1
|
Kameyama M, Minobe E, Shao D, Xu J, Gao Q, Hao L. Regulation of Cardiac Cav1.2 Channels by Calmodulin. Int J Mol Sci 2023; 24:ijms24076409. [PMID: 37047381 PMCID: PMC10094977 DOI: 10.3390/ijms24076409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Cav1.2 Ca2+ channels, a type of voltage-gated L-type Ca2+ channel, are ubiquitously expressed, and the predominant Ca2+ channel type, in working cardiac myocytes. Cav1.2 channels are regulated by the direct interactions with calmodulin (CaM), a Ca2+-binding protein that causes Ca2+-dependent facilitation (CDF) and inactivation (CDI). Ca2+-free CaM (apoCaM) also contributes to the regulation of Cav1.2 channels. Furthermore, CaM indirectly affects channel activity by activating CaM-dependent enzymes, such as CaM-dependent protein kinase II and calcineurin (a CaM-dependent protein phosphatase). In this article, we review the recent progress in identifying the role of apoCaM in the channel ‘rundown’ phenomena and related repriming of channels, and CDF, as well as the role of Ca2+/CaM in CDI. In addition, the role of CaM in channel clustering is reviewed.
Collapse
Affiliation(s)
- Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
- Correspondence:
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Sakura-ga-oka, Kagoshima 890-8544, Japan
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110012, China (L.H.)
| |
Collapse
|
2
|
Gao Q, Minobe E, Kameyama M, Xu J. Purification of insoluble GST-fused and GST-cleaved Cav1.2 channel fragment by denaturation and renaturation. Protein Expr Purif 2019; 160:7-10. [PMID: 30926461 DOI: 10.1016/j.pep.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/14/2019] [Accepted: 03/24/2019] [Indexed: 11/25/2022]
Abstract
Both recombinant glutathione-S-transferase (GST)-fused and GST-cleaved fragments of an L-type voltage-gated Ca2+ channel (Cav1.2) are used frequently in GST pull-down assays to investigate the interactions between regulatory proteins and the Cav1.2 channel. However, GST-fused and GST-cleaved proximal C-terminal fragments of the guinea-pig cardiac Cav1.2 channel (CT1, amino acids 1509-1791) heterologously expressed in Escherichia coli (E. coli) are difficult to be recovered in a bioactive form because they are only poorly soluble. In this study, we developed a new method to solubilize and purify CT1. GST-CT1 expressed in E. coli was extracted and treated with an inclusion body solubilization and renaturation kit. Then, after adsorption to glutathione Sepharose beads, GST-CT1 was treated with protease to release CT1. However, the cleaved CT1 was insoluble and remained attached to the beads. Therefore, CT1 was treated again with the inclusion body solubilization and renaturation kit. Using this method, GST-CT1 and CT1 were purified with a high yield. GST pull-down experiments showed a dose-dependent interaction between GST-CT1 and calmodulin (CaM), and between GST-CaM and CT1, suggesting recovered bioactivity of GST-CT1 and CT1. This protocol may also be applied to purify other insoluble GST-fused proteins.
Collapse
Affiliation(s)
- Qinghua Gao
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan.
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan.
| |
Collapse
|
3
|
Lei M, Xu J, Gao Q, Minobe E, Kameyama M, Hao L. PKA phosphorylation of Cav1.2 channel modulates the interaction of calmodulin with the C terminal tail of the channel. J Pharmacol Sci 2018; 137:187-194. [PMID: 30042022 DOI: 10.1016/j.jphs.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022] Open
Abstract
Activity of cardiac Cav1.2 channels is enhanced by cyclic AMP-PKA signaling. In this study, we studied the effects of PKA phosphorylation on the binding of calmodulin to the fragment peptide of the proximal C-terminal tail of α1C subunit (CT1, a.a. 1509-1789 of guinea-pig). In the pull-down assay, in vitro PKA phosphorylation significantly decreased calmodulin binding to CT1 (61%) at high [Ca2+]. The phosphoresistant (CT1SA) and phosphomimetic (CT1SD) CT1 mutants, in which three PKA sites (Ser1574, 1626, 1699) were mutated to Ala and Asp, respectively, bound with calmodulin with 99% and 65% amount, respectively, compared to that of wild-type CT1. In contrast, at low [Ca2+], calmodulin-binding to CT1SD was higher (33-35%) than that to CT1SA. The distal C-terminal region of α1C (CT3, a.a. 1942-2169) is known to interact with CT1 and inhibit channel activity. CT3 bound to CT1SD was also significantly less than that to CT1SA. In inside-out patch, PKA catalytic subunit (PKAc) facilitated Ca2+ channel activity at both high and low Ca2+ condition. Altogether, these results support the hypothesis that PKA phosphorylation may enhance channel activity and attenuate the Ca2+-dependent inactivation, at least partially, by modulating calmodulin-CT1 interaction both directly and indirectly via CT3-CT1 interaction.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Lyu L, Gao Q, Xu J, Minobe E, Zhu T, Kameyama M. A new interaction between proximal and distal C-terminus of Cav1.2 channels. J Pharmacol Sci 2017; 133:240-246. [DOI: 10.1016/j.jphs.2017.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022] Open
|
5
|
Minobe E, Mori MX, Kameyama M. Calmodulin and ATP support activity of the Cav1.2 channel through dynamic interactions with the channel. J Physiol 2017; 595:2465-2477. [PMID: 28130847 PMCID: PMC5390892 DOI: 10.1113/jp273736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 11/08/2022] Open
Abstract
Key points Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Abstract Calmodulin (CaM) plays a critical role in regulation of Cav1.2 Ca2+ channels. CaM binds to the channel directly, maintaining channel activity and regulating it in a Ca2+‐dependent manner. To explore the molecular mechanisms involved, we compared the activity of the wildtype channel (α1C) and mutant derivatives, C‐terminal deleted (α1C∆) and α1C∆ linked to CaM (α1C∆CaM). These were co‐expressed with β2a and α2δ subunits in HEK293 cells. In the inside‐out mode, α1C and α1C∆ showed minimal open‐probabilities in a basic internal solution (run‐down), whereas α1C∆ with CaM and α1C∆CaM maintained detectable channel activity, confirming that CaM was necessary, but not sufficient, for channel activity. Previously, we reported that ATP was required to maintain channel activity of α1C. Unlike α1C, the mutant channels did not require ATP for activation in the early phase (3–5 min). However, α1C∆ with CaM + ATP and α1C∆CaM with ATP maintained activity, even in the late phase (after 7–9 min). These results suggested that CaM and ATP interacted dynamically with the proximal C‐terminal tail of the channel and, thereby, produced channel activity. In addition, okadaic acid, a protein phosphatase inhibitor, could substitute for the effects of ATP on α1C but not on the mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels, further indicating that ATP has dual effects. One maintains phosphorylation of the channel and the other becomes apparent when the distal carboxyl‐terminal tail is removed. Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| |
Collapse
|
6
|
Yu L, Xu J, Minobe E, Kameyama A, Yang L, Feng R, Hao L, Kameyama M. Role of protein phosphatases in the run down of guinea pig cardiac Cav1.2 Ca2+ channels. Am J Physiol Cell Physiol 2016; 310:C773-9. [DOI: 10.1152/ajpcell.00199.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/05/2016] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate protein phosphatases involved in the run down of Cav1.2 Ca2+ channels. Single ventricular myocytes obtained from adult guinea pig hearts were used to record Ca2+ channel currents with the patch-clamp technique. Calmodulin (CaM) and ATP were used to restore channel activity in inside-out patches. Inhibitors of protein phosphatases were applied to investigate the role of phosphatases. The specific protein phosphatase type 1 (PP1) inhibitor (PP1 inhibitor-2) and protein phosphatase type 2A (PP2A) inhibitor (fostriecin) abolished the slow run down of Cav1.2 Ca2+ channels, which was evident as the time-dependent attenuation of the reversing effect of CaM/ATP on the run down. However, protein phosphatase type 2B (PP2B, calcineurin) inhibitor cyclosporine A together with cyclophilin A had no effect on the channel run down. Furthermore, PP1 inhibitor-2 mainly prolonged the open time constants of the channel, specifically, the slow open time. Fostriecin primarily shortened the slow close time constants. Our data suggest that PP1 and PP2A were involved in the slow phase of Cav1.2 Ca2+ channel run down. In addition, they exerted different effects on the open-close kinetics of the channel. All above support the view that PP1 and PP2A may dephosphorylate distinct phosphorylation sites on the Cav1.2 Ca2+ channel.
Collapse
Affiliation(s)
- Lifeng Yu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Asako Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lei Yang
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
7
|
Xu J, Yu L, Minobe E, Lu L, Lei M, Kameyama M. PKA and phosphatases attached to the Ca(V)1.2 channel regulate channel activity in cell-free patches. Am J Physiol Cell Physiol 2015; 310:C136-41. [PMID: 26561637 DOI: 10.1152/ajpcell.00157.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) + ATP can reprime voltage-gated L-type Ca(2+) channels (Ca(V)1.2) in inside-out patches for activation, but this effect decreases time dependently. This suggests that the Ca(V)1.2 channel activity is regulated by additional cytoplasmic factors. To test this hypothesis, we examined the role of cAMP-dependent protein kinase A (PKA) and protein phosphatases in the regulation of Ca(V)1.2 channel activity in the inside-out mode in guinea pig ventricular myocytes. Ca(V)1.2 channel activity quickly disappeared after the patch was excised from the cell and recovered to only 9% of that in the cell-attached mode on application of CaM + ATP at 10 min after the inside out. However, immediate exposure of the excised patch to the catalytic subunit of PKA + ATP or the nonspecific phosphatase inhibitor okadaic acid significantly increased the Ca(V)1.2 channel activity recovery by CaM + ATP (114 and 96%, respectively) at 10 min. Interestingly, incubation of the excised patches with cAMP + ATP also increased CaM/ATP-induced Ca(V)1.2 channel activity recovery (108%), and this effect was blocked by the nonspecific protein kinase inhibitor K252a. The channel activity in the inside-out mode was not maintained by either catalytic subunit of PKA or cAMP + ATP in the absence of CaM, but was stably maintained in the presence of CaM for more than 40 min. These results suggest that PKA and phosphatase(s) attached on or near the Ca(V)1.2 channel regulate the basal channel activity, presumably through modulation of the dynamic CaM interaction with the channel.
Collapse
Affiliation(s)
- Jianjun Xu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lifeng Yu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; Department of Ethnopharmacology, School of Pharmacy, China Medical University, Shenyang, China; and
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liting Lu
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Laboratory of Environmental Biology, Northeastern University, Shenyang, China
| | - Ming Lei
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan;
| |
Collapse
|
8
|
Mg(2+)-dependent facilitation and inactivation of L-type Ca(2+) channels in guinea pig ventricular myocytes. J Pharmacol Sci 2015; 129:143-9. [PMID: 26422671 DOI: 10.1016/j.jphs.2015.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the intracellular Mg(2+) regulation of the L-type Ca(2+) channels in guinea pig ventricular myocytes. By adopting the inside-out configuration of the patch clamp technique, single channel currents of the L-type Ca(2+) channels were recorded at different intracellular Mg(2+) concentrations ([Mg(2+)]i). At free [Mg(2+)]i of 0, 10(-9), 10(-7), 10(-5), 10(-3), and 10(-1) M, 1.4 μM CaM + 3 mM ATP induced channel activities of 44%, 117%, 202%, 181%, 147%, and 20% of the control activity in cell-attached mode, respectively, showing a bell-shaped concentration-response relationship. Moreover, the intracellular Mg(2+) modulated the Ca(2+) channel gating properties, accounting for alterations in channel activities. These results imply that Mg(2+) has a dual effect on the L-type Ca(2+) channels: facilitation and inhibition. Lower [Mg(2+)]i maintains and enhances the basal activity of Ca(2+) channels, whereas higher [Mg(2+)]i inhibits channel activity. Taken together, our data from the application of an [Mg(2+)]i series suggest that the dual effect of Mg(2+) upon the L-type Ca(2+) channels exhibits long open-time dependence.
Collapse
|
9
|
Sun Y, Xu J, Minobe E, Shimoara S, Hao L, Kameyama M. Regulation of the Cav1.2 cardiac channel by redox via modulation of CaM interaction with the channel. J Pharmacol Sci 2015; 128:137-43. [PMID: 26169579 DOI: 10.1016/j.jphs.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Although it has been well documented that redox can modulate Cav1.2 channel activity, the underlying mechanisms are not fully understood. In our study, we examined the effects of redox on Cav1.2 channel activity and on CaM interaction with the Cav1.2 α1 subunit. Dithiothreitol (DTT, 1 mM) in the cell-attached mode decreased, while hydrogen peroxide (H2O2, 1 mM) increased channel activity to 72 and 303%, respectively. The effects of redox were maintained in the inside-out mode where channel activity was induced by CaM + ATP: DTT (1 mM) decreased, while H2O2 (1 mM) increased the channel activity. These results were mimicked by the thioredoxin and oxidized glutathione system. To test whether the redox state might determine channel activity by affecting the CaM interaction with the channel, we examined the effects of DTT and H2O2 on CaM binding to the N- and C-terminal fragments of the channel. We found that DTT concentration-dependently inhibited CaM binding to the C-terminus (IC50 37 μM), but H2O2 had no effect. Neither DTT nor H2O2 had an effect on CaM interaction with the N-terminus. These results suggest that redox-mediated regulation of the Cav1.2 channel is governed, at least partially, by modulation of the CaM interaction with the channel.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shoken Shimoara
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
10
|
Zhao M, Shao D, Yu L, Sun X, Wang Y, Hu H, Feng R, Gao Q, Guo F, Hao L. Electrophysiological effect and the gating mechanism of astragaloside IV on L-type Ca(2+) channels of guinea-pig ventricular myocytes. Eur J Pharmacol 2015; 760:27-35. [PMID: 25891370 DOI: 10.1016/j.ejphar.2015.03.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Astragaloside IV (AS-IV) is one of the main active ingredients of Astragalus membranaceus. This study is aimed to investigate AS-IV׳s effects on Ca(2+) channel activity of single cardiomyocytes and single Ca(2+) channels. Whole-cell Ca(2+) currents in freshly dissociated cardiomyocytes were measured using the whole-cell patch-clamp technique. Single Ca(2+) channel currents were examined in cell-attached patches and inside-out patches. In the whole-cell recording, AS-IV reduced the amplitude of L-type Ca(2+) currents (ICaL) in a concentration-dependent manner. Although AS-IV did not alter the steady-state activation curves, the voltage dependence of the current inactivation curves was negatively shifted by AS-IV in a concentration dependent manner. Consistent with the results of the whole-cell recording, in the inside-out configuration the ensemble average of single Ba(2+) current via L-type Ca(2+) channel was dose-dependently reduced by AS-IV. The reduction of unitary Ba(2+) current at 0.1 or 1 µM AS-IV was accounted for a decrease in the channel activity (NPo). In addition to the decrease in NPo, there was a reduction of Po without a change in channel number or an apparent change in single channel current. Furthermore, we found that the open-closed kinetics of the channel were affected by AS-IV. AS-IV induced the shift of L-type Ca(2+) channels from either brief openings (mode 1) or long-lasting openings (mode 2) to no active opening (mode 0). Our results suggest that AS-IV blocks the currents through Ca(2+) channels in guinea-pig ventricular myocytes by affecting the open-closed kinetics of L-type Ca(2+) channels to inhibit the channel activities. This study could provide theoretical basis for the drug exploiting of the monomer of Astragalus membranaceus.
Collapse
Affiliation(s)
- Meimi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Lifeng Yu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Yan Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Huiyuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110001, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China.
| |
Collapse
|
11
|
Liu SY, Xu JJ, Minobe E, Gao QH, Feng R, Zhao MM, Guo F, Yang L, Hao LY, Kameyama M. Nucleotides maintain the activity of Cav1.2 channels in guinea-pig ventricular myocytes. Biochem Biophys Res Commun 2015; 460:813-8. [PMID: 25824040 DOI: 10.1016/j.bbrc.2015.03.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 11/15/2022]
Abstract
The activity of Cav1.2 Ca(2+) channels is maintained in the presence of calmodulin and ATP, even in cell-free patches, and thus a channel ATP-binding site has been suggested. In this study, we examined whether other nucleotides, such as GTP, UTP, CTP, ADP and AMP, could be substituted for ATP in guinea-pig ventricular myocytes. We found that all the nucleotides tested could re-prime the Ca(2+) channels in the presence of 1 μM calmodulin in the inside-out mode. The order of efficacy was ATP > GTP > UTP > ADP > CTP ≈ AMP. Thus, the presumed nucleotide-binding site in the channel seemed to favor a purine rather than pyrimidine base and a triphosphate rather than a di- or mono-phosphate group. Furthermore, a high concentration (10 mM) of GTP, UTP, CTP, ADP and AMP had inhibitory effects on the channel activity. These results provide information on the putative nucleotide-binding site(s) in Cav1.2 Ca(2+) channels.
Collapse
Affiliation(s)
- Shu-yuan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Jian-jun Xu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Qing-hua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Mei-mi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China
| | - Lei Yang
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Li-ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China; Cardiovascular Institute of China Medical University, Shenyang 110001, China.
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
12
|
Guo F, Zhou PD, Gao QH, Gong J, Feng R, Xu XX, Liu SY, Hu HY, Zhao MM, Adam HC, Cai JQ, Hao LY. Low-Mg(2+) treatment increases sensitivity of voltage-gated Na(+) channels to Ca(2+)/calmodulin-mediated modulation in cultured hippocampal neurons. Am J Physiol Cell Physiol 2015; 308:C594-605. [PMID: 25652447 DOI: 10.1152/ajpcell.00174.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
Culture of hippocampal neurons in low-Mg(2+) medium (low-Mg(2+) neurons) results in induction of continuous seizure activity. However, the underlying mechanism of the contribution of low Mg(2+) to hyperexcitability of neurons has not been clarified. Our data, obtained using the patch-clamp technique, show that voltage-gated Na(+) channel (VGSC) activity, which is associated with a persistent, noninactivating Na(+) current (INa,P), was modulated by calmodulin (CaM) in a concentration-dependent manner in normal and low-Mg(2+) neurons, but the channel activity was more sensitive to Ca(2+)/CaM regulation in low-Mg(2+) than normal neurons. The increased sensitivity of VGSCs in low-Mg(2+) neurons was partially retained when CaM12 and CaM34, CaM mutants with disabled binding sites in the N or C lobe, were used but was diminished when CaM1234, a CaM mutant in which all four Ca(2+) sites are disabled, was used, indicating that functional Ca(2+)-binding sites from either lobe of CaM are required for modulation of VGSCs in low-Mg(2+) neurons. Furthermore, the number of neurons exhibiting colocalization of CaM with the VGSC subtypes NaV1.1, NaV1.2, and NaV1.3 was significantly higher in low- Mg(2+) than normal neurons, as shown by immunofluorescence. Our main finding is that low-Mg(2+) treatment increases sensitivity of VGSCs to Ca(2+)/CaM-mediated regulation. Our data reveal that CaM, as a core regulating factor, connects the functional roles of the three main intracellular ions, Na(+), Ca(2+), and Mg(2+), by modulating VGSCs and provides a possible explanation for the seizure discharge observed in low-Mg(2+) neurons.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Pei-Dong Zhou
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Qing-Hua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jian Gong
- Department of Clinical Pharmacy, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiao-Xue Xu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China; and
| | - Shu-Yuan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hui-Yuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Mei-Mi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hogan-Cann Adam
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ji-Qun Cai
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Kameyama M, Minobe E, Xu JJ, Han DY, Hadhimulya A, Kameyama A, Feng R, Liu S, Hao LY. [Regulation of L-type (CaV1.2) Ca(2+) channels by calmodulin and ATP]. Nihon Yakurigaku Zasshi 2014; 144:222-226. [PMID: 25381891 DOI: 10.1254/fpj.144.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
14
|
Shao D, Zhao M, Xu J, Feng R, Guo F, Hu H, Sun X, Gao Q, He G, Sun W, Wang H, Yu L, Liu S, Zhu Y, Minobe E, Zhu T, Kameyama M, Hao L. The individual N- and C-lobes of calmodulin tether to the Cav1.2 channel and rescue the channel activity from run-down in ventricular myocytes of guinea-pig heart. FEBS Lett 2014; 588:3855-61. [DOI: 10.1016/j.febslet.2014.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/26/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022]
|
15
|
ATP hydrolysis is critically required for function of CaV1.3 channels in cochlear inner hair cells via fueling Ca2+ clearance. J Neurosci 2014; 34:6843-8. [PMID: 24828638 DOI: 10.1523/jneurosci.4990-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sound encoding is mediated by Ca(2+) influx-evoked release of glutamate at the ribbon synapse of inner hair cells. Here we studied the role of ATP in this process focusing on Ca(2+) current through CaV1.3 channels and Ca(2+) homeostasis in mouse inner hair cells. Patch-clamp recordings and Ca(2+) imaging demonstrate that hydrolyzable ATP is essential to maintain synaptic Ca(2+) influx in inner hair cells via fueling Ca(2+)-ATPases to avoid an increase in cytosolic [Ca(2+)] and subsequent Ca(2+)/calmodulin-dependent inactivation of CaV1.3 channels.
Collapse
|
16
|
Feng R, Xu J, Minobe E, Kameyama A, Yang L, Yu L, Hao L, Kameyama M. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner. Am J Physiol Cell Physiol 2014; 306:C856-63. [PMID: 24553186 DOI: 10.1152/ajpcell.00368.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.
Collapse
Affiliation(s)
- Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China; and
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao Y, Hu HY, Sun DR, Feng R, Sun XF, Guo F, Hao LY. Dynamic alterations in the CaV1.2/CaM/CaMKII signaling pathway in the left ventricular myocardium of ischemic rat hearts. DNA Cell Biol 2014; 33:282-90. [PMID: 24548334 DOI: 10.1089/dna.2013.2231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardiac L-type calcium channel (CaV1.2), calmodulin (CaM), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) form the CaV1.2/CaM/CaMKII signaling pathway, which plays an important role in maintaining intracellular Ca(2+) homeostasis. The roles of CaM and CaMKII in the regulation of CaV1.2 in Ca(2+)-dependent inactivation and facilitation have been reported; however, alterations in this signaling pathway in the heart after myocardial ischemia (MI) had not been well characterized. In this study, we investigated the dynamic changes in CaV1.2, CaM, and CaMKII mRNA and protein expression levels in the left ventricles of the heart following MI in rats. The MI model was induced by ligating the left anterior descending coronary artery; the rats were divided into the following five groups: the 6 h post-MI group (MI-6h), 24 h post-MI group (MI-24h), 1 week post-MI group (MI-1w), 2 weeks post-MI group (MI-2w), and the sham group. The mRNA levels were measured by quantitative real-time polymerase chain reaction and the protein expression was determined by western blotting and immunohistochemistry. There were no observable differences in the CaV1.2 mRNA and protein levels at the early stages of MI, but these levels decreased at MI-2w. Both the mRNA and protein levels of CaM increased at MI-6h, peaked at MI-24h, and then reduced to normal levels at MI-2w. CaMKII mRNA and protein levels decreased at MI-6h and reached their lowest level at MI-24h. Taken together, these data demonstrate that there are dynamic changes in the CaV1.2/CaM/CaMKII signaling pathway following MI injuries, which suggests that different therapeutic regimens should be used at different time points after MI injuries.
Collapse
Affiliation(s)
- Yan Zhao
- 1 Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University , Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
19
|
Yang L, Xu J, Minobe E, Yu L, Feng R, Kameyama A, Yazawa K, Kameyama M. Mechanisms underlying the modulation of L-type Ca2+ channel by hydrogen peroxide in guinea pig ventricular myocytes. J Physiol Sci 2013; 63:419-26. [PMID: 23839268 PMCID: PMC10717458 DOI: 10.1007/s12576-013-0279-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023]
Abstract
Although Cav1.2 Ca(2+) channels are modulated by reactive oxygen species (ROS), the underlying mechanisms are not fully understood. In this study, we investigated effects of hydrogen peroxide (H2O2) on the Ca(2+) channel using a patch-clamp technique in guinea pig ventricular myocytes. Externally applied H2O2 (1 mM) increased Ca(2+) channel activity in the cell-attached mode. A specific inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) KN-93 (10 μM) partially attenuated the H2O2-mediated facilitation of the channel, suggesting both CaMKII-dependent and -independent pathways. However, in the inside-out mode, 1 mM H2O2 increased channel activity in a KN-93-resistant manner. Since H2O2-pretreated calmodulin did not reproduce the H2O2 effect, the target of H2O2 was presumably assigned to the Ca(2+) channel itself. A thiol-specific oxidizing agent mimicked and occluded the H2O2 effect. These results suggest that H2O2 facilitates the Ca(2+) channel through oxidation of cysteine residue(s) in the channel as well as the CaMKII-dependent pathway.
Collapse
Affiliation(s)
- Lei Yang
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
| | - Lifeng Yu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
- Present Address: Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, 110001 China
| | - Rui Feng
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
- Present Address: Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, 110001 China
| | - Asako Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
| | - Kazuto Yazawa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544 Japan
| |
Collapse
|
20
|
Bakhshishayan S, Enomoto A, Tsuji T, Tanaka S, Yamanishi T, Ishihama K, Kogo M. Protein kinase A regulates the long-term potentiation of intrinsic excitability in neonatal trigeminal motoneurons. Brain Res 2013; 1541:1-8. [PMID: 24125809 DOI: 10.1016/j.brainres.2013.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/28/2013] [Accepted: 10/06/2013] [Indexed: 11/26/2022]
Abstract
Although much is known about neuronal plasticity in the mammalian hippocampus and other cortical neurons, the subcellular mechanisms underlying plasticity at the level of motor pools are less well characterized. Protein kinase A (PKA) activation plays an essential role in long-term potentiation of intrinsic excitability (LTP-IE) in layer V (LV) visual cortical neurons and may be involved in other systems as well. Trigeminal motoneurons (TMNs) participate in rhythmical motor behaviors, such as suckling, chewing, and swallowing. Using the whole-cell patch clamp method and various kinase inhibitors and activators, we investigated the mechanism of LTP-IE in neonatal rat TMNs. Ca(2+) depletion using ACSF with 0mM Ca(2+) or the Ca(2+) chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) blocked the long-lasting increase in intrinsic excitability in TMNs, showing that intracellular Ca(2+) during the induction protocol is necessary for the induction of LTP-IE. We next used specific inhibitors of PKA, protein kinase C, and calcium/calmodulin-dependent protein kinase II during the induction protocol. Only the PKA inhibitor H-89 blocked the increase in the firing rate induced by the induction protocol. In addition, forskolin, which activates PKA, induced a long-lasting increase in excitability that resembled the excitability produced by the induction protocol. Thus, we conclude that LTP-IE in TMNs is calcium-dependent, and PKA is the primary regulator of this process.
Collapse
Affiliation(s)
- Sanam Bakhshishayan
- The first Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Minobe E, Asmara H, Saud ZA, Kameyama M. Calpastatin domain L is a partial agonist of the calmodulin-binding site for channel activation in Cav1.2 Ca2+ channels. J Biol Chem 2011; 286:39013-22. [PMID: 21937422 DOI: 10.1074/jbc.m111.242248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cav1.2 Ca(2+) channel activity diminishes in inside-out patches (run-down). Previously, we have found that with ATP, calpastatin domain L (CSL) and calmodulin (CaM) recover channel activity from the run-down in guinea pig cardiac myocytes. Because the potency of the CSL repriming effect was smaller than that of CaM, we hypothesized that CSL might act as a partial agonist of CaM in the channel-repriming effect. To examine this hypothesis, we investigated the effect of the competitions between CSL and CaM on channel activity and on binding in the channel. We found that CSL suppressed the channel-activating effect of CaM in a reversible and concentration-dependent manner. The channel-inactivating effect of CaM seen at high concentrations of CaM, however, did not seem to be affected by CSL. In the GST pull-down assay, CSL suppressed binding of CaM to GST fusion peptides derived from C-terminal regions in a competitive manner. The inhibition of CaM binding by CSL was observed with the IQ peptide but not the PreIQ peptide, which is the CaM-binding domain in the C terminus. The results are consistent with the hypothesis that CSL competes with CaM as a partial agonist for the site in the IQ domain in the C-terminal region of the Cav1.2 channel, which may be involved in activation of the channel.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
22
|
Ryu SY, Beutner G, Kinnally KW, Dirksen RT, Sheu SS. Single channel characterization of the mitochondrial ryanodine receptor in heart mitoplasts. J Biol Chem 2011; 286:21324-9. [PMID: 21524998 DOI: 10.1074/jbc.c111.245597] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heart mitochondria utilize multiple Ca(2+) transport mechanisms. Among them, the mitochondrial ryanodine receptor provides a fast Ca(2+) uptake pathway across the inner membrane to control "excitation and metabolism coupling." In the present study, we identified a novel ryanodine-sensitive channel in the native inner membrane of heart mitochondria and characterized its pharmacological and biophysical properties by directly patch clamping mitoplasts. Four distinct channel conductances of ∼100, ∼225, ∼700, and ∼1,000 picosiemens (pS) in symmetrical 150 mm CsCl were observed. The 225 pS cation-selective channel exhibited multiple subconductance states and was blocked by high concentrations of ryanodine and ruthenium red, known inhibitors of ryanodine receptors. Ryanodine exhibited a concentration-dependent modulation of this channel, with low concentrations stabilizing a subconductance state and high concentrations abolishing activity. The 100, 700, and 1,000 pS conductances exhibited different channel characteristics and were not inhibited by ryanodine. Taken together, these findings identified a novel 225 pS channel as the native mitochondrial ryanodine receptor channel activity in heart mitoplasts with biophysical and pharmacological properties that distinguish it from previously identified mitochondrial ion channels.
Collapse
Affiliation(s)
- Shin-Young Ryu
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
23
|
Han DY, Minobe E, Wang WY, Guo F, Xu JJ, Hao LY, Kameyama M. Calmodulin- and Ca2+-dependent facilitation and inactivation of the Cav1.2 Ca2+ channels in guinea-pig ventricular myocytes. J Pharmacol Sci 2010; 112:310-9. [PMID: 20197640 DOI: 10.1254/jphs.09282fp] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The L-type Ca(2+) channel (Ca(V)1.2) shows clear Ca(2+)-dependent facilitation and inactivation. Here we have examined the effects of calmodulin (CaM) and Ca(2+) on Ca(2+) channel in guinea-pig ventricular myocytes in the inside-out patch mode, where rundown of the channels was controlled. At a free [Ca(2+)] of 0.1 microM, CaM (0.15, 0.7, 1.4, 2.1, 3.5, and 7.0 microM) + ATP (2.4 mM) induced channel activities of 27%, 98%, 142%, 222%, 65%, and 20% relative to the control activity, respectively, showing a bell-shaped relationship. Similar results were observed at a free [Ca(2+)] <0.01 microM or with a Ca(2+)-insensitive mutant, CaM(1234), suggesting that apoCaM may induce facilitation and inactivation of the channel activity. The bell-shaped curve of CaM was shifted to the lower concentration side with increasing [Ca(2+)]. A simple model for CaM- and Ca(2+)-dependent modulations of the channel activity, which involves two CaM-binding sites, was proposed. We suggest that both apoCaM and Ca(2+)/CaM can induce facilitation and inactivation of Ca(V)1.2 Ca(2+) channels and that the basic role of Ca(2+) is to accelerate CaM-dependent facilitation and inactivation.
Collapse
Affiliation(s)
- Dong-Yun Han
- School of Pharmaceutical Science, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Hao LY, Wang WY, Minobe E, Han DY, Xu JJ, Kameyama A, Kameyama M. The distinct roles of calmodulin and calmodulin kinase II in the reversal of run-down of L-type Ca(2+) channels in guinea-pig ventricular myocytes. J Pharmacol Sci 2010; 111:416-25. [PMID: 20019447 DOI: 10.1254/jphs.09094fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In this study, we investigated the roles of calmodulin kinase II (CaMKII) and calmodulin (CaM) in the reversal of run-down of L-type Ca(2+) channels. Single Ca(2+)-channel activities in guinea-pig ventricular myocytes were recorded using the patch-clamp technique, and run-down of the channel activities was induced by inside-out patch formation in the basic internal solution. At 1 min after patch excision, 1 - 30 muM CaMKII mutant T286D (CaMKIIT286D), a constitutively active type of CaMKII, induced the Ca(2+)-channel activities to only 2% - 10% of that recorded in the cell-attached mode. However, in the presence of CaMKIIT286D, the time-dependent attenuation of CaM's effects in the reversal of run-down was abolished. A GST-fusion protein containing amino acids 1509 - 1789 of the C-terminal region of guinea-pig Cav1.2 (CT1) was prepared. In pull-down assays, CT1 treated with CaMKIIT286D showed a higher affinity for CaM compared with CT1 treated with phosphatase. We propose a model in which CaMKII-mediated phosphorylation of the channels regulates the binding of CaM to the channels in the reversal of run-down of L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacological Sciences, China Medical University, Shenyang 110001, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Both N- and C-lobes of calmodulin are required for Ca2+-dependent regulations of CaV1.2 Ca2+ channels. Biochem Biophys Res Commun 2010; 391:1170-6. [DOI: 10.1016/j.bbrc.2009.11.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/28/2009] [Indexed: 11/24/2022]
|
26
|
Wang WY, Hao LY, Minobe E, Saud ZA, Han DY, Kameyama M. CaMKII phosphorylates a threonine residue in the C-terminal tail of Cav1.2 Ca(2+) channel and modulates the interaction of the channel with calmodulin. J Physiol Sci 2009; 59:283-90. [PMID: 19340532 PMCID: PMC10717815 DOI: 10.1007/s12576-009-0033-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 11/26/2022]
Abstract
We have previously found that both CaMKII-mediated phosphorylation and calmodulin (CaM) binding to the channels are required for maintaining basal activity of the Cav1.2 Ca(2+) channels. In this study, we investigated the hypothetical CaMKII phosphorylation site on Cav1.2 that contributes to the channel regulation. We found that CaMKII phosphorylates the Thr1603 residue (Thr1604 in rabbit) within the preIQ region in the C-terminal tail of the guinea-pig Cav1.2 channel. Mutation of Thr1603 to Asp (T1603D) slowed the run-down of the channel in inside-out patch mode and abolished the time-dependency of the CaM's effects to reverse run-down. We also found that CaMKII-mediated phosphorylation of the proximal C-terminal fragment (CT1) increased, while dephosphorylation of CT1 decreased its binding with CaM. These findings suggest that CaMKII regulates the CaM binding to the channel, and thereby maintains basal activity of the Cav1.2 Ca(2+) channel.
Collapse
Affiliation(s)
- Wu-Yang Wang
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Li-Ying Hao
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, 92 Beier Road, 110001 Shenyang, China
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Zahangir Alam Saud
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| | - Dong-Yun Han
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, 92 Beier Road, 110001 Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544 Japan
| |
Collapse
|
27
|
Hao LY, Xu JJ, Minobe E, Kameyama A, Kameyama M. Calmodulin kinase II activation is required for the maintenance of basal activity of L-type Ca2+ channels in guinea-pig ventricular myocytes. J Pharmacol Sci 2009; 108:290-300. [PMID: 19023178 DOI: 10.1254/jphs.08101fp] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The roles of calmodulin (CaM)-dependent protein kinase II (CaMKII) in the maintenance of basal activity and the reversion of run-down of L-type Ca2+ channels were studied in guinea-pig ventricular myocytes by the patch-clamp technique. In the cell-attached configuration, the Ca2+-channel activity was inhibited to 82% - 26% by 1-10 microM KN-93 and to 92% - 66% by 0.1-1 microM autocamtide-2-related inhibitory peptide (AIP) myristoylated. In the inside-out configuration, the bovine cardiac cytoplasm recovered Ca2+-channel activity to 87% of that recorded in the cell-attached configuration, while the CaMKII inhibitor 281-301 at 10 microM reduced the recovery effect to 19%. CaM + ATP recovered the channel activity to 93% and 28% of that recorded in the cell-attached configuration when applied at 1 and 5 min after run-down, respectively, showing a time-dependent attenuation. However, in the presence of 0.33 microM CaMKII, this attenuation was abolished, showing 85% and 75% recovery when applied at 1 and 5 min after run-down, respectively. This recovery effect was suppressed by 10 microM AIP, applied at 5 min, but not at 1 min after run-down. We concluded that CaMKII activation is required in the maintenance of basal activity of L-type Ca2+ channels.
Collapse
Affiliation(s)
- Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacological Sciences, China Medical University, Shenyang, China.
| | | | | | | | | |
Collapse
|
28
|
Salvador-Recatalà V, Schneider T, Greenberg RM. Atypical properties of a conventional calcium channel beta subunit from the platyhelminth Schistosoma mansoni. BMC PHYSIOLOGY 2008; 8:6. [PMID: 18366784 PMCID: PMC2311325 DOI: 10.1186/1472-6793-8-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/26/2008] [Indexed: 11/13/2022]
Abstract
Background The function of voltage-gated calcium (Cav) channels greatly depends on coupling to cytoplasmic accessory β subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the α1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two β subunit subtypes: a structurally conventional β subunit and a variant β subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavβ subunit. Here, we focus on the modulatory phenotype of the conventional Cavβ subunit (SmCavβ) using the human Cav2.3 channel as the substrate for SmCavβ and the whole-cell patch-clamp technique. Results The conventional Schistosoma mansoni Cavβ subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavβ run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavβ lends the Cav2.3/SmCavβ complex sensitivity to Na+ ions. A mutant version of the Cavβ subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. Conclusion The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavβ subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by which platyhelminths and perhaps other organisms modulate Ca2+ currents in excitable cells.
Collapse
|
29
|
Calpastatin binds to a calmodulin-binding site of cardiac Cav1.2 Ca2+ channels. Biochem Biophys Res Commun 2007; 364:372-7. [PMID: 17950697 DOI: 10.1016/j.bbrc.2007.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/08/2007] [Indexed: 11/24/2022]
Abstract
Calpastatin is an endogenous inhibitor of calpain and composed of domain L (CS(L)), which interacts with the Cav1.2 channels, and four repetitive calpain inhibitory domains. We have previously found that CS(L) reprimes activity of the Cav1.2 channels in cell-free patches of cardiac myocytes [L.Y. Hao, A. Kameyama, S. Kuroki, J. Takano, E. Takano, M. Maki, M. Kameyama, Calpastatin domain L is involved in the regulation L-type of Ca2+ channels in guinea pig cardiac myocytes, Biochem. Biophys. Res. Commun. 279 (2000) 756-761; E. Minobe, L.Y. Hao, Z.A. Saud, J.J. Xu, A. Kameyama, M. Maki, K.K. Jewell, T. Parr, R.G. Bardsley, M. Kameyama, A region of calpastatin domain L that reprimes cardiac L-type Ca2+ channels, Biochem. Biophys. Res. Commun. 348 (2006) 288-294]. In this study, we explored the CS(L) interaction site in the Ca2+ channel by the pull-down method, using glutathione-S-transferase-fused fragment peptides of the Cav1.2 channel. CS(L) bound directly to a proximal region of the C-terminal tail of the channel, but not with the N-terminal tail, a distal region of the C-terminal tail or cytoplasmic loops between repeats I-II, II-III or III-IV. Furthermore IQ domain, but not EF-hand-like region or CB domain, in the C-terminal tail was found to bind with CS(L) in a partially Ca2+-dependent manner and in a probably competitive manner with calmodulin. These results suggest that CS(L) modulates Ca2+-channel activity through interacting with the calmodulin-binding site on the C-terminal tail of the Cav1.2 channel.
Collapse
|
30
|
Kobayashi T, Yamada Y, Fukao M, Tsutsuura M, Tohse N. Regulation of Cav1.2 current: interaction with intracellular molecules. J Pharmacol Sci 2007; 103:347-53. [PMID: 17409629 DOI: 10.1254/jphs.cr0070012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Ca(V)1.2 (alpha(1c)) is a pore-forming subunit of the voltage-dependent L-type calcium channel and is expressed in many tissues. The beta and alpha(2)/delta subunits are auxiliary subunits that affect the kinetics and the expression of Ca(V)1.2. In addition to the beta and alpha(2)/delta subunits, several molecules have been reported to be involved in the regulation of Ca(V)1.2 current. Calmodulin, CaBP1 (calcium-binding protein-1), CaMKII (calcium/calmodulin-dependent protein kinase II), AKAPs (A-kinase anchoring proteins), phosphatases, Caveolin-3, beta(2)-adrenergic receptor, PDZ domain proteins, sorcin, SNARE proteins, synaptotagmin, CSN5, RGK family, and AHNAK1 have all been reported to interact with Ca(V)1.2 and the beta subunit. This review focuses on the effect of these molecules on Ca(V)1.2 current.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
31
|
Nie HG, Hao LY, Xu JJ, Minobe E, Kameyama A, Kameyama M. Distinct Roles of CaM and Ca2+/CaM-Dependent Protein Kinase II in Ca2+-Dependent Facilitation and Inactivation of Cardiac L-Type Ca2+ Channels. J Physiol Sci 2007; 57:167-73. [PMID: 17511897 DOI: 10.2170/physiolsci.rp000507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 05/20/2007] [Indexed: 11/05/2022]
Abstract
L-type Ca(2+) channels have two opposing forms of autoregulatory feedback, Ca(2+) -dependent facilitation (CDF) and Ca(2+) -dependent inactivation (CDI), in response to increases in intracellular Ca(2+) concentration. Calmodulin (CaM) has been reported to mediate the two feedbacks. Although both the direct binding of CaM and the phosphorylation mediated by Ca(2+)/CaM -dependent protein kinase II (CaMKII) have been suggested as underlying mechanisms, the detailed features remain to be clarified. In this study, we investigated the effects of CaM and CaMKII inhibitors on CDF and CDI with patch clamp cell-attached recordings in guinea-pig ventricular myocytes. We confirmed that a high-K(+) and high-Ca(2)(+) could induce an increase of the intracellular Ca(2+) concentration and subsequent CDF and CDI. We then found that CDF and CDI were both depressed and were finally abolished by treatment with a CaM inhibitor chlorpromazine (1-100 microM) in a concentration-dependent manner. Another CaM antagonist calmidazolium (1 microM) showed a similar effect. In contrast, CaMKII inhibitors, KN-62 (0.1-3 microM) and autocamtide 2 -related inhibitory peptide (1 microM), delayed the development of CDF and CDI significantly, but they did not depress either CDF or CDI. These results imply that CaM is necessary and possibly sufficient for the two mechanisms. We propose a hypothesis that CaM is a key molecule to bifurcate the Ca(2+) signal to CDF and CDI and that CaMKII plays a modulatory role in them both.
Collapse
Affiliation(s)
- Hong-Guang Nie
- School of Pharmaceutical Sciences, China Medical University, Heping District, Shenyang, China
| | | | | | | | | | | |
Collapse
|
32
|
Minobe E, Hao LY, Saud ZA, Xu JJ, Kameyama A, Maki M, Jewell KK, Parr T, Bardsley RG, Kameyama M. A region of calpastatin domain L that reprimes cardiac L-type Ca2+ channels. Biochem Biophys Res Commun 2006; 348:288-94. [PMID: 16876115 DOI: 10.1016/j.bbrc.2006.07.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Calpastatin, an endogenous inhibitor of calpain, is composed of domain L and four repetitive homologous domains 1-4. Domains 1-4 inhibit calpain, whereas domain L partially reprimes L-type Ca2+ channels for voltage-gated activation. In the present study, the effects on Ca2+ channel activity of four isoforms and a series of fragments of calpastatin domain L were investigated in guinea-pig ventricular myocytes with the patch-clamp method. With one exception, all the isoforms and fragment peptides that contained amino acid residues 54-64 of domain L reprimed the Ca2+ channels to comparable levels (9-15% of control activity) to those observed previously with a full-length form of calpastatin. These results suggest that the region containing amino acid residues 54-64 (EGKPKEHTEPK) is responsible for the Ca2+ channel repriming function of calpastatin domain L.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schaub MC, Hefti MA, Zaugg M. Integration of calcium with the signaling network in cardiac myocytes. J Mol Cell Cardiol 2006; 41:183-214. [PMID: 16765984 DOI: 10.1016/j.yjmcc.2006.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 12/23/2022]
Abstract
Calcium has evolved as global intracellular messenger for signal transduction in the millisecond time range by reversibly binding to calcium-sensing proteins. In the cardiomyocyte, ion pumps, ion exchangers and channels keep the cytoplasmic calcium level at rest around approximately 100 nM which is more than 10,000-fold lower than outside the cell. Intracellularly, calcium is mainly stored in the sarcoplasmic reticulum, which comprises the bulk of calcium available for the heartbeat. Regulation of cardiac function including contractility and energy production relies on a three-tiered control system, (i) immediate and fast feedback in response to mechanical load on a beat-to-beat basis (Frank-Starling relation), (ii) more sustained regulation involving transmitters and hormones as primary messengers, and (iii) long-term adaptation by changes in the gene expression profile. Calcium signaling over largely different time scales requires its integration with the protein kinase signaling network which is governed by G-protein-coupled receptors, growth factor and cytokine receptors at the surface membrane. Short-term regulation is dominated by the beta-adrenergic system, while long-term regulation with phenotypic remodeling depends on sustained signaling by growth factors, cytokines and calcium. Mechanisms and new developments in intracellular calcium handling and its interrelation with the MAPK signaling pathways are discussed in detail.
Collapse
Affiliation(s)
- Marcus C Schaub
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland.
| | | | | |
Collapse
|
34
|
Erxleben C, Liao Y, Gentile S, Chin D, Gomez-Alegria C, Mori Y, Birnbaumer L, Armstrong DL. Cyclosporin and Timothy syndrome increase mode 2 gating of CaV1.2 calcium channels through aberrant phosphorylation of S6 helices. Proc Natl Acad Sci U S A 2006; 103:3932-7. [PMID: 16537462 PMCID: PMC1533789 DOI: 10.1073/pnas.0511322103] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium channels in the plasma membrane rarely remain open for much more than a millisecond at any one time, which avoids raising intracellular calcium to toxic levels. However, the dihydropyridine-sensitive calcium channels of the CaV1 family, which selectively couple electrical excitation to endocrine secretion, cardiovascular contractility, and neuronal transcription, have a unique second mode of gating, "mode 2," that involves frequent openings of much longer duration. Here we report that two human conditions, cyclosporin neurotoxicity and Timothy syndrome, increase mode 2 gating of the recombinant rabbit CaV1.2 channel. In each case, mode 2 gating depends on a Ser residue at the cytoplasmic end of the S6 helix in domain I (Ser-439, Timothy syndrome) or domain IV (Ser-1517, cyclosporin). Both Ser reside in consensus sequences for type II calmodulin-dependent protein kinase. Pharmacologically inhibiting type II calmodulin-dependent protein kinase or mutating the Ser residues to Ala prevents the increase in mode 2 gating. We propose that aberrant phosphorylation, or "phosphorylopathy," of the CaV1.2 channel protein contributes to the excitotoxicity associated with Timothy syndrome and with chronic cyclosporin treatment of transplant patients.
Collapse
Affiliation(s)
| | - Yanhong Liao
- Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | | | | | - Claudio Gomez-Alegria
- Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Yasuo Mori
- National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Lutz Birnbaumer
- Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
- To whom correspondence may be addressed. E-mail:
| | - David L. Armstrong
- Laboratories of *Neurobiology and
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
35
|
Kozak JA, Matsushita M, Nairn AC, Cahalan MD. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. ACTA ACUST UNITED AC 2006; 126:499-514. [PMID: 16260839 PMCID: PMC2266608 DOI: 10.1085/jgp.200509324] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Mg2+-inhibited cation (MIC) current, believed to represent activity of TRPM7 channels, is found in lymphocytes and mast cells, cardiac and smooth muscle, and several other eukaryotic cell types. MIC current is activated during whole-cell dialysis with divalent-free internal solutions. Millimolar concentrations of intracellular Mg2+ (or other divalent metal cations) inhibit the channels in a voltage-independent manner. The nature of divalent inhibition and the mechanism of channel activation in an intact cell remain unknown. We show that the polyamines (spermine, spermidine, and putrescine) inhibit the MIC current, also in a voltage-independent manner, with a potency that parallels the number of charges. Neomycin and poly-lysine also potently inhibited MIC current in the absence of Mg2+. These same positively charged ions inhibited IRK1 current in parallel with MIC current, suggesting that they probably act by screening the head group phosphates on PIP2 and other membrane phospholipids. In agreement with this hypothesis, internal protons also inhibited MIC current. By contrast, tetramethylammonium, tetraethylammonium, and hexamethonium produced voltage-dependent block but no inhibition. We show that inhibition by internal polyvalent cations can be relieved by alkalinizing the cytosol using externally applied ammonium or by increasing pH in inside-out patches. Furthermore, in perforated-patch and cell-attached recordings, when intracellular Mg2+ is not depleted, endogenous MIC or recombinant TRPM7 currents are activated by cytosolic alkalinization and inhibited by acidification; and they can be reactivated by PIP2 following rundown in inside-out patches. We propose that MIC (TRPM7) channels are regulated by a charge screening mechanism and may function as sensors of intracellular pH.
Collapse
Affiliation(s)
- J Ashot Kozak
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|