1
|
Zhang W, Chen X, Guo A, Zhao Z, Zhang B, Li F, Zhang H. IGF2/IGFBP4 reduces apoptosis and increases free cholesterol of chicken granulosa cells in vitro. Poult Sci 2024; 103:104416. [PMID: 39432993 DOI: 10.1016/j.psj.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Follicle selection, a crucial step in maintaining continuous egg production in chickens, is a process that relies on granulosa cells (GCs). In this study, we aimed to identify the key genes that are involved in follicle selection from our previous single-cell transcriptomic data. We used a combination of techniques and assays, including quantitative real-time PCR, immunofluorescence, Oil Red O staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), monodansylcadaverine (MDC) assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, cell counting Kit-8 (CCK-8) assay, and 5-ethynyl-2-deoxyuridine (EdU) assay. Multiple indices, such as cell proliferation, cell differentiation, progesterone synthesis, lipid droplet production, total and free cholesterol content, apoptosis, and autophagy, were measured to determine the states of GCs in vitro. The results demonstrated that overexpression of genes related to insulin-like growth factor 2 (IGF2) or IGF-binding protein 4 (IGFBP4) increases intracellular free cholesterol (progesterone precursors) and lipid droplet production, inhibits apoptosis through increased autophagy, and inhibits cell proliferation. This indicates that IGF2 or IGFBP4 can maintain the survival state and improve differentiation tendency of chicken granulosa cells in vitro. Therefore, this study provides new evidence on the functions of IGFs and IGFBPs in chickens, establishing a crucial experimental foundation for understanding the regulatory mechanisms of follicle selection. In addition, our study contributes to understanding follicular development and improves the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Axiu Guo
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zongyi Zhao
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Wu H, Huo H, Li H, Zhang H, Li X, Han Q, Liao J, Tang Z, Guo J. N-acetylcysteine combined with insulin therapy can reduce myocardial injury induced by type 1 diabetes through the endoplasmic reticulum pathway. Tissue Cell 2024; 90:102515. [PMID: 39146674 DOI: 10.1016/j.tice.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM. Forty adult beagles were randomly divided into five groups: control group, diabetes mellitus group, insulin group, insulin combined with NAC group, and NAC group. 24-hour blood glucose, 120-day blood glucose, 120-day body weight, and serum FMN content were observed, furthermore, hematoxylin-eosin staining, Periodic acid Schiff reagent staining, and Sirius red staining of the myocardium were evaluated. The protein expressions of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase 3, Bcl2, and Bax were detected. Results of the pathological section of myocardial tissue indicated that insulin combined with NAC therapy could improve myocardial pathological injury and glycogen deposition. Additionally, insulin combined with NAC therapy down-regulates the expression of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase3, and Bax. These findings suggest that NAC has a phylactic effect on myocardial injury in beagles with T1DM, and the mechanism may be related to the improvement of endoplasmic reticulum stress-induced apoptosis.
Collapse
Affiliation(s)
- Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Haoye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hongyan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Rowland MB, Moore PE, Correll RN. Regulation of cardiac fibroblast cell death by unfolded protein response signaling. Front Physiol 2024; 14:1304669. [PMID: 38283278 PMCID: PMC10811265 DOI: 10.3389/fphys.2023.1304669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The endoplasmic reticulum (ER) is a tightly regulated organelle that requires specific environmental properties to efficiently carry out its function as a major site of protein synthesis and folding. Embedded in the ER membrane, ER stress sensors inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) serve as a sensitive quality control system collectively known as the unfolded protein response (UPR). In response to an accumulation of misfolded proteins, the UPR signals for protective mechanisms to cope with the cellular stress. Under prolonged unstable conditions and an inability to regain homeostasis, the UPR can shift from its original adaptive response to mechanisms leading to UPR-induced apoptosis. These UPR signaling pathways have been implicated as an important feature in the development of cardiac fibrosis, but identifying effective treatments has been difficult. Therefore, the apoptotic mechanisms of UPR signaling in cardiac fibroblasts (CFs) are important to our understanding of chronic fibrosis in the heart. Here, we summarize the maladaptive side of the UPR, activated downstream pathways associated with cell death, and agents that have been used to modify UPR-induced apoptosis in CFs.
Collapse
Affiliation(s)
- Mary B. Rowland
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Patrick E. Moore
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Robert N. Correll
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
4
|
Wang L, Meng Q, Wang H, Huang X, Yu C, Yin G, Wang D, Jiang H, Huang Z. Luman regulates the activity of the LHCGR promoter. Res Vet Sci 2023; 161:132-137. [PMID: 37384971 DOI: 10.1016/j.rvsc.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Testosterone in male mammals is mainly secreted by testicular Leydig cells, and its secretion process is regulated by the hypothalamic-pituitary-gonadal axis. After receiving the luteinizing hormone (LH) stimulus signal, the lutropin/choriogonadotropin receptor (LHCGR) on the Leydig cell membrane transfers the signal into the cell and finally increases the secretion of testosterone by upregulating the expression of steroid hormone synthase. In previous experiments, we found that interfering with the expression of the Luman protein can significantly increase testosterone secretion in MLTC-1 cells. In this experiment, we found that knockdown of Luman in MLTC-1 cells significantly increased the concentration of cAMP and upregulated the expression of AC and LHCGR. Moreover, an analysis of the activity of the LHCGR promoter by a dual luciferase reporter system showed that knockdown of Luman increased the activity of the LHCGR promoter. Therefore, we believe that knockdown of Luman increased the activity of the LHCGR promoter and upregulated the expression of LHCGR, thereby increasing the concentration of intracellular cAMP and ultimately leading to an increase of testosterone secretion by MLTC-1 cells.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| | - Qingrui Meng
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Hailun Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Xiaoyu Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Chunchen Yu
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Dengfeng Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Heji Jiang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| |
Collapse
|
5
|
Pagliara V, Amodio G, Vestuto V, Franceschelli S, Russo NA, Cirillo V, Mottola G, Remondelli P, Moltedo O. Myogenesis in C2C12 Cells Requires Phosphorylation of ATF6α by p38 MAPK. Biomedicines 2023; 11:biomedicines11051457. [PMID: 37239128 DOI: 10.3390/biomedicines11051457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Activating transcription factor 6α (ATF6α) is an endoplasmic reticulum protein known to participate in unfolded protein response (UPR) during ER stress in mammals. Herein, we show that in mouse C2C12 myoblasts induced to differentiate, ATF6α is the only pathway of the UPR activated. ATF6α stimulation is p38 MAPK-dependent, as revealed by the use of the inhibitor SB203580, which halts myotube formation and, at the same time, impairs trafficking of ATF6α, which accumulates at the cis-Golgi without being processed in the p50 transcriptional active form. To further evaluate the role of ATF6α, we knocked out the ATF6α gene, thus inhibiting the C2C12 myoblast from undergoing myogenesis, and this occurred independently from p38 MAPK activity. The expression of exogenous ATF6α in knocked-out ATF6α cells recover myogenesis, whereas the expression of an ATF6α mutant in the p38 MAPK phosphorylation site (T166) was not able to regain myogenesis. Genetic ablation of ATF6α also prevents the exit from the cell cycle, which is essential for muscle differentiation. Furthermore, when we inhibited differentiation by the use of dexamethasone in C2C12 cells, we found inactivation of p38 MAPK and, consequently, loss of ATF6α activity. All these findings suggest that the p-p38 MAPK/ATF6α axis, in pathophysiological conditions, regulates myogenesis by promoting the exit from the cell cycle, an essential step to start myoblasts differentiation.
Collapse
Affiliation(s)
- Valentina Pagliara
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Nicola Antonino Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Vittorio Cirillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Giovanna Mottola
- Centre de Recherche en Cardiovasculaire et Nutrition (C2VN) (AMU-INSERM 1263-INRAE 1260), Aix Marseille Université, Campus Timone, 27 Bd. Jean Moulin, 13005 Marseille, France
- Biogénopôle (BGP), Laboratoires de Biologie Médicale, Secteur Biochimie, Hôpital de La Timone, 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Xing J, Qiao G, Luo X, Liu S, Chen S, Ye G, Zhang C, Yi J. Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome. Clin Sci (Lond) 2023; 137:453-468. [PMID: 36752638 DOI: 10.1042/cs20220408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder in women of reproductive age, causes anovulatory infertility. Increased apoptosis of granulosa cells has been identified as one of the key factors contributing to abnormal follicular development. Ferredoxin 1 (FDX1) encodes a small ferredoxin that is involved in the reduction in mitochondrial cytochromes and the synthesis of various steroid hormones and has the potential to influence the function of granulosa cells. In the present study, we aimed to determine the relationship between FDX1 and follicular granulosa cell function. To this end, we investigated the difference between FDX1 expression in the granulosa cells of 50 patients with PCOS and that of the controls. Furthermore, we sought to elucidate the role and mechanism of FDX1 in PCOS granulosa cells by establishing a mouse PCOS model with dehydroepiandrosterone and KGN (a steroidogenic human granulosa cell-like tumor cell line). The results indicated significant up-regulation of FDX1 in the granulosa cells after androgen stimulation. Knockdown of FDX1 promoted the proliferation of KGN and inhibited apoptosis. Moreover, FDX1 could regulate autophagy by influencing the autophagy proteins ATG3 and ATG7. Our results demonstrated that FDX1 plays a critical role in female folliculogenesis by mediating apoptosis, autophagy, and proliferation. Therefore, FDX1 may be a potential prognostic factor for female infertility.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xin Luo
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shaokun Chen
- Department of Morphological Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Geng Ye
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chunxiang Zhang
- Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
7
|
Lu W, Gao Q, Wei J, Xie W, Zhang H, Yuan Z, Han Y, Weng Q. Seasonal changes in endoplasmic reticulum stress and ovarian steroidogenesis in the muskrats ( Ondatra zibethicus). Front Endocrinol (Lausanne) 2023; 14:1123699. [PMID: 36824363 PMCID: PMC9941330 DOI: 10.3389/fendo.2023.1123699] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Many studies have shown roles for endoplasmic reticulum stress (ERS)/unfolded protein response (UPR) signaling cascades with ovarian folliculogenesis, and oocyte maturation. In this study, we investigated seasonal changes in ERS and ovarian steroidogenesis in the muskrats (Ondatra zibethicus) during the breeding season (BS) and non-breeding season (NBS). There were noticeable seasonal variations in the weight and size of muskrat ovaries with values higher in the BS than that in NBS. The circulating luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17β-estradiol, and progesterone of the female muskrats were higher during the BS. The RNA-seq data of ovaries during different seasons revealed 2580 differentially expressed genes, further analysis showed a prominent enrichment of ERS-related pathways and ovarian steroidogenesis pathway. Immunohistochemical results showed that GRP78 and steroidogenic enzymes (P450scc, 3β-HSD, P450c17, and P450arom) existed in the various kinds of cells in muskrat ovaries during the BS and NBS. In ovaries from the BS, the mRNA levels of P450scc, P450arom, P450c17, and 3β-HSD were considerably higher. Furthermore, the expression levels of oxidative stress-related genes (SOD2, CAT, and GPX1) and UPR signal genes (Bip/GRP78, ATF4, ATF6, and XBP1s) were increased strikingly higher during the BS in comparison with the NBS. However, the mRNA levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and caspase-3 had no considerable difference between the BS and NBS. Taken together, these results suggested that UPR signaling associated with the seasonal changes in ovarian steroidogenesis is activated in the BS and the delicate balance in redox regulation is important for seasonal reproduction in the muskrats.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Jinlan Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqian Xie
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Qiang Weng,
| |
Collapse
|
8
|
Kaboli Kafshgiri S, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:487-500. [PMID: 34265884 DOI: 10.1515/reveh-2021-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBHs) are organophosphate pesticides, which interrupt the chemicals involved in the endocrine system and cause lifelong disorders in women's reproductive system. The current study was designed to systematically evaluate the association between GBH exposure and the female reproductive tract. According to PRISMA Guidelines, the systematic review was performed, searching online databases, including Google Scholar, Web of Science, PubMed, and Scopus, throughout April 2020. Studies with Rodent, lamb, and fish or exposed to GBH to affect the female reproductive system were selected. All studies were in the English language. Two investigators independently assessed the articles. The first author's name, publication date, animal model, age, sample size, gender, dose, duration, and route of exposure and outcomes were extracted from each publication. The present review summarizes 14 publications on uterus alterations and oocytes, histological changes ovary, and assessed mRNA expression, protein expression, serum levels progesterone, and estrogen and intracellular Reaction Oxygen Species (ROS) in rodents, fish, and lamb exposed to GHB exposure. Most of the studies reported histological changes in ovarian and uterus tissue, alterations in serum levels, and increased oxidative stress level following exposure to GBH. Additionally, due to alterations in the reproductive systems (e.g., histomorphological changes, reduction of the mature follicles, higher atretic follicles, and interstitial fibrosis), it seems the GBH-induced female these alterations are both dose- and time-dependent. The present findings support an association between GBH exposure and female reproductive system diseases. However, more studies are needed to identify the mechanisms disrupting the effects of GBH and their underlying mechanisms. Considering the current literature, it is recommended that further investigations be focused on the possible effects of various pesticides on the human reproductive system.
Collapse
Affiliation(s)
- Sakineh Kaboli Kafshgiri
- Molecular Medicine Department, Postdoc Position in Developmental Biology, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Disease Research Center, Razi Hospital, Faculty of Medicine, Binorjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Hayashi C, Fukuda T, Kawakami K, Toyoda M, Nakao Y, Watanabe Y, Shinjo T, Sano T, Iwashita M, Yotsumoto K, Shida M, Taketomi T, Sanui T, Uchiumi T, Kanematsu T, Nishimura F. miR-1260b inhibits periodontal bone loss by targeting ATF6β mediated regulation of ER stress. Front Cell Dev Biol 2022; 10:1061216. [PMID: 36531939 PMCID: PMC9748617 DOI: 10.3389/fcell.2022.1061216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 01/26/2024] Open
Abstract
The expression profiles of exosomal microRNAs (miRNAs) are regulated by the microenvironment, and appropriate priming with mesenchymal stem cells (MSCs) is one of the strategies to enhance the paracrine potency of MSCs. Our previous work demonstrated that exosomes from tumor necrosis factor (TNF)-α-primed human gingiva-derived MSCs (GMSCs) could be a therapeutic tool against periodontitis, and that TNFα-inducible exosomal miR-1260b is essential for the inhibition of alveolar bone loss. However, the precise molecular mechanism underlying miR-1260b-mediated inhibition of osteoclastogenesis is not yet fully understood. Here, we found that the activating transcription factor (ATF)-6β, a novel miR-1260b-targeting gene, is critical for the regulation of osteoclastogenesis under endoplasmic reticulum (ER) stress. An experimental periodontal mouse model demonstrated that induction of ER stress was accompanied by enhanced ATF6β expression, and local administration of miR-1260b and ATF6β siRNA using polyethylenimine nanoparticles (PEI-NPs) significantly suppressed the periodontal bone resorption. In periodontal ligament (PDL) cells, the ER stress inducer, tunicamycin, enhanced the expression of the receptor activator of NF-κB ligand (RANKL), while miR-1260b-mediated downregulation of ATF6β caused RANKL inhibition. Furthermore, the secretome from miR-1260b/ATF6β-axis-activated PDL cells inhibited osteoclastogenesis in human CD14+ peripheral blood-derived monocytes. These results indicate that the miR-1260b/ATF6β axis mediates the regulation of ER stress, which may be used as a novel therapeutic strategy to treat periodontal disease.
Collapse
Affiliation(s)
- Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kentaro Kawakami
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaaki Toyoda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomomi Sano
- Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Misaki Iwashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miyu Shida
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Cell Biology, Aging Science, and Pharmacology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
11
|
Gao L, Gao D, Zhang J, Li C, Wu M, Xiao Y, Yang L, Ma T, Wang X, Zhang M, Yang D, Pan T, Zhang H, Wang A, Jin Y, Chen H. Age-related endoplasmic reticulum stress represses testosterone synthesis via attenuation of the circadian clock in Leydig cells. Theriogenology 2022; 189:137-149. [PMID: 35753227 DOI: 10.1016/j.theriogenology.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Senile animals exhibit a high risk of elevated endoplasmic reticulum (ER) stress, attenuated circadian clock, and impaired steroidogenesis in testes. However, how these three processes are intertwined in mouse Leydig cells remains unclear. In this study, a mouse model of aging and hydrogen peroxide (H2O2)-induced senescent TM3 Leydig cells were used to dissect the connections among ER stress, circadian oscillators, and steroidogenesis in Leydig cells. Additionally, thapsigargin (Tg, 60 nM)/tunicamycin (Tm, 60 ng/mL)-induced ER stress were established to investigate the underlying mechanisms by which ER stress regulated testosterone synthesis via circadian clock-related signaling pathways in TM3 cells and primary Leydig cells. Elevated ER stress, attenuated circadian clock, and diminished steroidogenesis were detected in the testes of aged mice (24-month-old) and H2O2-induced (200 μM) senescent TM3 cells in comparison with their control groups. Tg/Tm-induced ER stress reduced the transcription of the circadian clock and steroidogenic genes in TM3 cells and LH-treated (100 ng/mL) primary Leydig cells. Furthermore, 4-phenylbutyric acid (4-PBA, 1 μM), an inhibitor of ER stress, alleviated the inhibitory effect of Tg-mediated ER stress on Per2:Luc oscillations in primary Leydig cells isolated from mPer2Luc knock-in mice, and attenuated the repressive effect of H2O2-induced or Tg-mediated ER stress on the transcription of circadian clock and steroidogenic genes expression and testosterone synthesis in TM3 cells. Collectively, these data indicate that age-related ER stress represses testosterone synthesis via attenuation of the circadian clock in Leydig cells.
Collapse
Affiliation(s)
- Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Agriculture and Animal Husbandry, Qing Hai University, Xining, 810006, Qinghai, China
| | - Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meina Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manhui Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tao Pan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Luo X, Xu J, Zhao R, Qin J, Wang X, Yan Y, Wang LJ, Wang G, Yang X. The Role of Inactivated NF-κB in Premature Ovarian Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:468-483. [PMID: 34971586 DOI: 10.1016/j.ajpath.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Premature ovarian failure (POF) is defined as deployment of amenorrhea due to the cessation of ovarian function in a woman younger than 40 years old. The pathologic mechanism of POF is not yet well understood, although genetic aberrations, autoimmune damage, and environmental factors have been identified. The current study demonstrated that NF-κB inactivation is closely associated with the development of POF based on the data from literature and cyclophosphamide (Cytoxan)-induced POF mouse model. In the successfully established NF-κB-inactivated mouse model, the results showed the reduced expression of nuclear p65 and the increased expression of IκBα in ovarian granulosa cells; the reduced numbers of antral follicles; the reduction of Ki-67/proliferating cell nuclear antigen-labeled cell proliferation and enhanced Fas/FasL-dependent apoptosis in granulosa cells; the reduced level of E2 and anti-Müllerian hormone; the decreased expression of follicle-stimulating hormone receptor and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in granulosa cells, which was reversed in the context of blocking NF-κB signaling with BAY 11-7082; and the decreased expressions of glucose-regulated protein 78 (GRP78), activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1 in granulosa cells. Dual-luciferase reporter assay demonstrated that p50 stimulated the transcription of GRP78, and NF-κB affected the expression of follicle-stimulating hormone receptor and promoted granulosa cell proliferation through GRP78-mediated endoplasmic reticulum stress. Taken together, these data indicate, for the first time, that the inactivation of NF-κB signaling plays an important role in POF.
Collapse
Affiliation(s)
- Xin Luo
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Junjie Xu
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Ran Zhao
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jiajia Qin
- Gynecology, Chinese Medicine College, Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yu Yan
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Li-Jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
El-Dairi R, Rysä J, Storvik M, Pasanen M, Huuskonen P. Aflatoxin B1 targeted gene expression profiles in human placental primary trophoblast cells. Curr Res Toxicol 2022; 3:100082. [PMID: 35814288 PMCID: PMC9263407 DOI: 10.1016/j.crtox.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gene expression profiles were studied in human primary trophoblast cells. 170 genes were significantly dysregulated in aflatoxin B1-exposed trophoblasts. AhR-mediated estrogen receptor signalling was dysregulated in response to AFB1. Transcripts involved in endocrine signalling and energy homeostasis were disrupted. Cellular growth and development, cell cycle and DNA repair processes were affected.
Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus flavus and A. parasiticus. A high exposure (40 nM and 1 µM AFB1 for 72 h) was used to study mechanistic effects of AFB1 on gene expression patterns in human primary trophoblast cells, isolated from full term placentae after delivery. Gene expression profiling was conducted, and Ingenuity pathway analysis (IPA) software was used to identify AFB1-regulated gene networks and regulatory pathways. In response to 40 nM AFB1, only 7 genes were differentially expressed whereas 1 µM AFB1 significantly dysregulated 170 genes (124 down- and 46 upregulated, ±1.5-fold, p < 0.05) in AFB1-exposed trophoblasts when compared to controls. The top downregulated genes were involved in endocrine signalling and biosynthesis of hormones, and lipid and carbohydrate metabolism. The top upregulated genes were involved in protein synthesis and regulation of cell cycle. The main canonical pathways identified by IPA were associated with endocrine signalling including growth hormone signalling, and corticotropin releasing hormone signalling. Furthermore, genes involved in aryl hydrocarbon receptor (AhR)-mediated estrogen receptor signalling were dysregulated in response to AFB1. Our findings indicate that a high concentration 72 h AFB1 exposure caused relatively moderate number of changes on transcript level to human placental primary trophoblast cells. However, these preliminary results need to be confirmed with human-relevant concentrations of AFB1.
Collapse
|
14
|
Cheng Y, Niu Z, Cai Y, Zhang W. Emerging role of UFMylation in secretory cells involved in the endocrine system by maintaining ER proteostasis. Front Endocrinol (Lausanne) 2022; 13:1085408. [PMID: 36743909 PMCID: PMC9894094 DOI: 10.3389/fendo.2022.1085408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like molecule (UBL) discovered almost two decades ago, but our knowledge about the cellular and molecular mechanisms of this novel protein post-translational modification is still very fragmentary. In this review, we first summarize the core enzymes and factors involved in the UFMylation cascade, which, similar to ubiquitin, is consecutively catalyzed by UFM1-activating enzyme 5 (UBA5), UFM1-conjugating enzyme 1 (UFC1) and UFM1-specific ligase 1 (UFL1). Inspired by the substantial implications of UFM1 machinery in the secretory pathway, we next concentrate on the puzzling role of UFMylation in maintaining ER protein homeostasis, intending to illustrate the underlying mechanisms and future perspectives. At last, given a robust ER network is a hallmark of healthy endocrine secretory cells, we emphasize the function of UFM1 modification in physiology and pathology in the context of endocrine glands pancreas and female ovaries, aiming to provide precise insight into other internal glands of the endocrine system.
Collapse
Affiliation(s)
- Yun Cheng
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Wei Zhang,
| |
Collapse
|
15
|
Cao L, Zhang J, Du Y, Sun M, Xiang Y, Sheng Y, Ren X, Shao J. Selenite induced breast cancer MCF7 cells apoptosis through endoplasmic reticulum stress and oxidative stress pathway. Chem Biol Interact 2021; 349:109651. [PMID: 34520753 DOI: 10.1016/j.cbi.2021.109651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Selenium is an essential trace element for human, and has anti-tumor effects. In this study, we investigated the anti-tumor activity of sodium selenite (Na2SeO3) and explored its possible mechanisms involved in a breast cancer cell line. We found that Na2SeO3 could inhibit the cell viability of MCF7 cells, yet with minimal damage to human umbilical vein endothelial cells (HUVECs). The results of Hoechst staining and Western Blot showed that Na2SeO3 induced apoptosis of MCF7 cells. Na2SeO3 activated endoplasmic reticulum stress (ERS), as evidenced by the up-regulation of ERS-related proteins, including ATF6, p-eIF2α, ATF4, and CHOP, and the down-regulation of PERK. ATF6, p-eIF2α and apoptosis were decreased by pre-treatment with an ERS inhibitor (4-PBA). Na2SeO3 activated oxidative stress (OS) through increasing ROS generation and decreasing mitochondrial membrane potential (MMP) which induced apoptosis. Pre-treatment with an antioxidant (NAC) attenuated Na2SeO3-induced OS and cell apoptosis. Furthermore, ERS and OS had mutual effects. Pre-treatment with 4-PBA could act against the up-regulation of ROS and the down-regulation of MMP. Pre-treatment with NAC attenuated the expression of ATF6. At the same time, we found that treatment with Na2SeO3 promoted the phosphorylation of p38 and JNK, while inhibiting the phosphorylation of ERK. However, the up-regulation was inhibited after pre-treatment of NAC, and pre-treatment with 4-PBA inhibited the increase only of p38. Based on these results, our study provides a mechanistic understanding of how Na2SeO3 has antitumor effects against MCF7 cells through the OS and ERS pathway. OS and ERS interact with each other, and p38 is regulated by them.
Collapse
Affiliation(s)
- Lina Cao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Jingjing Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yan Du
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Min Sun
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yue Xiang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yulu Sheng
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China.
| |
Collapse
|
16
|
Hu B, Tian Y, Li Q, Liu S. Genomic signatures of artificial selection in the Pacific oyster,
Crassostrea gigas. Evol Appl 2021; 15:618-630. [PMID: 35505882 PMCID: PMC9046764 DOI: 10.1111/eva.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
The Pacific oyster, Crassostrea gigas, is an important aquaculture shellfish around the world with great economic and ecological value. Selective breeding programs have been carried out globally to improve production and performance traits, while genomic signatures of artificial selection remain largely unexplored. In China, we performed selective breeding of C. gigas for over a decade, leading to production of several fast‐growing strains. In the present study, we conducted whole‐genome resequencing of 20 oysters from two fast‐growing strains that have been successively selected for 10 generations, and 20 oysters from the two corresponding wild populations. Sequencing depth of >10× was achieved for each sample, leading to identification of over 12.20 million SNPs. The population structures investigated with three independent methods (principal component analysis, phylogenetic tree, and structure) suggested distinct patterns among selected and wild oyster populations. Assessment of the linkage disequilibrium (LD) decay clearly indicated the changes in genetic diversity during selection. Fixation index (Fst) combined with cross‐population composite likelihood ratio (XP‐CLR) allowed for identification of 768 and 664 selective sweeps (encompassing 1042 and 872 genes) tightly linked to selection in the two fast‐growing strains. KEGG enrichment and functional analyses revealed that 33 genes are important for growth regulation, which act as key components of various signaling pathways with close connection and further take part in regulating the process of cell cycle. This work provides valuable information for the understanding of genomic signatures for long‐term selective breeding and will also be important for growth study and genome‐assisted breeding of the Pacific oyster in the future.
Collapse
Affiliation(s)
- Boyang Hu
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China) Ministry of Education, and College of Fisheries Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
17
|
Hagen-Lillevik S, Rushing JS, Appiah L, Longo N, Andrews A, Lai K, Johnson J. Pathophysiology and management of classic galactosemic primary ovarian insufficiency. REPRODUCTION AND FERTILITY 2021; 2:R67-R84. [PMID: 35118398 PMCID: PMC8788619 DOI: 10.1530/raf-21-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Classic galactosemia is an inborn error of carbohydrate metabolism associated with early-onset primary ovarian insufficiency (POI) in young women. Our understanding of the consequences of galactosemia upon fertility and fecundity of affected women is expanding, but there are important remaining gaps in our knowledge and tools for its management, and a need for continued dialog so that the special features of the condition can be better managed. Here, we review galactosemic POI and its reproductive endocrinological clinical sequelae and summarize current best clinical practices for its management. Special consideration is given to the very early-onset nature of the condition in the pediatric/adolescent patient. Afterward, we summarize our current understanding of the reproductive pathophysiology of galactosemia, including the potential action of toxic galactose metabolites upon the ovary. Our work establishing that ovarian cellular stress reminiscent of endoplasmic reticulum (ER) stress is present in a mouse model of galactosemia, as well as work by other groups, are summarized. LAY SUMMARY Patients with the condition of classic galactosemia need to maintain a strict lifelong diet that excludes the sugar galactose. This is due to having mutations in enzymes that process galactose, resulting in the buildup of toxic metabolic by-products of the sugar. Young women with classic galactosemia often lose the function of their ovaries very early in life (termed 'primary ovarian insufficiency'), despite adherence to a galactose-restricted diet. This means that in addition to the consequences of the disease, these women also face infertility and the potential need for hormone replacement therapy. This article summarizes current strategies for managing the care of galactosemic girls and women and also what is known of how the condition leads to early primary ovarian insufficiency.
Collapse
Affiliation(s)
- Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA
| | - John S Rushing
- Divisions of Reproductive Sciences, Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Aurora, Colorado, USA
| | - Leslie Appiah
- Division of General Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Anschutz Outpatient Pavilion, Aurora, Colorado, USA
| | - Nicola Longo
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA
| | - Ashley Andrews
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA
| | - Joshua Johnson
- Divisions of Reproductive Sciences, Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Aurora, Colorado, USA
| |
Collapse
|
18
|
Zhang X, Yu T, Guo X, Zhang R, Jia Y, Shang C, Wang A, Jin Y, Lin P. Ufmylation regulates granulosa cell apoptosis via ER stress but not oxidative stress during goat follicular atresia. Theriogenology 2021; 169:47-55. [PMID: 33933757 DOI: 10.1016/j.theriogenology.2021.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023]
Abstract
Follicular atresia is primarily caused by granulosa cell (GC) apoptosis, although the mechanisms are largely unknown. Ufmylation is a recently identified ubiquitin-like post-translational modifier that plays an important role in cell proliferation and apoptosis. The purpose of this study was to investigate the effects of Ufmylation on GC apoptosis during goat follicular atresia. Ubiquitin-fold modifier 1 (UFM1) and its target DDRGK domain containing 1 (DDRGK1) proteins were identified in granulosa cells (GCs) isolated from all stages of preantral follicles and from healthy (HF), early atretic (EF) and progressed atretic (PF) antral follicles. The expression levels were higher in GCs derived from antral atretic follicles than healthy follicles. Although the viability of GCs was not affected after overexpression of UFM1, siRNA-mediated UFM1 silencing significantly inhibited GC proliferation and induced apoptosis. Notably, components of the ufmylation pathway were significantly upregulated in GCs induced by the ER stress agent tunicamycin (Tm) and thapsigargin (Tg), but not affected by oxidative stress inducer H2O2. Furthermore, UFM1 silencing markedly increased the apoptosis of GCs upon Tg treatment by stimulating the ER stress-related gene expression. Our results provide evidence that UFM1 and its target DDRGK1 are expressed in the goat GCs during follicular development and atresia, and ufmylation may play an important role in the prevention of ER stress but not oxidative stress-induced GCs apoptosis.
Collapse
Affiliation(s)
- Xinyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyan Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Shang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Xiong Y, Jin E, Yin Q, Che C, He S. Boron Attenuates Heat Stress-Induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Biol Trace Elem Res 2021; 199:611-621. [PMID: 32385716 DOI: 10.1007/s12011-020-02180-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023]
Abstract
Heat stress-induced apoptosis in granulosa cells is mediated by multiple apoptotic signaling pathways, including endoplasmic reticulum (ER) stress. Boron is a naturally occurring trace element with several cytoprotective properties. Nonetheless, the molecular mechanisms involved in the protective functions of boron in granulosa cells undergoing apoptosis caused by heat stress (HS) remain unclear. In this study, we investigated the role of boric acid, a predominant chemical form of boron, in HS-induced apoptotic damage in mouse granulosa cells (mGCs) and explored the underlying mechanisms. We found that HS treatment suppressed cell viability; increased the apoptotic rate of cells; potentiated the activity of caspase-3, a key player in the caspase-mediated apoptotic signaling pathway; and activated ER stress markers, including glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) in mGCs. However, boric acid treatment effectively alleviated the effects of both HS-induced and thapsigargin (an ER stress agonist)-induced apoptosis, such as the enhanced activity of caspase-3 and increase in GRP78 and CHOP expression. Moreover, treatment with 4-phenylbutyrate (4-PBA), an ER stress antagonist, significantly attenuated these HS-induced adverse effects in mGCs. In addition, boric acid supplementation in the culture medium significantly restored the decreased estradiol levels in heat-treated mGCs. The administration of boric acid to female mice previously exposed to hyperthermal conditions effectively restored the levels of serum estradiol in vivo. Collectively, these findings suggest that HS induces apoptosis in mGCs via ER stress pathways and that boron has a protective effect against these adverse effects. This study provides novel insights into the benefits of using boron against heat-induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Qirun Yin
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
20
|
Harada M, Takahashi N, Azhary JM, Kunitomi C, Fujii T, Osuga Y. Endoplasmic reticulum stress: a key regulator of the follicular microenvironment in the ovary. Mol Hum Reprod 2021; 27:gaaa088. [PMID: 33543293 DOI: 10.1093/molehr/gaaa088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Intra-ovarian local factors regulate the follicular microenvironment in coordination with gonadotrophins, thus playing a crucial role in ovarian physiology as well as pathological states such as polycystic ovary syndrome (PCOS). One recently recognized local factor is endoplasmic reticulum (ER) stress, which involves the accumulation of unfolded or misfolded proteins in the ER related to various physiological and pathological conditions that increase the demand for protein folding or attenuate the protein-folding capacity of the organelle. ER stress results in activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which affect a wide variety of cellular functions. Recent studies have revealed diverse roles of ER stress in physiological and pathological conditions in the ovary. In this review, we summarize the most current knowledge of the regulatory roles of ER stress in the ovary, in the context of reproduction. The physiological roles of ER stress and the UPR in the ovary remain largely undetermined. On the contrary, activation of ER stress is known to impair follicular and oocyte health in various pathological conditions; moreover, ER stress also contributes to the pathogenesis of several ovarian diseases, including PCOS. Finally, we discuss the potential of ER stress as a novel therapeutic target. Inhibition of ER stress or UPR activation, by treatment with existing chemical chaperones, lifestyle intervention, or the development of small molecules that target the UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Jerilee Mk Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| |
Collapse
|
21
|
Zarate SM, Pandey G, Chilukuri S, Garcia JA, Cude B, Storey S, Salem NA, Bancroft EA, Hook M, Srinivasan R. Cytisine is neuroprotective in female but not male 6-hydroxydopamine lesioned parkinsonian mice and acts in combination with 17-β-estradiol to inhibit apoptotic endoplasmic reticulum stress in dopaminergic neurons. J Neurochem 2021; 157:710-726. [PMID: 33354763 DOI: 10.1111/jnc.15282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Apoptotic endoplasmic reticulum (ER) stress is a major mechanism for dopaminergic (DA) loss in Parkinson's disease (PD). We assessed if low doses of the partial α4β2 nicotinic acetylcholine receptor agonist, cytisine attenuates apoptotic ER stress and exerts neuroprotection in substantia nigra pars compacta (SNc) DA neurons. Alternate day intraperitoneal injections of 0.2 mg/kg cytisine were administered to female and male mice with 6-hydroxydopamine (6-OHDA) lesions in the dorsolateral striatum, which caused unilateral degeneration of SNc DA neurons. Cytisine attenuated 6-OHDA-induced PD-related behaviors in female, but not in male mice. We also found significant reductions in tyrosine hydroxylase (TH) loss within the lesioned SNc of female, but not male mice. In contrast to female mice, DA neurons within the lesioned SNc of male mice showed a cytisine-induced pathological increase in the nuclear translocation of the pro-apoptotic ER stress protein, C/EBP homologous protein (CHOP). To assess the role of estrogen in cytisine neuroprotection in female mice, we exposed primary mouse DA cultures to either 10 nM 17-β-estradiol and 200 nM cytisine or 10 nM 17-β-estradiol alone. 17-β-estradiol reduced expression of CHOP, whereas cytisine exposure reduced 6-OHDA-mediated nuclear translocation of two other ER stress proteins, activating transcription factor 6 and x-box-binding protein 1, but not CHOP. Taken together, these data show that cytisine and 17-β-estradiol work in combination to inhibit all three arms (activating transcription factor 6, x-box-binding protein 1, and CHOP) of apoptotic ER stress signaling in DA neurons, which can explain the neuroprotective effect of low-dose cytisine in female mice.
Collapse
Affiliation(s)
- Sara M Zarate
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Gauri Pandey
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sunanda Chilukuri
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Jose A Garcia
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Brittany Cude
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Shannon Storey
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Nihal A Salem
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Eric A Bancroft
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Michelle Hook
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, USA.,Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| |
Collapse
|
22
|
Luman/CREB3 knock-down inhibit hCG induced MLTC-1 apoptosis. Theriogenology 2020; 161:140-150. [PMID: 33310232 DOI: 10.1016/j.theriogenology.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Luman has been reported to be involved in the formation of COP II-mediated transport vesicles that affect protein transportation and secretion. Western blotting, immunohistochemistry, immunofluorescence, and RT-qPCR indicated that Luman is widely expressed in the male mouse reproductive system. In sperm, Luman was mainly located in the sperm tail, and the expression level increased with sperm maturity. In the testis, Luman was located in Leydig cells. In MLTC-1, a high-concentration hCG treatment significantly increased GRP78, ATF6, p-IRE1, and p-EIF2S1 expression but had no effect on Luman expression. To investigate the role of Luman in hCG-induced ER stress (ERS), experiments were conducted to examine the consequences of short hairpin RNA (shRNA)-mediated Luman knockdown in MLTC-1 cells. Luman knockdown decreased the percentage of S phase cells and up-regulated Cyclin A1, Cyclin B1, and Cyclin D2 expression. ELISA and WB results showed that with Luman knockdown, Cyp11a1, p-IRE1, and p-EIF2S1 expression and testosterone secretion were significantly increased, while GRP78 and CHOP expression were decreased. Flow cytometry results showed that Luman knockdown reduced MLTC-1 cell apoptosis. RT-qPCR and WB results showed that Luman knockdown significantly up-regulated BCL-2 expression and decreased Caspase-3 and BAX expression. These data suggest that Luman is widely expressed in the male mouse reproductive system. In MLTC-1 cells, Luman knockdown up-regulated p-IRE1, p-EIF2S1, and BCL-2 expression and decreased GRP78, CHOP, BAX, and Caspase-3 expression. We propose that Luman knockdown reduces cell apoptosis through the ERS pathway, thereby promoting cell survival and testosterone secretion. These findings provide new insights into the role of Luman in hCG-induced ERS.
Collapse
|
23
|
DeWitt NA, Whirledge S, Kallen AN. Updates on molecular and environmental determinants of luteal progesterone production. Mol Cell Endocrinol 2020; 515:110930. [PMID: 32610113 PMCID: PMC7484338 DOI: 10.1016/j.mce.2020.110930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Progesterone, a critical hormone in reproduction, is a key sex steroid in the establishment and maintenance of early pregnancy and serves as an intermediary for synthesis of other steroid hormones. Progesterone production from the corpus luteum is a tightly regulated process which is stimulated and maintained by multiple factors, both systemic and local. Multiple regulatory systems, including classic mediators of gonadotropin stimulation such as the cAMP/PKA pathway and TGFβ-mediated signaling pathways, as well as local production of hormonal factors, exist to promote granulosa cell function and physiological fine-tuning of progesterone levels. In this manuscript, we provide an updated narrative review of the known mediators of human luteal progesterone and highlight new observations regarding this important process, focusing on studies published within the last five years. We will also review recent evidence suggesting that this complex system of progesterone production is sensitive to disruption by exogenous environmental chemicals that can mimic or interfere with the activities of endogenous hormones.
Collapse
Affiliation(s)
- Natalie A DeWitt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Tan JH, Cao RC, Zhou L, Zhou ZT, Chen HJ, Xu J, Chen XM, Jin YC, Lin JY, Zeng JL, Li SJ, Luo M, Hu GD, Yang XB, Jin J, Zhang GW. ATF6 aggravates acinar cell apoptosis and injury by regulating p53/AIFM2 transcription in Severe Acute Pancreatitis. Theranostics 2020; 10:8298-8314. [PMID: 32724472 PMCID: PMC7381726 DOI: 10.7150/thno.46934] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism. Methods: Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay. Results: Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters. Conclusion: These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.
Collapse
Affiliation(s)
- Jie-Hui Tan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong-Chang Cao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Department of the Electronic Microscope Room, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xue-Mei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang-Chen Jin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jun-Ling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Min Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Dong Hu
- Department of Respiratory and Crit Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Bing Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Institute, Guangzhou, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Hu J, Jin J, Qu Y, Liu W, Ma Z, Zhang J, Chen F. ERO1α inhibits cell apoptosis and regulates steroidogenesis in mouse granulosa cells. Mol Cell Endocrinol 2020; 511:110842. [PMID: 32376276 DOI: 10.1016/j.mce.2020.110842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022]
Abstract
ER oxidoreduclin 1α (ERO1α), an oxidase that exists in the ER, participates in protein folding and secretion and inhibiting apoptosis, and regulates tumor progression, which is a novel factor of poor cancer prognosis. However, the other physiological functions of ERO1α remain undiscovered. Although our preliminary results of this study indicated that ERO1α revealed the robust expression in ovary, especially in granulosa cells, the role of ERO1α in follicular development is not well known. Therefore, the aims of the present study were to explore the role of ERO1α and the possible mechanisms in regulating cell apoptosis and steroidogenesis in ovarian granulosa cells. ERO1α was mainly localized in granulosa cells and oocytes in the adult ovary by immunohistochemistry. Western blot analysis showed that the expression of ERO1α was highest at oestrous stage during the estrous cycle. The effect of ERO1α on cell apoptosis and steroidogenesis was detected by transduction of ERO1α overexpression and knockdown lentiviruses into primary cultured granulosa cells. Flow cytometry analysis showed that ERO1α decreased granulosa cells apoptosis. Western bolt and RT-qPCR analysis found that ERO1α increased the ratio of BCL-2/BAX, and decreased BAD and Caspase-3 expression. ELISA analysis showed that ERO1α enhanced estrogen (E2) secretion. Western bolt and RT-qPCR analysis found that ERO1α increased StAR, CYP11A1, 3β-HSD, CYP17A1, and CYP19A1 expression, and decreased CYP1B1 expression. Furthermore, Western bolt analysis found that ERO1αincreased PDI and PRDX 4 expression, and activated the PI3K/AKT/mTOR signaling pathway through increasing the phosphorylation of AKT and P70 S6 kinase. In summary, these results suggested that ERO1α might play an anti-apoptotic role and regulate steroidogenesis in granulosa cells, at least partly, via activation of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jiaqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yuxing Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wanyang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
26
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Mohammed Thangameeran SI, Tsai ST, Hung HY, Hu WF, Pang CY, Chen SY, Liew HK. A Role for Endoplasmic Reticulum Stress in Intracerebral Hemorrhage. Cells 2020; 9:cells9030750. [PMID: 32204394 PMCID: PMC7140640 DOI: 10.3390/cells9030750] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that performs multiple functions, such as lipid biosynthesis, protein folding, and maintaining intracellular calcium homeostasis. Thus, conditions wherein the ER is unable to fold proteins is defined as ER stress, and an inbuilt quality control mechanism, called the unfolded protein response (UPR), is activated during ER stress, which serves as a recovery system that inhibits protein synthesis. Further, based on the severity of ER stress, the response could involve both proapoptotic and antiapoptotic phases. Intracerebral hemorrhage (ICH) is the second most common subtype of cerebral stroke and many lines of evidence have suggested a role for the ER in major neurological disorders. The injury mechanism during ICH includes hematoma formation, which in turn leads to inflammation, elevated intracranial pressure, and edema. A proper understanding of the injury mechanism(s) is required to effectively treat ICH and closing the gap between our current understanding of ER stress mechanisms and ICH injury can lead to valuable advances in the clinical management of ICH.
Collapse
Affiliation(s)
| | - Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsiang-Yi Hung
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Fen Hu
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Shin-Yuan Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan; (S.I.M.T.); (S.-T.T.); (C.-Y.P.); (S.-Y.C.)
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hock-Kean Liew
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan;
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- CardioVascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Correspondence: or ; Tel.: +886-3-856-1825 (ext. 15911); Fax: +886-3-8560-2019
| |
Collapse
|
28
|
Selenium Attenuates Chronic Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Molecules 2020; 25:molecules25030557. [PMID: 32012916 PMCID: PMC7037519 DOI: 10.3390/molecules25030557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Heat stress induces apoptosis in various cells. Selenium, an essential micronutrient, has beneficial effects in maintaining the cellular physiological functions. However, its potential protective action against chronic heat stress (CHS)-induced apoptosis in granulosa cells and the related molecular mechanisms are not fully elucidated. In this study, we investigated the roles of selenium in CHS-induced apoptosis in mouse granulosa cells and explored its underlying mechanism. The heat treatment for 6–48 h induced apoptosis, potentiated caspase 3 activity, increased the expression levels of apoptosis-related gene BAX and ER stress markers, glucose-regulated protein 78 (GRP78), and CCAAT/enhancer binding protein homologous protein (CHOP) in mouse granulosa cells. The treatment with ER stress inhibitor 4-PBA significantly attenuated the adverse effects caused by CHS. Selenium treatment significantly attenuated the CHS- or thapsigargin (Tg, an ER stress activator)-induced apoptosis, potentiation of caspase 3 activity, and the increased protein expression levels of BAX, GRP78, and CHOP. Additionally, treatment of the cells with 5 ng/mL selenium significantly ameliorated the levels of estradiol, which were decreased in response to heat exposure. Consistently, administering selenium supplement alleviated the hyperthermia-caused reduction in the serum estradiol levels in vivo. Together, our findings indicate that selenium has protective effects on CHS-induced apoptosis via inhibition of the ER stress pathway. The current study provides new insights in understanding the role of selenium during the process of heat-induced cell apoptosis.
Collapse
|
29
|
Sharma A, Trivedi AK. Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. Cell Biol Int 2019; 44:721-734. [PMID: 31814188 DOI: 10.1002/cbin.11277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022]
Abstract
Apoptosis is an organised ATP-dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti-oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer.
Collapse
Affiliation(s)
- Akshay Sharma
- LSS008, Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226031, India
| | - Arun K Trivedi
- LSS008, Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226031, India
| |
Collapse
|
30
|
E Q, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L. Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 2019; 63:104721. [PMID: 31734292 DOI: 10.1016/j.tiv.2019.104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Nickel (Ni) is a ubiquitous environmental pollutant, which can disrupt the production of steroid in rat Leydig cells. Steroidogenesis can be affected by non-coding RNAs (ncRNAs), which operate in normal physiological processes. To date, however, very few studies have focused on whether ncRNAs are involved in Ni-induced steroidogenesis disturbance. The present study was designed to investigate the impact of NiSO4 on the regulation of RNA networks including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in rat Leydig cells. After treatment with 1000 μmol/L NiSO4 for 24 h, 372 lncRNAs, 27 miRNAs (fold change>2, p < .05) and 3666 mRNAs (fold change>2, p < .01, and FDR < 0.01) were identified to be markedly altered by high-throughput sequencing analysis in rat Leydig cells. Functional analysis showed that the differentially expressed mRNAs were annotated into some steroid-related pathways. A dysregulated competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was constructed based on bioinformatic analysis. Furthermore, a ceRNA network related to steroidogenesis was selected to analyze further and after the validation by qRT-PCR. The LOC102549726/miR-760-3p/Atf6, LOC102549726/miR-760-3p/Ets1, LOC102549726/miR-760-3p/Sik1 and AABR07037489.1/miR-708-5p/MAPK14 ceRNA networks were eventually confirmed. Collectively, our study provided a systematic perspective on the potential role of ncRNAs in steroidogenesis disturbance induced by Ni in rat Leydig cells.
Collapse
Affiliation(s)
- Qiannan E
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
31
|
Wang XS, Zhang S, Xu Z, Zheng SQ, Long J, Wang DS. Genome-wide identification, evolution of ATF/CREB family and their expression in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110324. [DOI: 10.1016/j.cbpb.2019.110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
|
32
|
ATF6 regulates the development of chronic pancreatitis by inducing p53-mediated apoptosis. Cell Death Dis 2019; 10:662. [PMID: 31506423 PMCID: PMC6737032 DOI: 10.1038/s41419-019-1919-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023]
Abstract
Chronic pancreatitis (CP) is a progressive, recurrent inflammatory disorder of the pancreas. Initiation and progression of CP can result from serine protease 1 (PRSS1) overaccumulation and the ensuing endoplasmic reticulum (ER) stress. However, how ER stress pathways regulate the development and progression of CP remains poorly understood. In the present study we aimed to elucidate the ER stress pathway involved in CP. We found high expression of the ER stress marker genes ATF6, XBP1, and CHOP in human clinical specimens. A humanized PRSS1 transgenic mouse was established and treated with caerulein to mimic the development of CP, as evidenced by pathogenic alterations, collagen deposition, and increased expression of the inflammatory factors IL-6, IL-1β, and TNF-α. ATF6, XBP1, and CHOP expression levels were also increased during CP development in this model. Acinar cell apoptosis was also significantly increased, accompanied by upregulated p53 expression. Inhibition of ATF6 or p53 suppressed the expression of inflammatory factors and progression of CP in the mouse model. Finally, we showed that p53 expression could be regulated by the ATF6/XBP1/CHOP axis to promote the development of CP. We therefore conclude that ATF6 signalling regulates CP progression by modulating pancreatic acinar cell apoptosis, which provides a target for ER stress-based diagnosis and treatment of CP.
Collapse
|
33
|
Wang L, Lu M, Zhang R, Guo W, Lin P, Yang D, Chen H, Tang K, Zhou D, Wang A, Jin Y. Inhibition of Luman/CREB3 expression leads to the upregulation of testosterone synthesis in mouse Leydig cells. J Cell Physiol 2019; 234:15257-15269. [PMID: 30673139 DOI: 10.1002/jcp.28171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Luman, also known as cAMP-response element-binding protein 3, is an endoplasmic reticulum stress-related protein that has been identified as a novel transcriptional coregulator of a variety of nuclear receptors. Herein, immunohistochemistry results showed that Luman was specifically expressed in mouse Leydig cells in an age-dependent increase manner, from prepuberty to sexual maturation. Luman was not detected in Sertoli cells within the seminiferous tubules at any developmental period. The immunofluorescent experiment indicated that Luman was mainly located within the cytoplasm of murine Leydig tumor cells (MLTC-1) and primary Leydig cells (PLCs). To investigate the physiological function of Luman, experiments were conducted to examine the consequences of short hairpin RNA- and small interfering RNA-mediated Luman knock-down in MLTC-1 and PLCs, respectively. Luman knock-down significantly upregulated the expression of steroidogenic acute regulatory, cytochrome P450 cholesterol side-chain cleavage enzymes, 3β-hydroxysteroid dehydrogenase, and 17-α-hydroxylase/C17-20 lyase in MLTC-1 cells and PLCs. Luman knock-down caused an increase in human chorionic gonadotropin-stimulated testosterone production in vitro and in vivo. The nuclear receptors SF-1 and Nur-77 were significantly increased upon Luman knock-down in MLTC-1. By contrast, the level of the nuclear receptor SHP decreased. Luciferase reporter assay results demonstrated that Luman knock-down upregulated the activity of SF-1 and Nur-77 promoters. These data suggested that Luman expressed in mouse Leydig cells in an age-dependent increase manner. Luman knock-down upregulated the activity of SF-1 and Nur-77 promoters, which lead to the increase of testosterone synthesis and steroidogenesis genes expression. In conclusion, these findings provide us with new insights into the role Luman played in male reproduction.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Minjie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixue Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenwen Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Diqi Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Lei L, Ge J, Zhao H, Wang X, Yang L. Role of endoplasmic reticulum stress in lipopolysaccharide-inhibited mouse granulosa cell estradiol production. J Reprod Dev 2019; 65:459-465. [PMID: 31406023 PMCID: PMC6815742 DOI: 10.1262/jrd.2019-052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The decrease in the level of estradiol (E2) in granulosa cells caused by lipopolysaccharide (LPS) is one of the major causes of infertility underlying postpartum uterine
infections; the precise molecular mechanism of which remains elusive. This study investigated the role of endoplasmic reticulum (ER) stress in LPS-induced E2 decrease in mouse
granulosa cells. Our results showed that LPS increased the pro-inflammatory cytokines [(interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α)], activated ER stress marker
protein expression [(glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)], and decreased cytochrome P450 family 19 subfamily A member 1
(Cyp19a1) expression and E2 production. Moreover, inhibition of ER stress by 4-phenylbutyrate (4-PBA) attenuated thapsigargin-(TG, ER stress agonist) or LPS-induced reduction of
Cyp19a1 and E2, pro-inflammatory cytokines expression (IL-1β, IL-6, IL-8, and TNF-α), and the expression of CHOP and GRP78. Additionally, inhibition of toll-like receptor 4 (TLR4)
by resatorvid (TAK-242) reversed the inhibitory effects of LPS on Cyp19a1 expression and E2 production, activation of GRP78 and CHOP, and expression of IL-1β, IL-6, IL-8, and
TNF-α. In summary, our study suggests that ER stress is involved in LPS-inhibited E2 production in mouse granulosa cells.
Collapse
Affiliation(s)
- Lanjie Lei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.,Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Junbang Ge
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.,Beijing Key Laboratory of New Technique in Agricultural Application, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
35
|
Chen Z, Lei L, Wen D, Yang L. Melatonin attenuates palmitic acid-induced mouse granulosa cells apoptosis via endoplasmic reticulum stress. J Ovarian Res 2019; 12:43. [PMID: 31077207 PMCID: PMC6511168 DOI: 10.1186/s13048-019-0519-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Palmitic acid (PA), the main component of dietary saturated fat, causes apoptosis in many cell types, including mouse granulosa cell. Melatonin, an important endogenous hormone, has beneficial effects on female reproductive processes. Since elevated PA levels are present in follicular fluid (FF) of patients with infertility and are shown to be toxic for granulosa cells, we investigated the molecular mechanisms of PA toxicity in mouse granulosa cells and explored the effects of melatonin on PA-induced apoptosis. METHODS Granulosa cells from immature female mice were cultured for 24 h in medium containing PA and/or melatonin. Then, the effects of PA alone or combined with melatonin on viability, apoptosis and endoplasmic reticulum (ER) stress in granulosa cells were detected by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry assay and western blot. After 48 h of PA and/or melatonin treatment, the concentrations of estradiol (E2) and progesterone (P4) in the culture supernatants were measured with ELISA kits. RESULTS In this study, we explored the effects of melatonin on cell viability and apoptosis in PA-treated mouse granulosa cells and uncovered the signaling pathways involved in these processes. Our results showed that 200-800 μM PA treatment reduces cell viability, induces cell apoptosis, enhances the expression of apoptosis-related genes (Caspase 3 and B-cell lymphoma-2 (BCL-2) associated X protein (BAX)), and activates the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Melatonin treatment (1-10 μM) suppresses 400 μM PA-induced cell viability decrease, cell apoptosis, Caspase 3 activation, and BAX, CHOP, and GRP78 expression. In addition, we found that 10 μM melatonin successfully attenuated the 400 μM PA-induced estrogen (E2) and progesterone (P4) decreases. CONCLUSIONS This study suggests that PA triggers cell apoptosis via ER stress and that melatonin protects cells against apoptosis by inhibiting ER stress in mouse granulosa cells.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Guizhou, 558000, Duyun, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- College of Basic Medical Science, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
36
|
Zhang P, Wang J, Lang H, Wang W, Liu X, Liu H, Tan C, Li X, Zhao Y, Wu X. MicroRNA-205 affects mouse granulosa cell apoptosis and estradiol synthesis by targeting CREB1. J Cell Biochem 2019; 120:8466-8474. [PMID: 30556190 DOI: 10.1002/jcb.28133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
MicroRNA-205 (miR-205) is involved in various physiological and pathological processes, but its biological function in follicular atresia remains unclear. In this study, we investigated miR-205 expression in mouse granulosa cells (mGCs) and analyzed its functions in primary mGCs by performing a series of in vitro experiments. Quantitative real-time polymerase chain reaction showed that miR-205 expression was significantly higher in early atretic follicles and progressively atretic follicles than in healthy follicles. miR-205 overexpression in mGCs significantly promoted apoptosis and caspase-3/9 activities, as well as inhibited estrogen (E2) release and cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1, a key gene in E2 production) expression. Bioinformatics and luciferase reporter assays revealed that the gene encoding cyclic AMP response element (CRE)-binding protein 1 (CREB1) was a direct target of miR-205 in mGCs. CREB1 upregulation partially rescued the effects of miR-205 on apoptosis, caspase-3/9 activities, E2 production, and CYP19A1 expression on mGCs. These results indicate that miR-205 might play an important role in ovarian follicular development and provide new insights into follicular atresia.
Collapse
Affiliation(s)
- Pengju Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyan Lang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Weixia Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiaohui Liu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Haiyan Liu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Chengcheng Tan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xintao Li
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yumin Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xinghong Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
37
|
Mohamed AAA, Yang D, Liu S, Lin P, Mohamad OAA, Jin Y. Endoplasmic reticulum stress is involved in lipopolysaccharide-induced inflammatory response and apoptosis in goat endometrial stromal cells. Mol Reprod Dev 2019; 86:908-921. [PMID: 31041824 DOI: 10.1002/mrd.23152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is involved in regulating cell metabolism, apoptosis, autophagy, and survival. However, there is not enough information about the role of ER stress in lipopolysaccharide (LPS)-induced apoptosis and inflammatory cytokine secretion in the uterus. In this study, we found that LPS induced apoptosis and inflammation in goat endometrial stromal cells (ESCs). LPS treatment inhibited cell viability and cell proliferation. In addition, the genes associated with proliferation, such as proliferating cell nuclear antigen and MKI67, were affected by LPS treatment. Moreover, LPS increased the secretion of interleukin (IL)-1β and IL-8, promoting the levels of MYD88, caspase1, and TRL4. The 4-phenylbutyric acid pretreatment inhibited the expression of unfolded protein response proteins and the secretion of inflammatory cytokines in LPS-treated cells. However, blockage of inositol-requiring enzyme 1 and activating transcription factor 6 did not significantly reduce apoptosis and inflammatory cytokine secretion. Collectively, ER stress involved in LPS-induced apoptosis and inflammatory cytokine increased in goat ESCs. This study provides new insight into the function of ER stress in the pathological process.
Collapse
Affiliation(s)
- Amira Abdalla Abdelshafy Mohamed
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Animal Production, College of Environmental Agricultural Sciences, Arish University, Al-Arish, North-Sinai, Egypt
| | - Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shouqin Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Osama Abdalla Abdelshafy Mohamad
- Department of Biological, Marine Sciences, and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Al-Arish, North-Sinai, Egypt
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
38
|
Chen H, Gao L, Yang D, Xiao Y, Zhang M, Li C, Wang A, Jin Y. Coordination between the circadian clock and androgen signaling is required to sustain rhythmic expression of Elovl3 in mouse liver. J Biol Chem 2019; 294:7046-7056. [PMID: 30862677 PMCID: PMC6497949 DOI: 10.1074/jbc.ra118.005950] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
ELOVL3 is a very long-chain fatty acid elongase, and its mRNA levels display diurnal rhythmic changes exclusively in adult male mouse livers. This cyclical expression of hepatic Elovl3 is potentially controlled by the circadian clock, related hormones, and transcriptional factors. It remains unknown, however, whether the circadian clock, in conjunction with androgen signaling, functions in maintaining the rhythmic expression of Elovl3 in a sexually dimorphic manner. Under either zeitgeber or circadian time, WT mouse livers exhibited a robust circadian rhythmicity in the expression of circadian clock genes and Elovl3 In contrast, male Bmal1-/- mice displayed severely weakened expression of hepatic circadian clock genes, resulting in relatively high, but nonrhythmic, Elovl3 expression levels. ChIP assays revealed that NR1D1 binds to the Elovl3 promoter upon circadian change in WT mouse livers in vivo, and a diminished binding was observed in male Bmal1-/- mouse livers. Additionally, female mouse livers exhibited constant low levels of Elovl3 expression. Castration markedly reduced Elovl3 expression levels in male mouse livers but did not disrupt circadian variation of Elovl3 Injection of female mice with 5α-dihydrotestosterone induced Elovl3 rhythmicity in the liver. In AML12 cells, 5α-dihydrotestosterone also elevated Elovl3 expression in a time-dependent manner. In contrast, flutamide efficiently attenuated this induction effect. In conclusion, a lack of either the circadian clock or androgen signaling impairs hepatic Elovl3 expression, highlighting the observation that coordination between the circadian clock and androgen signaling is required to sustain the rhythmic expression of Elovl3 in mouse liver.
Collapse
Affiliation(s)
- Huatao Chen
- From the Departments of Clinical Veterinary Medicine and
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lei Gao
- From the Departments of Clinical Veterinary Medicine and
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Dan Yang
- From the Departments of Clinical Veterinary Medicine and
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yaoyao Xiao
- From the Departments of Clinical Veterinary Medicine and
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Manhui Zhang
- From the Departments of Clinical Veterinary Medicine and
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Cuimei Li
- From the Departments of Clinical Veterinary Medicine and
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Aihua Wang
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
- Preventive Veterinary Medicine, College of Veterinary Medicine, and
| | - Yaping Jin
- From the Departments of Clinical Veterinary Medicine and
- the Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
39
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
40
|
Anosov M, Birk R. Bardet-Biedl syndrome obesity: BBS4 regulates cellular ER stress in early adipogenesis. Mol Genet Metab 2019; 126:495-503. [PMID: 30902542 DOI: 10.1016/j.ymgme.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/16/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy, presenting with early obesity onset. The etiology of BBS obesity involves both central and peripheral defects, through mechanisms mostly yet to be deciphered. We previously showed BBS4 expression in adipogenesis, peaking at day 3 of differentiation. Obesity is characterized by cellular stress which promotes pathological consequences. AIMS We set out to test a possible role of BBS4 in adipocyte endoplasmic reticulum (ER) stress-induced unfolding protein response (UPR). METHODS BBS4 silenced (SiBBS4) and overexpressing (OEBBS4) pre-adipocyte murine cell lines were subjected to ER-stress induction (Tunicamycin, TM) during adipogenesis. ER-stress UPR was analyzed at the transcript, protein and biochemical levels (microscopy, immunocytochemistry, western blotting, quantitative RT-PCR and X-box binding protein 1 (XBP-1) splicing). RESULTS In silico analysis showed that BBS4 harbors an ER localization sequences indicative of ER localization. We verified BBS4's ER localization in adipocytes by immunocytochemistry and cellular protein fractionation. Furthermore, we demonstrated that BBS4 expression is significantly up-regulated by ER-stress, as indicated by protein and transcript levels. SiBBS4 adipocytes exhibited swollen ER typical to ER-stress and significant XBP-1 down-regulation at day 3 of differentiation. Following ER-stress, SiBBS4 adipocytes exhibited XBP-1 ER retention, failure to translocate to the nucleus and depletion of the nuclear active cleaved ATF6α. BBS4 did not alter ATF6α processing by S1P and S2P in the Golgi. Notably, SiBBS4 cells demonstrated significant reduction in the downstream activated phospho-IRE1α, independent of ER-stress. CONCLUSIONS At day 3 of adipogenesis, coinciding with the timing of its peak expression, BBS4 is localized to the ER and is involved in the ER stress response and trafficking. BBS4 depletion results in swollen ER with impaired intracellular nucleus translocation of XBP-1 and ATF6α. Thus, BBS4 affects the ER stress response in early adipogenesis, altering ER stress responsiveness and the adipocyte ER phenotype.
Collapse
Affiliation(s)
- Mariana Anosov
- Department of Nutrition, Faculty of Health Sciences, Ariel University, 40700, Israel
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, 40700, Israel.
| |
Collapse
|
41
|
ER stress activation impairs the expression of circadian clock and clock-controlled genes in NIH3T3 cells via an ATF4-dependent mechanism. Cell Signal 2019; 57:89-101. [PMID: 30703445 DOI: 10.1016/j.cellsig.2019.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress and circadian clockwork signaling pathways mutually regulate various cellular functions, but the details regarding the cross-talk between these pathways in mammalian cells are unclear. In this study, whether perturbation of ER stress signaling affects the cellular circadian clockwork and transcription of clock-controlled genes was investigated in NIH3T3 mouse fibroblasts. An NIH3T3 cell model stably expressing luciferase (Luc) under the control of the Bmal1 clock gene promoter was established using a lentiviral system. Then, Luc activity was monitored in real-time to detect Bmal1-Luc oscillations. The ER stress activators thapsigargin (Tg) and tunicamycin (Tm) markedly reduced Bmal1-Luc oscillation amplitudes and induced phase delay shifts in NIH3T3 cells. Treatment with Tg/Tm activated ER stress signaling by upregulating GRP78, CHOP, ATF6, and ATF4 and simultaneously significantly decreased BMAL1 protein levels and inhibited the transcription of circadian clock (Bmal1, Per2, Nr1d1, and Dbp) and clock-controlled (Scad1, Fgf7, and Arnt) genes. 4-Phenylbutyric acid, an ER stress inhibitor, alleviated the transcriptional repression of the circadian clock genes and partially restored Bmal1-Luc oscillation amplitudes in Tg- or Tm-treated NIH3T3 cells. More importantly, knock-down of ATF4, but not ATF6, in Tg-treated NIH3T3 cells partially rescued Bmal1-Luc oscillation amplitudes and mRNA expression of the four circadian clock genes. Taken together, our study demonstrates that ER stress activation inhibits the transcription of circadian clock and clock-controlled genes via an ATF4-dependent mechanism.
Collapse
|
42
|
Wang W, Yang LL, Luo SM, Ma JY, Zhao Y, Shen W, Yin S. Toxic effects and possible mechanisms following malathion exposure in porcine granulosa cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:172-180. [PMID: 30445373 DOI: 10.1016/j.etap.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/23/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Malathion is a wide spectrum organophosphorothionate insecticide that is frequently found in drinking water, food and foodstuffs. Ovarian granulosa cells modulate oogenesis by providing metabolic nutrients to oocytes. They can decide the fate of folliculogenesis and oocyte maturation by supplying regulatory cues that help in reproduction. However, little is known about the underlying mechanisms of malathion as a reproductive toxicant in porcine granulosa cells. In the present study, we found that malathion has obvious toxic effects on cultured porcine granulosa cells in a dose-dependent manner. Malathion exposure resulted in significantly increased oxidative stress levels and DNA damage response, which was measured by the mRNA expression levels of homologous recombination (HR) pathway and non-homologous end-joining (NHEJ) pathway-related genes. Subsequently, it was found that malathion exposure could induce apoptosis and autophagy by qRT-PCR and fluorescence intensity analysis. In conclusion, malathion is a reproductive toxicant by inhibiting granulosa cell proliferation by multiple pathways connected to oxidative stress, DNA damage, apoptosis and autophagy.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei-Lei Yang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shi-Ming Luo
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Yu Ma
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yong Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
43
|
Li Q, Du X, Pan Z, Zhang L, Li Q. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol Cell Endocrinol 2018; 476:84-95. [PMID: 29723543 DOI: 10.1016/j.mce.2018.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 12/24/2022]
Abstract
The cytochrome P450 family 19 subfamily A member 1 (CYP19A1) gene, encodes aromatase, a key enzyme in estradiol (E2) synthesis, and is down-regulated during porcine follicular atresia. However, its role in and the mechanism of transcriptional repression in follicular atresia is largely unknown. In the present study, we show that the CYP19A1 gene stimulates E2 release and inhibits cell apoptosis in porcine granulosa cells (GCs). SMAD4, an anti-apoptotic moderator, was identified as a transcription factor of the porcine CYP19A1 gene and enhanced the expression and function of CYP19A1 in porcine GCs through direct binding to a SMAD4-binding element (SBE) within the promoter region of CYP19A1 gene. Moreover, we found that miR-10b, a pro-apoptotic factor, directly interacted with 3'-UTR of the porcine CYP19A1 mRNA, inhibiting its expression and function in porcine GCs. Collectively, we demonstrated that CYP19A1 is an inhibitor of follicular atresia and is regulated by both SMAD4 and miR-10b. These findings provide further insight into the mechanisms of CYP19A1 in steroid hormone synthesis and GC apoptosis and provide molecular targets for exploring methods of treatment for steroid-dependent reproductive disorders.
Collapse
Affiliation(s)
- Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
44
|
Zhao H, Ma N, Liu Z, Wang T, Yuan C, He Y, Dun Y, Zhou Z, Yuan D, Zhang C. Protective effect of Wuzi Yanzong recipe on testicular dysfunction through inhibition of germ cell apoptosis in ageing rats via endoplasmic reticulum stress. Andrologia 2018; 51:e13181. [DOI: 10.1111/and.13181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Haixia Zhao
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Na Ma
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Zhaoqi Liu
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Ting Wang
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Chengfu Yuan
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Yumin He
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Yaoyan Dun
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Zhiyong Zhou
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| | - Ding Yuan
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
- Renhe Hospital of China Three Gorges University; Yichang China
| | - Changcheng Zhang
- College of Medicine; China Three Gorges University; Yichang China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine; China Three Gorges University; Yichang China
| |
Collapse
|
45
|
Xu W, Lu X, Zheng J, Li T, Gao L, Lenahan C, Shao A, Zhang J, Yu J. Melatonin Protects Against Neuronal Apoptosis via Suppression of the ATF6/CHOP Pathway in a Rat Model of Intracerebral Hemorrhage. Front Neurosci 2018; 12:638. [PMID: 30283292 PMCID: PMC6156428 DOI: 10.3389/fnins.2018.00638] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal apoptosis is an important factor accounting for the poor outcomes of intracerebral hemorrhage (ICH). This study first showed that inhibition of activating transcription factor 6 (ATF6) could alleviate secondary brain injury through anti-apoptosis after ICH in rats. Melatonin, ATF6 and CCAAT/enhancer-binding protein homologous protein (CHOP) siRNAs were applied in this study. Brain edema, neurological functions, blood-brain barrier (BBB) integrity were evaluated at 24 h after ICH. Western blot analysis was used to evaluate the protein level of target proteins (ATF6, CHOP, Bip, Bcl-2, Bax, and cleaved caspase-3). Reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the mRNA level of ATF6, CHOP and cleaved caspase-3. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and caspase-3 immunofluorescence staining were applied to evaluate the neuronal cell death. The results suggested that the levels of ATF6 and its downstream protein, CHOP, were upregulated and reached the peak at 24 h after ICH. ATF6 was highly expressed in neurons. The administration of melatonin significantly decreased the mRNA and protein levels of ATF6, and its downstream targets, CHOP and cleaved caspase-3, but increased the Bcl-2/Bax ratio, which ameliorated the neurological functions. The CHOP siRNA significantly reversed the pro-apoptotic effect induced by the increased ATF6 level after ICH. Melatonin could protect against neuronal apoptosis via suppression of ATF6/CHOP arm of ER-stress-response pathway.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM, United States
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Xu W, Gao L, Li T, Zheng J, Shao A, Zhang J. Apelin-13 Alleviates Early Brain Injury after Subarachnoid Hemorrhage via Suppression of Endoplasmic Reticulum Stress-mediated Apoptosis and Blood-Brain Barrier Disruption: Possible Involvement of ATF6/CHOP Pathway. Neuroscience 2018; 388:284-296. [PMID: 30036660 DOI: 10.1016/j.neuroscience.2018.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
Neuronal apoptosis plays important roles in the early brain injury after subarachnoid hemorrhage (SAH). This study first showed that inhibition of activating transcription factor 6 (ATF6) by apelin-13 could reduce endoplasmic reticulum (ER)-stress-mediated apoptosis and blood-brain-barrier (BBB) disruption after SAH. We chose apelin-13, ATF6 and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) siRNAs to verify the hypothesis. Brain water content, neurological behavior and Evans Blue (EB) were assessed at 24 h after SAH. Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) were applied to evaluate the expression of targets in both protein and mRNA levels. Neuronal apoptosis was assessed with Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and caspase-3 staining. The results showed that the levels of ATF6, and its downstream protein, CHOP were upregulated and reached the peak at 24 h after SAH. ATF6 was highly expressed in neurons. The administration of apelin-13 could significantly reduce the mRNA and protein levels of ATF6, and its downstream targets, CHOP and caspase-3, but increase the Bcl-2/Bax ratio, Claudin-5, Occludin and ZO-1. What's more, the administration of apelin-13 could reduce brain edema, ameliorate BBB disruption and improve neurological functions. However, the CHOP siRNA could significantly reverse the pro-apoptotic effect induced by the increased ATF6 level after SAH. Apelin-13 could exert its neuroprotective effects via suppression of ATF6/CHOP arm of ER-stress-response pathway in the early brain injury after SAH.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
The Interplay between Glucose-Regulated Protein 78 (GRP78) and Steroids in the Reproductive System. Int J Mol Sci 2018; 19:ijms19071842. [PMID: 29932125 PMCID: PMC6073258 DOI: 10.3390/ijms19071842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
The glucose-regulated protein 78 (GRP78) is a molecular chaperone that is responsible for protein folding, which belongs to the heat shock protein 70 kDa (HSPA/HSP70). Because of the conjunction of GRP78 transcription with endoplasmic reticulum stress, the chaperone plays an important role in the unfolded protein response (UPR), which is induced after the accumulation of misfolded proteins. In the last years, a significant body of research concentrated on interplay between GRP78 and sexual steroid hormones. Throughout this review, we describe the mechanisms by which GRP78 regulates steroidogenesis at multiple levels and how steroids modulate GRP78 expression in different mammalian reproductive organs. Finally, we discuss the cooperation between GRP78 and steroids for cell survival and proliferation in the context of reproduction and tumorigenesis. This new paradigm offers significant opportunities for future exploration.
Collapse
|
48
|
Zhang P, Wang J, Lang H, Wang W, Liu X, Liu H, Tan C, Li X, Zhao Y, Wu X. Knockdown of CREB1 promotes apoptosis and decreases estradiol synthesis in mouse granulosa cells. Biomed Pharmacother 2018; 105:1141-1146. [PMID: 30021350 DOI: 10.1016/j.biopha.2018.06.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
Cyclic AMP response element-binding protein 1 (CREB1), a member of the CREB family, is known to be involved in follicular growth, ovulation, and ovarian disease. However, the physiological function of CREB1 in mouse granulosa cells (mGCs) remains lagerly unknown. The aim of this study was to determine the role of CREB1 in mGCs by knocking down CREB1 expression. CREB1 knock-down in mGCs at the mRNA and protein levels, was confirmed by quantitative real-time polymerase chain reaction and western blot. Results of enzyme linked immunosorbent assay revealed that CREB1 knockdown significantly decreased the concentrations of estradiol (E2) and progesterone (P4) in mGCs. Furthermore, the CREB1 knockdown in mGCs promoted cell proliferation and apoptosis, and arrested the cell cycle in S-phase. To elucidate the regulatory mechanism underlying the effects of CREB1 knockdown on steroid synthesis, cell cycle, and apoptosis, we measured the protein expression levels of several related genes in mGCs knocked down CREB1. When CREB1 was knocked down, the expression of Cyp1b1 and Cyp19a1, which encode steroidogenic enzymes, was down-regulated; the expression of the cell cycle factors CyclinA1, CyclinB1, and CyclinD2 were significantly decreased. Among apoptosis-related genes, Bcl-2 was down-regulated, whereas Bax and cleaved Caspase3 were upregulated. Moreover, CREB1 knockdown significantly decreased expression level of Has2, Ptgs2, and Igfbp4, which are essential genes for folliculogenesis in mGCs. Taken together, these findings suggested that CREB1 might be a key regulator of mGCs through regulating steroid synthesis, cell proliferation, cell cycle, apoptosis, and other regulators of folliculogenesis.
Collapse
Affiliation(s)
- Pengju Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin Province, PR China
| | - Hongyan Lang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China
| | - Weixia Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China
| | - Xiaohui Liu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China
| | - Haiyan Liu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China
| | - Chengcheng Tan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China
| | - Xintao Li
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China.
| | - Yumin Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China.
| | - Xinghong Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun 130124, Jilin Province, PR China.
| |
Collapse
|
49
|
Knockdown of XBP1 by RNAi in Mouse Granulosa Cells Promotes Apoptosis, Inhibits Cell Cycle, and Decreases Estradiol Synthesis. Int J Mol Sci 2017; 18:ijms18061152. [PMID: 28555054 PMCID: PMC5485976 DOI: 10.3390/ijms18061152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 01/12/2023] Open
Abstract
Granulosa cells are crucial for follicular growth, development, and follicular atresia. X-box binding protein 1 (XBP1), a basic region-leucine zipper protein, is widely involved in cell differentiation, proliferation, apoptosis, cellular stress response, and other signaling pathways. In this study, RNA interference, flow cytometry, western blot, real-time PCR, Cell Counting Kit (CCK8), and ELISA were used to investigate the effect of XBP1 on steroidogenesis, apoptosis, cell cycle, and proliferation of mouse granulosa cells. ELISA analysis showed that XBP1 depletion significantly decreased the concentrations of estradiol (E2). Additionally, the expression of estrogen synthesis enzyme Cyp19a1 was sharply downregulated. Moreover, flow cytometry showed that knockdown of XBP1 increased the apoptosis rate and arrests the cell cycle in S-phase in granulosa cells (GCs). Further study confirmed these results. The expression of CCAAT-enhancer-binding protein homologous protein (CHOP), cysteinyl aspartate specific proteases-3 (caspase-3), cleaved caspase-3, and Cyclin E was upregulated, while that of Bcl-2, Cyclin A1, and Cyclin B1 was downregulated. Simultaneously, CCK8 analysis indicated that XBP1 disruption inhibited cell proliferation. In addition, XBP1 knockdown also alters the expression of Has2 and Ptgs2, two essential genes for folliculogenesis. Collectively, these data reveal a novel critical role of XBP1 in folliculogenesis by regulating the cell cycle, apoptosis, and steroid synthesis of mouse granulosa cells.
Collapse
|