1
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
An S, Vo TTL, Son T, Choi H, Kim J, Lee J, Kim BH, Choe M, Ha E, Surh YJ, Kim KW, Seo JH. SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion. Exp Mol Med 2023; 55:779-793. [PMID: 37009792 PMCID: PMC10167369 DOI: 10.1038/s12276-023-00961-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 04/04/2023] Open
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sunho An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tam Thuy Lu Vo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Taekwon Son
- Korea Brain Bank, Korea Brain Research Institute, Daegu, 42601, Republic of Korea
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jinyoung Kim
- Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Juyeon Lee
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byung Hoon Kim
- Department of Urology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Misun Choe
- Department of Pathology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Joon Surh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
3
|
Li F, Sun H, Lin X, Li Q, Zhao D, Cheng Z, Liu J, Fan Q. Increased cytochrome C threonine 50 phosphorylation in aging heart as a novel defensive signaling against hypoxia/reoxygenation induced apoptosis. Aging (Albany NY) 2022; 14:5699-5709. [PMID: 35896004 PMCID: PMC9365549 DOI: 10.18632/aging.204159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that aging promotes myocardial apoptosis. However, the detailed mechanisms remain unclear. Our recent studies revealed that aging not only activates apoptosis, but also activates some anti-apoptotic factors. By quantitative phosphoproteomics, here we demonstrated that aging increases cytochrome c (Cytc) phosphorylation at threonine 50 (T50), a post-translational modification with unknown functional impact. With point mutation and lentivirus transfection, cardiomyocytes were divided into four groups: empty vector group, WT (wild type), T50E (as a phosphomimic variant), and T50A (non-phosphorylatable). TUNEL staining and flow cytometry were used to determine the apoptosis ratio in different groups after hypoxic/reoxygenated (H/R) treatment. The results showed that T50-phosphorylated Cytc suppressed myocardial apoptosis induced by H/R. Furthermore, Western Blot and ELISA measurements revealed that Cytc T50 phosphorylation inhibited caspase-9 and caspase-3 activity without altering caspase-8, BCL-2, BCL-XL, and Bax expression. In our study, we demonstrated that aging increases phosphorylation Cytc at T50 and this aging-increasing phosphorylation site can suppress H/R-induced apoptosis.
Collapse
Affiliation(s)
- Fanqi Li
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Haoxuan Sun
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Xiaolong Lin
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Qiuyu Li
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Donghui Zhao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Zichao Cheng
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Jinghua Liu
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Qian Fan
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| |
Collapse
|
4
|
Alfaidi M, Scott ML, Orr AW. Sinner or Saint?: Nck Adaptor Proteins in Vascular Biology. Front Cell Dev Biol 2021; 9:688388. [PMID: 34124074 PMCID: PMC8187788 DOI: 10.3389/fcell.2021.688388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States.,Department of Cell Biology and Anatomy, LSU Health - Shreveport, Shreveport, LA, United States.,Department of Molecular & Cellular Physiology, LSU Health - Shreveport, Shreveport, LA, United States
| |
Collapse
|
5
|
Mondaca JM, Uzair ID, Castro Guijarro AC, Flamini MI, Sanchez AM. Molecular Basis of LH Action on Breast Cancer Cell Migration and Invasion via Kinase and Scaffold Proteins. Front Cell Dev Biol 2021; 8:630147. [PMID: 33614634 PMCID: PMC7893099 DOI: 10.3389/fcell.2020.630147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a major public health problem affecting women worldwide. Approximately 80% of diagnosed cases are hormone-dependent breast cancers. These hormones are known to stimulate tumor development and progression. In this setting, tentative evidence suggests that luteinizing hormone (LH) may also play a role in tumors. In BC cells that express functional LH receptors (LHR), this hormone regulates cell migration and invasion by controlling several kinases that activate actin cytoskeletal proteins. In this article, we show that LH induces phosphorylation of paxillin and its translocation toward the plasmatic membrane, where focal adhesion complexes are assembled. This process is triggered via a rapid extra-gonadal LHR signaling to Src/FAK/paxillin, which results in the phosphorylation/activation of the nucleation promoter factors cortactin and N-WASP. As a consequence, Arp2/3 complexes induce actin polymerization, essential to promote cell adhesion, migration, and invasion, thus enhancing metastatic spread of tumoral cells. Our findings provide relevant information about how gonadotrophins exert their action in BC. This information helps us understand the extragonadal effects of LH on BC metastasis. It may provide new perspectives for therapeutic treatment, especially for women with high serum levels of gonadotrophins.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ivonne Denise Uzair
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ana Carla Castro Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
6
|
Mutated lamin A modulates stiffness in muscle cells. Biochem Biophys Res Commun 2020; 529:861-867. [PMID: 32540097 DOI: 10.1016/j.bbrc.2020.05.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
The cytoskeleton is a complex network interlinking filaments that extend throughout the cytoplasm from the nucleus to the plasma membrane. Three major types of filaments are found in the cytoskeleton: actin filaments, microtubules, and intermediate filaments. They play a key role in the ability of cells to both resist mechanical stress and generate force. However, the precise involvement of intermediate filament proteins in these processes remains unclear. Here, we focused on nuclear A-type lamins, which are connected to the cytoskeleton via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Using micro-constriction rheology, we investigated the impact of A-type lamins (p.H222P) mutation on the mechanical properties of muscle cells. We demonstrate that the expression of point mutation of lamin A in muscle cells increases cellular stiffness compared with cells expressing wild type lamin A and that the chemical agent selumetinib, an inhibitor of the ERK1/2 signaling, reversed the mechanical alterations in mutated cells. These results highlight the interplay between A-type lamins and mechano-signaling, which are supported by cell biology measurements.
Collapse
|
7
|
Seese RR, Le AA, Wang K, Cox CD, Lynch G, Gall CM. A TrkB agonist and ampakine rescue synaptic plasticity and multiple forms of memory in a mouse model of intellectual disability. Neurobiol Dis 2020; 134:104604. [PMID: 31494285 PMCID: PMC7258745 DOI: 10.1016/j.nbd.2019.104604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS) is associated with deficits in various types of learning, including those that require the hippocampus. Relatedly, hippocampal long-term potentiation (LTP) is impaired in the Fmr1 knockout (KO) mouse model of FXS. Prior research found that infusion of brain-derived neurotrophic factor (BDNF) rescues LTP in the KOs. Here, we tested if, in Fmr1 KO mice, up-regulating BDNF production or treatment with an agonist for BDNF's TrkB receptor restores synaptic plasticity and improves learning. In hippocampal slices, bath infusion of the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) completely restored otherwise impaired hippocampal field CA1 LTP of Fmr1 KOs without effect in wild types (WTs). Similarly, acute, semi-chronic, or chronic treatments with 7,8-DHF rescued a simple hippocampus-dependent form of spatial learning (object location memory: OLM) in Fmr1 KOs without effect in WTs. The agonist also restored object recognition memory, which depends on cortical regions. Semi-chronic, but not acute, treatment with the ampakine CX929, which up-regulates BDNF expression, lowered the training threshold for OLM in WT mice and rescued learning in the KOs. Positive results were also obtained in a test for social recognition. An mGluR5 antagonist did not improve learning. Quantification of synaptic immunolabeling demonstrated that 7,8-DHF and CX929 increase levels of activated TrkB at excitatory synapses. Moreover, CX929 induced a robust synaptic activation of the TrkB effector ERK1/2. These results suggest that enhanced synaptic BDNF signaling constitutes a plausible strategy for treating certain aspects of the cognitive disabilities associated with FXS.
Collapse
Affiliation(s)
- Ronald R Seese
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Aliza A Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Kathleen Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA, United States of America.
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States of America.
| |
Collapse
|
8
|
Regulation of Respiration and Apoptosis by Cytochrome c Threonine 58 Phosphorylation. Sci Rep 2019; 9:15815. [PMID: 31676852 PMCID: PMC6825195 DOI: 10.1038/s41598-019-52101-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome c (Cytc) is a multifunctional protein, acting as an electron carrier in the electron transport chain (ETC), where it shuttles electrons from bc1 complex to cytochrome c oxidase (COX), and as a trigger of type II apoptosis when released from the mitochondria. We previously showed that Cytc is regulated in a highly tissue-specific manner: Cytc isolated from heart, liver, and kidney is phosphorylated on Y97, Y48, and T28, respectively. Here, we have analyzed the effect of a new Cytc phosphorylation site, threonine 58, which we mapped in rat kidney Cytc by mass spectrometry. We generated and overexpressed wild-type, phosphomimetic T58E, and two controls, T58A and T58I Cytc; the latter replacement is found in human and testis-specific Cytc. In vitro, COX activity, caspase-3 activity, and heme degradation in the presence of H2O2 were decreased with phosphomimetic Cytc compared to wild-type. Cytc-knockout cells expressing T58E or T58I Cytc showed a reduction in intact cell respiration, mitochondrial membrane potential (∆Ψm), ROS production, and apoptotic activity compared to wild-type. We propose that, under physiological conditions, Cytc is phosphorylated, which controls mitochondrial respiration and apoptosis. Under conditions of stress Cytc phosphorylations are lost leading to maximal respiration rates, ∆Ψm hyperpolarization, ROS production, and apoptosis.
Collapse
|
9
|
Zhu L, Cho E, Zhao G, Roh MR, Zheng Z. The Pathogenic Effect of Cortactin Tyrosine Phosphorylation in Cutaneous Squamous Cell Carcinoma. In Vivo 2019; 33:393-400. [PMID: 30804117 DOI: 10.21873/invivo.11486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Cortactin (CTTN) has been considered a promising molecular prognostic factor in various types of cancers. In this study, we aimed to investigate the role of CTTN in the pathogenesis of cutaneous squamous cell carcinoma (CSCC). MATERIALS AND METHODS CTTN and phospho-CTTN (p-CTTN) expression was determined in 10 healthy controls and 38 CSCC tissue samples by immunohistochemistry. The influence of CTTN on the biological behavior of CSCC cells was also investigated. RESULTS p-CTTN expression was significantly increased in CSCC than control samples. In contrast, no significant difference in CTTN expression was found between control and CSCC tissues. Moreover, a significant association was found between recurrence-free survival with p-CTTN expression, but not with CTTN expression. Furthermore, the proliferative, migratory, and invasive abilities of CSCC cells were significantly decreased by CTTN-siRNA transfection. CONCLUSION CTTN phosphorylation is strongly associated with CSCC pathogenesis and may serve as a molecular biomarker of CSCC.
Collapse
Affiliation(s)
- Lianhua Zhu
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China
| | - Eunae Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Guohua Zhao
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China
| | - Mi Ryung Roh
- Department of Dermatology, Severance Hospital, Seoul, Republic of Korea
| | - Zhenlong Zheng
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China .,Department of Dermatology, International St. Mary's Hospital, Catholic Kwandong University, College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
10
|
Deb B, Puttamallesh VN, Gondkar K, Thiery JP, Gowda H, Kumar P. Phosphoproteomic Profiling Identifies Aberrant Activation of Integrin Signaling in Aggressive Non-Type Bladder Carcinoma. J Clin Med 2019; 8:E703. [PMID: 31108958 PMCID: PMC6572125 DOI: 10.3390/jcm8050703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder carcinoma is highly heterogeneous and its complex molecular landscape; thus, poses a significant challenge for resolving an effective treatment in metastatic tumors. We computed the epithelial-mesenchymal transition (EMT) scores of three bladder carcinoma subtypes-luminal, basal, and non-type. The EMT score of the non-type indicated a "mesenchymal-like" phenotype, which correlates with a relatively more aggressive form of carcinoma, typified by an increased migration and invasion. To identify the altered signaling pathways potentially regulating this EMT phenotype in bladder cancer cell lines, we utilized liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based phosphoproteomic approach. Bioinformatics analyses were carried out to determine the activated pathways, networks, and functions in bladder carcinoma cell lines. A total of 3125 proteins were identified, with 289 signature proteins noted to be differentially phosphorylated (p ≤ 0.05) in the non-type cell lines. The integrin pathway was significantly enriched and five major proteins (TLN1, CTTN, CRKL, ZYX and BCAR3) regulating cell motility and invasion were hyperphosphorylated. Our study reveals GSK3A/B and CDK1 as promising druggable targets for the non-type molecular subtype, which could improve the treatment outcomes for aggressive bladder carcinoma.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India.
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.
| | - Kirti Gondkar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.
| | - Jean P Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine NUS Yong Loo Lin School of Medicine, Singapore 117597, Singapore.
- Comprehensive Cancer Center, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800 Villejuif, France.
- CNRS UMR 7057, Matter and Complex Systems, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet Paris, 75205 Paris, France.
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India.
| |
Collapse
|
11
|
Stock K, Borrink R, Mikesch JH, Hansmeier A, Rehkämper J, Trautmann M, Wardelmann E, Hartmann W, Sperveslage J, Steinestel K. Overexpression and Tyr421-phosphorylation of cortactin is induced by three-dimensional spheroid culturing and contributes to migration and invasion of pancreatic ductal adenocarcinoma (PDAC) cells. Cancer Cell Int 2019; 19:77. [PMID: 30976201 PMCID: PMC6441202 DOI: 10.1186/s12935-019-0798-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/23/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The nucleation-promoting factor cortactin is expressed and promotes tumor progression and metastasis in various cancers. However, little is known about the biological role of cortactin in the progression of pancreatic ductal adenocarcinoma (PDAC). METHODS Cortactin and phosphorylated cortactin (Y421) were investigated immunohistochemically in 66 PDAC tumor specimens. To examine the functional role of cortactin in PDAC, we modulated cortactin expression by establishing two cortactin knockout cell lines (Panc-1 and BxPC-3) with CRISPR/Cas9 technique. Cortactin knockout was verified by immunoblotting and immunofluorescence microscopy and functional effects were determined by cell migration and invasion assays. A proteomic screening approach was performed to elucidate potential binding partners of cortactin. RESULTS Immunohistochemically, we observed higher cortactin expression and Tyr421-phosphorylation in PDAC metastases compared to primary tumor tissues. In PDAC cell lines Panc-1 and BxPC-3, knockdown of cortactin impaired migration and invasion, while cell proliferation was not affected. Three-dimensional spheroid culturing as a model for collective cell migration enhanced cortactin expression and Tyr421-phosphorylation. The activation of cortactin as well as the migratory capacity of PDAC cells could significantly be reduced by dasatinib, a Src family kinase inhibitor. Finally, we identified gelsolin as a novel protein interaction partner of cortactin in PDAC. CONCLUSION Our data provides evidence that cohesive cell migration induces cortactin expression and phosphorylation as a prerequisite for the gain of an invasive, pro-migratory phenotype in PDAC that can effectively be targeted with dasatinib.
Collapse
Affiliation(s)
- Katharina Stock
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Rebekka Borrink
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - Anna Hansmeier
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Jan Rehkämper
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Marcel Trautmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Jan Sperveslage
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Konrad Steinestel
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| |
Collapse
|
12
|
Belvitch P, Rizzo AN, Dudek SM. Cortactin in Atherosclerosis: Just Say NO. Arterioscler Thromb Vasc Biol 2018; 36:2278-2280. [PMID: 27879274 DOI: 10.1161/atvbaha.116.308497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Patrick Belvitch
- From the Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago
| | - Alicia N Rizzo
- From the Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago
| | - Steven M Dudek
- From the Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
13
|
Cortactin: Cell Functions of A Multifaceted Actin-Binding Protein. Trends Cell Biol 2018; 28:79-98. [DOI: 10.1016/j.tcb.2017.10.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
|
14
|
Yin M, Ma W, An L. Cortactin in cancer cell migration and invasion. Oncotarget 2017; 8:88232-88243. [PMID: 29152154 PMCID: PMC5675706 DOI: 10.18632/oncotarget.21088] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cortactin, a substrate of sarcoma (Src) kinases, is an actin-binding protein that is involved in cytoskeletal regulation, and is frequently overexpressed in cancer cells. Binding to the actin related protein 2/3 (Arp2/3) complex stimulates cortactin activity, which promotes F-actin nucleation and assembly. Cortactin promotes cancer cell migration and invasion, and plays a pivotal role in invadopodia formation and extra cellular matrix degradation. Overexpression of cortactin, by amplification of the chromosomal band 11q13, increases tumor aggressiveness. In this review, we report on the current knowledge and potential mechanisms of action of cortactin as a critical mediator of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Wenqing Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
15
|
Bissinger O, Kolk A, Drecoll E, Straub M, Lutz C, Wolff KD, Götz C. EGFR and Cortactin: Markers for potential double target therapy in oral squamous cell carcinoma. Exp Ther Med 2017; 14:4620-4626. [PMID: 29201160 PMCID: PMC5704320 DOI: 10.3892/etm.2017.5120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Survival periods of patients following surgical therapy of oral squamous cell carcinoma (OSCC) have previously been demonstrated to decrease over recent decades. Epidermal growth factor receptor (EGFR) and Cortactin are molecular markers that are important in tumour progression and development, and interact within the EGF pathway. Although EGFR antibody therapy exists, sufficient efforts for increased survival are still lacking due to the present limited response rates. The aim of the present study was to examine the association between EGFR and Cortactin expression on survival rates of OSCC patients and to determine whether EGFR and Cortactin expression levels are associated with advanced tumor sizes and lymphnode-metastases. In total, 222 OSCC patients were included in the study. EGFR and Cortactin expression in tumor tissue was evaluated by immunohistochemistry. Cox regression was used for survival analysis. Categories were tested for associations by using cross tabs (Chi-square test). Groups were compared by the non-parametric Mann Whitney U-test. Probabilities of less than 0.05 were considered significant and significant expression of Cortactin was observed in Advanced Union Internationale Contre le Cancer stage (P=0.032), including advanced tumour stage (P=0.021) and lymph node metastasis (P=0.049). High Cortactin expression was significantly associated with poorer survival rates (P=0.037). Further Cortactin expression was not associated with extracapsular spread, however EGFR exhibited a significant association (P=0.034). Neither EGFR nor Cortactin expression was correlated to grading. EGFR and Cortactin co-expression was demonstrated to be significantly associated with poorer survival rates in OSCC patients, suggesting that identification of predictive biomarkers for adjuvant therapies are of primary concern in OSCC. In particular, efficient dual-target therapy may act as an appropriate therapy to improve survival time for patients at advanced OSCC tumor stages.
Collapse
Affiliation(s)
- Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Enken Drecoll
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Melanie Straub
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Christina Lutz
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Carolin Götz
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| |
Collapse
|
16
|
Yang X, Mei S, Niu H, Li J. Nicotinic acid impairs assembly of leading edge in glioma cells. Oncol Rep 2017; 38:829-836. [PMID: 28656206 PMCID: PMC5562096 DOI: 10.3892/or.2017.5757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/15/2017] [Indexed: 01/04/2023] Open
Abstract
Malignant glioma is a clinically formidable disease. It commonly leads to death within 5 years after diagnosis. Physicians are often baffled since the inevitable diffuse invasion deteriorates clinical outcomes rapidly. Therefore, cancerous infiltration presents a foremost challenge to all therapeutic strategies on glioblastoma multiforme (GBM). Previously, we demonstrated that nicotinic acid (NA) possesses a brand new function by targeting F-actin stress fibers. By treating HEK293 or NIH3T3 cells with a certain concentration of NA, the F-actin stress fiber was significantly disassembled. This notable finding inspired us to explore NA further in cancer cell lines, such as GBM cells, since F-actin stress fibers are the critical foundation of cell migration, proliferation and numerous essential signaling pathways. Expectedly, we observed that optimized concentrations of NA, 3.5 mM and 7.0 mM, detached U251 from culturing petri dishes. Moreover, 7.0 mM of NA was capable of disrupting the leading-edge assembly. Additionally, we collected paraffin specimens from 85 GBM patients and evaluated the expression pattern of paxillin. Notably, we found that discernable paxillin signals were detected in 67 out of 85 samples. Given that leading edge is critical for cancer cell migration, we propose that NA treatment may be developed into a potential therapy for malignant glioma.
Collapse
Affiliation(s)
- Xiangcai Yang
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Shuting Mei
- Department of Gerontology, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Hua Niu
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jiejing Li
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
17
|
Role of Akt2 in regulation of metastasis suppressor 1 expression and colorectal cancer metastasis. Oncogene 2017; 36:3104-3118. [PMID: 28068324 DOI: 10.1038/onc.2016.460] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Survival signaling is critical for the metastatic program of cancer cells. The current study investigated the role of Akt survival proteins in colorectal cancer (CRC) metastasis and explored potential mechanisms of Akt-mediated metastasis regulation. Using an orthotopic implantation model in mice, which uniquely recapitulates the entire multistep process of CRC metastasis, combined with an inducible system of short hairpin RNA-mediated Akt isoform knockdown in human CRC cells, our studies confirm a role of Akt2 in CRC cell dissemination to distant organs in vivo. Akt2 deficiency profoundly inhibited the development of liver lesions in mice, whereas Akt1 had no effect under the experimental conditions used in the study. Array analysis of human metastatic genes identified the scaffolding protein metastasis suppressor 1 (MTSS1) as a novel Akt2-regulated gene. Inducible loss of Akt2 in CRC cells robustly upregulated MTSS1 at the messenger RNA and protein level, and the accumulated protein was functionally active as shown by its ability to engage an MTSS1-Src-cortactin inhibitory axis. MTSS1 expression led to a marked reduction in levels of functional cortacin (pcortactin Y421), an actin nucleation-promoting factor that has a crucial role in cancer cell invasion and metastasis. MTSS1 was also shown to mediate suppressive effects of Akt2 deficiency on CRC cell viability, survival, migration and actin polymerization in vitro. The relevance of these findings to human CRC is supported by analysis of The Cancer Genome Atlas (TCGA) and NCBI GEO data sets, which demonstrated inverse changes in expression of Akt2 and MTSS1 during CRC progression. Taken together, the data identify MTSS1 as a new Akt2-regulated gene, and point to suppression of MTSS1 as a key step in the metastasis-promoting effects of Akt2 in CRC cells.
Collapse
|
18
|
Shentu TP, He M, Sun X, Zhang J, Zhang F, Gongol B, Marin TL, Zhang J, Wen L, Wang Y, Geary GG, Zhu Y, Johnson DA, Shyy JYJ. AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol 2016; 36:2358-2368. [PMID: 27758765 DOI: 10.1161/atvbaha.116.307871] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cortactin translocates to the cell periphery in vascular endothelial cells (ECs) on cortical-actin assembly in response to pulsatile shear stress. Because cortactin has putative sites for AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) deacetylation, we examined the hypothesis that AMPK and SIRT1 coregulate cortactin dynamics in response to shear stress. APPROACH AND RESULTS Analysis of the ability of AMPK to phosphorylate recombinant cortactin and oligopeptides whose sequences matched AMPK consensus sequences in cortactin pointed to Thr-401 as the site of AMPK phosphorylation. Mass spectrometry confirmed Thr-401 as the site of AMPK phosphorylation. Immunoblot analysis with AMPK siRNA and SIRT1 siRNA in human umbilical vein ECs and EC-specific AMPKα2 knockout mice showed that AMPK phosphorylation of cortactin primes SIRT1 deacetylation in response to shear stress. Immunoblot analyses with cortactin siRNA in human umbilical vein ECs, phospho-deficient T401A and phospho-mimetic T401D mutant, or aceto-deficient (9K/R) and aceto-mimetic (9K/Q) showed that cortactin regulates endothelial nitric oxide synthase activity. Confocal imaging and sucrose-density gradient analyses revealed that the phosphorylated/deacetylated cortactin translocates to the EC periphery facilitating endothelial nitric oxide synthase translocation from lipid to nonlipid raft domains. Knockdown of cortactin in vitro or genetic reduction of cortactin expression in vivo in mice substantially decreased the endothelial nitric oxide synthase-derived NO bioavailability. In vivo, atherosclerotic lesions increase in ApoE-/-/cortactin+/- mice, when compared with ApoE-/-/cortactin+/+ littermates. CONCLUSIONS AMPK phosphorylation of cortactin followed by SIRT1 deacetylation modulates the interaction of cortactin and cortical-actin in response to shear stress. Functionally, this AMPK/SIRT1 coregulated cortactin-F-actin dynamics is required for endothelial nitric oxide synthase subcellular translocation/activation and is atheroprotective.
Collapse
Affiliation(s)
- Tzu-Pin Shentu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Ming He
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Xiaoli Sun
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jianlin Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Fan Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Brendan Gongol
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Traci L Marin
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jiao Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Liang Wen
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yinsheng Wang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Gregory G Geary
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yi Zhu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - David A Johnson
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - John Y-J Shyy
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.).
| |
Collapse
|
19
|
Janjanam J, Chandaka GK, Kotla S, Rao GN. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration. Mol Biol Cell 2015; 26:4589-606. [PMID: 26490115 PMCID: PMC4678017 DOI: 10.1091/mbc.e15-08-0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein-coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin-WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration.
Collapse
Affiliation(s)
- Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Giri Kumar Chandaka
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Sivareddy Kotla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
20
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
21
|
Spaced training rescues memory and ERK1/2 signaling in fragile X syndrome model mice. Proc Natl Acad Sci U S A 2014; 111:16907-12. [PMID: 25385607 DOI: 10.1073/pnas.1413335111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies have shown that short, spaced trains of afferent stimulation produce much greater long-term potentiation (LTP) than that obtained with a single, prolonged stimulation episode. The present studies demonstrate that spaced training regimens, based on these LTP timing rules, facilitate learning in wild-type (WT) mice and can offset learning and synaptic signaling impairments in the fragile X mental retardation 1 (Fmr1) knockout (KO) model of fragile X syndrome. We determined that 5 min of continuous training supports object location memory (OLM) in WT but not Fmr1 KO mice. However, the same amount of training distributed across three short trials, spaced by one hour, produced robust long-term memory in the KOs. At least three training trials were needed to realize the benefit of spacing, and intertrial intervals shorter or longer than 60 min were ineffective. Multiple short training trials also rescued novel object recognition in Fmr1 KOs. The spacing effect was surprisingly potent: just 1 min of OLM training, distributed across three trials, supported robust memory in both genotypes. Spacing also rescued training-induced activation of synaptic ERK1/2 in dorsal hippocampus of Fmr1 KO mice. These results show that a spaced training regimen designed to maximize synaptic potentiation facilitates recognition memory in WT mice and can offset synaptic signaling and memory impairments in a model of congenital intellectual disability.
Collapse
|
22
|
Evans JV, Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA. Further insights into cortactin conformational regulation. BIOARCHITECTURE 2014; 1:21-23. [PMID: 21866257 DOI: 10.4161/bioa.1.1.14631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/21/2010] [Indexed: 12/29/2022]
Abstract
The actin regulatory protein cortactin is involved in multiple signaling pathways impinging on the cortical actin cytoskeleton. Cortactin is phosphorylated by ERK1/2 and Src family tyrosine kinases, resulting in neuronal Wiskott Aldrich Syndrome protein (N-WASp) activation and enhanced actin related protein (Arp)2/3-mediated actin nucleation. Cortactin migrates as an 80/85 kDa doublet when analyzed by SDS-PAGE. Phosphorylation by ERK1/2 is associated with conversion of the 80 kDa to the 85 kDa form, postulated to occur by inducing a conformational alteration that releases the carboxyl-terminal SH3 domain from autoinhibition. Our recent analysis of the 80-85 kDa cortactin "shift" in tumor cells indicates that while ERK1/2 phosphorylation is associated with the 85 kDa shift, this phosphorylation event is not required for the shift to occur, nor does ERK1/2 phosphorylation appreciably alter global cortactin confirmation. These data indicate that additional factors besides ERK1/2 phosphorylation contribute to generating and/or maintaining the activated 85 kDa cortactin form in stimulated cells.
Collapse
Affiliation(s)
- Jason V Evans
- Department of Neurobiology and Anatomy; Program in Cancer Cell Biology; Mary Babb Randolph Cancer Center; West Virginia University; Morgantown, WV USA
| | | | | | | | | | | |
Collapse
|
23
|
Cyclin G2 promotes hypoxia-driven local invasion of glioblastoma by orchestrating cytoskeletal dynamics. Neoplasia 2014; 15:1272-81. [PMID: 24339739 DOI: 10.1593/neo.131440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 02/06/2023] Open
Abstract
Microenvironmental conditions such as hypoxia potentiate the local invasion of malignant tumors including glioblastomas by modulating signal transduction and protein modification, yet the mechanism by which hypoxia controls cytoskeletal dynamics to promote the local invasion is not well defined. Here, we show that cyclin G2 plays pivotal roles in the cytoskeletal dynamics in hypoxia-driven invasion by glioblastoma cells. Cyclin G2 is a hypoxia-induced and cytoskeleton-associated protein and is required for glioblastoma expansion. Mechanistically, cyclin G2 recruits cortactin to the juxtamembrane through its SH3 domain-binding motif and consequently promotes the restricted tyrosine phosphorylation of cortactin in concert with src. Moreover, cyclin G2 interacts with filamentous actin to facilitate the formation of membrane ruffles. In primary glioblastoma, cyclin G2 is abundantly expressed in severely hypoxic regions such as pseudopalisades, which consist of actively migrating glioma cells. Furthermore, we show the effectiveness of dasatinib against hypoxia-driven, cyclin G2-involved invasion in vitro and in vivo. Our findings elucidate the mechanism of cytoskeletal regulation by which severe hypoxia promotes the local invasion and may provide a therapeutic target in glioblastoma.
Collapse
|
24
|
Liu HW, Lin CP, Liou YJ, Hsu KW, Yang JY, Lin CH. NBT-II cell locomotion is modulated by restricting the size of focal contacts and is improved through EGF and ROCK signaling. Int J Biochem Cell Biol 2014; 51:131-41. [DOI: 10.1016/j.biocel.2014.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/14/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023]
|
25
|
Chakraborty S, Umasankar PK, Preston GM, Khandelwal P, Apodaca G, Watkins SC, Traub LM. A phosphotyrosine switch for cargo sequestration at clathrin-coated buds. J Biol Chem 2014; 289:17497-514. [PMID: 24798335 DOI: 10.1074/jbc.m114.556589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AP-2 clathrin adaptor complex oversees endocytic cargo selection in two parallel but independent manners. First, by physically engaging peptide-based endocytic sorting signals, a subset of clathrin-dependent transmembrane cargo is directly collected into assembling buds. Synchronously, by interacting with an assortment of clathrin-associated sorting proteins (CLASPs) that independently select different integral membrane cargo for inclusion within the incipient bud, AP-2 handles additional cargo capture indirectly. The distal platform subdomain of the AP-2 β2 subunit appendage is a privileged CLASP-binding surface that recognizes a cognate, short α-helical interaction motif. This signal, found in the CLASPs β-arrestin and the autosomal recessive hypercholesterolemia (ARH) protein, docks into an elongated groove on the β2 appendage platform. Tyr-888 is a critical constituent of this spatially confined β2 appendage contact interface and is phosphorylated in numerous high-throughput proteomic studies. We find that a phosphomimetic Y888E substitution does not interfere with incorporation of expressed β2-YFP subunit into AP-2 or alter AP-2 deposition at surface clathrin-coated structures. The Y888E mutation does not affect interactions involving the sandwich subdomain of the β2 appendage, indicating that the mutated appendage is folded and operational. However, the Y888E, but not Y888F, switch selectively uncouples interactions with ARH and β-arrestin. Phyogenetic conservation of Tyr-888 suggests that this residue can reversibly control occupancy of the β2 platform-binding site and, hence, cargo sorting.
Collapse
Affiliation(s)
| | | | | | - Puneet Khandelwal
- the Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Gerard Apodaca
- the Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | | |
Collapse
|
26
|
MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance. J Cell Sci 2013; 125:1621-6. [PMID: 22566665 DOI: 10.1242/jcs.093781] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stacey M MacGrath
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
27
|
Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:E507-16. [PMID: 23341629 DOI: 10.1073/pnas.1212655110] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The microRNA-183/96/182 cluster is highly expressed in the retina and other sensory organs. To uncover its in vivo functions in the retina, we generated a knockout mouse model, designated "miR-183C(GT/GT)," using a gene-trap embryonic stem cell clone. We provide evidence that inactivation of the cluster results in early-onset and progressive synaptic defects of the photoreceptors, leading to abnormalities of scotopic and photopic electroretinograms with decreased b-wave amplitude as the primary defect and progressive retinal degeneration. In addition, inactivation of the miR-183/96/182 cluster resulted in global changes in retinal gene expression, with enrichment of genes important for synaptogenesis, synaptic transmission, photoreceptor morphogenesis, and phototransduction, suggesting that the miR-183/96/182 cluster plays important roles in postnatal functional differentiation and synaptic connectivity of photoreceptors.
Collapse
|
28
|
Tomar A, Lawson C, Ghassemian M, Schlaepfer DD. Cortactin as a target for FAK in the regulation of focal adhesion dynamics. PLoS One 2012; 7:e44041. [PMID: 22952866 PMCID: PMC3430618 DOI: 10.1371/journal.pone.0044041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/01/2012] [Indexed: 01/01/2023] Open
Abstract
Background Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear. Principal Findings Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin. Conclusions Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement.
Collapse
Affiliation(s)
- Alok Tomar
- Moores University of California San Diego Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Christine Lawson
- Moores University of California San Diego Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - David D. Schlaepfer
- Moores University of California San Diego Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
LTP induction translocates cortactin at distant synapses in wild-type but not Fmr1 knock-out mice. J Neurosci 2012; 32:7403-13. [PMID: 22623686 DOI: 10.1523/jneurosci.0968-12.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stabilization of long-term potentiation (LTP) depends on reorganization of the dendritic spine actin cytoskeleton. The present study tested whether this involves activity-driven effects on the actin-regulatory protein cortactin, and whether such effects are disturbed in the Fmr1 knock-out (KO) model of fragile X syndrome, in which stabilization of both actin filaments and LTP is impaired. LTP induced by theta burst stimulation (TBS) in hippocampal slices from wild-type mice was associated with rapid, broadly distributed, and NMDA receptor-dependent decreases in synapse-associated cortactin. The reduction in cortactin content was blocked by blebbistatin, while basal levels were reduced by nocodazole, indicating that cortactin's movements into and away from synapses are regulated by microtubule and actomyosin motors, respectively. These results further suggest that synapse-specific LTP influences cytoskeletal elements at distant connections. The rapid effects of TBS on synaptic cortactin content were absent in Fmr1 KOs as was evidence for activity-driven phosphorylation of the protein or its upstream kinase, ERK1/2. Phosphorylation regulates cortactin's interactions with actin, and coprecipitation of the two proteins was reduced in the KOs. We propose that, in the KOs, excessive basal phosphorylation of ERK1/2 disrupts its interactions with cortactin, thereby blocking the latter protein's use of actomyosin transport systems. These impairments are predicted to compromise the response of the subsynaptic cytoskeleton to learning-related afferent activity, both locally and at distant sites.
Collapse
|
30
|
Zhao J, Wei J, Mialki R, Zou C, Mallampalli RK, Zhao Y. Extracellular signal-regulated kinase (ERK) regulates cortactin ubiquitination and degradation in lung epithelial cells. J Biol Chem 2012; 287:19105-14. [PMID: 22514278 DOI: 10.1074/jbc.m112.339507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cortactin, an actin-binding protein, is essential for cell growth and motility. We have shown that cortactin is regulated by reversible phosphorylation, but little is known regarding cortactin protein stability. Here, we show that lipopolysaccharide (LPS)-induced cortactin degradation is mediated by extracellular regulated signal kinase (ERK). LPS induces cortactin serine phosphorylation, ubiquitination, and degradation in mouse lung epithelia, an effect abrogated by ERK inhibition. Serine phosphorylation sites mutant, cortactin(S405A/S418A), enhances its protein stability. Cortactin is polyubiquitinated and degraded within the proteasome, whereas a cortactin(K79R) mutant exhibited proteolytic stability during cyclohexamide (CHX) or LPS treatment. The E3 ligase subunit β-Trcp interacts with cortactin, and its overexpression reduced cortactin protein levels, an effect attenuated by ERK inhibition. Overexpression of β-Trcp was sufficient to reduce the protective effects of exogenous cortactin on epithelial cell barrier integrity, an effect not observed after expression of a cortactin(K79R) mutant. These results provide evidence that LPS modulation of cortactin stability is coordinately regulated by stress kinases and the ubiquitin-proteasomal network.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
31
|
Cortactin tyrosine phosphorylation promotes its deacetylation and inhibits cell spreading. PLoS One 2012; 7:e33662. [PMID: 22479425 PMCID: PMC3316595 DOI: 10.1371/journal.pone.0033662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/14/2012] [Indexed: 02/03/2023] Open
Abstract
Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading.
Collapse
|
32
|
Catarino T, Ribeiro L, Santos SD, Carvalho AL. Regulation of Synapse Composition by Protein Acetylation: The Role of Acetylated Cortactin. J Cell Sci 2012; 126:149-62. [DOI: 10.1242/jcs.110742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein acetylation affects synaptic plasticity and memory, but its effects on synapse composition have not been addressed. We found that protein acetylation promotes the dendritic clustering of the excitatory postsynaptic scaffold protein PSD95 in hippocampal neurons, without affecting the total levels of this protein. Cortactin, an F-actin-binding protein enriched in dendritic spines, is a substrate for acetylation and has a role in spine morphogenesis. Recent studies showed that cortactin acetylation changes its ability to bind F-actin and regulates cellular motility, but the function of cortactin acetylation in neuronal cells is so far unknown. We tested whether acetylation of cortactin influences its morphogenic function by overexpressing wild-type cortactin, or the mimetic mutants for acetylated or deacetylated cortactin, in hippocampal neurons, and found that cortactin acetylation has an impact on PSD95 clustering, independent from its function as actin dynamics regulator. Moreover, acetylated cortactin can rescue the reduction in PSD95 clustering mediated by knockdown of cortactin. We also found that acetylation of cortactin is correlated with decreased cortactin interaction with p140Cap and Shank1, and with lower cortactin phosphorylation at tyrosine 421. The neurotrophin BDNF promoted the acetylation of cortactin in hippocampal neurons, suggesting that BDNF may regulate excitatory synapses and PSD95 dendritic clustering at least in part by changing the acetylation level of cortactin. Our findings unravel an unsuspected role for cortactin acetylation in the regulation of PSD95 dendritic clustering, which may work in concert with cortactin's role in spine development.
Collapse
|
33
|
Autotaxin induces lung epithelial cell migration through lysoPLD activity-dependent and -independent pathways. Biochem J 2011; 439:45-55. [PMID: 21696367 DOI: 10.1042/bj20110274] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cell migration is a crucial step for re-epithelialization that in turn is essential for remodelling and repair after lung injury. In the present paper we hypothesize that secreted ATX (autotaxin), which exhibits lysoPLD (lysophospholipase D) activity, stimulates lung epithelial cell migration through LPA (lysophosphatidic acid) generation-dependent and -independent pathways. Release of endogenous ATX protein and activity was detected in lung epithelial cell culture medium. ATX with V5 tag overexpressed conditional medium had higher LPA levels compared with control medium and stimulated cell migration through G(αi)-coupled LPA receptors, cytoskeleton rearrangement, phosphorylation of PKC (protein kinase C) δ and cortactin at the leading edge of migrating cells. Inhibition of PKCδ attenuated ATX-V5 overexpressed conditional medium-mediated phosphorylation of cortactin. In addition, a recombinant ATX mutant, lacking lysoPLD activity, or heat-inactived ATX also induced lung epithelial cell migration. Extracelluar ATX bound to the LPA receptor and integrin β4 complex on A549 cell surface. Finally, intratracheal administration of LPS (lipopolysaccharide) into the mouse airway induced ATX release and LPA production in BAL (bronchoalveolar lavage) fluid. These results suggested a significant role for ATX in lung epithelial cell migration and remodelling through its ability to induce LPA production-mediated phosphorylation of PKCδ and cortactin. In addition we also demonstrated association of ATX with the epithelial cell-surface LPA receptor and integrin β4.
Collapse
|
34
|
Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol 2011; 12:49. [PMID: 22078467 PMCID: PMC3245448 DOI: 10.1186/1471-2121-12-49] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/13/2011] [Indexed: 12/13/2022] Open
Abstract
Background Cell migration plays an important role in many physiological and pathological processes, including immune cell chemotaxis and cancer metastasis. It is a coordinated process that involves dynamic changes in the actin cytoskeleton and its interplay with focal adhesions. At the leading edge of a migrating cell, it is the re-arrangement of actin and its attachment to focal adhesions that generates the driving force necessary for movement. However, the mechanisms involved in the attachment of actin filaments to focal adhesions are still not fully understood. Results Signaling by the FAK-Src complex plays a crucial role in regulating the formation of protein complexes at focal adhesions to which the actin filaments are attached. Cortactin, an F-actin associated protein and a substrate of Src kinase, was found to interact with FAK through its SH3 domain and the C-terminal proline-rich regions of FAK. We found that the autophosphorylation of Tyr397 in FAK, which is necessary for FAK activation, was not required for the interaction with cortactin, but was essential for the tyrosine phosphorylation of the associated cortactin. At focal adhesions, cortactin was phosphorylated at tyrosine residues known to be phosphorylated by Src. The tyrosine phosphorylation of cortactin and its ability to associate with the actin cytoskeleton were required in tandem for the regulation of cell motility. Cell motility could be inhibited by truncating the N-terminal F-actin binding domains of cortactin or by blocking tyrosine phosphorylation (Y421/466/475/482F mutation). In addition, the mutant cortactin phosphorylation mimic (Y421/466/475/482E) had a reduced ability to interact with FAK and promoted cell motility. The promotion of cell motility by the cortactin phosphorylation mimic could also be inhibited by truncating its N-terminal F-actin binding domains. Conclusions Our results suggest that cortactin acts as a bridging molecule between actin filaments and focal adhesions. The cortactin N-terminus associates with F-actin, while its C-terminus interacts with focal adhesions. The tyrosine phosphorylation of cortactin by the FAK-Src complex modulates its interaction with FAK and increases its turnover at focal adhesions to promote cell motility.
Collapse
|
35
|
Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA. Revisiting the ERK/Src cortactin switch. Commun Integr Biol 2011; 4:205-7. [PMID: 21655441 DOI: 10.4161/cib.4.2.14420] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
The filamentous (F)-actin regulatory protein cortactin plays an important role in tumor cell movement and invasion by promoting and stabilizing actin related protein (Arp)2/3-mediated actin networks necessary for plasma membrane protrusion. Cortactin is a substrate for ERK1/2 and Src family kinases, with previous in vitro findings demonstrating ERK1/2 phosphorylation of cortactin as a positive and Src phosphorylation as a negative regulatory event in promoting Arp2/3 activation through neuronal Wiskott Aldrich Syndrome protein (N-WASp). Evidence for this regulatory cortactin "switch" in cells has been hampered due to the lack of phosphorylation-specific antibodies that recognize ERK1/2-phosphorylated cortactin. Our findings with phosphorylation-specific antibodies against these ERK1/2 sites (pS405 and pS418) indicate that cortactin can be co-phosphorylated at 405/418 and tyrosine residues targeted by Src family tyrosine kinases. These results indicate that the ERK/Src cortactin switch is not the sole mechanism by which ERK1/2 and tyrosine phosphorylation events regulate cortactin function in cell systems.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Neurobiology and Anatomy; Program in Cancer Cell Biology; Mary Babb Randolph Cancer Center; West Virginia University, Morgantown, WV USA
| | | | | | | | | |
Collapse
|
36
|
Tsunoda K, Oikawa H, Tada H, Tatemichi Y, Muraoka S, Miura S, Shibazaki M, Maeda F, Takahashi K, Akasaka T, Masuda T, Maesawa C. Nucleus accumbens-associated 1 contributes to cortactin deacetylation and augments the migration of melanoma cells. J Invest Dermatol 2011; 131:1710-9. [PMID: 21562571 DOI: 10.1038/jid.2011.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated the prognostic significance and post-transcriptional acetylation-modification of cortactin (CTTN) via the nucleus accumbens-associated 1 (NACC1)-histone deacetylase 6 (HDAC6) deacetylation system in primary melanomas and melanoma cell lines. Overexpression of CTTN protein was observed in 56 (73%) of 77 stage I-IV melanomas, and was significantly correlated with tumor thickness, lymph node metastasis, distant metastasis, and disease outcome. The patients whose tumors exhibited CTTN overexpression had a poorer outcome than patients without this feature (P=0.028, log-rank test). NACC1 and CTTN proteins, but not HDAC6, were overexpressed in four melanoma cell lines in comparison with a primary culture of normal human epidermal melanocytes. Knockdown of both NACC1 and HDAC6 markedly downregulated the migration activity of all melanoma cell lines (P<0.05), and induced a gain of CTTN protein acetylation status. Confocal microscopy showed that hyperacetylation of CTTN modulated by depletion of both NACC1 and HDAC6 induced disappearance of CTTN protein at the leading edge of migrating cells, resulting in stabilization of the focal adhesion structure and development of actin stress fibers. These data suggest that the acetylation status of CTTN modulated by the NACC1-HDAC6 deacetylation system induces acceleration of melanoma cell migration activity via an actin-dependent cellular process, possibly contributing to aggressive behavior (invasion/metastasis) of the melanoma cells.
Collapse
Affiliation(s)
- Kanako Tsunoda
- Division of Bioscience, Department of Tumor Biology, Center for Advanced Medical Science, Morioka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oates CJ, Wen W, Hamilton DW. Role of Titanium Surface Topography and Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts. MATERIALS 2011; 4:893-907. [PMID: 28879956 PMCID: PMC5448591 DOI: 10.3390/ma4050893] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 04/22/2011] [Accepted: 05/05/2011] [Indexed: 11/23/2022]
Abstract
Changes of titanium surface roughness and surface free energy may influence protein absorption that increases cell differentiation through activation of focal adhesion kinase related pathways. However, the influence of titanium surface roughness and hydrophilicity on fibroblast behavior is not well understood. The aim of this study was to investigate the influence of topography and hydrophilicity on fibroblast attachment, spreading, morphology, intracellular signaling, proliferation, and collagen I mRNA levels. Using a cellular FAK knockout (FAK−/−) model and wild-type (WT) controls, we also investigated the contribution of adhesion in fibroblasts cultured on smooth (PT), sand-blasted, large grit, acid-etched (SLA) and hydrophilic SLA topographies. Loss of FAK did not significantly affect fibroblast attachment to any surface, but SLA and hydrophilic SLA surface attenuated spreading of WT cells significantly more than FAK−/− fibroblasts. Both FAK−/− and WT cells formed numerous focal adhesions on PT surfaces, but significantly less on SLA and hydrophilic SLA surfaces. In WT cells, phosphorylation levels of FAK were lower on SLA and hydrophilic SLA in comparison with PT 24 h post seeding. Labeling of cells with antibodies to cortactin showed that FAK−/− cells contained significantly more cortactin-rich focal adhesion in comparison with WT cells on PT surfaces, but not on SLA or hydrophilic SLA. ERK 1/2 phosphorylation was highest in WT cells on all surfaces which correlated with collagen I expression levels. We conclude that fibroblasts are sensitive to changes in surface roughness and hydrophilicity, with adhesive interactions mediated through FAK, an important modulator of fibroblast response.
Collapse
Affiliation(s)
- Christine J Oates
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, N6A 5B9 Ontario, Canada.
| | - Weiyan Wen
- Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Douglas W Hamilton
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, N6A 5B9 Ontario, Canada.
- Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
38
|
Kurklinsky S, Chen J, McNiven MA. Growth cone morphology and spreading are regulated by a dynamin-cortactin complex at point contacts in hippocampal neurons. J Neurochem 2011; 117:48-60. [PMID: 21210813 DOI: 10.1111/j.1471-4159.2011.07169.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal growth cone (GC) migration and targeting are essential processes for the formation of a neural network during embryonic development. Currently, the mechanisms that support directed motility of GCs are not fully defined. The large GTPase dynamin and an interacting actin-binding protein, cortactin, have been localized to GCs, although the function performed by this complex is unclear. We have found that cortactin and the ubiquitous form of dynamin (Dyn) 2 exhibit a striking co-localization at the base of the transition zone of advancing GCs of embryonic hippocampal neurons. Confocal and total internal reflection fluorescence microscopies demonstrate that this basal localization represents point contacts. Exogenous expression of wild-type Dyn2 and cortactin leads to large, exceptionally flat, and static GCs, whereas disrupting this complex has no such effect. We find that excessive GC spreading is induced by Dyn2 and cortactin over-expression and substantial recruitment of the point contact-associated, actin-binding protein α-actinin1 to the ventral GC membrane. The distributions of other point contact proteins such as vinculin or paxillin appear unchanged. Immunoprecipitation experiments show that both Dyn2 and cortactin reside in a complex with α-actinin1. These findings provide new insights into the role of Dyn2 and the actin cytoskeleton in GC adhesion and motility.
Collapse
Affiliation(s)
- Svetlana Kurklinsky
- Mayo Graduate School, The Molecular Neuroscience Program, Rochester, Minnesota, USA
| | | | | |
Collapse
|
39
|
Lerer-Goldshtein T, Bel S, Shpungin S, Pery E, Motro B, Goldstein RS, Bar-Sheshet SI, Breitbart H, Nir U. TMF/ARA160: A key regulator of sperm development. Dev Biol 2010; 348:12-21. [DOI: 10.1016/j.ydbio.2010.07.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 11/28/2022]
|
40
|
Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA. Cortactin phosphorylated by ERK1/2 localizes to sites of dynamic actin regulation and is required for carcinoma lamellipodia persistence. PLoS One 2010; 5:e13847. [PMID: 21079800 PMCID: PMC2973953 DOI: 10.1371/journal.pone.0013847] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/18/2010] [Indexed: 01/06/2023] Open
Abstract
Background Tumor cell motility and invasion is governed by dynamic regulation of the cortical actin cytoskeleton. The actin-binding protein cortactin is commonly upregulated in multiple cancer types and is associated with increased cell migration. Cortactin regulates actin nucleation through the actin related protein (Arp)2/3 complex and stabilizes the cortical actin cytoskeleton. Cortactin is regulated by multiple phosphorylation events, including phosphorylation of S405 and S418 by extracellular regulated kinases (ERK)1/2. ERK1/2 phosphorylation of cortactin has emerged as an important positive regulatory modification, enabling cortactin to bind and activate the Arp2/3 regulator neuronal Wiskott-Aldrich syndrome protein (N-WASp), promoting actin polymerization and enhancing tumor cell movement. Methodology/Principal Findings In this report we have developed phosphorylation-specific antibodies against phosphorylated cortactin S405 and S418 to analyze the subcellular localization of this cortactin form in tumor cells and patient samples by microscopy. We evaluated the interplay between cortactin S405 and S418 phosphorylation with cortactin tyrosine phosphorylation in regulating cortactin conformational forms by Western blotting. Cortactin is simultaneously phosphorylated at S405/418 and Y421 in tumor cells, and through the use of point mutant constructs we determined that serine and tyrosine phosphorylation events lack any co-dependency. Expression of S405/418 phosphorylation-null constructs impaired carcinoma motility and adhesion, and also inhibited lamellipodia persistence monitored by live cell imaging. Conclusions/Significance Cortactin phosphorylated at S405/418 is localized to sites of dynamic actin assembly in tumor cells. Concurrent phosphorylation of cortactin by ERK1/2 and tyrosine kinases enables cells with the ability to regulate actin dynamics through N-WASp and other effector proteins by synchronizing upstream regulatory pathways, confirming cortactin as an important integration point in actin-based signal transduction. Reduced lamellipodia persistence in cells with S405/418A expression identifies an essential motility-based process reliant on ERK1/2 signaling, providing additional understanding as to how this pathway impacts tumor cell migration.
Collapse
Affiliation(s)
- Laura C. Kelley
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Karen E. Hayes
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Amanda Gatesman Ammer
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Karen H. Martin
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Scott A. Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Meenderink LM, Ryzhova LM, Donato DM, Gochberg DF, Kaverina I, Hanks SK. P130Cas Src-binding and substrate domains have distinct roles in sustaining focal adhesion disassembly and promoting cell migration. PLoS One 2010; 5:e13412. [PMID: 20976150 PMCID: PMC2956669 DOI: 10.1371/journal.pone.0013412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/19/2010] [Indexed: 01/17/2023] Open
Abstract
The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas −/− mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation.
Collapse
Affiliation(s)
- Leslie M. Meenderink
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Larisa M. Ryzhova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Dominique M. Donato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Daniel F. Gochberg
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Steven K. Hanks
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bershteyn M, Atwood SX, Woo WM, Li M, Oro AE. MIM and cortactin antagonism regulates ciliogenesis and hedgehog signaling. Dev Cell 2010; 19:270-83. [PMID: 20708589 DOI: 10.1016/j.devcel.2010.07.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 05/28/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
The primary cilium is critical for transducing Sonic hedgehog (Shh) signaling, but the mechanisms of its transient assembly are poorly understood. Previously we showed that the actin regulatory protein Missing-in-Metastasis (MIM) regulates Shh signaling, but the nature of MIM's role was unknown. Here we show that MIM is required at the basal body of mesenchymal cells for cilia maintenance, Shh responsiveness, and de novo hair follicle formation. MIM knockdown results in increased Src kinase activity and subsequent hyperphosphorylation of the actin regulator Cortactin. Importantly, inhibition of Src or depletion of Cortactin compensates for the cilia defect in MIM knockdown cells, whereas overexpression of Src or phospho-mimetic Cortactin is sufficient to inhibit ciliogenesis. Our results suggest that MIM promotes ciliogenesis by antagonizing Src-dependent phosphorylation of Cortactin and describe a mechanism linking regulation of the actin cytoskeleton with ciliogenesis and Shh signaling during tissue regeneration.
Collapse
|
43
|
Oser M, Condeelis J. The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 2010; 108:1252-62. [PMID: 19862699 DOI: 10.1002/jcb.22372] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The actin severing protein cofilin is essential for directed cell migration and chemotaxis, in many cell types and is also important for tumor cell invasion during metastasis. Through its severing activity, cofilin increases the number of free barbed ends to initiate actin polymerization for actin-based protrusion in two distinct subcellular compartments in invasive tumor cells: lamellipodia and invadopodia. Cofilin severing activity is tightly regulated and multiple mechanisms are utilized to regulate cofilin activity. In this prospect, we have grouped the primary on/off regulation into two broad categories, both of which are important for inhibiting cofilin from binding to F-actin or G-actin: (1) Blocking cofilin activity by the binding of cofilin to either PI(4,5)P(2) at lamellipodia, or cortactin at invadopodia. (2) Blocking cofilin's ability to bind to actin via serine phosphorylation. Although the literature suggests that these cofilin regulatory mechanisms may be cell-type dependent, we propose the existence of a common cofilin activity cycle in which both operate. In this common cycle, the mechanism used to initiate cofilin activity is determined by the starting point in the cycle in a given subcellular compartment.
Collapse
Affiliation(s)
- Matthew Oser
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | |
Collapse
|
44
|
Vitale ML, Akpovi CD, Pelletier RM. Cortactin/tyrosine-phosphorylated cortactin interaction with connexin 43 in mouse seminiferous tubules. Microsc Res Tech 2010; 72:856-67. [PMID: 19725064 DOI: 10.1002/jemt.20771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deletion of the cortactin gene leads to male infertility. Considering that cortactin is an actin filament (F-actin)-binding protein associated with intercellular junctions, we measured changes in the expression and distribution of cortactin and tyrosine phosphorylated cortactin (P-cortactin) in the seminiferous epithelium of developing and adult mice to address the physiological significance of cortactin to germ cell differentiation. Cortactin was expressed in neonatal and developing Sertoli cells. Cortactin levels decreased early during puberty, while P-cortactin increased. Cortactin labeling was intense in the basal and apical thirds of the epithelium. Sertoli cell cytoplasmic processes facing spermatogonia, preleptotene spermatocytes, and step 8-13 spermatids were intensely labeled by both cortactin and P-cortactin. In contrast, the middle region of Sertoli cells exhibited diffuse cortactin labeling but no P-cortactin. This is consistent with the view that plasma membrane segments facing germ cells are part of the continuum of Sertoli cell junctional complexes that extend over lateral and apical membranes of supporting cells. Moreover, F-actin and P-cortactin share a common location in the seminiferous epithelium. The increased P-cortactin levels detected during puberty may be related to the modulatory effect of cortactin tyrosine phosphorylation on actin assembly at sites of selected Sertoli cell-germ cell contacts. Cortactin and connexin 43 (Cx43) were physically linked in seminiferous tubule homogenates and their colocalization in the basal and apical thirds of the seminiferous epithelium was stage-dependent. Our results suggest that cortactin-Cx43 interaction helps coordinate formation of cell-to-cell junctions and organization of the subsurface actin cytoskeleton in specific regions of the epithelium.
Collapse
Affiliation(s)
- María Leiza Vitale
- Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
45
|
Bax inhibitor 1 increases cell adhesion through actin polymerization: involvement of calcium and actin binding. Mol Cell Biol 2010; 30:1800-13. [PMID: 20123969 DOI: 10.1128/mcb.01357-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bax inhibitor 1 (BI-1), a transmembrane protein with Ca2+ channel-like activity, has antiapoptotic and anticancer activities. Cells overexpressing BI-1 demonstrated increased cell adhesion. Using a proteomics tool, we found that BI-1 interacted with gamma-actin via leucines 221 and 225 and could control actin polymerization and cell adhesion. Among BI-1-/- cells and cells transfected with BI-1 small interfering RNA (siRNA), levels of actin polymerization and cell adhesion were lower than those among BI-1+/+ cells and cells transfected with nonspecific siRNA. BI-1 acts as a leaky Ca2+ channel, but mutations of the actin binding sites (L221A, L225A, and L221A/L225A) did not change intra-endoplasmic reticulum Ca2+, although deleting the C-terminal motif (EKDKKKEKK) did. However, store-operated Ca2+ entry (SOCE) is activated in cells expressing BI-1 but not in cells expressing actin binding site mutants, even those with the intact C-terminal motif. Consistently, actin polymerization and cell adhesion were inhibited among all the mutant cells. Compared to BI-1+/+ cells, BI-1-/- cells inhibited SOCE, actin polymerization, and cell adhesion. Endogenous BI-1 knockdown cells showed a similar pattern. The C-terminal peptide of BI-1 (LMMLILAMNRKDKKKEKK) polymerized actin even after the deletion of four or six charged C-terminal residues. This indicates that the actin binding site containing L221 to D231 of BI-1 is responsible for actin interaction and that the C-terminal motif has only a supporting role. The intact C-terminal peptide also bundled actin and increased cell adhesion. The results of experiments with whole recombinant BI-1 reconstituted in membranes also coincide well with the results obtained with peptides. In summary, BI-1 increased actin polymerization and cell adhesion through Ca2+ regulation and actin interaction.
Collapse
|
46
|
Yamada H, Abe T, Li SA, Masuoka Y, Isoda M, Watanabe M, Nasu Y, Kumon H, Asai A, Takei K. Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochem Biophys Res Commun 2009; 390:1142-8. [PMID: 19857461 DOI: 10.1016/j.bbrc.2009.10.105] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 11/17/2022]
Abstract
Dynamic remodeling of actin filaments are bases for a variety of cellular events including cell motility and cancer invasion, and the regulation of actin dynamics implies dynamin, well characterized endocytotic protein. Here we report that dynasore, a inhibitor of dynamin GTPase, potently destabilizes F-actin in vitro, and it severely inhibits the formation of pseudopodia and cancer cell invasion, both of which are supported by active F-actin formation. Dynasore rapidly disrupted F-actin formed in brain cytosol in vitro, and the dynasore's effect on F-actin was indirect. Dynasore significantly suppressed serum-induced lamellipodia formation in U2OS cell. Dynasore also destabilized F-actin in resting cells, which caused the retraction of the plasma membrane. A certain amount of dynamin 2 in U2OS cells localized along F-actin, and co-localized with cortactin, a physiological binding partner of dynamin and F-actin. However, these associations of dynamin were partially disrupted by dynasore treatment. Furthermore, invasion activity of H1080 cell, a lung cancer cell line, was suppressed by approximately 40% with dynasore treatment. These results strongly suggest that dynasore potently destabilizes F-actin, and the effect implies dynamin. Dynasore or its derivative would be suitable candidates as potent anti-cancer drugs.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lai FPL, Szczodrak M, Oelkers JM, Ladwein M, Acconcia F, Benesch S, Auinger S, Faix J, Small JV, Polo S, Stradal TEB, Rottner K. Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol Biol Cell 2009; 20:3209-23. [PMID: 19458196 DOI: 10.1091/mbc.e08-12-1180] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here, we report the conditional genetic disruption of murine cortactin, implicated previously in dynamic actin reorganizations driving lamellipodium protrusion and endocytosis. Unexpectedly, cortactin-deficient cells showed little changes in overall cell morphology and growth. Ultrastructural analyses and live-cell imaging studies revealed unimpaired lamellipodial architecture, Rac-induced protrusion, and actin network turnover, although actin assembly rates in the lamellipodium were modestly increased. In contrast, platelet-derived growth factor-induced actin reorganization and Rac activation were impaired in cortactin null cells. In addition, cortactin deficiency caused reduction of Cdc42 activity and defects in random and directed cell migration. Reduced migration of cortactin null cells could be restored, at least in part, by active Rac and Cdc42 variants. Finally, cortactin removal did not affect the efficiency of receptor-mediated endocytosis. Together, we conclude that cortactin is fully dispensable for Arp2/3-complex activation during lamellipodia protrusion or clathrin pit endocytosis. Furthermore, we propose that cortactin promotes cell migration indirectly, through contributing to activation of selected Rho-GTPases.
Collapse
Affiliation(s)
- Frank P L Lai
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nieto-Pelegrin E, Martinez-Quiles N. Distinct phosphorylation requirements regulate cortactin activation by TirEPEC and its binding to N-WASP. Cell Commun Signal 2009; 7:11. [PMID: 19419567 PMCID: PMC2686683 DOI: 10.1186/1478-811x-7-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/06/2009] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes (e.g. cell migration, membrane trafficking, invadopodia formation etc.). Moreover, it was called the Achilles' heel of the actin cytoskeleton because many pathogens hijack signals that converge on this oncogenic scaffolding protein. Cortactin is able to modulate N-WASP activation in vitro in a phosphorylation-dependent fashion. Thus Erk-phosphorylated cortactin is efficient in activating N-WASP through its SH3 domain, while Src-phosphorylated cortactin is not. This could represent a switch on/off mechanism controlling the coordinated action of both nucleator promoting factors (NPFs). Pedestal formation by enteropathogenic Escherichia coli (EPEC) requires N-WASP activation. N-WASP is recruited by the cell adapter Nck which binds a major tyrosine-phosphorylated site of a bacterial injected effector, Tir (translocated intimin receptor). Tir-Nck-N-WASP axis defines the current major pathway to actin polymerization on pedestals. In addition, it was recently reported that EPEC induces tyrosine phosphorylation of cortactin. RESULTS Here we demonstrate that cortactin phosphorylation is absent on N-WASP deficient cells, but is recovered by re-expression of N-WASP. We used purified recombinant cortactin and Tir proteins to demonstrate a direct interaction of both that promoted Arp2/3 complex-mediated actin polymerization in vitro, independently of cortactin phosphorylation. CONCLUSION We propose that cortactin binds Tir through its N-terminal part in a tyrosine and serine phosphorylation independent manner while SH3 domain binding and activation of N-WASP is regulated by tyrosine and serine mediated phosphorylation of cortactin. Therefore cortactin could act on Tir-Nck-N-WASP pathway and control a possible cycling activity of N-WASP underlying pedestal formation.
Collapse
Affiliation(s)
- Elvira Nieto-Pelegrin
- Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | | |
Collapse
|