1
|
Roger AL, Biswas DD, Huston ML, Le D, Bailey AM, Pucci LA, Shi Y, Robinson-Hamm J, Gersbach CA, ElMallah MK. Respiratory characterization of a humanized Duchenne muscular dystrophy mouse model. Respir Physiol Neurobiol 2024; 326:104282. [PMID: 38782084 PMCID: PMC11472894 DOI: 10.1016/j.resp.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.
Collapse
Affiliation(s)
- Angela L Roger
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Davina Le
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Aidan M Bailey
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Logan A Pucci
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Yihan Shi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | - Mai K ElMallah
- Department of Pediatrics, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Sahani R, Hixson K, Blemker SS. It's more than the amount that counts: implications of collagen organization on passive muscle tissue properties revealed with micromechanical models and experiments. J R Soc Interface 2024; 21:20230478. [PMID: 38320599 PMCID: PMC10846937 DOI: 10.1098/rsif.2023.0478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Collagen accumulation is often used to characterize skeletal muscle fibrosis, but the role of collagen in passive muscle mechanics remains debated. Here we combined finite-element models and experiments to examine how collagen organization contributes to macroscopic muscle tissue properties. Tissue microstructure and mechanical properties were measured from in vitro biaxial experiments and imaging in dystrophin knockout (mdx) and wild-type (WT) diaphragm muscle. Micromechanical models of intramuscular and epimuscular extracellular matrix (ECM) regions were developed to account for complex microstructure and predict bulk properties, and directly calibrated and validated with the experiments. The models predicted that intramuscular collagen fibres align primarily in the cross-muscle fibre direction, with greater cross-muscle fibre alignment in mdx models compared with WT. Higher cross-muscle fibre stiffness was predicted in mdx models compared with WT models and differences between ECM and muscle properties were seen during cross-muscle fibre loading. Analysis of the models revealed that variation in collagen fibre distribution had a much more substantial impact on tissue stiffness than ECM area fraction. Taken together, we conclude that collagen organization explains anisotropic tissue properties observed in the diaphragm muscle and provides an explanation for the lack of correlation between collagen amount and tissue stiffness across experimental studies.
Collapse
Affiliation(s)
- Ridhi Sahani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kaitlyn Hixson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Silvia S. Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Orthopedic Surgery, University of Virginia, Charlottesville, VA, USA
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
4
|
Brashear SE, Wohlgemuth RP, Hu LY, Jbeily EH, Christiansen BA, Smith LR. Collagen cross-links scale with passive stiffness in dystrophic mouse muscles, but are not altered with administration of a lysyl oxidase inhibitor. PLoS One 2022; 17:e0271776. [PMID: 36302059 PMCID: PMC9612445 DOI: 10.1371/journal.pone.0271776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), a lack of functional dystrophin leads to myofiber instability and progressive muscle damage that results in fibrosis. While fibrosis is primarily characterized by an accumulation of extracellular matrix (ECM) components, there are changes in ECM architecture during fibrosis that relate more closely to functional muscle stiffness. One of these architectural changes in dystrophic muscle is collagen cross-linking, which has been shown to increase the passive muscle stiffness in models of fibrosis including the mdx mouse, a model of DMD. We tested whether the intraperitoneal injections of beta-aminopropionitrile (BAPN), an inhibitor of the cross-linking enzyme lysyl oxidase, would reduce collagen cross-linking and passive stiffness in young and adult mdx mice compared to saline-injected controls. We found no significant differences between BAPN treated and saline treated mice in collagen cross-linking and stiffness parameters. However, we observed that while collagen cross-linking and passive stiffness scaled positively in dystrophic muscles, collagen fiber alignment scaled with passive stiffness distinctly between muscles. We also observed that the dystrophic diaphragm showed the most dramatic fibrosis in terms of collagen content, cross-linking, and stiffness. Overall, we show that while BAPN was not effective at reducing collagen cross-linking, the positive association between collagen cross-linking and stiffness in dystrophic muscles still show cross-linking as a viable target for reducing passive muscle stiffness in DMD or other fibrotic muscle conditions.
Collapse
Affiliation(s)
- Sarah E. Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Ross P. Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Lin-Ya Hu
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
| | - Elias H. Jbeily
- Department of Orthopaedic Surgery, University of California Davis, Sacramento, California, United States of America
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis, Sacramento, California, United States of America
| | - Lucas R. Smith
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Skeletal muscle is a mechanical organ that not only produces force but also uses mechanical stimuli as a signal to regulate cellular responses. Duchenne and Becker muscular dystrophy are lethal muscle wasting diseases that affect 1 in 3,500 boys and is caused by the absence or malfunction of dystrophin protein, respectively. There is a lack of understanding on how the integration of these mechanical signals is dysregulated in muscular dystrophy and how they may contribute to disease progression. In this study, we show that patient-relevant dystrophin mutations alter the mechanical signaling axis in muscle cells, leading to impaired migration. This work proposes dystrophin as a component of the cellular force-sensing machinery, furthering our knowledge in the pathomechanism of muscular dystrophy. Dystrophin is an essential muscle protein that contributes to cell membrane stability by mechanically linking the actin cytoskeleton to the extracellular matrix via an adhesion complex called the dystrophin–glycoprotein complex. The absence or impaired function of dystrophin causes muscular dystrophy. Focal adhesions (FAs) are also mechanosensitive adhesion complexes that connect the cytoskeleton to the extracellular matrix. However, the interplay between dystrophin and FA force transmission has not been investigated. Using a vinculin-based bioluminescent tension sensor, we measured FA tension in transgenic C2C12 myoblasts expressing wild-type (WT) dystrophin, a nonpathogenic single nucleotide polymorphism (SNP) (I232M), or two missense mutations associated with Duchenne (L54R), or Becker muscular dystrophy (L172H). Our data revealed cross talk between dystrophin and FAs, as the expression of WT or I232M dystrophin increased FA tension compared to dystrophin-less nontransgenic myoblasts. In contrast, the expression of L54R or L172H did not increase FA tension, indicating that these disease-causing mutations compromise the mechanical function of dystrophin as an FA allosteric regulator. Decreased FA tension caused by these mutations manifests as defective migration, as well as decreased Yes-associated protein 1 (YAP) activation, possibly by the disruption of the ability of FAs to transmit forces between the extracellular matrix and cytoskeleton. Our results indicate that dystrophin influences FA tension and suggest that dystrophin disease-causing missense mutations may disrupt a cellular tension-sensing pathway in dystrophic skeletal muscle.
Collapse
|
6
|
Swiderski K, Lynch GS. Murine models of Duchenne muscular dystrophy: is there a best model? Am J Physiol Cell Physiol 2021; 321:C409-C412. [PMID: 34260298 DOI: 10.1152/ajpcell.00212.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|