1
|
Lin F, Sun L, Zhang Y, Gao W, Chen Z, Liu Y, Tian K, Han X, Liu R, Li Y, Shen L. Mitochondrial stress response and myogenic differentiation. Front Cell Dev Biol 2024; 12:1381417. [PMID: 38681520 PMCID: PMC11055459 DOI: 10.3389/fcell.2024.1381417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Regeneration and repair are prerequisites for maintaining effective function of skeletal muscle under high energy demands, and myogenic differentiation is one of the key steps in the regeneration and repair process. A striking feature of the process of myogenic differentiation is the alteration of mitochondria in number and function. Mitochondrial dysfunction can activate a number of transcriptional, translational and post-translational programmes and pathways to maintain cellular homeostasis under different types and degrees of stress, either through its own signaling or through constant signaling interactions with the nucleus and cytoplasm, a process known as the mitochondrial stress responses (MSRs). It is now believed that mitochondrial dysfunction is closely associated with a variety of muscle diseases caused by reduced levels of myogenic differentiation, suggesting the possibility that MSRs are involved in messaging during myogenic differentiation. Also, MSRs may be involved in myogenesis by promoting bioenergetic remodeling and assisting myoblast survival during myogenic differentiation. In this review, we will take MSRs as an entry point to explore its concrete regulatory mechanisms during myogenic differentiation, with a perspective to provide a theoretical basis for the treatment and repair of related muscle diseases.
Collapse
Affiliation(s)
- Fu Lin
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu Zhang
- Experimental Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zihan Chen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kai Tian
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Xuyu Han
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Ruize Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Luyan Shen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Della Peruta C, Lozanoska-Ochser B, Renzini A, Moresi V, Sanchez Riera C, Bouché M, Coletti D. Sex Differences in Inflammation and Muscle Wasting in Aging and Disease. Int J Mol Sci 2023; 24:ijms24054651. [PMID: 36902081 PMCID: PMC10003083 DOI: 10.3390/ijms24054651] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Only in recent years, thanks to a precision medicine-based approach, have treatments tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues present significant differences between the two sexes, which may have important consequences for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in disease conditions correlates with survival; however, sex should be considered when protocols for the maintenance of muscle mass are designed. One obvious difference is that men have more muscle than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In this review, we present an up-to-date overview on what is known about sex differences in skeletal muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In addition, we summarize sex differences in inflammation which may underly the aforementioned conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison of these three conditions and their sex-related bases is interesting because different forms of muscle atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research, exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or recommend implementation of an existing one. Any protective factors discovered in one sex could be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and efficient interventions.
Collapse
Affiliation(s)
- Chiara Della Peruta
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Department of Medicine and Surgery, LUM University, 70010 Bari, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Viviana Moresi
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), c/o Sapienza University of Rome, 00185 Roma, Italy
| | - Carles Sanchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
| | - Marina Bouché
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Correspondence:
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
3
|
Bayonés L, Guerra-Fernández MJ, Hinostroza F, Báez-Matus X, Vásquez-Navarrete J, Gallo LI, Parra S, Martínez AD, González-Jamett A, Marengo FD, Cárdenas AM. Gain-of-Function Dynamin-2 Mutations Linked to Centronuclear Myopathy Impair Ca2+-Induced Exocytosis in Human Myoblasts. Int J Mol Sci 2022; 23:ijms231810363. [PMID: 36142275 PMCID: PMC9499313 DOI: 10.3390/ijms231810363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gain-of-function mutations of dynamin-2, a mechano-GTPase that remodels membrane and actin filaments, cause centronuclear myopathy (CNM), a congenital disease that mainly affects skeletal muscle tissue. Among these mutations, the variants p.A618T and p.S619L lead to a gain of function and cause a severe neonatal phenotype. By using total internal reflection fluorescence microscopy (TIRFM) in immortalized human myoblasts expressing the pH-sensitive fluorescent protein (pHluorin) fused to the insulin-responsive aminopeptidase IRAP as a reporter of the GLUT4 vesicle trafficking, we measured single pHluorin signals to investigate how p.A618T and p.S619L mutations influence exocytosis. We show here that both dynamin-2 mutations significantly reduced the number and durations of pHluorin signals induced by 10 μM ionomycin, indicating that in addition to impairing exocytosis, they also affect the fusion pore dynamics. These mutations also disrupt the formation of actin filaments, a process that reportedly favors exocytosis. This altered exocytosis might importantly disturb the plasmalemma expression of functional proteins such as the glucose transporter GLUT4 in skeletal muscle cells, impacting the physiology of the skeletal muscle tissue and contributing to the CNM disease.
Collapse
Affiliation(s)
- Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Luciana I. Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Sergio Parra
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Fernando D. Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Correspondence: (F.D.M.); (A.M.C.)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
- Correspondence: (F.D.M.); (A.M.C.)
| |
Collapse
|
4
|
Coletti C, Acosta GF, Keslacy S, Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur J Transl Myol 2022; 32. [PMID: 35234025 PMCID: PMC8992679 DOI: 10.4081/ejtm.2022.10416] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-related sarcopenia is associated with physical disability and lowered quality of life. In addition to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. They spread forming new neuro-muscular junctions with the denervated fibers: the result is an increased proportion of slow fibers that group together since they are associated in the same motor unit. Grouping and fiber type shifting are indeed major histological features of aging skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a precursor study in humans was published in the European Journal of Translation Myology (formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation in the musculature of aged, exercise-trained individuals as compared to the matching control. This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise», is now being reprinted for the second issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, ultimately preserving muscle structure and function in elderly people who exercise.
Collapse
Affiliation(s)
- Claudia Coletti
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Gilberto F Acosta
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Stefan Keslacy
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Dario Coletti
- DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France; Interuniversity institute of Myology, Ro.
| |
Collapse
|
5
|
Gong L, Zhang X, Qiu K, He L, Wang Y, Yin J. Arginine promotes myogenic differentiation and myotube formation through the elevation of cytoplasmic calcium concentration. ACTA ACUST UNITED AC 2021; 7:1115-1123. [PMID: 34738042 PMCID: PMC8543491 DOI: 10.1016/j.aninu.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to explore the mechanism underlying arginine-promoted myogenesis of myoblasts. C2C12 cells were cultured with a medium containing 0.1, 0.4, 0.8, or 1.2 mmol/L arginine, respectively. Cell proliferation, viability, differentiation indexes, cytoplasmic Ca2+ concentration, and relative mRNA expression levels of myogenic regulatory factors (MRF) and key Ca2+ channels were measured in the absence or presence of 2 chemical inhibitors, dantrolene (DAN, 10 μmol/L) and nisoldipine (NIS, 10 μmol/L), respectively. Results demonstrated that arginine promoted myogenic differentiation and myotube formation. Compared with the control (0.4 mmol/L arginine), 1.2 mmol/L arginine upregulated the relative mRNA expression levels of myogenin (MyoG) and Myomaker at d 2 during myogenic induction (P < 0.05). Cytoplasmic Ca2+ concentrations were significantly elevated by arginine supplementation at d 2 and 4 (P < 0.05). Relative mRNA expression levels of Ca2+ channels including the type 1 ryanodine receptor (RyR1) and voltage-gated Ca2+ channel (Cav1.1) were upregulated by 1.2 mmol/L arginine during 2-d myogenic induction (P < 0.01). However, arginine-promoted myogenic potential of myoblasts was remarkably compromised by DAN and NIS, respectively (P < 0.05). These findings evidenced that the supplementation of arginine promoted myogenic differentiation and myotube formation through increasing cytoplasmic Ca2+ concentration from both extracellular and sarcoplasmic reticulum Ca2+.
Collapse
Affiliation(s)
- Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Qiu K, Xu D, Wang L, Zhang X, Jiao N, Gong L, Yin J. Association Analysis of Single-Cell RNA Sequencing and Proteomics Reveals a Vital Role of Ca 2+ Signaling in the Determination of Skeletal Muscle Development Potential. Cells 2020; 9:E1045. [PMID: 32331484 PMCID: PMC7225978 DOI: 10.3390/cells9041045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022] Open
Abstract
This study is aimed at exploring the mechanism underlying the homeostasis between myogenesis and adipogenesis in skeletal muscle using a special porcine model with a distinct phenotype on muscle growth rate and intramuscular fat deposition. Differentiation potential of muscle-derived Myo-lineage cells of lean-type pigs was significantly enhanced relative to obese-type pigs, while that of their Adi-lineage cells was similar. Single-cell RNA sequencing revealed that lean-type pigs reserved a higher proportion of Myo-lineage cells in skeletal muscle relative to obese-type pigs. Besides, Myo-lineage cells of the lean-type pig settled closer to the original stage of muscle-derived progenitor cells. Proteomics analysis found that differentially expressed proteins between two sources of Myo-lineage cells are mainly involved in muscle development, cell proliferation and differentiation, ion homeostasis, apoptosis, and the MAPK signaling pathway. The regulation of intracellular ion homeostasis, Ca2+ in particular, significantly differed between two sources of Myo-lineage cells. Ca2+ concentration in both cytoplasm and endoplasmic reticulum was lower in Myo-lineage cells of lean-type pigs relative to obese-type pigs. In conclusion, a higher proportion and stronger differentiation capacity of Myo-lineage cells are the main causes for the higher capability of myogenic differentiation and lower intramuscular fat deposition. Relative low concentration of cellular Ca2+ is advantageous for Myo-lineage cells to keep a potent differentiation potential.
Collapse
Affiliation(s)
- Kai Qiu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Doudou Xu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Liqi Wang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Xin Zhang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ning Jiao
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Jingdong Yin
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| |
Collapse
|
7
|
Effects of adrenaline on contractility and endurance of isolated mammalian soleus with different calcium concentrations. J Muscle Res Cell Motil 2019; 40:373-378. [DOI: 10.1007/s10974-019-09551-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
|
8
|
Fodor J, Gomba-Tóth A, Oláh T, Almássy J, Zádor E, Csernoch L. Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. J Muscle Res Cell Motil 2017. [PMID: 28638997 DOI: 10.1007/s10974-017-9474-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Follistatin (FS) is a high affinity activin-binding protein, neutralizing the effects of the Transforming Growth Factor-beta (TGF-β) superfamily members, as myostatin (MSTN). Since MSTN emerged as a negative regulator, FS has been considered as a stimulator of skeletal muscle growth and differentiation. Here, we studied the effect of FS administration on the Ca2+-homeostasis of differentiating C2C12 skeletal muscle cells. FS-treatment increased the fusion index, the size of terminally differentiated myotubes, and transiently elevated the expression of the calcium-dependent protein phosphatase, calcineurin, at the beginning of differentiation. Functional experiments did not detect any alterations in the Ca2+ transients following the stimulation by KCl or caffeine in myotubes. On the other hand, decreased Ca2+-uptake capability was determined by calculating the maximal pump rate (332 ± 17 vs. 279 ± 11 µM/s, in control and FS-treated myotubes, respectively; p < 0.05). In the same way, the expression and ATPase activity of the neonatal sarcoplasmic/endoplasmic reticulum Ca2+ATPase (SERCA1b) were decreased (0.59 ± 0.01 vs. 0.19 ± 0.01 mM ATP/min, in control and FS-treated myotubes, respectively; p < 0.05). However, the expression level of other proteins involved in Ca2+-homeostasis and differentiation (calsequestrin, STIM1, MyoD) were not affected. Our results suggest that the FS controlled myotube growth is paralleled with the tight regulation of cytosolic calcium concentration, and the decline of SERCA1b appears to be one of the key components in this process.
Collapse
Affiliation(s)
- János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Gomba-Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ernő Zádor
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
9
|
Cairns SP, Leader JP, Loiselle DS, Higgins A, Lin W, Renaud JM. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue. J Appl Physiol (1985) 2015; 118:662-74. [PMID: 25571990 DOI: 10.1152/japplphysiol.00705.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether a Ca(2+)-K(+) interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca(2+) concentration ([Ca(2+)]o) from 1.3 to 10 mM in K(+)-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K(+) activity by 20-60 mM (raised intracellular K(+) content, unchanged intracellular fluid volume), so that the K(+)-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5-10 mV; 2) large restoration of action potential amplitude (16-54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K(+) concentration ([K(+)]o) relationship shifting rightward toward higher [K(+)]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K(+)]o (7 mM) increased, whereas lowered [K(+)]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K(+) dependence for late fatigue. Prior exposure to 10 mM [Ca(2+)]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca(2+)-K(+) interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K(+) gradient and lowered [Ca(2+)]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca(2+)]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K(+) activity, which prolongs the time before stimulation-induced K(+) efflux depolarizes the sarcolemma sufficiently to interfere with action potentials.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand;
| | - John P Leader
- Department of Medicine, University of Otago, Dunedin, New Zealand; Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Denis S Loiselle
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; and
| | - Amanda Higgins
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Wei Lin
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Perniconi B, Coletti D, Aulino P, Costa A, Aprile P, Santacroce L, Chiaravalloti E, Coquelin L, Chevallier N, Teodori L, Adamo S, Marrelli M, Tatullo M. Muscle acellular scaffold as a biomaterial: effects on C2C12 cell differentiation and interaction with the murine host environment. Front Physiol 2014; 5:354. [PMID: 25309452 PMCID: PMC4176465 DOI: 10.3389/fphys.2014.00354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/30/2014] [Indexed: 01/17/2023] Open
Abstract
The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environment in vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis. In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss.
Collapse
Affiliation(s)
- Barbara Perniconi
- Department of Biological Adaptation and Aging (B2A) UMR 8256 CNRS - ERL U1164 INSERM, Sorbonne Universités, UPMC University Paris 06 Paris, France ; Maxillofacial Unit, Calabrodental Clinic Crotone, Italy
| | - Dario Coletti
- Department of Biological Adaptation and Aging (B2A) UMR 8256 CNRS - ERL U1164 INSERM, Sorbonne Universités, UPMC University Paris 06 Paris, France ; AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Paola Aulino
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Alessandra Costa
- AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy ; UTAPRAD-DIM, ENEA Frascati, Italy
| | - Paola Aprile
- UTAPRAD-DIM, ENEA Frascati, Italy ; Tor Vergata University of Rome Rome, Italy
| | - Luigi Santacroce
- JSGEM Department - Section of Taranto, University of Bari Taranto, Italy
| | | | - Laura Coquelin
- Unite d'Ingénierie et de Therapie Cellulaire, Etablissement Français du Sang Ile de France, Université Paris-Est Créteil Créteil, France
| | - Nathalie Chevallier
- Unite d'Ingénierie et de Therapie Cellulaire, Etablissement Français du Sang Ile de France, Université Paris-Est Créteil Créteil, France
| | | | - Sergio Adamo
- AHFOS Department - Section of Histology and Medical Embryology, Sapienza University of Rome Rome, Italy ; Interuniversitary Institute of Miology (IIM) Rome, Italy
| | - Massimo Marrelli
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; Regenerative Medicine Section, Tecnologica Research Institute Crotone, Italy
| | - Marco Tatullo
- Maxillofacial Unit, Calabrodental Clinic Crotone, Italy ; Regenerative Medicine Section, Tecnologica Research Institute Crotone, Italy
| |
Collapse
|
11
|
Gong Y, Himmerkus N, Plain A, Bleich M, Hou J. Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol 2014; 26:663-76. [PMID: 25071082 DOI: 10.1681/asn.2014020129] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The kidney has a major role in extracellular calcium homeostasis. Multiple genetic linkage and association studies identified three tight junction genes from the kidney--claudin-14, -16, and -19--as critical for calcium imbalance diseases. Despite the compelling biologic evidence that the claudin-14/16/19 proteins form a regulated paracellular pathway for calcium reabsorption, approaches to regulate this transport pathway are largely unavailable, hindering the development of therapies to correct calcium transport abnormalities. Here, we report that treatment with histone deacetylase (HDAC) inhibitors downregulates renal CLDN14 mRNA and dramatically reduces urinary calcium excretion in mice. Furthermore, treatment of mice with HDAC inhibitors stimulated the transcription of renal microRNA-9 (miR-9) and miR-374 genes, which have been shown to repress the expression of claudin-14, the negative regulator of the paracellular pathway. With renal clearance and tubule perfusion techniques, we showed that HDAC inhibitors transiently increase the paracellular cation conductance in the thick ascending limb. Genetic ablation of claudin-14 or the use of a loop diuretic in mice abrogated HDAC inhibitor-induced hypocalciuria. The genetic mutations in the calcium-sensing receptor from patients with autosomal dominant hypocalcemia (ADH) repressed the transcription of miR-9 and miR-374 genes, and treatment with an HDAC inhibitor rescued the phenotypes of cell and animal models of ADH. Furthermore, systemic treatment of mice with antagomiRs against these miRs relieved claudin-14 gene silencing and caused an ADH-like phenotype. Together, our findings provide proof of concept for a novel therapeutic principle on the basis of epigenetic regulation of renal miRs to treat hypercalciuric diseases.
Collapse
Affiliation(s)
- Yongfeng Gong
- Department of Internal Medicine, Renal Division, Washington University Medical School, St. Louis, Missouri; and
| | - Nina Himmerkus
- Section of Membrane Transport Physiology, Physiologisches Institut der Christian-Albrechts-Universität, Kiel, Germany
| | - Allein Plain
- Section of Membrane Transport Physiology, Physiologisches Institut der Christian-Albrechts-Universität, Kiel, Germany
| | - Markus Bleich
- Section of Membrane Transport Physiology, Physiologisches Institut der Christian-Albrechts-Universität, Kiel, Germany
| | - Jianghui Hou
- Department of Internal Medicine, Renal Division, Washington University Medical School, St. Louis, Missouri; and
| |
Collapse
|
12
|
Costa A, Toschi A, Murfuni I, Pelosi L, Sica G, Adamo S, Scicchitano BM. Local overexpression of V1a-vasopressin receptor enhances regeneration in tumor necrosis factor-induced muscle atrophy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:235426. [PMID: 24971321 PMCID: PMC4055243 DOI: 10.1155/2014/235426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/25/2023]
Abstract
Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF) is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-)dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca(2+)/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.
Collapse
Affiliation(s)
- Alessandra Costa
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Angelica Toschi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Ivana Murfuni
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Laura Pelosi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
| | - Bianca Maria Scicchitano
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
- Institute of Histology and Embryology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
13
|
Del Favero G, Florio C, Codan B, Sosa S, Poli M, Sbaizero O, Molgó J, Tubaro A, Lorenzon P. The Stretch-Activated Channel Blocker Gd3+ Reduces Palytoxin Toxicity in Primary Cultures of Skeletal Muscle Cells. Chem Res Toxicol 2012; 25:1912-20. [DOI: 10.1021/tx300203x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Mark Poli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21701-5011, United States
| | | | - Jordi Molgó
- Institut Fédératif de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie
et Développement, CNRS UPR 3294, 91198 Gif sur Yvette cedex,
France
| | | | | |
Collapse
|
14
|
Balan OV, Vorotelyak EA, Smirnova TD, Ozernyuk ND. Specific features of satellite cells and myoblasts at different stages of rat postnatal development. BIOL BULL+ 2011. [DOI: 10.1134/s1062359008020052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Krasnyi AM, Ozernyuk ND. Features of Ca2+ signaling in proliferating and in differentiating murine myoblasts. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Alteration of sarcoplasmic reticulum ca release in skeletal muscle from calpain 3-deficient mice. Int J Cell Biol 2010; 2009:340346. [PMID: 20300593 PMCID: PMC2838219 DOI: 10.1155/2009/340346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/02/2009] [Indexed: 12/02/2022] Open
Abstract
Mutations of Ca2+-activated proteases (calpains) cause muscular dystrophies. Nevertheless, the specific role of calpains in Ca2+ signalling during the onset of dystrophies remains unclear. We investigated Ca2+ handling in skeletal cells from calpain 3-deficient mice. [Ca2+]i responses to caffeine, a ryanodine receptor (RyR) agonist, were decreased in −/− myotubes and absent in −/− myoblasts. The −/− myotubes displayed smaller amplitudes of the Ca2+ transients induced by cyclopiazonic acid in comparison to wild type cells. Inhibition of L-type Ca2+ channels (LCC) suppressed the caffeine-induced [Ca2+]i responses in −/− myotubes. Hence, the absence of calpain 3 modifies the sarcoplasmic reticulum (SR) Ca2+ release, by a decrease of the SR content, an impairment of RyR signalling, and an increase of LCC activity. We propose that calpain 3-dependent proteolysis plays a role in activating support proteins of intracellular Ca2+ signalling at a stage of cellular differentiation which is crucial for skeletal muscle regeneration.
Collapse
|
17
|
Van den Maagdenberg K, Stinckens A, Lefaucheur L, Buys N, De Smet S. The effect of mutations in the insulin-like growth factor-II and ryanodine receptor-1 genes on biochemical and histochemical muscle fibre characteristics in pigs. Meat Sci 2008; 79:757-66. [DOI: 10.1016/j.meatsci.2007.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 11/25/2022]
|
18
|
Cairns SP, Lindinger MI. Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 2008; 586:4039-54. [PMID: 18591187 DOI: 10.1113/jphysiol.2008.155424] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished transsarcolemmal K(+) gradient per se can reduce maximal force in non-fatigued muscle suggesting that K(+) causes fatigue. However, this effect requires extremely large, although physiological, K(+) shifts. In contrast, moderate elevations of extracellular [K(+)] ([K(+)](o)) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance. Changed transsarcolemmal Na(+), Ca(2+), Cl(-) and H(+) gradients are insufficient by themselves to cause much fatigue but each ion can interact with K(+) effects. Lowered Na(+), Ca(2+) and Cl(-) gradients further impair force by modulating the peak tetanic force-[K(+)](o) and peak tetanic force-resting membrane potential relationships. In contrast, raised [Ca(2+)](o), acidosis and reduced Cl(-) conductance during late fatigue provide resistance against K(+)-induced force depression. The detrimental effects of K(+) are exacerbated by metabolic changes such as lowered [ATP](i), depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown of the transsarcolemmal K(+) gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing to fatigue.
Collapse
Affiliation(s)
- S P Cairns
- Institute of Sport and Recreation Research New Zealand, Faculty of Health and Environmental Sciences, AUT University, Auckland 1020, New Zealand.
| | | |
Collapse
|
19
|
Germinario E, Esposito A, Midrio M, Peron S, Palade PT, Betto R, Danieli-Betto D. High-frequency fatigue of skeletal muscle: role of extracellular Ca(2+). Eur J Appl Physiol 2008; 104:445-53. [PMID: 18560877 DOI: 10.1007/s00421-008-0796-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
The present study evaluated whether Ca(2+) entry operates during fatigue of skeletal muscle. The involvement of different skeletal muscle membrane calcium channels and of the Na(+)/Ca(2+) exchanger (NCX) has been examined. The decline of force was analysed in vitro in mouse soleus and EDL muscles submitted to 60 and 110 Hz continuous stimulation, respectively. Stimulation with this high-frequency fatigue (HFF) protocol, in Ca(2+)-free conditions, caused in soleus muscle a dramatic increase of fatigue, while in the presence of high Ca(2+) fatigue was reduced. In EDL muscle, HFF was not affected by external Ca(2+) levels either way, suggesting that external Ca(2+) plays a general protective role only in soleus. Calciseptine, a specific antagonist of the cardiac isoform (alpha1C) of the dihydropyridine receptor, gadolinium, a blocker of both stretch-activated and store-operated Ca(2+) channels, as well as inhibitors of P2X receptors did not affect the development of HFF. Conversely, the Ca(2+) ionophore A23187 increased the protective action of extracellular Ca(2+). KB-R7943, a selective inhibitor of the reverse mode of NCX, produced an effect similar to that of Ca(2+)-free solution. These results indicate that a transmembrane Ca(2+) influx, mainly through NCX, may play a protective role during HFF development in soleus muscle.
Collapse
Affiliation(s)
- Elena Germinario
- Department of Human Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Peltzer J, Colman L, Cebrian J, Musa H, Peckham M, Keller A. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro. Dev Dyn 2008; 237:1412-23. [DOI: 10.1002/dvdy.21543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
De Arcangelis V, Coletti D, Canato M, Molinaro M, Adamo S, Reggiani C, Naro F. Hypertrophy and transcriptional regulation induced in myogenic cell line L6-C5 by an increase of extracellular calcium. J Cell Physiol 2005; 202:787-95. [PMID: 15389566 DOI: 10.1002/jcp.20174] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium plays a pivotal role in the establishment of the differentiated phenotype in myogenic cells but the involved molecular mechanisms are still matter of debate. Here we studied the effects of exposing L6-C5 myogenic cells to high extracellular Ca2+ concentration ([Ca2+]o), which induces an increase of intracellular calcium ([Ca2+]i) without involving Ca2+ release from the intracellular stores but exclusively due to plasma membrane influx (Naro et al., 2003). Exposure of L6-C5 cells to [Ca2+]o up to 20 mM for 30 min, before shifting them into a differentiative medium, induced the appearance of multinucleated, myosin-positive myotubes, much larger than in control cells with an increased protein/DNA ratio. These large myotubes showed nuclear accumulation of the hypertrophy marker GATA-2. The hypertrophic growth of these cells was blocked by cyclosporin A (CsA), FK506, or overexpression of a calcineurin-dominant negative protein, suggesting the involvement in this process of the Ca2+ responsive phosphatase calcineurin. Furthermore, transient exposure of L6-C5 cells to high [Ca2+]o increased the expression of luciferase reporter driven by myoglobin (Mb) and beta-MHC promoters but not IIB-MHC and MCK promoters. Luciferase transcription driven by CK promoter was, instead, enhanced by mobilizing Ca2+ from the intracellular stores. These data indicate that a transient increase of [Ca2+]i due to plasma-membrane influx is sufficient to induce a hypertrophic phenotype and an increased expression of slow-fiber genes but not fast-fiber genes.
Collapse
Affiliation(s)
- V De Arcangelis
- Dipartimento di Istologia ed Embriologia Medica, Università di Roma La Sapienza, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Fioretti B, Pietrangelo T, Catacuzzeno L, Franciolini F. Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. Am J Physiol Cell Physiol 2005; 289:C89-96. [PMID: 15743891 DOI: 10.1152/ajpcell.00369.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the expression in C2C12 myoblasts of the intermediate-conductance Ca2+-activated K+ (IK(Ca)) channel. The IK(Ca) current, recorded under perforated-patch configuration, had a transient time course when activated by ionomycin (0.5 microM; peak current density 26.2 +/- 3.7 pA/pF; n = 10), but ionomycin (0.5 microM) + 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (100 microM) evoked a stable outward current (28.4 +/- 8.2 pA/pF; n = 11). The current was fully inhibited by charybdotoxin (200 nM), clotrimazole (2 microM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (300 microM), but not by tetraethylammonium (1 mM) or D-tubocurarine (300 microM). Congruent with the IK(Ca) channel, elevation of intracellular Ca2+ in inside-out patches resulted in the activation of a voltage-insensitive K+ channel with weak inward rectification, a unitary conductance of 38 +/- 6 pS (at negative voltages), and an IC50 for Ca2+ of 530 nM. The IK(Ca) channel was activated metabotropically by external application of ATP (100 microM), an intracellular Ca2+ mobilizer. Under current-clamp conditions, ATP application resulted in a membrane hyperpolarization of approximately 35 mV. The IK(Ca) current downregulated during myogenesis, ceasing to be detectable 4 days after the myoblasts were placed in differentiating medium. Downregulation was prevented by the myogenic suppressor agent basic FGF (bFGF). We also found that block of the IK(Ca) channel by charybdotoxin did not inhibit bFGF-sustained myoblast proliferation. These observations show that in C2C12 myoblasts the IK(Ca) channel expression correlates inversely with differentiation, yet it does not appear to have a role in myoblast proliferation.
Collapse
Affiliation(s)
- Bernard Fioretti
- Dipartimento Biologia Cellulare e Molecolare, Università di Perugia, Via Pascoli 1, I-06123 Perugia, Italy
| | | | | | | |
Collapse
|