1
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
2
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
3
|
Arteaga-Silva M, Limón-Morales O, Bonilla-Jaime H, Vigueras-Villaseñor RM, Rojas-Castañeda J, Hernández-Rodríguez J, Montes S, Hernández-González M, Ríos C. Effects of postnatal exposure to cadmium on male sexual incentive motivation and copulatory behavior: Estrogen and androgen receptors expression in adult brain rat. Reprod Toxicol 2023; 120:108445. [PMID: 37482142 DOI: 10.1016/j.reprotox.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
There are numerous evidence showing that cadmium (Cd) is an endocrine disruptor that exerts multiple toxic effects at different reproductive levels, including male sexual behavior (MSB). The effect of early exposure to Cd on sexual incentive motivation (SIM) and MSB in adult stage, and the immunoreactivity of receptors for hormones such as estrogens and androgens in brain regions that are relevant for the SIM and MSB display, have not been studied until now. The present study evaluated the effects of 0.5 and 1 mg/kg CdCl2 from day 1-56 of postnatal life on SIM and MSB in adults rats, as well as serum testosterone concentrations, Cd concentration in blood, testis, and brain areas, and the immunoreactivity in estrogen receptors (ER-α and -β), and androgen receptor (AR) in the olfactory bulbs (OB), medial preoptic area (mPOA), and medial amygdala (MeA). Our results showed that both doses of Cd decreased SIM and MSB, accompanied by low serum concentrations of testosterone. Also, there was a significant reduction in immunoreactivity of ER-α and AR in mPOA, and a significant reduction in AR in MeA on male rats treated with Cd 1 mg/kg. These results show that exposure to high doses of Cd in early postnatal life could alter the correct integration of hormonal signals in the brain areas that regulate and display SIM and MSB in adult male rats.
Collapse
Affiliation(s)
- Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México.
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Julio Rojas-Castañeda
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Joel Hernández-Rodríguez
- Cuerpo Académico de Investigación en Salud de la Licenciatura en Quiropráctica (CA-UNEVE-01), Universidad Estatal del Valle de Ecatepec, Estado de México 55210, México
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Lago de Chapala y Calle 16, Aztlán, Reynosa 88740, México
| | - Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, México
| | - Camilo Ríos
- Dirección de Investigación, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, México
| |
Collapse
|
4
|
Ruiz-Hernández IM, Nouri MZ, Kozuch M, Denslow ND, Díaz-Gamboa RE, Rodríguez-Canul R, Collí-Dulá RC. Trace element and lipidomic analysis of bottlenose dolphin blubber from the Yucatan coast: Lipid composition relationships. CHEMOSPHERE 2022; 299:134353. [PMID: 35314180 DOI: 10.1016/j.chemosphere.2022.134353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Bottlenose dolphins (Tursiops truncatus) are found in coastal and estuarine ecosystems where they are in continuous contact with multiple abiotic and biotic stressors in the environment. Due to their role as predators, they can bioaccumulate contaminants and are considered sentinel organisms for monitoring the health of coastal marine ecosystems. The northern zonal coast of the Yucatan peninsula of Mexico has a high incidence of anthropogenic activities. The principal objectives of this study were two-fold: 1) to determine the presence of trace metals and their correlation with lipids in bottlenose dolphin blubber, and 2) to use a lipidomics approach to characterize their biological responses. Levels of trace elements (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Pb) were analyzed using ICP-MS and lipids were measured using a targeted lipidomics approach with LC-MS/MS. Spearman correlation analysis was used to identify associations between lipids and trace elements. The influences of gender, stranding codes, presence of stomach content, growth stages and body length were also analyzed. Blubber lipid composition was dominated by triacylglycerols (TAG). Our results demonstrated the presence of heavy-metal elements such as Cd and As, which were correlated with different lipid species, mainly the ceramides and glycerophospholipids, respectively. Organisms with Cd showed lower concentrations of ceramides (CER, HCER and DCER), TAG and cholesteryl esters (CE). Trace elements Cr, Co, As and Cd increased proportionately with body length. This study provides a novel insight of lipidomic characterization and correlations with trace elements in the bottlenose dolphin which might contribute to having a better understanding of the physiological functions and the risks that anthropogenic activities can bring to sentinel organisms from coastal regions.
Collapse
Affiliation(s)
- Ixchel M Ruiz-Hernández
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Antigua Carretera a Progreso km 6. Cordemex, Mérida, Yucatán, 97310, Mexico.
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology. University of Florida. PO Box 110885. 2187 Mowry Road. Gainesville, FL, 32611, USA.
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology. University of Florida. PO Box 110885. 2187 Mowry Road. Gainesville, FL, 32611, USA.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology. University of Florida. PO Box 110885. 2187 Mowry Road. Gainesville, FL, 32611, USA.
| | - Raúl E Díaz-Gamboa
- Universidad Autónoma de Yucatán, Departamento de Biología Marina, Mérida, Yucatán, 97000, Mexico.
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Antigua Carretera a Progreso km 6. Cordemex, Mérida, Yucatán, 97310, Mexico.
| | - Reyna C Collí-Dulá
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Antigua Carretera a Progreso km 6. Cordemex, Mérida, Yucatán, 97310, Mexico; CONACYT, CONACYT, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Abstract
Altered lipid metabolism is a characteristic feature and potential driving factor of acute kidney injury (AKI). Of the lipids that accumulate in injured renal tissues, ceramides are potent regulators of metabolism and cell fate. Up-regulation of ceramide synthesis is a common feature shared across several AKI etiologies in vitro and in vivo. Furthermore, ceramide accumulation is an early event in the natural history of AKI that precedes cell death and organ dysfunction. Emerging evidence suggests that inhibition of ceramide accumulation may improve renal outcomes in several models of AKI. This review examines the landscape of ceramide metabolism and regulation in the healthy and injured kidney. Furthermore, we discuss the body of literature regarding ceramides as therapeutic targets for AKI and consider potential mechanisms by which ceramides drive kidney pathogenesis.
Collapse
Affiliation(s)
- Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - William L Holland
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT.
| |
Collapse
|
6
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
7
|
Gong P, Wang M, Yang W, Chang X, Wang L, Chen F. Integrated metabolomics coupled with pattern recognition and pathway analysis to reveal molecular mechanism of cadmium-induced diabetic nephropathy. Toxicol Res (Camb) 2021; 10:777-791. [PMID: 34484669 DOI: 10.1093/toxres/tfab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is becoming a worldwide public health problem and its pathophysiological mechanism is not well understood. Emerging evidences indicated that cadmium (Cd), an industrial material but also an environmental toxin, may be involved in the development and progression of diabetes and diabetes-related kidney disease. However, the underlying mechanism is still unclear. Herein, a DN animal model was constructed by exposing to Cd, the metabolomic profiling of DN mice were obtained by using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), pattern recognition and pathway analysis were performed to screen potential biomarker. Moreover, western blotting was employed to verify the possible mechanism involved in the occurrence of Cd-induced DN. A total of 66 metabolites in serum have been screened out and identified as biomarkers, including free fatty acids, phospholipids, sphingomyelins, glycerides, and others. Significant differences were demonstrated between the metabolic profiles, including decreased levels of phospholipid and increased content of triglyceride, diacylglycerols, ceramide, lysophosphatidylcholine in Cd-induced DN mice compared with control. Protein expression level of p38 MAPK and Wnt/β-catenin were significantly increased. UPLC-Q-TOF/MS-based serum metabolomics coupled with pattern recognition methods and pathway analysis provide a powerful approach to identify potential biomarkers and is a new strategy to predict the underlying mechanism of disease caused by environmental toxicant.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mengrao Wang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiangna Chang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lan Wang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
8
|
Bondad SEC, Kurasaki M. Analysis of Cadmium, Epigallocatechin Gallate, and Vitamin C Co-exposure on PC12 Cellular Mechanisms. Biol Trace Elem Res 2020; 198:627-635. [PMID: 32128694 DOI: 10.1007/s12011-020-02097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Exposure to cadmium (Cd) is a risk factor to health impairments, wherein its cytotoxicity is attributed to induction of oxidative stress. Usage of anti-oxidants, however, can help lessen the damaging effects of Cd. The effect of Cd interaction with low concentration of dietary anti-oxidants, L-ascorbic acid and (-)-epigallocatechin gallate (EGCG), to PC12 cellular mechanisms was examined. The expected toxicity of Cd was observed on PC12 cells but addition of L-ascorbic acid ameliorated this effect. On the other hand, addition of EGCG was able to increase the cytotoxicity of Cd and to decrease the protective effect of L-ascorbic acid against Cd. Increase in LDH activity and decrease in free sulfhydryl levels indicated cell membrane damage and oxidative stress, respectively, in Cd- and EGCG-Cd-treated cells. Downregulation of pro-apoptotic proteins (pro-caspase-9, p53, and ERK1) was observed in cells treated with Cd alone and EGCG-Cd, while upregulation of autophagy-linked proteins (p62 and pBeclin1) was found on L-ascorbic acid-Cd combination treatments. These findings indicate that Cd causes cells to undergo an autophagy-enhanced cell death; low-concentration EGCG and L-ascorbic acid promotes cell survival individually; however, interaction of EGCG with Cd showed enhancement of Cd toxicity and antagonism of L-ascorbic acid efficiency.
Collapse
Affiliation(s)
- Serene Ezra C Bondad
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
9
|
Li JR, Ou YC, Wu CC, Wang JD, Lin SY, Wang YY, Chen WY, Liao SL, Chen CJ. Endoplasmic reticulum stress and autophagy contributed to cadmium nephrotoxicity in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2020; 146:111828. [PMID: 33127495 DOI: 10.1016/j.fct.2020.111828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Excessive accumulation of cadmium is known to cause nephrotoxicity by targeting renal proximal tubular epithelial cells. Studies showed an essential role of autophagy in cadmium-induced nephrotoxicity; however, its underlying mechanisms accompanied by autophagy are incompletely understood. Using an HK-2 human renal proximal tubular epithelial cell line as a study model, sustained exposure of cadmium chloride (CdCl2) was shown to cause cell viability loss, which was alleviated by inhibitors of autophagy but not apoptosis. Data from molecular and biochemical studies revealed an induction of autophagy proteins, intracellular acidic vesicles, and autophagic flux in CdCl2-treated cells. However, there was little sign of apoptosis-related changes. Pharmacological and genetic studies indicated an elevation of Endoplasmic Reticulum (ER) stress, Forkhead Box Class O (FoxO3a), Bcl-2 Interacting Protein 3 (Bnip3), and Beclin1, as well as their involvement in cadmium-induced autophagy and autophagic cell death. Renal injury, histological changes, and molecular marker of ER stress, FoxO3a, Bnip3, and autophagy were observed in the kidney cortex of CdCl2-exposed Sprague-Dawley rats. These observations indicate that ER stress, FoxO3a, Bnip3, and autophagy signaling were actively involved in cadmium-induced nephrotoxicity. Additionally, FoxO3a may act as a linking molecule to convey ER stress signals to Bnip3 and autophagy machinery upon cadmium exposure.
Collapse
Affiliation(s)
- Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, HungKuang University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Financial Engineering, Providence University, Taichung, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
10
|
Wang L, Zheng M, Wang Y, Yuan L, Yu C, Cui J, Zhang S. Activation of integrated stress response and disordered iron homeostasis upon combined exposure to cadmium and PCB77. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121833. [PMID: 31837937 DOI: 10.1016/j.jhazmat.2019.121833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Both cadmium and polychlorinated biphenyls (PCBs) can induce diverse detrimental effects on human health. Though these compounds co-exist in various environmental contexts and in the human body, studies on their joint toxicities are limited. Activation of the integrated stress response (ISR) and iron homeostasis are crucial for erythropoiesis. The impact of cadmium and PCBs on the ISR activation and iron homeostasis of erythroid progenitors is unknown. We investigated the adverse effects and mechanisms of CdCl2 and PCB77 on HEL cells, a human cell model of erythroid progenitors. We found that at high concentrations of CdCl2 and PCB77, cytotoxicity and apoptosis of HEL cells were mainly induced by CdCl2. At low concentrations of CdCl2 and PCB77, iron homeostasis inside HEL cells was disturbed by both of these two compounds. Both CdCl2 and PCB77 activated ISR to combat stress, which at high concentration was mainly induced by ROS, leading to apoptosis, and at low concentration was partly induced by disordered iron homeostasis. The patterns of ISR activation and iron homeostasis disorder were different between CdCl2 and PCB77. Their combined exposure exhibited synergetic effect on activating ISR but antagonistic effect on disturbing iron homeostasis. Our study demonstrates some previously unrecognized harmful characteristics and mechanisms of cadmium and PCB77.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Miaomiao Zheng
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Yingxue Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Lin Yuan
- Clinical Lab, Weihai Central Hospital, Weihai, 264400, China
| | - Chengyong Yu
- Clinical Lab, Weihai Central Hospital, Weihai, 264400, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China.
| | - Shuping Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
12
|
Strizhakov LA, Fomin VV, Garipova RV, Babanov SA, Arkhipov EV, Lebedeva MV. Chronic kidney disease in the context of toxic effects the working chemical factors (literature review). TERAPEVT ARKH 2019; 91:110-115. [DOI: 10.26442/00403660.2019.06.000098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/22/2022]
Abstract
The article analyzes the publications devoted to the problem of professional renal lesions caused by chemical factors. Classification, prevalence, peculiarities of the clinical picture, diagnosis of professional renal lesions caused by chemical factors of the production environment are reviewed. The frequency of professional renal lesions remains underestimated due to low manifestation of symptoms and the influence of environmental factors, which require further investigation of this issue.
Collapse
|
13
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
14
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
15
|
Wang L, Zheng M, Gao Y, Cui J. In vitro study on the joint hepatoxicity upon combined exposure of cadmium and BDE-209. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:62-69. [PMID: 29216509 DOI: 10.1016/j.etap.2017.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Joint toxicity is an important issue during the risk assessment of environmental pollutants. Contamination of heavy metals and persistent organic pollutants (POPs) under the environmental and biological settings poses substantial health risk to humans. Although previous studies demonstrated the co-occurrence of cadmium and decabrominated diphenyl ether (BDE-209) in environmental mediums, food chains and even human body, their potentially joint toxicities remain elusive thus far. Our investigation here with respect to the hepatotoxicity in vitro clearly demonstrated that combined exposure of cadmium and BDE-209 aggravated the injuries in hepatocytes, which was evidenced by the additive effects on the induction of remarkable morphological alternations, LDH release, cell apoptosis and necrosis, impairment of mitochondrial activity and transmembrane potential. Enhanced ROS production was one of the mechanisms for cell apoptosis and death upon joint treatment. Additionally, more cadmium-treated cells underwent apoptosis than BDE-209-treated cells while more ROS was generated with BDE-209 treatment, indicating that other mechanisms might be involved in cadmium-induced apoptosis. Our results would be helpful for evaluating the joint-hepatotoxicity upon combined exposure of cadmium and BDE-209 as well as investigating the underlying mechanisms.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Miaomiao Zheng
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yu Gao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Xiqing District Environmental Protection Monitoring Station, Tianjin 300380, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
16
|
Lee WK, Probst S, Santoyo-Sánchez MP, Al-Hamdani W, Diebels I, von Sivers JK, Kerek E, Prenner EJ, Thévenod F. Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 2017; 91:3225-3245. [PMID: 28321485 DOI: 10.1007/s00204-017-1942-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
The renal proximal tubule (PT) is the major target of cadmium (Cd2+) toxicity where Cd2+ causes stress and apoptosis. Autophagy is induced by cell stress, e.g., endoplasmic reticulum (ER) stress, and may contribute to cell survival or death. The role of autophagy in Cd2+-induced nephrotoxicity remains unsettled due to contradictory results and lack of evidence for autophagic machinery damage by Cd2+. Cd2+-induced autophagy in rat kidney PT cell line NRK-52E and its role in cell death was investigated. Increased LC3-II and decreased p62 as autophagy markers indicate rapid induction of autophagic flux by Cd2+ (5-10 µM) after 1 h, accompanied by ER stress (increased p-PERK, p-eIF2α, CHOP). Cd2+ exposure exceeding 3 h results in p62/LC3-II accumulation, but diminished effect of lysosomal inhibitors (bafilomycin A1, pepstatin A +E-64d) on p62/LC3-II levels, indicating decreased autophagic flux and cargo degradation. At 24 h exposure, Cd2+ (5-25 µM) activates intrinsic apoptotic pathways (Bax/Bcl-2, PARP-1), which is not evident earlier (≤6 h) although cell viability by MTT assay is decreased. Autophagy inducer rapamycin (100 nM) does not overcome autophagy inhibition or Cd2+-induced cell viability loss. The autophagosome-lysosome fusion inhibitor liensinine (5 μM) increases CHOP and Bax/Bcl-2-dependent apoptosis by low Cd2+ stress, but not by high Cd2+. Lysosomal instability by Cd2+ (5 μM; 6 h) is indicated by increases in cellular sphingomyelin and membrane fluidity and decreases in cathepsins and LAMP1. The data suggest dual and temporal impact of Cd2+ on autophagy: Low Cd2+ stress rapidly activates autophagy counteracting damage but Cd2+ stress accrual disrupts autophagic flux and lysosomal stability, possibly resulting in lysosomal cell death.
Collapse
Affiliation(s)
- W-K Lee
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| | - S Probst
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - M P Santoyo-Sánchez
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
- Department of Toxicology, Cinvestav-IPN, México D.F., Mexico
| | - W Al-Hamdani
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - I Diebels
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - J-K von Sivers
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - E Kerek
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - E J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - F Thévenod
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
17
|
Huang Y, He C, Shen C, Guo J, Mubeen S, Yuan J, Yang Z. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct 2017; 8:1373-1401. [PMID: 28232985 DOI: 10.1039/c6fo01580h] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) is a highly toxic heavy metal and has spread widely in the environment in recent decades. This review summarizes current knowledge about Cd contamination of leafy vegetables, its toxicity, exposure, health risks, and approaches to reducing its toxicity in humans. Leafy vegetable consumption has been identified as a dominant exposure pathway of Cd in the human body. An overview of Cd pollution in leafy vegetables as well as the main sources of Cd is given. Notable estimated daily intakes and health risks of Cd exposure through vegetable consumption for humans are revealed in occupational exposure areas and even in some reference areas. Vegetable consumption is one of the most significant sources of exposure to Cd, particularly in occupational exposure regions. Therefore, numerous approaches have been developed to minimize the accumulation of Cd in leafy vegetables, among which the breeding of Cd pollution-safe cultivars is one of the most effective tools. Furthermore, dietary supplements from leafy vegetables perform positive roles in alleviating Cd toxicity in humans with regard to the effects of essential mineral elements, vitamins and phytochemicals taken into the human body via leafy vegetable consumption.
Collapse
Affiliation(s)
- Yingying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
de Melo WA, Braga CADSB, Carneiro LC. Occurrence of heavy metals and contaminants on the surface of adjacent rivers. JOURNAL OF WATER AND HEALTH 2017; 15:50-57. [PMID: 28151439 DOI: 10.2166/wh.2016.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water is fundamental to the survival of living beings. It registers every impact and can function as an indicator of environmental stressors. Our objective in the current study was to assess the sanitary conditions of the waters in the Açude, Maria Lucinda and Santa Rosa streams. This was done by checking pH, running quantitative analyses of heavy metals and testing for total coliforms. The effect of ultraviolet (UV) rays on samples positive for coliforms was evaluated. The average pH of the streams ranged between 4 and 7 and changed between drought and rainy season conditions. Chromium and nickel values were above those permitted by the Brazilian National Council on the Environment, CONAMA. In the dry season, zinc values were above those established by CONAMA for waterbodies of Classes 1 and 2. Thermotolerant coliforms were present in all samples collected and above permitted values. After exposing the bacteria to UV light, it was noted that UV irradiation was unable to decrease the bacteria count. Ninety residents who use stream water were interviewed: 24% of interviewees said they use the waters of the Açude and Mary Lucinda streams and along the Santa Rosa stream, 95% of inhabitants said they use the water.
Collapse
Affiliation(s)
- Warita Alves de Melo
- State University of Goiás, Unu Morrinhos, Rua 14, 625 Jardim América, Morrinhos GO 75650-000, Brazil
| | | | - Lilian Carla Carneiro
- Federal University of Goiás, 2 Rua 235, Bairro Leste Universitário, Goiânia, GO 74605-050, Brazil E-mail: ;
| |
Collapse
|
19
|
Liu G, Zou H, Luo T, Long M, Bian J, Liu X, Gu J, Yuan Y, Song R, Wang Y, Zhu J, Liu Z. Caspase-Dependent and Caspase-Independent Pathways Are Involved in Cadmium-Induced Apoptosis in Primary Rat Proximal Tubular Cell Culture. PLoS One 2016; 11:e0166823. [PMID: 27861627 PMCID: PMC5115828 DOI: 10.1371/journal.pone.0166823] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/05/2016] [Indexed: 12/28/2022] Open
Abstract
We designed this study to investigate whether cadmium induces caspase-independent apoptosis and to investigate the relationship between the caspase-dependent and caspase-independent apoptotic pathways. Cadmium (1.25-2.5 μM) induced oxidative stress in rat proximal tubular (rPT) cells, as seen in the reactive oxygen species levels; N-acetylcysteine prevented this. Cyclosporin A (CsA) prevented mitochondrial permeability transition pore opening and apoptosis; there was mitochondrial ultrastructural disruption, mitochondrial cytochrome c (cyt c) translocation to the cytoplasm, and subsequent caspase-9 and caspase-3 activation. Z-VAD-FMK prevented caspase-3 activation and apoptosis and decreased BNIP-3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3) expression levels and apoptosis-inducing factor/endonuclease G (AIF/Endo G) translocation. Simultaneously, cadmium induced prominent BNIP-3 expression in the mitochondria and cytoplasmic AIF/Endo G translocation to the nucleus. BNIP-3 silencing significantly prevented AIF and Endo G translocation and decreased the apoptosis rate, cyt c release, and caspase-9 and caspase-3 activation. These results suggest that BNIP-3 is involved in the caspase-independent apoptotic pathway and is located upstream of AIF/Endo G; both the caspase-dependent and caspase-independent pathways are involved in cadmium-induced rPT cell apoptosis and act synergistically.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Tongwang Luo
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Mengfei Long
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
- * E-mail: (ZPL); (JQZ)
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
- * E-mail: (ZPL); (JQZ)
| |
Collapse
|
20
|
Messner B, Türkcan A, Ploner C, Laufer G, Bernhard D. Cadmium overkill: autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium. Cell Mol Life Sci 2016; 73:1699-713. [PMID: 26588916 PMCID: PMC4805700 DOI: 10.1007/s00018-015-2094-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
Apoptosis, necrosis, or autophagy-it is the mode of cell demise that defines the response of surrounding cells and organs. In case of one of the most toxic substances known to date, cadmium (Cd), and despite a large number of studies, the mode of cell death induced is still unclear. As there exists conflicting data as to which cell death mode is induced by Cd both across various cell types and within a single one, we chose to analyse Cd-induced cell death in primary human endothelial cells by investigating all possibilities that a cell faces in undergoing cell death. Our results indicate that Cd-induced death signalling starts with the causation of DNA damage and a cytosolic calcium flux. These two events lead to an apoptosis signalling-related mitochondrial membrane depolarisation and a classical DNA damage response. Simultaneously, autophagy signalling such as ER stress and phagosome formation is initiated. Importantly, we also observed lysosomal membrane permeabilization. It is the integration of all signals that results in DNA degradation and a disruption of the plasma membrane. Our data thus suggest that Cd causes the activation of multiple death signals in parallel. The genotype (for example, p53 positive or negative) as well as other factors may determine the initiation and rate of individual death signals. Differences in the signal mix and speed may explain the differing results recorded as to the Cd-induced mode of cell death thus far. In human endothelial cells it is the sum of most if not all of these signals that determine the mode of Cd-induced cell death: programmed necrosis.
Collapse
Affiliation(s)
- Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, AKH, Level 8 G9.03, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Adrian Türkcan
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, AKH, Level 8 G9.03, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christian Ploner
- Plastic, Reconstructive and Aesthetic Surgery Innsbruck, Department of Operative Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Günther Laufer
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, AKH, Level 8 G9.03, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - David Bernhard
- Cardiac Surgery Research Laboratory Innsbruck, University Clinic for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
21
|
Lawal AO, Marnewick JL, Ellis EM. Heme oxygenase-1 attenuates cadmium-induced mitochondrial-caspase 3- dependent apoptosis in human hepatoma cell line. BMC Pharmacol Toxicol 2015; 16:41. [PMID: 26670903 PMCID: PMC4681021 DOI: 10.1186/s40360-015-0040-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Background Cadmium (Cd) is a well known environmental and industrial toxicant causing damaging effects in numerous organs. In this study, we examined the role of heme oxygenase-1 (HO-1) in modulating the Cd-induced apoptosis in human hepatoma (HepG2) cells after 24 h exposure. Methods HepG2 cells were exposed to 5 and 10 μM Cd as CdCl2 for 24 h while other sets of cells were pre-treated with either 10 μM Cobalt protoporphyrin (CoPPIX) or 10 μM Tin protoporphyrin (SnPPIX) for 24 h, or 50 μM Z-DEVD-FMK for 1 h before exposure to 5 and 10 μM CdCl2 for 24 h. Expressions of caspase 3, cytosolic cytochrome c, mitochondrial Bax and anti-apoptotic BCL-xl proteins were assessed by western blot. Intracellular reactive oxygen species (ROS) production was determined using the dihydrofluorescein diacetate (H2DFA) method. Cell viability was assessed by MTT assay, while a flow cytometry method was used to assess the level of apoptosis in the cell populations. Results Our results show that there were a significant increase in the expression of cytosolic cytochrome c, mitochondrial Bax protein, and caspase 3 at 5 and 10 μM compared to the control, but these increases were attenuated by the presence of CoPPIX. The presence of SnPPIX significantly enhanced Cd-induced caspase 3 activities. CoPPIX significantly decreased the level of ROS production by 24.6 and 22.2 % in 5 and 10 μM CdCl2, respectively, but SnPPIX caused a significant increase in ROS production in the presence of CdCl2. HepG2 cell viability was also significantly impaired by 13.89 and 32.53 % in the presence of 5 and 10 μM CdCl2, respectively, but the presence of CoPPIX and Z-DEVD-FMK significantly enhanced cell survival, while SnPPIX enhanced Cd-impaired cell viability. The presence of CoPPIX and Z-DEVD-FMK also significantly decreased the population of apoptotic and necrotic cells compared with Cd. Conclusion In summary, the present study showed that HO-1 attenuates the Cd-induced caspase 3 dependent pathway of apoptosis in HepG2 cells, probably by modulating Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Akeem O Lawal
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville Campus, Bellville, 7535, South Africa. .,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G1 1XW, Glasgow, UK.
| | - Jeanine L Marnewick
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville Campus, Bellville, 7535, South Africa.,Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville Campus, Bellville, 7535, South Africa
| | - Elizabeth M Ellis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G1 1XW, Glasgow, UK
| |
Collapse
|
22
|
Fongsupa S, Soodvilai S, Muanprasat C, Chatsudthipong V, Soodvilai S. Activation of liver X receptors inhibits cadmium-induced apoptosis of human renal proximal tubular cells. Toxicol Lett 2015; 236:145-53. [DOI: 10.1016/j.toxlet.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
|
23
|
Thévenod F, Lee WK. Live and Let Die: Roles of Autophagy in Cadmium Nephrotoxicity. TOXICS 2015; 3:130-151. [PMID: 29056654 PMCID: PMC5634690 DOI: 10.3390/toxics3020130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/07/2023]
Abstract
The transition metal ion cadmium (Cd2+) is a significant environmental contaminant. With a biological half-life of ~20 years, Cd2+ accumulates in the kidney cortex, where it particularly damages proximal tubule (PT) cells and can result in renal fibrosis, failure, or cancer. Because death represents a powerful means by which cells avoid malignant transformation, it is crucial to clearly identify and understand the pathways that determine cell fate in chronic Cd2+ nephrotoxicity. When cells are subjected to stress, they make a decision to adapt and survive, or—depending on the magnitude and duration of stress—to die by several modes of death (programmed cell death), including autophagic cell death (ACD). Autophagy is part of a larger system of intracellular protein degradation and represents the channel by which organelles and long-lived proteins are delivered to the lysosome for degradation. Basal autophagy levels in all eukaryotic cells serve as a dynamic physiological recycling system, but they can also be induced by intra- or extracellular stress and pathological processes, such as endoplasmic reticulum (ER) stress. In a context-dependent manner, autophagy can either be protective and hence contribute to survival, or promote death by non-apoptotic or apoptotic pathways. So far, the role of autophagy in Cd2+-induced nephrotoxicity has remained unsettled due to contradictory results. In this review, we critically survey the current literature on autophagy in Cd2+-induced nephrotoxicity in light of our own ongoing studies. Data obtained in kidney cells illustrate a dual and complex function of autophagy in a stimulus- and time-dependent manner that possibly reflects distinct outcomes in vitro and in vivo. A better understanding of the context-specific regulation of cell fate by autophagy may ultimately contribute to the development of preventive and novel therapeutic strategies for acute and chronic Cd2+ nephrotoxicity.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), Stockumer Str. 12, University of Witten/Herdecke, 58453 Witten, Germany.
| | - Wing-Kee Lee
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), Stockumer Str. 12, University of Witten/Herdecke, 58453 Witten, Germany.
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA.
| |
Collapse
|
24
|
Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 2015; 16:5076-124. [PMID: 25751724 PMCID: PMC4394466 DOI: 10.3390/ijms16035076] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
| |
Collapse
|
25
|
Nair AR, Lee WK, Smeets K, Swennen Q, Sanchez A, Thévenod F, Cuypers A. Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch Toxicol 2014; 89:2273-89. [PMID: 25388156 DOI: 10.1007/s00204-014-1401-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Cadmium (Cd(2+)) induces oxidative stress that ultimately defines cell fate and pathology. Mitochondria are the main energy-producing organelles in mammalian cells, but they also have a central role in formation of reactive oxygen species, cell injury, and death signaling. As the kidney is the major target in Cd(2+) toxicity, the roles of oxidative signature and mitochondrial function and biogenesis in Cd(2+)-related stress outcomes were investigated in vitro in cultured rat kidney proximal tubule cells (PTCs) (WKPT-0293 Cl.2) for acute Cd(2+) toxicity (1-30 µM, 24 h) and in vivo in Fischer 344 rats for sub-chronic Cd(2+) toxicity (1 mg/kg CdCl2 subcutaneously, 13 days). Whereas 30 µM Cd(2+) caused ~50 % decrease in cell viability, apoptosis peaked at 10 µM Cd(2+) in PTCs. A steep, dose-dependent decline in reduced glutathione (GSH) content occurred after acute exposure and an increase of the oxidized glutathione (GSSG)/GSH ratio. Quantitative PCR analyses evidenced increased antioxidative enzymes (Sod1, Gclc, Gclm), proapoptotic Bax, metallothioneins 1A/2A, and decreased antiapoptotic proteins (Bcl-xL, Bcl-w). The positive regulator of mitochondrial biogenesis Pparγ and mitochondrial DNA was increased, and cellular ATP was unaffected with Cd(2+) (1-10 µM). In vivo, active caspase-3, and hence apoptosis, was detected by FLIVO injection in the kidney cortex of Cd(2+)-treated rats together with an increase in Bax mRNA. However, antiapoptotic genes (Bcl-2, Bcl-xL, Bcl-w) were also upregulated. Both GSSG and GSH increased with chronic Cd(2+) exposure with no change in GSSG/GSH ratio and augmented expression of antioxidative enzymes (Gpx4, Prdx2). Mitochondrial DNA, mitofusin 2, and Pparα were increased indicating enhanced mitochondrial biogenesis and fusion. Hence, these results demonstrate a clear involvement of higher mitochondria copy numbers or mass and mitochondrial function in acute defense against oxidative stress induced by Cd(2+) in renal PTCs as well as in adaptive processes associated with chronic renal Cd(2+) toxicity.
Collapse
Affiliation(s)
- Ambily Ravindran Nair
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Wing-Kee Lee
- Chair of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany.
| | - Karen Smeets
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Quirine Swennen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Amparo Sanchez
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Frank Thévenod
- Chair of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany.
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
26
|
Dimeloe S, Frick C, Fischer M, Gubser PM, Razik L, Bantug GR, Ravon M, Langenkamp A, Hess C. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur J Immunol 2014; 121:343-56. [PMID: 25251877 DOI: 10.1093/toxsci/kfr071] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ATP-binding cassette (ABC) transporters, including ABC-transporter B1 (ABCB1), extrude drugs, metabolites, and other compounds (such as mitotracker green (MTG)) from cells. Susceptibility of CD4(+) regulatory T (Treg) cells to the ABCB1-substrate cyclophosphamide (CPA) has been reported. Here, we characterized ABCB1 expression and function in human CD4(+) T-cell subsets. Naïve, central memory, and effector-memory CD4(+) T cells, but not Treg cells, effluxed MTG in an ABCB1-dependent manner. In line with this, ABCB1 mRNA and protein was expressed by nonregulatory CD4(+) T-cell subsets, but not Treg cells. In vitro, the ABCB1-substrate CPA was cytotoxic for Treg cells at a 100-fold lower dose than for nonregulatory counterparts, and, inversely, verapamil, an inhibitor of ABC transporters, increased CPA-toxicity in nonregulatory CD4(+) T cells but not Treg cells. Thus, Treg cells lack expression of ABCB1, rendering them selectively susceptible to CPA. Our findings provide mechanistic support for therapeutic strategies using CPA to boost anti-tumor immunity by selectively depleting Treg cells.
Collapse
Affiliation(s)
- Sarah Dimeloe
- Immunobiology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nair AR, Smeets K, Keunen E, Lee WK, Thévenod F, Van Kerkhove E, Cuypers A. Renal cells exposed to cadmium in vitro and in vivo: normalizing gene expression data. J Appl Toxicol 2014; 35:478-84. [PMID: 25042840 DOI: 10.1002/jat.3047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 11/12/2022]
Abstract
Cadmium (Cd) is a toxic metal with a long half-life in biological systems. This half-life is partly as a result of metallothioneins (MTs), metal-binding proteins with a high affinity for Cd. The high retention properties of the kidneys reside in proximal tubular cells that possess transport mechanisms for Cd-MT uptake, ultimately leading to more Cd accumulation. Researchers have studied MT-metal interactions using various techniques including quantitative real-time PCR (qPCR), an efficient tool for quantifying gene expression. Often a poor choice of reference genes, which is represented by their instability and condition dependency, leads to inefficient normalization of gene expression data and misinterpretations. This study demonstrates the importance of an efficient normalization strategy in toxicological research. A selection of stable reference genes was proposed in order to acquire reliable and reproducible gene quantification under metal stress using MT expression as an example. Moreover, in vitro and in vivo setups were compared to identify the influence of toxicological compounds in function of the experimental design. This study shows that glyceraldehyde-3-phosphate dehydrogenase (Gapdh), tyrosine monooxygenase/tryptophan5-monooxygenase activation-protein, zeta polypeptide (Ywhaz) and beta-actin (Actb) are the most stable reference genes in a kidney proximal tubular cell line exposed to moderate and high Cd concentrations, applied as CdCl2 . A slightly different sequence in reference gene stability was found in renal cells isolated from rats in vivo exposed to Cd. It was further shown that three reference genes are required for efficient normalization in this experimental setup. This study demonstrates the importance of an efficient normalization strategy in toxicological research.
Collapse
Affiliation(s)
- A R Nair
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Dahdouh F, Raane M, Thévenod F, Lee WK. Nickel-induced cell death and survival pathways in cultured renal proximal tubule cells: roles of reactive oxygen species, ceramide and ABCB1. Arch Toxicol 2014; 88:881-92. [DOI: 10.1007/s00204-014-1194-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/09/2014] [Indexed: 12/17/2022]
|
29
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
30
|
|
31
|
Blockade of acid-sensing ion channels protects articular chondrocytes from acid-induced apoptotic injury. Inflamm Res 2012; 61:327-35. [DOI: 10.1007/s00011-011-0414-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 01/28/2023] Open
|
32
|
Lawal AO, Ellis EM. Phospholipase C Mediates Cadmium-Dependent Apoptosis in HEK 293 Cells. Basic Clin Pharmacol Toxicol 2012; 110:510-7. [DOI: 10.1111/j.1742-7843.2011.00843.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Fujiwara Y, Lee JY, Tokumoto M, Satoh M. Cadmium Renal Toxicity via Apoptotic Pathways. Biol Pharm Bull 2012; 35:1892-7. [DOI: 10.1248/bpb.b212014] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
34
|
Adibhatla RM, Hatcher JF, Gusain A. Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 2011; 37:671-9. [PMID: 22101393 DOI: 10.1007/s11064-011-0659-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/14/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn²⁺ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn²⁺ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
35
|
Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V. Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 2011; 204:38-42. [DOI: 10.1016/j.toxlet.2011.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 12/21/2022]
|
36
|
Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B. Cadmium-Induced Autophagy in Rat Kidney: An Early Biomarker of Subtoxic Exposure. Toxicol Sci 2011; 121:31-42. [DOI: 10.1093/toxsci/kfr031] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
37
|
Templeton DM, Liu Y. Multiple roles of cadmium in cell death and survival. Chem Biol Interact 2010; 188:267-75. [DOI: 10.1016/j.cbi.2010.03.040] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 12/01/2022]
|
38
|
Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol Lett 2010; 198:49-55. [DOI: 10.1016/j.toxlet.2010.04.013] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/23/2022]
|
39
|
Krumschnabel G, Ebner HL, Hess MW, Villunger A. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:73-85. [PMID: 20435356 DOI: 10.1016/j.aquatox.2010.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 05/29/2023]
Abstract
Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell death and that neither necrostatin-1 nor a pan-caspase inhibitor conferred protection, suggesting that additional modes of cell death can be triggered in response to poisoning with heavy metals.
Collapse
Affiliation(s)
- Gerhard Krumschnabel
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck, Austria.
| | | | | | | |
Collapse
|
40
|
Yazihan N, Mehtap Kacar Kocak, Akcil E, Erdem O, Sayal A. Role of midkine in cadmium-induced liver, heart and kidney damage. Hum Exp Toxicol 2010; 30:391-7. [DOI: 10.1177/0960327110372402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accumulation of the widespread environmental toxin cadmium (Cd) in tissues results in toxicity. Cd, which can induce a broad spectrum of biological effects, is a toxic substance and is associated with inflammation and apoptosis. Midkine (MK) has fibrinolytic, antiapoptotic, transforming, angiogenetic and chemotactic activities. After Cd toxicity, we found increased MK expression in liver cells in an in vitro cell culture model. The aim of this study was to determine the possibility of relationship between tissue MK expression levels, tumor necrosis factor α(TNF-α) levels and apoptosis in a chronic Cd toxicity model in rats. Male Wistar rats were exposed to Cd at the dose of 15 parts per million (ppm) for 8 weeks. MK levels were measured in kidney, heart and liver tissue by enzyme-linked-immunosorbent assay (ELISA). MK messenger RNA (mRNA) expression was evaluated by RT-PCR. Tissue apoptosis level was evaluated with tissue caspase-3 activity levels. Accumulation of Cd in liver is higher than the kidney and heart. Cd-treated rats had significantly higher tissue TNF-α and caspase-3 levels when compared with the control rats (p < 0.001). MK mRNA and protein levels were also significantly upregulated in the Cd-treated group (p < 0.05, p < 0.001, respectively). When compared with apoptosis in tissues, it was more prominent in the liver than kidney and heart. MK level is found increased 3, 1.7 and 1.3× folds in liver, kidney and heart, respectively. Our results showed that chronic Cd administration induces inflammation and apoptosis in rat liver, kidney and heart. MK involved in damage mechanisms of Cd-induced tissues. Further studies will show the underlying mechanism of increased MK expression in Cd toxicity.
Collapse
Affiliation(s)
- Nuray Yazihan
- Pathophysiology Department, Faculty of Medicine, Ankara University, Ankara, Turkey, Molecular Biology Unit, Ankara, Turkey,
| | - Mehtap Kacar Kocak
- Pathophysiology Department, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ethem Akcil
- Pathophysiology Department, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Onur Erdem
- Department of Phamaceutical Toxicology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Ahmet Sayal
- Department of Phamaceutical Toxicology, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
41
|
Chen J, Shaikh ZA. Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells. Toxicol Appl Pharmacol 2009; 241:81-9. [DOI: 10.1016/j.taap.2009.07.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
|
42
|
Lu CY, Li CC, Liu KL, Tsai CW, Lii CK, Chen HW. Docosahexaenoic acid down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes via the sphingomyelinase/ceramide pathway. J Nutr Biochem 2009; 21:338-44. [PMID: 19427778 DOI: 10.1016/j.jnutbio.2009.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
Abstract
Docosahexaenoic acid (DHA) regulates the expression of cytochrome P450 2B1 (CYP 2B1) in rat primary hepatocytes in response to xenobiotics. Ceramide, a lipid signaling molecule, is involved in various physiological processes and can be generated by the hydrolysis of sphingomyelin via sphingomyelinase (SMase). DHA activates SMase and increases ceramide formation in vitro. Ceramides differentially enhance adenylyl cyclase activity in vitro depending on the chain length of their fatty acids. In addition, the cAMP-dependent PKA pathway down-regulates CYP 2B1 expression induced by phenobarbital (PB). In the present study, we determined the effect of DHA on SMase transactivation and the downstream pathway in CYP 2B1 expression induced by PB. SMase was activated by DHA 2 h after treatment, and D609 (an SMase inhibitor) attenuated the inhibition of PB-induced CYP 2B1 expression by DHA. Ceramide formation reached a maximum 3 h after DHA administration. C2-ceramide dose-dependently inhibited PB-induced CYP 2B1 expression and increased intracellular cAMP concentrations. SQ22536 (an adenylyl cyclase inhibitor) and H89 (a PKA-specific inhibitor) partially reversed the inhibition of PB-induced CYP 2B1 expression by C2-ceramide. These results suggest that stimulation of SMase, generation of ceramide and activation of the cAMP-dependent PKA pathway are involved in the inhibition exerted by DHA.
Collapse
Affiliation(s)
- Chia-Yang Lu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: Lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 2008; 76:1323-32. [DOI: 10.1016/j.bcp.2008.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/19/2022]
|
44
|
Iron transport and the kidney. Biochim Biophys Acta Gen Subj 2008; 1790:724-30. [PMID: 19041692 DOI: 10.1016/j.bbagen.2008.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 10/05/2008] [Accepted: 10/22/2008] [Indexed: 01/13/2023]
Abstract
Over the last decade there has been an explosion in our understanding of the proteins that modulate iron homeostasis. Much research has focused on the tissues classically associated with iron absorption and metabolism, namely the duodenum, the liver and the reticulo-endothelial system. Expression profiling has highlighted that many of the components associated with iron homeostasis, are also expressed in tissues which hitherto have received relatively little attention in terms of iron research. These include, testis, lung and, the subject of this review, the kidney. The latter is of great interest because other than a source of erythropoietin, a function that is of course of utmost importance for iron homeostasis, the kidney is regarded as more or less irrelevant in terms of iron handling. However, the fact that the kidneys of our favourite subjects, namely rats, mice and humans, contain many if not all of the proteins that are central to iron balance, that in some cases are expressed in considerable amounts, implies that the kidney handles iron in some way that has demanded evolutionary conservation and therefore is likely to be of importance. This review will document the evidence of iron transporter expression in the kidney, detail data showing the expression of other proteins associated with iron homeostasis and discuss the relevance of renal iron transport to pathophysiological states. Based on these data, a hypothetical model of renal iron handling will be presented.
Collapse
|
45
|
Hg2+ and Cd2+ interact differently with biomimetic erythrocyte membranes. Biometals 2008; 22:261-74. [DOI: 10.1007/s10534-008-9162-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 08/29/2008] [Indexed: 11/25/2022]
|
46
|
Bivol LM, Hultström M, Gudbrandsen OA, Berge RK, Iversen BM. Tetradecylthioacetic acid downregulates cyclooxygenase 2 in the renal cortex of two-kidney, one-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1866-73. [PMID: 18843091 DOI: 10.1152/ajpregu.00850.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of tetradecylthioacetic acid (TTA) on the cyclooxygenase (COX) system was investigated in two-kidney, one-clip (2K1C) hypertensive rats. The systolic blood pressure (BP) was increased 6 wk after clipping to 183 +/- 4 vs.127 +/- 3 mmHg in TTA-treated 2K1C rats. The COX1 protein expression was not affected either by the 2K1C procedure or by TTA treatment. COX2 expression was upregulated in both kidneys, but to a greater extent in the clipped kidney. COX2 activity was 16 +/- 3% in control and 38 +/- 2% (P < 0.001) in the clipped kidney, and COX2 protein expression was 1.3 +/- 0.04 in control and 1.6 +/- 0.12 in the clipped kidney (P = 0.006). TTA reduced COX2 activity to control levels. Subcutaneously infusion of a COX2 inhibitor did not reduce BP. Peroxisome proliferator-activated receptors (PPARs) were detected in both kidneys, and PPARdelta was upregulated in the nonclipped kidney after TTA treatment. PGE2 in renal cortex was increased in 2K1C (31 +/- 0.3 in the clipped and 28 +/- 0.2 pg/ml nonclipped kidney, P < 0.001 compared with control). TTA lowered the PGE2 to control levels. Renal blood flow (RBF) response to exogenous ANG II injected in the control and nonclipped kidney was exaggerated after indomethacin treatment but unchanged in the nonclipped kidney of the K1C TTA group. Overall, these results indicate that, after 6 wk of treatment, TTA downregulated the COX2 activity, which have potentially important effects on the regulation of renal hemodynamics but does not explain TTAs ability to lower BP.
Collapse
Affiliation(s)
- Liliana Monica Bivol
- Renal Research Group, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
47
|
Babiychuk EB, Monastyrskaya K, Draeger A. Fluorescent annexin A1 reveals dynamics of ceramide platforms in living cells. Traffic 2008; 9:1757-75. [PMID: 18694456 DOI: 10.1111/j.1600-0854.2008.00800.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Upon its genesis during apoptosis, ceramide promotes gross reorganization of the plasma membrane structure involving clustering of signalling molecules and an amplification of vesicle formation, fusion and trafficking. The annexins are a family of proteins, which in the presence of Ca(2+), bind to membranes containing negatively charged phospholipids. Here, we show that ceramide increases affinity of annexin A1-membrane interaction. In the physiologically relevant range of Ca(2+) concentrations, this leads to an increase in the Ca(2+)sensitivity of annexin A1-membrane interaction. In fixed cells, using a ceramide-specific antibody, we establish a direct interaction of annexin A1 with areas of the plasma membrane enriched in ceramide (ceramide platforms). In living cells, the intracellular dynamics of annexin A1 match those of plasmalemmal ceramide. Among proteins of the annexin family, the interaction with ceramide platforms is restricted to annexin A1 and is conveyed by its unique N-terminal domain. We demonstrate that intracellular Ca(2+)overload occurring at the conditions of cellular stress induces ceramide production. Using fluorescently tagged annexin A1 as a reporter for ceramide platforms and annexin A6 as a non-selective membrane marker, we visualize ceramide platforms for the first time in living cells and provide evidence for a ceramide-driven segregation and internalization of membrane-associated proteins.
Collapse
Affiliation(s)
- Eduard B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
48
|
Sánchez AM, Malagarie-Cazenave S, Olea N, Vara D, Cuevas C, Díaz-Laviada I. Spisulosine (ES-285) induces prostate tumor PC-3 and LNCaP cell death by de novo synthesis of ceramide and PKCζ activation. Eur J Pharmacol 2008; 584:237-45. [DOI: 10.1016/j.ejphar.2008.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 01/21/2008] [Accepted: 02/06/2008] [Indexed: 12/18/2022]
|
49
|
Bivol LM, Berge RK, Iversen BM. Tetradecylthioacetic acid prevents the inflammatory response in two-kidney, one-clip hypertension. Am J Physiol Regul Integr Comp Physiol 2007; 294:R438-47. [PMID: 18032469 DOI: 10.1152/ajpregu.00590.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ANG II promotes inflammation through nuclear factor-kappaB (NF-kappaB)-mediated induction of cytokines and reactive oxygen species (ROS). The aim of the present study was to examine the effect of tetradecylthioacetic acid (TTA), a modified fatty acid, on NF-kappaB, proinflammatory markers, ROS, and nitric oxide (NO) production in two-kidney, one-clip (2K1C) hypertension. The 2K1C TTA-treated group had lower blood pressure (128 +/- 3 mmHg) compared with 2K1C nontreated (178 +/- 5 mmHg, P < 0.001). The p50 and p65 subunits of NF-kappaB were higher in the clipped kidney (0.44 +/- 0.01 and 0.22 +/- 0.01, respectively) compared with controls (0.25 +/- 0.03 and 0.12 +/- 0.02, respectively, P < 0.001). In the 2K1C TTA-treated group, these values were similar to control levels. The same pattern of response was seen in the nonclipped kidney. In 2K1C hypertension, cytokines plasma were higher than in control: TNF-alpha was 13.5 +/- 2 pg/ml (P < 0.03), IL-1beta was 58.8 +/- 10 pg/ml (P = 0.003), IL-6 was 210 +/- 33 pg/ml (P < 0.001), and monocyte chemoattractant protein-1 was 429 +/- 21 pg/ml (P = 0.04). In the 2K1C TTA-treated group, these values were similar to controls, and the same pattern was seen in the clipped kidney. Clipping increased 8-iso-PGF-2alpha (P < 0.01) and decreased NO production (P < 0.01 vs. control) in the urine. TTA treatment normalized these values. NO production was also lower in clipped and nonclipped kidney (P < 0.001). After TTA treatment, these values were similar to controls. The results indicate that TTA has a potent anti-inflammatory effect in 2K1C by inhibition of p50/p65 NF-kappaB subunit activation, reduction of cytokines production and ROS, and enhanced NO production.
Collapse
Affiliation(s)
- Liliana M Bivol
- Renal Research Group, Institute of Medicine, Haukeland Hospital, Bergen, Norway.
| | | | | |
Collapse
|
50
|
Ciarimboli G. Unraveling the ceramide-calpain-caspase connection in cadmium-induced apoptosis: a novel role for ceramides as activators of calpains. Focus on "Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells". Am J Physiol Cell Physiol 2007; 293:C837-8. [PMID: 17670889 DOI: 10.1152/ajpcell.00277.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|