1
|
Awwad K, Hu J, Shi L, Mangels N, Abdel Malik R, Zippel N, Fisslthaler B, Eble JA, Pfeilschifter J, Popp R, Fleming I. Role of secreted modular calcium-binding protein 1 (SMOC1) in transforming growth factor β signalling and angiogenesis. Cardiovasc Res 2015; 106:284-94. [PMID: 25750188 DOI: 10.1093/cvr/cvv098] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/30/2015] [Indexed: 12/30/2022] Open
Abstract
AIMS Secreted modular calcium-binding protein 1 (SMOC1) is a matricellular protein that potentially interferes with growth factor receptor signalling. The aim of this study was to determine how its expression is regulated in endothelial cells and its role in the regulation of endothelial cell function. METHODS AND RESULTS SMOC1 was expressed by native murine endothelial cells as well as by cultured human, porcine, and murine endothelial cells. SMOC1 expression in cultured cells was increased by hypoxia via the down-regulation of miR-223, and SMOC1 expression was increased in lungs from miR-223-deficient mice. Silencing SMOC1 (small interfering RNA) attenuated endothelial cell proliferation, migration, and sprouting in in vitro angiogenesis assays. Similarly endothelial cell sprouting from aortic rings ex vivo as well as postnatal retinal angiogenesis in vivo was attenuated in SMOC1(+/-) mice. In endothelial cells, transforming growth factor (TGF)-β signalling via activin-like kinase (ALK) 5 leads to quiescence, whereas TGF-β signalling via ALK1 results in endothelial cell activation. SMOC1 acted as a negative regulator of ALK5/SMAD2 signalling, resulting in altered α2 integrin levels. Mechanistically, SMOC1 associated (immunohistochemistry, proximity ligation assay, and co-immunoprecipitation) with endoglin; an endothelium-specific type III auxiliary receptor for the TGF-β super family and the effects of SMOC1 down-regulation on SMAD2 phosphorylation were abolished by the down-regulation of endoglin. CONCLUSION These results indicate that SMOC1 is an ALK5 antagonist produced by endothelial cells that tips TGF-β signalling towards ALK1 activation, thus promoting endothelial cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Khader Awwad
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Lei Shi
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Nicole Mangels
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Randa Abdel Malik
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Nina Zippel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, Excellence Cluster Cell-in-Motion, 48149 Münster, Germany
| | - Josef Pfeilschifter
- Pharmacenter Frankfurt/ZAFES, Goethe-University Hospital, 60590 Frankfurt am Main, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Manandhar B, Ahn JM. Glucagon-like peptide-1 (GLP-1) analogs: recent advances, new possibilities, and therapeutic implications. J Med Chem 2014; 58:1020-37. [PMID: 25349901 PMCID: PMC4329993 DOI: 10.1021/jm500810s] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Glucagon-like peptide-1 (GLP-1) is
an incretin that plays important
physiological roles in glucose homeostasis. Produced from intestine
upon food intake, it stimulates insulin secretion and keeps pancreatic
β-cells healthy and proliferating. Because of these beneficial
effects, it has attracted a great deal of attention in the past decade,
and an entirely new line of diabetic therapeutics has emerged based
on the peptide. In addition to the therapeutic applications, GLP-1
analogs have demonstrated a potential in molecular imaging of pancreatic β-cells;
this may be useful in early detection of the disease and evaluation
of therapeutic interventions, including islet transplantation. In
this Perspective, we focus on GLP-1 analogs for their studies on improvement
of biological activities, enhancement of metabolic stability, investigation
of receptor interaction, and visualization of the pancreatic islets.
Collapse
Affiliation(s)
- Bikash Manandhar
- Department of Chemistry, University of Texas at Dallas , Richardson, Texas 75080, United States
| | | |
Collapse
|
3
|
Chailler P, Beaulieu JF, Ménard D. Isolation and functional studies of human fetal gastric epithelium in primary culture. Methods Mol Biol 2012; 806:137-55. [PMID: 22057450 DOI: 10.1007/978-1-61779-367-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our understanding of gastric epithelial physiology in man is limited by the absence of normal or appropriate cancer cell lines that could serve as an in vitro model. Research mostly relied on primary culture of gastric epithelial cells of animal species, enriched with surface mucous cells, and devoid of glandular zymogenic chief cells. We successfully applied a new nonenzymatic procedure using Matrisperse Cell Recovery Solution to dissociate the entire epithelium from human fetal stomach. Cultures were generated by seeding multicellular aggregates prepared by mechanical fragmentation. We further demonstrate that this simple and convenient technique allows for the maintenance of heterogenous gastric epithelial primary cultures on plastic without a biological matrix as well as the persistence of viable chief cells able to synthesize and secrete gastric digestive enzymes, i.e., pepsinogen and gastric lipase. In wounding experiments, epithelial restitution occurred in serum-reduced conditions and was modulated by exogenous agents. This culture system is thus representative of the foveolus-gland axis and offers new perspectives to establish the influence of individual growth factors and extracellular matrix components as well as their combinatory effects on gastric epithelium homeostasis.
Collapse
Affiliation(s)
- Pierre Chailler
- CIHR Team on Digestive Epithelium, Département d'anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
4
|
Lourenço SV, Lima DMC. Pleomorphic adenoma and adenoid cystic carcinoma: in vitro study of the impact of TGFbeta1 on the expression of integrins and cytoskeleton markers of cell differentiation. Int J Exp Pathol 2007; 88:191-8. [PMID: 17504449 PMCID: PMC2517303 DOI: 10.1111/j.1365-2613.2007.00527.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pleomorphic adenoma (PA) and adenoid cystic carcinoma (ACC) are the commonest benign and malignant salivary gland tumours respectively. Interactions between cells and extracellular matrix of PA and ACC, partially mediated by integrins, are important in their biology. The expression of integrins is regulated by numerous factors, amongst them, transforming growth factor beta1 (TGFbeta1). Our study investigated the effects of TGFbeta1 on the expression of integrin beta subunits in vitro and on the expression of cytoskeletal proteins of cells derived from PA and ACC. The expression of cytoskeletal differentiation markers and integrins was assessed using immunofluorescence. ELISA assays were employed to quantitate the expression integrins and MTT assays evaluated the mitochondrial activity of cells stimulated with TGFbeta1. PA cells showed increased expression of integrins and de novo expression of differentiation markers upon TGFbeta1 stimulation. ACC cells were less responsive to such stimulation. This may reflect important differences in the biological behaviour of benign and malignant cells.
Collapse
|
5
|
Ludlow A, Yee KO, Lipman R, Bronson R, Weinreb P, Huang X, Sheppard D, Lawler J. Characterization of integrin beta6 and thrombospondin-1 double-null mice. J Cell Mol Med 2005; 9:421-37. [PMID: 15963261 PMCID: PMC6740207 DOI: 10.1111/j.1582-4934.2005.tb00367.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To identify overlapping and non-overlapping functions for TSP-1 and alphavbeta6, we crossed TSP-1-null and beta6-null mice and compared the phenotype of the double-null mice with those of wild-type and single-null mice. The double-null mice exhibited focal acute and organizing pneumonia that was more severe than the wild-type and single-null mice as well as a significantly higher incidence of inflammation in tissues other than the lung. The TSP-1-null and beta6-null mice exhibited a five to eight-fold increase in granulocyte recruitment to the lung three days after exposure to lipopolysaccharide. They also had abnormalities that were infrequently observed in the wild-type and single-null mice, including heart degeneration (8.35% in wild-type and 28.1% in double-null mice), hyperplasia of the glandular of the stomach (2.8% in wild-type and 21.1% in double-null mice) and endometrial hyperplasia (0% in wild-type and 38.5% in double-null females). Furthermore, the beta6-null and double-null mice displayed a significant elevation in benign and malignant cancers. Stomach papillomas, squamous cell carcinomas of the ear and stomach, and adenocarcinomas of the lungs, vagina/cervix and colon were observed with the highest frequency. These data demonstrate that TSP-1 and alphavbeta6 are involved in regulation of the immune system and epithelial homeostasis. They also indicate that alphavbeta6 functions as a tumor suppressor gene and that activation of TGFbeta by TSP-1 and alphavbeta6 contributes to normal tissue architecture and function.
Collapse
Affiliation(s)
- Anna Ludlow
- The Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tétreault MP, Chailler P, Rivard N, Ménard D. Differential growth factor induction and modulation of human gastric epithelial regeneration. Exp Cell Res 2005; 306:285-97. [PMID: 15878352 DOI: 10.1016/j.yexcr.2005.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/19/2005] [Accepted: 02/21/2005] [Indexed: 11/23/2022]
Abstract
While several autocrine/paracrine growth factors (GFs) can all stimulate epithelial regeneration in experimentally wounded primary gastric cultures, clinical relevance for their non-redundant cooperative actions in human gastric ulcer healing is suggested by the sequential pattern of GF gene induction in vivo. Using new HGE cell lines able to form a coherent monolayer with tight junctions as well as using primary human gastric epithelial cultures, we show that EGF, TGFalpha, HGF and IGFs accelerate epithelial restitution upon wounding, independently of the TGFbeta pathway (as opposed to intestinal cells). However, they differently modulate cell behavior: TGFalpha exerts strong effects (even more than EGF) on cytoplasmic spreading and non-oriented protruding activity of bordering cells whereas HGF preferentially coordinates single lamella formation, cell elongation and migration into the wound. IGF-I and IGF-II rather induce the alignment of bordering cells and maintain a compact monolayer front. The number of mitotic cells maximally increases with EGF, followed by TGFalpha and IGF-I,-II. The current study demonstrates that GFs differentially regulate the regeneration of human gastric epithelial cells through specific modulation of cell shape adaptation, migration and proliferation, further stressing that a coordination of GF activities would be necessary for the normal progression of post-wounding epithelial repair.
Collapse
Affiliation(s)
- Marie-Pier Tétreault
- CIHR Group on the Functional Development and Physiopathology of the Digestive Tract, Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001 12th Avenue N, Sherbrooke (Québec), Canada J1H 5N4
| | | | | | | |
Collapse
|
7
|
Menke A, Adler G. TGFbeta-induced fibrogenesis of the pancreas. INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2003; 31:41-6. [PMID: 12622414 DOI: 10.1385/ijgc:31:1-3:41] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biological cause of fibrosis is the accumulation of excessive amounts of extracellular matrix (ECM) which leads to tissue dysfunction and organ failure. A strong correlation can be found between pancreatic diseases and fibrotic processes, in particular chronic pancreatitis and pancreatic cancer. There is growing evidence that pancreatic fibrosis represents a dysregulation of the normal repair processes after injury. This concept is based on the findings that fibrosis and tissue repair involve similar biological reactions regulated by the same group of molecules. The best characterized example for these regulatory molecules are the members of the transforming growth factor beta family (TGFbeta). TGFbeta1 represents the prototype of this family of highly similar growth factors, with the unique ability to stimulate the expression and deposition of extracellular matrix and to inhibit its degradation. Growth factor-induced fibrotic events are targeted by a myofibroblast-like cell called pancreatic stellate cell (PSC). These cells show enhanced expression of all-important ECM proteins after TGFbeta stimulation including collagen, fibronectin and proteoglycans. At the same time TGFbeta inhibits the degradation of ECM by blocking the secretion of proteases and stimulating the production of naturally occurring protease inhibitors.
Collapse
Affiliation(s)
- Andre Menke
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strasse 8, D-89070 Ulm, Germany.
| | | |
Collapse
|
8
|
Plamboeck A, Holst JJ, Carr RD, Deacon CF. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both involved in regulating the metabolic stability of glucagon-like peptide-1 in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 524:303-12. [PMID: 12675252 DOI: 10.1007/0-306-47920-6_36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Astrid Plamboeck
- Department of Medical Physiology, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
9
|
de Andrade Sá ER, Jordão LR, Takahashi CA, Alvares EP, Gama P. Ontogenic expression of TGFbeta 1, 2, and 3 and its receptors in the rat gastric mucosa. Dev Dyn 2003; 227:450-7. [PMID: 12815632 DOI: 10.1002/dvdy.10320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The stomach of the rat undergoes extensive changes during the formation and maturation of gastric glands. The presence of transforming growth factor beta (TGFbeta) in rat milk and in the gastrointestinal tract of pups may suggest its role in this process. The current study evaluated the in vivo dynamic expression and distribution of TGFbeta1, beta2, beta3 and their receptors TbetaRI and TbetaRII in the gastric epithelium of 20-day fetal rats and 1-, 14-, 21-, and 30-day-old pups. Immunohistochemistry was used to detect the proteins, and staining was classified according to intensity and cell type. The results showed that the gastric epithelium expresses TGFbeta isoforms and receptors throughout development. We found that immunoreactivity paralleled the appearance of differentiated cells, such that surface mucous cells were the first to be immunostained and chief cells were the last. The intensity of reactions followed this same pattern, showing that the expression of TGFbeta isoforms spread along the gland with growth. Of interest, the highest apparent activity of TGFbeta was observed from 21 days onward, a period that is concomitant with weaning and maturation of most gastric cell types. In addition, surface mucous cells were strongly labeled at the basal cytoplasm at 14 days, suggesting an interaction with the connective tissue. In conclusion, the dynamic expression of TGFbeta1, beta2, beta3, and TbetaRI and TbetaRII through stomach development suggests significant paracrine and autocrine roles for this growth factor. We propose that temporal and spatial differences may be regulated by dietary changes, which in turn control cell proliferation and differentiation in the gastric epithelium.
Collapse
|