015. [DOI: 10.7600/jpfsm.4.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenji Suzuki
- College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
10
|
Samarel AM. Focal adhesion signaling in heart failure. Pflugers Arch 2014; 466:1101-11. [PMID: 24515292 DOI: 10.1007/s00424-014-1456-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/28/2022]
Abstract
In this brief review, recent evidence is presented to indicate a role for specific components of the cardiomyocyte costamere (and its related structure the focal adhesion complex of cultured cardiomyocytes) in initiating and sustaining the aberrant signal transduction that contributes to myocardial remodeling and the progression to heart failure (HF). Special attention is devoted to the focal adhesion kinase family of nonreceptor protein tyrosine kinases in bidirectional signal transduction during cardiac remodeling and HF progression. Finally, some speculations and directions for future study are provided for this rapidly developing field of research.
Collapse
Affiliation(s)
- Allen M Samarel
- The Cardiovascular Institute and the Department of Medicine, Loyola University Chicago Stritch School of Medicine, Building 110, Rm 5222, 2160 South First Avenue, Maywood, IL, 60153, USA,
| |
Collapse
|
11
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
12
|
Biophysical Forces Modulate the Costamere and Z-Disc for Sarcomere Remodeling in Heart Failure. BIOPHYSICS OF THE FAILING HEART 2013. [DOI: 10.1007/978-1-4614-7678-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
A combination of increased Rho kinase activity and N-terminal pro-B-type natriuretic peptide predicts worse cardiovascular outcome in patients with acute coronary syndrome. Int J Cardiol 2012; 167:2813-9. [PMID: 22921817 DOI: 10.1016/j.ijcard.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 06/27/2012] [Accepted: 07/20/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent experimental evidence suggests that the Rho/Rho-kinase (ROCK) system may play an important role in the pathogenesis of acute coronary syndrome (ACS) but there are little clinical data. This study examined if ROCK activity is increased in patients with acute coronary syndrome and if ROCK activity predicts long-term cardiovascular event. METHOD Blood samples were collected from 188 patients within 12h after admission for ACS (53% men; aged 70 ± 13) and from 61 control subject. The main outcome measures were all cause mortality, readmission with ACS or congestive heart failure (CHF) from presentation within around 2 years (mean:14.4 ± 7.2 months; range: 0.5 to 26 months). RESULTS ROCK activity increased in ST elevation myocardial infarction (STEMI, n=90) (3.33 ± 0.93), non-STEMI (NSTEMI, n=68) (3.37 ± 1.04) and unstable angina (UA, n=30) (2.53 ± 0.59) groups when compared with disease controls (n=31) (2.06 ± 0.38, all p<0.001) and healthy controls (n=30) (1.54 ± 0.43, all p<0.001). There were 24 deaths, 34 readmissions with ACS and 15 admissions with CHF within 2 years. Patients with a high N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high ROCK activity on admission had a five-fold risk of a cardiovascular event (RR: 5.156; 95% CI: 2.180-12.191) when compared to those with low NT-proBNP and low ROCK activity. CONCLUSION ROCK activity was increased in patients with ACS, particularly in those with myocardial infarction. The combined usage of both ROCK activity and NT-proBNP might identify a subset of ACS patients at particularly high risk.
Collapse
|
14
|
Chaturvedi LS, Marsh HM, Basson MD. Role of RhoA and its effectors ROCK and mDia1 in the modulation of deformation-induced FAK, ERK, p38, and MLC motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C1224-38. [PMID: 21849669 DOI: 10.1152/ajpcell.00518.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr(925), p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation.
Collapse
|
15
|
Franchini KG. Focal adhesion kinase -- the basis of local hypertrophic signaling domains. J Mol Cell Cardiol 2011; 52:485-92. [PMID: 21749874 DOI: 10.1016/j.yjmcc.2011.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Focal adhesion kinase (FAK), a broadly expressed non-receptor tyrosine kinase which transduces signals from integrins, growth and hormonal factors, is a key player in many fundamental biological processes and functions, including cell adhesion, migration, proliferation and survival. The involvement of FAK in this range of functions supports its role in important aspects of organismal development and disease, such as central nervous system and cardiovascular development, cancer, cardiac hypertrophy and tissue fibrosis. Many functions of FAK are correlated with its tyrosine kinase activity, which is temporally and spatially controlled by complex intra-molecular autoinhibitory conformation and inter-molecular interactions with protein and lipid partners. The inactivation of FAK in mice results in embryonic lethality attributed to the lack of proper development and function of the heart. Accordingly, embryonic FAK myocyte-specific knockout mice display lethal cardiac defects such as thin ventricle wall and ventricular septum defects. Emerging data also support a role for FAK in the reactive hypertrophy and failure of adult hearts. Moreover, the mechanisms that regulate FAK in differentiated cardiac myocytes to biomechanical stress and soluble factors are beginning to be revealed and are discussed here together with data that connect FAK to its downstream effectors. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- K G Franchini
- Department of Internal Medicine, School of Medicine, State University of Campinas, Campinas, Campinas, SP, Brazil.
| |
Collapse
|
16
|
Tornatore TF, Dalla Costa AP, Clemente CFMZ, Judice C, Rocco SA, Calegari VC, Cardoso L, Cardoso AC, Gonçalves A, Franchini KG. A role for focal adhesion kinase in cardiac mitochondrial biogenesis induced by mechanical stress. Am J Physiol Heart Circ Physiol 2010; 300:H902-12. [PMID: 21148763 DOI: 10.1152/ajpheart.00319.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the implication of focal adhesion kinase (FAK) in cardiac mitochondrial biogenesis induced by mechanical stress. Prolonged stretching (2-12 h) of neonatal rat ventricular myocytes (NRVM) upregulated the main components of mitochondrial transcription cascade [peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), nuclear respiratory factor (NRF-1), and mitochondrial transcription factor A]. Concomitantly, prolonged stretching enhanced mitochondrial biogenesis [copy number of mitochondrial DNA (mtDNA), content of the subunit IV of cytochrome oxidase, and mitochondrial staining-green fluorescence intensity of Mitotracker green] and induced the hypertrophic growth (cell size and atrial natriuretic peptide transcripts) of NRVM. Furthermore, the stretching of NRVM enhanced phosphorylation, nuclear localization, and association of FAK with PGC-1α. Recombinant FAK COOH-terminal, but not the NH(2)-terminal or kinase domain, precipitated PGC-1α from nuclear extracts of NRVM. Depletion of FAK by RNA interference suppressed the upregulation of PGC-1α and NRF-1 and markedly attenuated the enhanced mitochondrial biogenesis and hypertrophic growth of stretched NRVM. In the context of energy metabolism, FAK depletion became manifest by a reduction of ATP levels in stretched NRVM. Complementary studies in adult mice left ventricle demonstrated that pressure overload upregulated PGC-1α, NRF-1, and mtDNA. In vivo FAK silencing transiently attenuated the upregulation of PGC-1α, NRF-1, and mtDNA, as well as the left ventricular hypertrophy induced by pressure overload. In conclusion, activation of FAK signaling seems to be important for conferring enhanced mitochondrial biogenesis coupled to the hypertrophic growth of cardiomyocytes in response to mechanical stress, via control of mitochondrial transcription cascade.
Collapse
Affiliation(s)
- Thais F Tornatore
- Department of Internal Medicine, School of Medicine, State University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol 2010; 48:817-23. [PMID: 20188736 DOI: 10.1016/j.yjmcc.2010.02.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 12/27/2022]
Abstract
A ventricular myocyte experiences changes in length and load during every beat of the heart and has the ability to remodel cell shape to maintain cardiac performance. Specifically, myocytes elongate in response to increased diastolic strain by adding sarcomeres in series, and they thicken in response to continued systolic stress by adding filaments in parallel. Myocytes do this while still keeping the resting sarcomere length close to its optimal value at the peak of the length-tension curve. This review focuses on the little understood mechanisms by which direction of growth is matched in a physiologically appropriate direction. We propose that the direction of strain is detected by differential phosphorylation of proteins in the costamere, which then transmit signaling to the Z-disc for parallel or series addition of thin filaments regulated via the actin capping processes. In this review, we link mechanotransduction to the molecular mechanisms for regulation of myocyte length and width.
Collapse
|
19
|
FAK signalling mediates NF-κB activation by mechanical stress in cardiac myocytes. Clin Chim Acta 2009; 403:81-6. [DOI: 10.1016/j.cca.2009.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 11/16/2022]
|
20
|
Borges L, Bigarella CL, Baratti MO, Crosara-Alberto DP, Joazeiro PP, Franchini KG, Costa FF, Saad STO. ARHGAP21 associates with FAK and PKCζ and is redistributed after cardiac pressure overload. Biochem Biophys Res Commun 2008; 374:641-6. [DOI: 10.1016/j.bbrc.2008.07.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/15/2008] [Indexed: 11/26/2022]
|
21
|
Phrommintikul A, Tran L, Kompa A, Wang B, Adrahtas A, Cantwell D, Kelly DJ, Krum H. Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am J Physiol Heart Circ Physiol 2008; 294:H1804-14. [PMID: 18245565 DOI: 10.1152/ajpheart.01078.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The RhoA-Rho kinase (ROCK) signaling pathway has an important role in cardiovascular diseases. However, the effect of Rho kinase inhibition on pressure overload-induced cardiac hypertrophy (POH) and associated diastolic dysfunction has not been evaluated. This study examined the effect of a selective ROCK inhibitor (GSK-576371) in a POH model, induced by suprarenal abdominal aortic constriction. POH rats were divided into the following four groups: 1 (GSK 1, n = 9) or 3 (GSK 3, n = 10) mg/kg bid GSK-576371, 1 mg.kg(-1).day(-1) ramipril (n = 10) or vehicle (n = 11) treatment for 4 wk. Sham animals (n = 11) underwent surgery without banding. Echocardiograms were performed before surgery and posttreatment, and hemodynamic data were obtained at completion of the study. Echocardiography showed an increase in relative wall thickness of the left ventricle (LV) following POH + vehicle treatment compared with sham animals. This was attenuated by both doses of GSK-576371 and ramipril. Vehicle treatment demonstrated abnormal diastolic parameters, including mitral valve (MV) inflow E wave deceleration time, isovolumic relaxation time, and MV annular velocity, which were dose dependently restored toward sham values by GSK-576371. LV end diastolic pressure was increased following POH + vehicle treatment compared with sham (6.9 +/- 0.7 vs. 3.2 +/- 0.7 mmHg, P = 0.008) and was reduced with GSK 3 and ramipril treatment (1.7 +/- 0.7, P < 0.01 and 2.9 +/- 0.6 mmHg, P < 0.01, respectively). Collagen I deposition in the LV was increased following POH + vehicle treatment (32.2%; P < 0.01) compared with sham animals and was significantly attenuated with GSK 1 (21.7%; P < 0.05), GSK 3 (23.8%; P < 0.01), and ramipril (35.5%; P < 0.01) treatment. These results suggest that ROCK inhibition improves LV geometry and reduces collagen deposition accompanied by improved diastolic function in POH.
Collapse
Affiliation(s)
- Arintaya Phrommintikul
- Dept. of Epidemiology & Preventive Medicine, Monash University, Melbourne VIC 3004, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Rho kinases (ROCKs) are the first and the best-characterized effectors of the small G-protein RhoA. In addition to their effect on actin organization, or through this effect, ROCKs have been found to regulate a wide range of fundamental cell functions such as contraction, motility, proliferation, and apoptosis. Abnormal activation of the RhoA/ROCK pathway has been observed in major cardiovascular disorders such as atherosclerosis, restenosis, hypertension, pulmonary hypertension, and cardiac hypertrophy. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling and its roles in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM U-533-Institut du Thorax, Faculté des Sciences, Nantes, France
| | | | | |
Collapse
|
23
|
Solaro RJ, Arteaga GM. Heart failure, ischemia/reperfusion injury and cardiac troponin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:191-200. [PMID: 17278366 DOI: 10.1007/978-4-431-38453-3_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the forty years since its discovery, there has been a profound transition in thinking with regard to the role of troponin in the control of cardiac function. This transition involved a change in perception oftroponin as a passive molecular switch responding to membrane controlled fluctuations in cytoplasmic Ca2+ to a perception of troponin as a critical element in signaling cascades that actively engage in control of cardiac function. Evidence demonstrating functionally significant developmental and mutant isoform switches and post-translational modifications of cardiac troponin complex proteins, troponin I (cTnI) and troponin T (cTnT) provided convincing evidence for a more complicated role of troponin in control of cardiac function and dynamics. The physiological role of these modifications of troponin is reviewed in this monograph and has also been reviewed elsewhere (Solaro and Rarick, 1998; Gordon et al., 2000; Solaro et al., 2002a; Kobayashi and Solaro, 2005). Our focus here is on studies related to modifications in troponin that appear important in the processes leading from compensated hypertrophy to heart failure. These studies reveal the potentially significant role of post-translational modifications of troponin in these processes. Another focus is on troponin as a target for inotropic agents. Pharmacological manipulation of troponin by small molecules remains an important avenue of approach for the treatment of acute and chronic heart failure (Kass and Solaro, 2006).
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics (M/C 901), University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
24
|
Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GCT, Bassel-Duby R, Richardson JA, Katus HA, Olson EN, Frey N. Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J Biol Chem 2006; 282:8393-403. [PMID: 17194709 DOI: 10.1074/jbc.m607549200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.
Collapse
Affiliation(s)
- Tomasa Barrientos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Balakumar P, Singh M. The Possible Role of Caspase-3 in Pathological and Physiological Cardiac Hypertrophy in Rats. Basic Clin Pharmacol Toxicol 2006; 99:418-24. [PMID: 17169122 DOI: 10.1111/j.1742-7843.2006.pto_569.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study has been designed to investigate the effect of Ac-DEVD-CHO, a specific caspase-3 inhibitor in partial abdominal aortic constriction for 4 week-induced pathological and chronic swimming training for 8 week-induced physiological cardiac hypertrophy. Ac-DEVD-CHO (2 mg/kg intraperitoneally, day(-1)) treatment was started three days before partial abdominal aortic constriction and chronic swimming test and it was continued for 4 weeks in partial abdominal aortic constriction and 8 weeks in chronic swimming test experimental model. The left ventricular (LV) function and LV hypertrophy were assessed by measuring LV developed pressure, dp/dt(max), dp/dt(min), ratio of LV weight to body weight, LV wall thickness, LV collagen content, protein content and RNA concentration. Further, venous pressure and mean arterial blood pressure were recorded. The partial abdominal aortic constriction but not chronic swimming test produced LV dysfunction by decreasing LV developed pressure, dp/dt(max), dp/dt(min.)and increasing LV collagen content. Further, partial abdominal aortic constriction and chronic swimming test were noted to produce LV hypertrophy by increasing ratio of LV weight to body weight, LV wall thickness, LV protein content and LV RNA concentration. Moreover, in contrast to chronic swimming test, partial abdominal aortic constriction has significantly increased venous pressure and mean arterial blood pressure. The Ac-DEVD-CHO has markedly attenuated partial abdominal aortic constriction-induced LV dysfunction, LV hypertrophy, increase in venous pressure and mean arterial blood pressure. However it did not modulate chronic swimming test-induced LV hypertrophy. These results have implicated caspase-3 in partial abdominal aortic constriction-induced LV dysfunction and pathological cardiac hypertrophy. However, caspase-3 may not be involved in chronic swimming test-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | |
Collapse
|
26
|
Carvalho BMR, Bassani RA, Franchini KG, Bassani JWM. Enhanced calcium mobilization in rat ventricular myocytes during the onset of pressure overload-induced hypertrophy. Am J Physiol Heart Circ Physiol 2006; 291:H1803-13. [PMID: 16648178 DOI: 10.1152/ajpheart.01345.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early cardiovascular changes evoked by pressure overload (PO) may reveal adaptive strategies that allow immediate survival to the increased hemodynamic load. In this study, systolic and diastolic Ca2+ cycling was analyzed in left ventricular rat myocytes before ( day 2, PO-2d group) and after ( day 7, PO-7d group) development of hypertrophy subsequent to aortic constriction, as well as in myocytes from time-matched sham-operated rats (sham group). Ca2+ transient amplitude was significantly augmented in the PO-2d group. In the PO-7d group, intracellular Ca2+ concentration ([Ca2+]i) was reduced during diastole, and mechanical twitch relaxation (but not [Ca2+]i decline) was slowed. In PO groups, fractional sarcoplasmic reticulum (SR) Ca2+ release at a twitch, SR Ca2+ content, SR Ca2+ loss during diastole, and SR-dependent integrated Ca2+ flux during twitch relaxation were significantly greater than in sham-operated groups, whereas the relaxation-associated Ca2+ flux carried by the Na+/Ca2+ exchanger was not significantly changed. In the PO-7d group, mRNA levels of cardiac isoforms of SR Ca2+-ATPase (SERCA2a), phospholamban, calsequestrin, ryanodine receptor, and NCX were not significantly altered, but the SERCA2a-to-phospholamban ratio was increased 2.5-fold. Moreover, greater sensitivity to the inotropic effects of the β-adrenoceptor agonist isoproterenol was observed in the PO-7d group. The results indicate enhanced Ca2+ cycling between SR and cytosol early after PO imposition, even before hypertrophy development. Increase in SR Ca2+ uptake may contribute to enhancement of excitation-contraction coupling (augmented SR Ca2+ content and release) and protection against arrhythmogenesis due to buildup of [Ca2+]i during diastole.
Collapse
Affiliation(s)
- Beatriz M R Carvalho
- Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Caixa Postal 6040, 13084-971 Campinas, SP, Brazil
| | | | | | | |
Collapse
|
27
|
Chadin AV, Belokurova MV, Stepanova OV, Ivanova MV, Shirinskii VP. Concentrations of myosin-activating protein kinases in the myocardium of patients with dilated cardiomyopathy and in animal heart. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Abstract
Over the last decade, the Rho family GTPases have gained considerable recognition as powerful regulators of actin cytoskeletal organization. As with many high profile signal transducers, these molecules soon attracted the attention of the cardiovascular research community. Shortly thereafter, two prominent members known as RhoA and Rac1 were linked to agonist-induced gene expression and myofilament organization using the isolated cardiomyocyte cell model. Subsequent creation of transgenic mouse lines provided evidence for more complex roles of RhoA and Rac1 signaling. Clues from in vitro and in vivo studies suggest the involvement of numerous downstream targets of RhoA and Rac1 signaling including serum response factor, NF-kappaB, and other transcription factors, myofilament proteins, ion channels, and reactive oxygen species generation. Which of these contribute to the observed phenotypic effects of enhanced RhoA and Rac activation in vivo remain to be determined. Current research efforts with a more translational focus have used statins or Rho kinase blockers to assess RhoA and Rac1 as targets for interventional approaches to blunt hypertrophy or heart failure. Generally, salutary effects on remodeling and ischemic damage are observed, but the broad specificity and multiple cellular targets for these drugs within the myocardium demands caution in interpretation. In this review, we assess the evolution of knowledge related to Rac1 and RhoA in the context of hypertrophy and heart failure and highlight the direction that future exploration will lead.
Collapse
Affiliation(s)
- Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, USA
| | | | | |
Collapse
|
29
|
Abstract
Rho, a Ser-Thr kinase identified as a member of the RAS GTPase super family, is highly expressed in the heart, and has been implicated in the development of heart failure. GTPase Rho is located downstream of Gq, and Rho and the associated kinase (Rho kinase) regulate myofibril organization, apoptosis, and myofibrillar sensitivity to calcium. Myocardial injury and dysfunction occur after major burn injury, and this phenomenon has been linked to cardiac myocyte synthesis and the secretion of proinflammatory cytokines. Whether Rho-associated kinase modulates any aspect of cardiomyocyte synthesis of inflammatory mediators, contributing to myocardial dysfunction, has not been studied and was the focus of this study. Hearts were collected at several times postburn to determine if an acute injury such as thermal trauma altered myocardial Rho kinase expression. In addition, cardiomyocytes were isolated (collagenase digestion) from adult control Sprague Dawley rats, plated (5 x 10 cells/microtiter well), incubated with medium alone or in the presence of burn serum (collected 24 h after burn over 40% total body surface area in rats) in a CO2 incubator at 37 degrees C in the presence/absence of specific Rho-kinase inhibitors (HA1077, 10 microM or Y27632, 10 microM). After 18 h, supernatants were collected to measure secreted cytokines (enzyme-linked immunoabsorbant assay), cells were loaded with Fura-2AM (2 microg) or sodium-binding benzofuran isophthalate (2 microg) for 45 min at 37 degrees C, and fluorescence was measured with an InCyt IM2 fluorescence imaging system to measure myocyte calcium and sodium. In parallel studies, cells were examined to determine if burn serum challenge increased Rho kinase in this cell population. In vivo burn injury or in vitro burn serum challenge of isolated myocytes increased Rho-kinase expression and promoted cardiomyocyte secretion of tumor necrosis factor-alpha, interleukin 1beta, and interleukin 6, and increased cardiomyocyte calcium and sodium levels compared with values measured when myocytes were incubated in medium alone (P < 0.05). Pretreating cardiomyocytes with Rho-kinase inhibitor (HA1077 or Y27632) prevented burn serum-related upregulation of Rho-kinase and attenuated the associated inflammatory cytokine responses, and attenuated myocyte calcium and sodium loading. Our data suggest that the Rho-kinase pathway is one potential upstream regulator of cardiac inflammatory response to burn injury.
Collapse
Affiliation(s)
- Jureta W Horton
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
30
|
Frank D, Kuhn C, Katus HA, Frey N. The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 2006; 84:446-68. [PMID: 16416311 DOI: 10.1007/s00109-005-0033-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/23/2005] [Indexed: 12/11/2022]
Abstract
The perception of the Z-disc in striated muscle has undergone significant changes in the past decade. Traditionally, the Z-disc has been viewed as a passive constituent of the sarcomere, which is important only for the cross-linking of thin filaments and transmission of force generated by the myofilaments. The recent discovery of multiple novel molecular components, however, has shed light on an emerging role for the Z-disc in signal transduction in both cardiac and skeletal muscles. Strikingly, mutations in several Z-disc proteins have been shown to cause cardiomyopathies and/or muscular dystrophies. In addition, the elusive cardiac stretch receptor appears to localize to the Z-disc. Various signalling molecules have been shown to interact with Z-disc proteins, several of which shuttle between the Z-disc and other cellular compartments such as the nucleus, underlining the dynamic nature of Z-disc-dependent signalling. In this review, we provide a systematic view on the currently known Z-disc components and the functional significance of the Z-disc as an interface between biomechanical sensing and signalling in cardiac and skeletal muscle functions and diseases.
Collapse
Affiliation(s)
- Derk Frank
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
31
|
Balakumar P, Singh M. Differential Role of Rho-Kinase in Pathological and Physiological Cardiac Hypertrophy in Rats. Pharmacology 2006; 78:91-7. [PMID: 16974135 DOI: 10.1159/000095784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022]
Abstract
The present study was undertaken to investigate the effect of fasudil, a specific Rho-kinase inhibitor, in pathological cardiac hypertrophy induced by partial abdominal aortic constriction (PAAC) for 4 weeks in comparison with physiological cardiac hypertrophy caused by chronic swimming training (CST) for 8 weeks in rats. Fasudil (15 and 30 mg/kg day(-1) p.o.) treatment was started 3 days before PAAC and CST, and was continued for 4 weeks in PAAC and 8 weeks in the CST experimental model. Left ventricular (LV) function and LV hypertrophy were assessed by measuring LVDP, +dp/dt(max), -dp/dt(max), ratio of LV weight to body weight (LVW/BW), LV wall thickness (LVWT), LV collagen content, protein content and RNA concentration. Further, venous pressure (VP) and mean arterial blood pressure (MABP) were recorded. Moreover, DNA gel electrophoresis was employed to assess myocardial cell death. PAAC but not CST produced LV dysfunction by decreasing LVDP, +dp/dt(max), -dp/dt(max) and increasing LV collagen content. Further, PAAC and CST were noted to produce LV hypertrophy by increasing LVW/BW, LVWT, LV protein content and LV RNA concentration. Moreover, in contrast to CST, PAAC has significantly increased VP, MABP and LV necrotic cell death. Fasudil, a Rho-kinase inhibitor, markedly attenuated PAAC-induced LV dysfunction, LV hypertrophy, increase in VP, MABP and LV necrotic cell death. However, it did not modulate the CST-induced LV hypertrophy. These results have implicated Rho-kinase in PAAC-induced LV dysfunction and pathological cardiac hypertrophy. However, Rho-kinase may not be involved in CST-induced physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| | | |
Collapse
|
32
|
Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 2005; 289:H1488-96. [PMID: 15923313 DOI: 10.1152/ajpheart.00692.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Focal adhesion kinase (FAK) has been shown to be activated in cardiac myocytes exposed to mechanical stress. However, details of how mechanical stimuli induce FAK activation are unknown. We investigated whether signaling events mediated by the RhoA/Rho-associated coiled coil-containing kinase (ROCK) pathway are involved in regulation of stretch-induced FAK phosphorylation at Tyr(397) in neonatal rat ventricular myocytes (NRVMs). Immunostaining showed that RhoA localized to regions of myofilaments alternated with phalloidin (actin) staining. The results of coimmunoprecipitation assays indicated that FAK and RhoA are associated in nonstretched NRVMs, but cyclic stretch significantly reduced the amount of RhoA recovered from anti-FAK immunoprecipitates. Cyclic stretch induced rapid and sustained (up to 2 h) increases in phosphorylation of FAK at Tyr(397) and ERK1/2 at Thr(202)/Tyr(204). Blockade of RhoA/ROCK signaling by pharmacological inhibitors of RhoA (Clostridium botulinum C3 exoenzyme) or ROCK (Y-27632, 10 micromol/l, 1 h) markedly attenuated stretch-induced FAK and ERK1/2 phosphorylation. Similar effects were observed in cells treated with the inhibitor of actin polymerization cytochalasin D. Transfection of NRVMs with RhoA antisense oligonucleotide attenuated stretch-induced FAK and ERK1/2 phosphorylation and expression of beta-myosin heavy chain mRNA. Similar results were seen in cells transfected with FAK antisense oligonucleotide. These findings demonstrate that RhoA/ROCK signaling plays a crucial role in stretch-induced FAK phosphorylation, presumably by coordinating upstream events operationally linked to the actin cytoskeleton.
Collapse
Affiliation(s)
- Adriana S Torsoni
- Department of Internal Medicine, School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
33
|
Kobarg CB, Kobarg J, Crosara-Alberto DP, Theizen TH, Franchini KG. MEF2C DNA-binding activity is inhibited through its interaction with the regulatory protein Ki-1/57. FEBS Lett 2005; 579:2615-22. [PMID: 15862299 DOI: 10.1016/j.febslet.2005.03.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/26/2005] [Accepted: 03/13/2005] [Indexed: 10/25/2022]
Abstract
Myocyte enhancer factor (MEF2) are MADS box transcription factors that play important roles in the regulation of myogenesis and morphogenesis of muscle cells. MEF2 proteins are activated by mechanical overload in the heart. In this study, we found the interaction of MEF2C with the regulatory protein Ki-1/57 using yeast two-hybrid system. This interaction was confirmed by GST-pull down assay in vitro and by co-immunoprecipitation in vivo. This interaction is also dependent on pressure overload in the heart. Co-imunoprecipitation assay with anti-MEF2 and anti-Ki-1/57 antibodies demonstrated a basal association between these proteins in the left ventricles of control rats. Pressure overload caused a reduction in this association. Ki-1/57 co-localizes with MEF2 in the nucleus of myocytes of control rats. However, after submitting the animals to pressure overload Ki-1/57 leaves the nucleus thereby decreasing this co-localization. Ki-1/57 also exerts an inhibitory effect upon MEF2C DNA binding activity. These results suggest that Ki-1/57 is a new interacting partner of MEF2 protein and may be involved in the regulation of MEF2 at the onset of hypertrophy.
Collapse
Affiliation(s)
- Claudia Bandeira Kobarg
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Cidade Universitária Zefferino Vaz, SP, Brazil
| | | | | | | | | |
Collapse
|
34
|
Vahebi S, Kobayashi T, Warren CM, de Tombe PP, Solaro RJ. Functional effects of rho-kinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res 2005; 96:740-7. [PMID: 15774859 DOI: 10.1161/01.res.0000162457.56568.7d] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We tested the hypothesis that activation of Rho-A-dependent kinase (ROCK-II) alters cardiac myofilament response to Ca2+ by mechanisms involving phosphorylation of thin filament proteins. We determined effects of a constitutively active form of ROCK-II on ATPase activity and tension development in detergent-extracted (skinned) fiber bundles isolated from mouse left ventricular papillary muscles. ROCK-II induced a depression in maximum ATPase rate and tension, which was associated with phosphorylation of troponin T (TnT), troponin I (TnI), and myosin-binding protein C (C-protein). This effect of ROCK-II was retained in fiber bundles isolated from transgenic (TG) mice in which phosphorylation sites (S14, S15, and S19) of myosin light chain 2 were mutated to alanine. Moreover, exchange of ROCK-II-phosphorylated Tn complex with the native Tn complex in the fiber bundles resulted in inhibition of maximal Ca2+ activation of tension and ATPase activity. Mass spectrometric analysis demonstrated that ROCK-II phosphorylated cardiac TnI (cTnI) at S23, S24, and T144 and cardiac TnT (cTnT) at S278 and T287. An important role for these cTnT sites is indicated by results demonstrating that ROCK-II induced a depression in tension and ATPase activity in skinned fiber bundles from a TG model in which cTnI is replaced by slow skeletal TnI, which lacks S23 and S24 and in which T144 is replaced by proline. Our data provide the first evidence that ROCK-II phosphorylation of the Tn complex, most likely at cTnT, has an important role in functional effects of signaling through the Rho-A pathway.
Collapse
Affiliation(s)
- Susan Vahebi
- University of Illinois at Chicago Department of Physiology and Biophysics and Center for Cardiovascular Research College of Medicine, Chicago, Ill 60612-7342, USA
| | | | | | | | | |
Collapse
|