1
|
Sun L, Gao M, Yang GY, Lu FT, Liang ZJ, Guo KM, Lv XF, Du YH, Liang SJ, Tang YB, Zhou JG, Guan YY, Ma MM. ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction. Life Sci 2025; 362:123342. [PMID: 39740756 DOI: 10.1016/j.lfs.2024.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
AIMS Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl- channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function. MATERIALS AND METHODS In this study, we used mice with a knockout of the Clcn5 gene encoding ClC-5 protein globally or specifically in vascular endothelium. KEY FINDINGS ClC-5 knockout globally or specifically in vascular endothelium mitigates the elevation of mean blood pressure and impairment of endothelial dysfunction induced by Angiotensin II. This effect is mediated by the reversal of the impairment of NO production after the stimulation of the Akt/endothelial nitric oxide synthase (eNOS) signal pathway. Application of a low Cl- extracellular solution onto endothelial cells stimulates a ClC-5-dependent current and lowered intracellular Cl- concentration, which activates with-no-lysine (K)-1 (WNK1), a Cl--sensitive kinase. Silencing ClC-5 or WNK1 expression rescues the impairment of endothelial NO production induced by a low Cl- solution. In contrast, overexpression of ClC-5 or WNK1 led to the opposite results. WNK1, found to be associated with Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI), increases RhoA activity, and thereby inhibits the endothelial Akt/eNOS signaling pathway. SIGNIFICANCE ClC-5 knockout mitigates Ang II-induced hypertension and endothelial dysfunction by promoting NO production via regulating WNK1/RhoA/Akt/eNOS signaling pathway. The results may be useful for developing novel treatments of endothelial dysfunction associated-diseases.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Min Gao
- Department of Pharmacy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Gui-Yong Yang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Feng-Ting Lu
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhu-Jun Liang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yan-Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Jia Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yu-Bo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ming-Ming Ma
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Piatek K, Gushchina V, Kleinwächter A, Kupper N, Mesteri I, Elajnaf T, Iamartino L, Salzmann M, Müller C, Manhardt T, Vlasaty A, Kallay E, Schepelmann M. Targeting the Calcium-Sensing Receptor in Chemically Induced Medium-Grade Colitis in Female BALB/C Mice. Nutrients 2024; 16:4362. [PMID: 39770982 PMCID: PMC11679268 DOI: 10.3390/nu16244362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES The extracellular calcium-sensing receptor (CaSR) is a multifunctional receptor proposed as a possible drug target for inflammatory bowel disease. We showed previously that CaSR inhibition with NPS 2143, a negative allosteric modulator of the CaSR, somewhat ameliorated the symptoms of chemically induced severe colitis in mice. However, it was unclear whether the potential of CaSR inhibition to reduce colitis may have been overshadowed by the severity of the induced inflammation in our previous study. Therefore, we tested if CaSR inhibition could prevent medium-grade colitis. METHODS Female BALB/c mice were treated with NPS 2143 or a vehicle prior to the induction of colitis with 2.5% DSS. On the day of sacrifice, colons and plasma were collected. The histology score was determined based on hematoxylin-eosin-stained sections. Mucin content, proliferation (Ki67), and immune cell infiltration (CD3 and CD20) were quantified based on immunostainings. Gene expression was measured by RT-qPCR. RESULTS Treatment with NPS 2143 had no effect on the clinical symptom score of the mice. However, the colons of the mice in the treated group were significantly longer (p < 0.05), and NPS 2143 significantly reduced colon ulceration (p < 0.05). The treatment also significantly reduced the expression of COX2 in the proximal colon and IL-22 in the distal colon. The proliferation of cells in the lymph nodes was significantly lower after the treatment, but no difference was observed in the epithelial cells. CONCLUSIONS In summary, while NPS 2143 had an anti-inflammatory effect on medium-grade colitis, this effect appeared to be milder than in severe colitis, as observed previously, indicating that the effectiveness of CaSR inhibition as an anti-inflammatory measure in the colon is proportional to disease severity.
Collapse
Affiliation(s)
- Karina Piatek
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Valeriya Gushchina
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Ava Kleinwächter
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Nadja Kupper
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | | | - Taha Elajnaf
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
- Nuffield Department of Women’s and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Luca Iamartino
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Martina Salzmann
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Christian Müller
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Teresa Manhardt
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Andrea Vlasaty
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Enikö Kallay
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Martin Schepelmann
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| |
Collapse
|
3
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Nie A, Zhang S, Cai M, Yu L, Li J, Su X. Incidence and associated factors for hypotension during continuous renal replacement therapy in critically ill patients. Int J Nurs Pract 2024:e13296. [PMID: 39075855 DOI: 10.1111/ijn.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
AIMS This work aimed to analyse retrospective data on hypotension incidence and associated factors among patients requiring continuous renal replacement therapy. BACKGROUND The incidence and risk factors of continuous renal replacement therapy-related hypotension have not been adequately explored. DESIGN The study was designed as a retrospective analysis. METHODS Patients who required continuous renal replacement therapy in the ICU between January 2017 and June 2021 were reviewed. The multivariate logistic regression model was used to determine the associated factors of hypotension. RESULTS Hypotension occurred in 242 out of 885 circuits (27.3%) among 140 patients. The logistic regression analysis identified seven factors associated with the occurrence of hypotension during CRRT: serum albumin (OR = 0.969, 95%CI: 0.934-0.999), serum calcium (OR = 0.514, 95%CI: 0.345-0.905), CO2CP (OR = 0.933, 95%CI: 0.897-0.971), use of vasopressors (OR = 5.731, 95%CI: 4.023-8.165), hypotension before CRRT initiation (OR = 2.779, 95%CI:1.238-6.242), age (OR = 1.016, 95%CI: 1.005-1.027), and fluid removal rate (OR = 1.002, 95%CI: 1.001-1.003). CONCLUSIONS Hypotension frequently occurs in patients receiving continuous renal replacement therapy, especially in the early stages. Multiple factors can be associated with cardiac output or peripheral resistance changes, including excessive ultrafiltration, vasopressors, serum albumin and serum calcium levels, and carbon dioxide combining power.
Collapse
Affiliation(s)
- Anliu Nie
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuzeng Zhang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingju Cai
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Limei Yu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangfen Su
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Klein GL. Phosphate as an adjunct to calcium in promoting coronary vascular calcification in chronic inflammatory states. eLife 2024; 13:e91808. [PMID: 38864841 PMCID: PMC11168742 DOI: 10.7554/elife.91808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Bone releases calcium and phosphate in response to pro-inflammatory cytokine-mediated inflammation. The body develops impaired urinary excretion of phosphate with age and chronic inflammation given the reduction of the kidney protein Klotho, which is essential to phosphate excretion. Phosphate may also play a role in the development of the resistance of the parathyroid calcium-sensing receptor (CaSR) to circulating calcium thus contributing to calcium retention in the circulation. Phosphate can contribute to vascular smooth muscle dedifferentiation with manifestation of osteoblastogenesis and ultimately endovascular calcium phosphate precipitation. Thus phosphate, along with calcium, contributes to the calcification and inflammation of atherosclerotic plaques and the origin of these elements is likely the bone, which serves as storage for the majority of the body's supply of extracellular calcium and phosphate. Early cardiac evaluation of patients with chronic inflammation and attempts at up-regulating the parathyroid CaSR with calcimimetics or introducing earlier anti-resorptive treatment with bone active pharmacologic agents may serve to delay onset or reduce the quantity of atherosclerotic plaque calcification in these patients.
Collapse
Affiliation(s)
- Gordon L Klein
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical BranchGalvestonUnited States
| |
Collapse
|
6
|
Carlton‐Carew SRE, Greenberg HZE, Greenwood IA, Albert AP. Stimulation of the calcium-sensing receptor induces relaxations through CGRP and NK1 receptor-mediated pathways in male rat mesenteric arteries. Physiol Rep 2024; 12:e16125. [PMID: 39031618 PMCID: PMC11189779 DOI: 10.14814/phy2.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024] Open
Abstract
Stimulation of the calcium-sensing receptor (CaSR) regulates vascular contractility, but cellular mechanisms involved remain unclear. This study investigated the role of perivascular sensory nerves in CaSR-induced relaxations of male rat mesenteric arteries. In fluorescence studies, colocalisation between synaptophysin, a synaptic vesicle marker, and the CaSR was present in the adventitial layer of arterial segments. Using wire myography, increasing external Ca2+ concentration ([Ca2+]o) from 1 to 10 mM induced vasorelaxations, previously shown to involve the CaSR, which were inhibited by pretreatment with capsaicin. [Ca2+]o-induced vasorelaxations were partially reduced by the calcitonin gene-related peptide (CGRP) receptor blockers, CGRP 8-37 and BIBN 4096, and the neurokinin 1 (NK1) receptor blocker L733,060. The inhibitory effect of CGRP 8-37 required a functional endothelium whereas the inhibitory action of L733,060 did not. Complete inhibition of [Ca2+]o-induced vasorelaxations occurred when CGRP 8-37 and L733,060 were applied together. [Ca2+]o-induced vasorelaxations in the presence of capsaicin were abolished by the ATP-dependent K+ channel (KATP) blocker PNU 37883, but unaffected by the endothelium nitric oxide synthase (eNOS) inhibitor L-NAME. We suggest that the CaSR on perivascular sensory nerves mediate relaxations in rat mesenteric arteries via endothelium-dependent and -independent mechanisms involving CGRP and NK1 receptor-activated NO production and KATP channels, respectively.
Collapse
Affiliation(s)
| | - Harry Z. E. Greenberg
- Vascular Biology Section, Cardiovascular & Genomics Research InstituteSt. George's, University of LondonLondonUK
| | - Iain A. Greenwood
- Vascular Biology Section, Cardiovascular & Genomics Research InstituteSt. George's, University of LondonLondonUK
| | - Anthony P. Albert
- Vascular Biology Section, Cardiovascular & Genomics Research InstituteSt. George's, University of LondonLondonUK
| |
Collapse
|
7
|
Carlton‐Carew SRE, Greenberg HZE, Connor EJ, Zadeh P, Greenwood IA, Albert AP. Stimulation of the calcium-sensing receptor induces relaxations of rat mesenteric arteries by endothelium-dependent and -independent pathways via BK Ca and K ATP channels. Physiol Rep 2024; 12:e15926. [PMID: 38281732 PMCID: PMC10822715 DOI: 10.14814/phy2.15926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
Stimulation of the calcium-sensing receptor (CaSR) induces both vasoconstrictions and vasorelaxations but underlying cellular processes remain unclear. This study investigates expression and effect of stimulating the CaSR by increasing external Ca2+ concentration ([Ca2+ ]o ) on contractility of rat mesenteric arteries. Immunofluorescence studies showed expression of the CaSR in perivascular nerves, vascular smooth muscle cells (VSMCs), and vascular endothelium cells. Using wire myography, increasing [Ca2+ ]o from 1 to 10 mM induced vasorelaxations which were inhibited by the calcilytic Calhex-231 and partially dependent on a functional endothelium. [Ca2+ ]o -induced vasorelaxations were reduced by endothelial NO synthase (eNOS, L-NAME) and large conductance Ca2+ -activated K+ channels (BKCa , iberiotoxin), with their inhibitory action requiring a functional endothelium. [Ca2+ ]o -induced vasorelaxations were also markedly inhibited by an ATP-dependent K+ channel (KATP ) blocker (PNU37883), which did not require a functional endothelium to produce its inhibitory action. Inhibitor studies also suggested contributory roles for inward rectifying K+ channels (Kir ), Kv7 channels, and small conductance Ca2+ -activated K+ channels (SKCa ) on [Ca2+ ]o -induced vasorelaxations. These findings indicate that stimulation of the CaSR mediates vasorelaxations involving multiple pathways, including an endothelium-dependent pathway involving NO production and activation of BKCa channels and an endothelium-independent pathway involving stimulation of KATP channels.
Collapse
Affiliation(s)
- Simonette R. E. Carlton‐Carew
- Vascular Biology Research Section, Molecular & Clinical Sciences Research InstituteSt. George's University of LondonLondonUK
| | - Harry Z. E. Greenberg
- Vascular Biology Research Section, Molecular & Clinical Sciences Research InstituteSt. George's University of LondonLondonUK
| | - Eleanor J. Connor
- Vascular Biology Research Section, Molecular & Clinical Sciences Research InstituteSt. George's University of LondonLondonUK
| | - Pooneh Zadeh
- Vascular Biology Research Section, Molecular & Clinical Sciences Research InstituteSt. George's University of LondonLondonUK
| | - Iain A. Greenwood
- Vascular Biology Research Section, Molecular & Clinical Sciences Research InstituteSt. George's University of LondonLondonUK
| | - Anthony P. Albert
- Vascular Biology Research Section, Molecular & Clinical Sciences Research InstituteSt. George's University of LondonLondonUK
| |
Collapse
|
8
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Ranieri M, Schepelmann M, Valenti G, Kallay E, Riccardi D. Editorial: The calcium-sensing receptor: from physiology to pharmacology. Front Physiol 2023; 14:1225074. [PMID: 37346486 PMCID: PMC10280635 DOI: 10.3389/fphys.2023.1225074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martin Schepelmann
- Intitute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Enikö Kallay
- Intitute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Gencer S, van der Vorst EPC. Role of G-Protein-Coupled Receptors in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24097760. [PMID: 37175466 PMCID: PMC10178043 DOI: 10.3390/ijms24097760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Cardiovascular diseases (CVDs), such as ischemic heart disease and stroke, are recognized as major causes of deaths worldwide [...].
Collapse
Affiliation(s)
- Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- Altos Labs, Inc., Redwood City, CA 94065, USA
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
11
|
Gushchina V, Kupper N, Schwarzkopf M, Frisch G, Piatek K, Aigner C, Michel A, Schueffl H, Iamartino L, Elajnaf T, Manhardt T, Vlasaty A, Heffeter P, Bassetto M, Kállay E, Schepelmann M. The calcium-sensing receptor modulates the prostaglandin E 2 pathway in intestinal inflammation. Front Pharmacol 2023; 14:1151144. [PMID: 37153788 PMCID: PMC10157649 DOI: 10.3389/fphar.2023.1151144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: The prostaglandin E2 (PGE2) pathway is one of the main mediators of intestinal inflammation. As activation of the calcium-sensing receptor (CaSR) induces expression of inflammatory markers in the colon, we assessed the impact of the CaSR on the PGE2 pathway regulation in colon cancer cells and the colon in vitro and in vivo. Methods and Results: We treated CaSR-transfected HT29 and Caco-2 colon cancer cell lines with different orthosteric ligands or modulators of the CaSR and measured gene expression and PGE2 levels. In CaSR-transfected HT29CaSR-GFP and Caco-2CaSR-GFP cells, the orthosteric CaSR ligand spermine and the positive allosteric CaSR modulator NPS R-568 both induced an inflammatory state as measured by IL-8 gene expression and significantly increased the expression of the PGE2 pathway key enzymes cyclooxygenase (COX)-2 and/or prostaglandin E2 synthase 1 (PGES-1). Inhibition of the CaSR with the calcilytic NPS 2143 abolished the spermine- and NPS R-568-induced pro-inflammatory response. Interestingly, we observed cell-line specific responses as e.g. PGES-1 expression was affected only in HT29CaSR-GFP but not in Caco-2CaSR-GFP cells. Other genes involved in the PGE2 pathway (COX-1, or the PGE2 receptors) were not responsive to the treatment. None of the studied genes were affected by any CaSR agonist in GFP-only transfected HT29GFP and Caco-2GFP cells, indicating that the observed gene-inducing effects of spermine and R-568 were indeed mediated by the CaSR. In vivo, we had previously determined that treatment with the clinically approved calcimimetic cinacalcet worsened symptoms in a dextran sulfate sodium (DSS)-induced colitis mouse model. In the colons of these mice, cinacalcet significantly induced gene expression of PGES-2 and the EP3 receptor, but not COX-2; while NPS 2143 increased the expression of the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Importantly, neither treatment had any effect on the colons of non-DSS treated mice. Discussion: Overall, we show that activation of the CaSR induces the PGE2 pathway, albeit with differing effects in vitro and in vivo. This may be due to the different microenvironment in vivo compared to in vitro, specifically the presence of a CaSR-responsive immune system. Since calcilytics inhibit ligand-mediated CaSR signaling, they may be considered for novel therapies against inflammatory bowel disease.
Collapse
Affiliation(s)
- Valeriya Gushchina
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadja Kupper
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Schwarzkopf
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gitta Frisch
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karina Piatek
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cornelia Aigner
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Michel
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Luca Iamartino
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- SiSaf Ltd, Guildford, United Kingdom
| | - Taha Elajnaf
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Nuffield Department of Women’s and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Teresa Manhardt
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andrea Vlasaty
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Enikö Kállay
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Schepelmann
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Yildiz AB, Vehbi S, Covic A, Burlacu A, Covic A, Kanbay M. An update review on hemodynamic instability in renal replacement therapy patients. Int Urol Nephrol 2023; 55:929-942. [PMID: 36308664 DOI: 10.1007/s11255-022-03389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hemodynamic instability in patients undergoing kidney replacement therapy (KRT) is one of the most common and essential factors influencing mortality, morbidity, and the quality of life in this patient population. METHOD Decreased cardiac preload, reduced systemic vascular resistance, redistribution of fluids, fluid overload, inflammatory factors, and changes in plasma osmolality have all been implicated in the pathophysiology of hemodynamic instability associated with KRT. RESULT A cascade of these detrimental mechanisms may ultimately cause intra-dialytic hypotension, reduced tissue perfusion, and impaired kidney rehabilitation. Multiple parameters, including dialysate composition, temperature, posture during dialysis sessions, physical activity, fluid administrations, dialysis timing, and specific pharmacologic agents, have been studied as possible management modalities. Nevertheless, a clear consensus is not reached. CONCLUSION This review includes a thorough investigation of the literature on hemodynamic instability in KRT patients, providing insight on interventions that may potentially minimize factors leading to hemodynamic instability.
Collapse
Affiliation(s)
- Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezan Vehbi
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Alexandru Burlacu
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010, Istanbul, Turkey.
| |
Collapse
|
13
|
Little R, Murali SK, Poulsen SB, Grimm PR, Assmus A, Cheng L, Ivy JR, Hoorn EJ, Matchkov V, Welling PA, Fenton RA. Dissociation of sodium-chloride cotransporter expression and blood pressure during chronic high dietary potassium supplementation. JCI Insight 2023; 8:156437. [PMID: 36719746 PMCID: PMC10077486 DOI: 10.1172/jci.insight.156437] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.
Collapse
Affiliation(s)
- Robert Little
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Paul R Grimm
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Paul A Welling
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Kuo FY, Lee SP, Cheng JT, Wu MC. The direct effect of lipopolysaccharide on an isolated heart is different from the effect on cardiac myocytes in vitro. Arch Med Sci 2023; 19:216-228. [PMID: 36817673 PMCID: PMC9897085 DOI: 10.5114/aoms.2019.86976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is widely used to induce experimental animals. However, its effects on cardiac contraction is controversial. Although LPS probably induces its influence in vivo both directly and indirectly, we focused on the direct effects of LPS in this report. MATERIAL AND METHODS Isolated ventricular myocytes mounted on a Langendorff apparatus were perfused with LPS. The changes in cultured H9c2 cells incubated with LPS over a 3-h exposure were compared with the changes after a 24-h incubation. Apoptosis was identified using flow cytometry and Western blotting. The mRNA levels were also determined. RESULTS LPS directly stimulated cardiac contractility at low doses, although it produced inhibition at higher doses. The TLR4-coupled JAK2/STAT3 pathway was identified in H9c2 cells after LPS treatment, with an increase in intracellular calcium levels. LPS dose-dependently activated hypertrophic signals in H9c2 cells and induced apoptosis at the high dose. However, apoptosis was observed in H9c2 cells after a 24-h exposure to LPS, even at low doses. This observation appears to be associated with the level of paracrine cytokines. Changes in H9c2 cells by LPS were diminished by NPS2390, an inhibitor of the calcium-sensing receptor (CaSR). LPS also promoted CaSR mRNA expression in H9c2 cells, which may be unrelated to the changes in cytokine expression influenced by an inflammasome inhibitor. CONCLUSIONS In contrast to the isolated hearts, LPS activated hypertrophic signals prior to apoptotic signals in cardiac cells. Thus, LPS injury appears to be associated with CaSR, which was not markedly influenced by an inflammasome inhibitor.
Collapse
Affiliation(s)
- Feng Yu Kuo
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Cardiovascular Centre, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shu Ping Lee
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Centre, Tainan, Taiwan
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
15
|
Iamartino L, Brandi ML. The calcium-sensing receptor in inflammation: Recent updates. Front Physiol 2022; 13:1059369. [PMID: 36467702 PMCID: PMC9716066 DOI: 10.3389/fphys.2022.1059369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
The Calcium-Sensing Receptor (CaSR) is a member of the class C of G-proteins coupled receptors (GPCRs), it plays a pivotal role in calcium homeostasis by directly controlling calcium excretion in the kidneys and indirectly by regulating parathyroid hormone (PTH) release from the parathyroid glands. The CaSR is found to be ubiquitously expressed in the body, playing a plethora of additional functions spanning from fluid secretion, insulin release, neuronal development, vessel tone to cell proliferation and apoptosis, to name but a few. The present review aims to elucidate and clarify the emerging regulatory effects that the CaSR plays in inflammation in several tissues, where it mostly promotes pro-inflammatory responses, with the exception of the large intestine, where contradictory roles have been recently reported. The CaSR has been found to be expressed even in immune cells, where it stimulates immune response and chemokinesis. On the other hand, CaSR expression seems to be boosted under inflammatory stimulus, in particular, by pro-inflammatory cytokines. Because of this, the CaSR has been addressed as a key factor responsible for hypocalcemia and low levels of PTH that are commonly found in critically ill patients under sepsis or after burn injury. Moreover, the CaSR has been found to be implicated in autoimmune-hypoparathyroidism, recently found also in patients treated with immune-checkpoint inhibitors. Given the tight bound between the CaSR, calcium and vitamin D metabolism, we also speculate about their roles in the pathogenesis of severe acute respiratory syndrome coronavirus-19 (SARS-COVID-19) infection and their impact on patients' prognosis. We will further explore the therapeutic potential of pharmacological targeting of the CaSR for the treatment and management of aberrant inflammatory responses.
Collapse
Affiliation(s)
- Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
16
|
Calcium-Sensing Receptor (CaSR)-Mediated Intracellular Communication in Cardiovascular Diseases. Cells 2022; 11:cells11193075. [PMID: 36231037 PMCID: PMC9562006 DOI: 10.3390/cells11193075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR), is a cell-surface-located receptor that can induce highly diffusible messengers (IP3, Ca2+, cAMP) in the cytoplasm to activate various cellular responses. Recently, it has also been suggested that the CaSR mediates the intracellular communications between the endoplasmic reticulum (ER), mitochondria, nucleus, protease/proteasome, and autophagy-lysosome, which are involved in related cardiovascular diseases. The complex intracellular signaling of this receptor challenges it as a valuable therapeutic target. It is, therefore, necessary to understand the mechanisms behind the signaling characteristics of this receptor in intracellular communication. This review provides an overview of the recent research progress on the various regulatory mechanisms of the CaSR in related cardiovascular diseases and the heart-kidney interaction; the associated common causes are also discussed.
Collapse
|
17
|
Zhang X, Liu L, Liu D, Li Y, He J, Shen L. 17β-Estradiol promotes angiogenesis of bone marrow mesenchymal stem cells by upregulating the PI3K-Akt signaling pathway. Comput Struct Biotechnol J 2022; 20:3864-3873. [PMID: 35891776 PMCID: PMC9309573 DOI: 10.1016/j.csbj.2022.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022] Open
Abstract
The role and mechanism of 17β -estradiol in the regulation of BMSC promoting angiogenesis were analyzed by bioinformatics techniques for the first time. Combined with FN1, MCM2, XPO1, NTRK1 and other proteins, 17β-estradiol is able to activate PI3K-Akt, MAPK and other signaling pathways to regulate BMSCs to promote or remodel angiogenesis. 17β-estradiol upregulates the PI3K-Akt signaling pathway to promote the BMSC angiogenesis process of differentiation.
Objective Estrogen is an important hormone affecting angiogenesis in women and is important for female physical development. Menopausal women are prone to serious cardiovascular and cerebrovascular diseases when estrogen is significantly reduced. Bone marrow mesenchymal stem cells (BMSC) have potential roles in processes such as angiogenesis and remodeling. This study is to investigate the effect of 17β-estradiol on BMSC angiogenic differentiation and its underlying molecular mechanism, and to provide a basis for the treatment of microvascular diseases. Methods Enrichment analysis of apoptosis, migration or angiogenesis processes and molecular mechanisms of BMSC treated with 17β-estradiol was performed to screen core proteins and perform molecular docking validation. Human MSCs were cultured in vitro to examine the effect of 17β-estradiol on BMSC migration or angiogenic differentiation. Results 17β-estradiol acted on 48 targets of BMSC and was involved in regulating 52 cell migration processes or 17 angiogenesis processes through 66 KEGG pathways such as PI3K-Akt, MAPK, etc. 17β-estradiol bound tightly to 10 core proteins including APP, NTRK1, EGFR, and HSP90AA1. 17β-estradiol promoted cell scratch area closure rate and CD31 expression in BMSCs, downregulated BMSC apoptosis rate, and promoted Akt and p-Akt protein expression in BMSC. Conclusion 17β-estradiol binds to FN1, MCM2, XPO1, NTRK1 and other proteins to initiate PI3K-Akt, MAPK and other signaling pathways, so as to regulate BMSC to promote or remodel angiogenesis, verifying that 17β-estradiol up-regulates PI3K-Akt signaling pathway to promote BMSC angiogenic differentiation.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| | - Ligang Liu
- Department of Pharmacy, University of Nebraska Medical Center, Nebraska, USA
| | - Danyang Liu
- Department of Histology and Embryology, Qiqihar Medical College, Qiqihar, China
| | - Yongtao Li
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| | - Jun He
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
18
|
Why Does Inflammation Result in Resorptive Bone Loss? What the Study of Burns Teaches Us. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Burn injury serves as an example of a condition with a robust systemic inflammatory response. The elevation of circulating interleukins (IL)-1β and -6 in children and adolescents with severe burn injury upregulates the parathyroid calcium-sensing receptor (CaSR), resulting in hypocalcemic hypoparathyroidism accompanied by urinary calcium wasting. This effect protects the body from the hypercalcemia that results from bone resorption, liberating calcium into the circulation. Extracellular calcium can exacerbate and prolong the inflammatory response by stimulating mononuclear cell chemokine production as well as the NLRP3 inflammasome of the innate immune system, resulting in increased IL-1 production by monocytes and macrophages. Interestingly, the CaSR upregulation in response to inflammatory cytokines disappears with age, potentially trapping calcium from bone resorption in the circulation, allowing it to contribute to increased inflammation and possibly increased calcium deposition in small arteries, such as the coronaries, as conditions with increased chronic inflammation, such as spinal cord injury, osteoarthritis, and rheumatoid arthritis have an incidence of cardiovascular disease and coronary artery calcium deposition significantly higher than the unaffected age-matched population.
Collapse
|
19
|
Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7851-7870. [PMID: 35727887 DOI: 10.1021/acs.jafc.2c01712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Glutamyl peptides (γ-GPs) are a group of peptides naturally found in various food sources. The unique γ-bond potentially enables them to resist gastrointestinal digestion and offers high stability in vivo with a longer half-life. In recent years, these peptides have caught researchers' attention due to their ability to impart kokumi taste and elicit various physiological functions via the allosteric activation of the calcium-sensing receptor (CaSR). This review discusses the various food sources of γ-glutamyl peptides, different synthesis modes, allosteric activation of CaSR for taste perception, and associated multiple biological functions they can exhibit, with a special emphasis on their role in modulating chronic inflammation concerning cardiovascular health.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
20
|
Schepelmann M, Ranieri M, Lopez-Fernandez I, Webberley TS, Brennan SC, Yarova PL, Graca J, Hanif UK, Müller C, Manhardt T, Salzmann M, Quasnichka H, Price SA, Ward DT, Gilbert T, Matchkov VV, Fenton RA, Herberger A, Hwong J, Santa Maria C, Tu CL, Kallay E, Valenti G, Chang W, Riccardi D. Impaired Mineral Ion Metabolism in a Mouse Model of Targeted Calcium-Sensing Receptor (CaSR) Deletion from Vascular Smooth Muscle Cells. J Am Soc Nephrol 2022; 33:1323-1340. [PMID: 35581010 PMCID: PMC9257819 DOI: 10.1681/asn.2021040585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/07/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Impaired mineral ion metabolism is a hallmark of CKD-metabolic bone disorder. It can lead to pathologic vascular calcification and is associated with an increased risk of cardiovascular mortality. Loss of calcium-sensing receptor (CaSR) expression in vascular smooth muscle cells exacerbates vascular calcification in vitro. Conversely, vascular calcification can be reduced by calcimimetics, which function as allosteric activators of CaSR. METHODS To determine the role of the CaSR in vascular calcification, we characterized mice with targeted Casr gene knockout in vascular smooth muscle cells ( SM22α CaSR Δflox/Δflox ). RESULTS Vascular smooth muscle cells cultured from the knockout (KO) mice calcified more readily than those from control (wild-type) mice in vitro. However, mice did not show ectopic calcifications in vivo but they did display a profound mineral ion imbalance. Specifically, KO mice exhibited hypercalcemia, hypercalciuria, hyperphosphaturia, and osteopenia, with elevated circulating fibroblast growth factor 23 (FGF23), calcitriol (1,25-D3), and parathyroid hormone levels. Renal tubular α-Klotho protein expression was increased in KO mice but vascular α-Klotho protein expression was not. Altered CaSR expression in the kidney or the parathyroid glands could not account for the observed phenotype of the KO mice. CONCLUSIONS These results suggest that, in addition to CaSR's established role in the parathyroid-kidney-bone axis, expression of CaSR in vascular smooth muscle cells directly contributes to total body mineral ion homeostasis.
Collapse
Affiliation(s)
- Martin Schepelmann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom .,Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | - Sarah C Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Polina L Yarova
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Joao Graca
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.,AstraZeneca, Macclesfield, United Kingdom
| | | | - Christian Müller
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Teresa Manhardt
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Martina Salzmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen Quasnichka
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Donald T Ward
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, United Kingdom
| | - Thierry Gilbert
- Centre for Developmental Biology, University Paul Sabatier, Toulouse, France
| | | | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Amanda Herberger
- Department of Medicine, University of California, San Francisco, California
| | - Jenna Hwong
- Department of Medicine, University of California, San Francisco, California
| | | | - Chia-Ling Tu
- Department of Medicine, University of California, San Francisco, California
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Wenhan Chang
- Department of Medicine, University of California, San Francisco, California
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Mayer CA, Roos B, Teske J, Wells N, Martin RJ, Chang W, Pabelick CM, Prakash YS, MacFarlane PM. Calcium-sensing receptor and CPAP-induced neonatal airway hyperreactivity in mice. Pediatr Res 2022; 91:1391-1398. [PMID: 33958714 PMCID: PMC8571113 DOI: 10.1038/s41390-021-01540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Continuous positive airway pressure (CPAP) in preterm infants is initially beneficial, but animal models suggest longer term detrimental airway effects towards asthma. We used a neonatal CPAP mouse model and human fetal airway smooth muscle (ASM) to investigate the role of extracellular calcium-sensing receptor (CaSR) in these effects. METHODS Newborn wild type and smooth muscle-specific CaSR-/- mice were given CPAP for 7 days via a custom device (mimicking CPAP in premature infants), and recovered in normoxia for another 14 days (representing infants at 3-4 years). Airway reactivity was tested using lung slices, and airway CaSR quantified. Role of CaSR was tested using NPS2143 (inhibitor) or siRNA in WT mice. Fetal ASM cells stretched cyclically with/without static stretch mimicking breathing and CPAP were analyzed for intracellular Ca2+ ([Ca2+]i) responses, role of CaSR, and signaling cascades. RESULTS CPAP increased airway reactivity in WT but not CaSR-/- mice, increasing ASM CaSR. NPS2143 or CaSR siRNA reversed CPAP effects in WT mice. CPAP increased fetal ASM [Ca2+]I, blocked by NPS2143, and increased ERK1/2 and RhoA suggesting two mechanisms by which stretch increases CaSR. CONCLUSIONS These data implicate CaSR in CPAP effects on airway function with implications for wheezing in former preterm infants. IMPACT Neonatal CPAP increases airway reactivity to bronchoconstrictor agonist. CPAP increases smooth muscle expression of the extracellular calcium-sensing receptor (CaSR). Inhibition or absence of CaSR blunts CPAP effects on contractility. These data suggest a causal/contributory role for CaSR in stretch effects on the developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.
Collapse
Affiliation(s)
- Catherine A Mayer
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jacob Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Wenhan Chang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Wu WY, Lee SP, Chiang BJ, Lin WY, Chien CT. Urothelial Calcium-Sensing Receptor Modulates Micturition Function via Mediating Detrusor Activity and Ameliorates Bladder Hyperactivity in Rats. Pharmaceuticals (Basel) 2021; 14:ph14100960. [PMID: 34681183 PMCID: PMC8537609 DOI: 10.3390/ph14100960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
The urothelium displays mechano- and chemosensory functions via numerous receptors and channels. The calcium-sensing receptor (CaSR) detects extracellular calcium and modulates several physiological functions. Nonetheless, information about the expression and the role of CaSR in lower urinary tract has been absent. We aimed to determine the existence of urothelial CaSR in urinary bladder and its effect on micturition function. We utilized Western blot to confirm the expression of CaSR in bladder and used immunofluorescence to verify the location of the CaSR in the bladder urothelium via colocalization with uroplakin III A. The activation of urothelial CaSR via the CaSR agonist, AC-265347 (AC), decreased urinary bladder smooth muscle (detrusor) activity, whereas its inhibition via the CaSR antagonist, NPS-2143 hydrochloride (NPS), increased detrusor activity in in vitro myography experiments. Cystometry, bladder nerve activities recording, and bladder surface microcirculation detection were conducted to evaluate the effects of the urothelial CaSR via intravesical administrations. Intravesical AC inhibited micturition reflex, bladder afferent and efferent nerve activities, and reversed cystitis-induced bladder hyperactivity. The urothelial CaSR demonstrated a chemosensory function, and modulated micturition reflex via regulating detrusor activity. This study provided further evidence of how the urothelial CaSR mediated micturition and implicated the urothelial CaSR as a potential pharmacotherapeutic target in the intervention of bladder disorders.
Collapse
Affiliation(s)
- Wei-Yi Wu
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Shih-Pin Lee
- Department of Public Health, International College, Krirk University, Bangkok 10220, Thailand;
| | - Bing-Juin Chiang
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Urology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- Correspondence: (B.-J.C.); (W.-Y.L.); (C.-T.C.); Tel.: +886-2-77496312 (C.-T.C.)
| | - Wei-Yu Lin
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Urology, Ministry of Health and Welfare, Taipei Hospital, New Taipei City 24213, Taiwan
- Correspondence: (B.-J.C.); (W.-Y.L.); (C.-T.C.); Tel.: +886-2-77496312 (C.-T.C.)
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan;
- Correspondence: (B.-J.C.); (W.-Y.L.); (C.-T.C.); Tel.: +886-2-77496312 (C.-T.C.)
| |
Collapse
|
23
|
Poulsen SB, Cheng L, Penton D, Kortenoeven MLA, Matchkov VV, Loffing J, Little R, Murali SK, Fenton RA. Activation of the kidney sodium chloride cotransporter by the β2-adrenergic receptor agonist salbutamol increases blood pressure. Kidney Int 2021; 100:321-335. [PMID: 33940111 DOI: 10.1016/j.kint.2021.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The thiazide-sensitive sodium-chloride-cotransporter (NCC) in the kidney distal convoluted tubule (DCT) plays an essential role in sodium and potassium homeostasis. Here, we demonstrate that NCC activity is increased by the β2-adrenoceptor agonist salbutamol, a drug prevalently used to treat asthma. Relative to β1-adrenergic receptors, the β2-adrenergic receptors were greatly enriched in mouse DCT cells. In mice, administration of salbutamol increased NCC phosphorylation (indicating increased activity) within 30 minutes but also caused hypokalemia, which also increases NCC phosphorylation. In ex vivo kidney slices and isolated tubules, salbutamol increased NCC phosphorylation in the pharmacologically relevant range of 0.01-10 μM, an effect observed after 15 minutes and maintained at 60 minutes. Inhibition of the inwardly rectifying potassium channel (Kir) 4.1 or the downstream with-no-lysine kinases (WNKs) and STE20/SPS1-related proline alanine-rich kinase (SPAK) pathway greatly attenuated, but did not prevent, salbutamol-induced NCC phosphorylation. Salbutamol increased cAMP in tubules, kidney slices and mpkDCT cells (model of DCT). Phosphoproteomics indicated that protein phosphatase 1 (PP1) was a key upstream regulator of salbutamol effects. A role for PP1 and the PP1 inhibitor 1 (I1) was confirmed in tubules using inhibitors of PP1 or kidney slices from I1 knockout mice. On normal and high salt diets, salbutamol infusion increased systolic blood pressure, but this increase was normalized by thiazide suggesting a role for NCC. Thus, β2-adrenergic receptor signaling modulates NCC activity via I1/PP1 and WNK-dependent pathways, and chronic salbutamol administration may be a risk factor for hypertension.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - David Penton
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | | - Robert Little
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.
| |
Collapse
|
24
|
The calcimimetic R-568 attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt/eNOS signaling pathway in the rat model. Brain Res 2021; 1765:147508. [PMID: 33930376 DOI: 10.1016/j.brainres.2021.147508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Cerebral vasospasm (CVS) causes mortality and morbidity in patients after subarachnoid hemorrhage (SAH). The mechanism and adequate treatment of CVS are still elusive. R-568 is a calcimimetic agent known to exert a vasodilating effect. However, there is no report on its vasodilator effect against SAH-induced vasospasm. In the present study, we investigated the therapeutic effect of R-568 on the SAH-induced CVS model in rats. Seventy-two adult male Sprague-Dawley rats were divided into 8 groups: sham surgery; SAH only; SAH + Vehicle, SAH + R-568; SAH + R-568 + Wortmannin (the PI3K inhibitor); SAH + Wortmannin; SAH + R-568 + Calhex-231 (a calcilytic agent); SAH + Calhex-231. SAH was induced by blood (0.3 mL) given by intracisternal injection. R-568 (20 µM) was administered intracisternal immediately prior to experimental SAH. Basilar arteries (BAs) were obtained to evaluate PI3K/Akt/eNOS pathway (immunoblotting) and morphological changes 48 h after SAH. Perimeters of BAs were decreased by 24.1% in the SAH group compared to the control group and the wall thickness was increased by 75.3%. With R-568 treatment, those percentages were 9.6% and 29.6%, respectively, indicating that vasospasm was considerably improved when compared with the SAH group (P < 0.001 in both). While p-PI3K/PI3K and p-Akt/Akt ratio and eNOS protein expression were markedly decreased in the SAH rats, treatment with R-568 resulted in a significant increase in these levels. The beneficial effects of R-568 were partially blocked in the presence of Calhex-231 and completely blocked in the presence of Wortmannin. Herein, we found that treatment with R-568 would attenuate SAH-induced CVS through the PI3K/Akt/eNOS pathway and demonstrate therapeutic promise in CVS treatment following SAH.
Collapse
|
25
|
Karonova TL, Pogosian KA, Yanevskaya LG, Belyaeva OD, Grineva EN. Parathyroid gland disorders and cardiovascular disease. "ARTERIAL’NAYA GIPERTENZIYA" ("ARTERIAL HYPERTENSION") 2021; 27:64-72. [DOI: 10.18705/1607-419x-2021-27-1-64-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The review provides systematic information on the relation between pathology of parathyroid glands and cardiovascular disease (CVD). Recent studies have shown that actions of parathyroid hormone (PTH) and calcium affect the heart and vasculature through downstream actions of their receptors in the myocardium and endothelial cells, which lead to higher incidence of CVD among patients with parathyroid gland disorders (PGD). The mechanisms underlying this association also include insulin resistance and altered renin-angiotensinaldosterone axis among patients with primary hyperparathyroidism. However, low calcium and PTH level in hypoparathyroid patients are characterized by higher values of arterial stiffness, electrocardiogram abnormalities, vascular atherosclerosis and remodeling. These factors contribute to low quality of life among those patients. Knowledge of cardiovascular disease pathogenesis in patients with hyper- or hypoparathyroidism could help to improve quality of diagnostic and treatment and decrease the burden of cardiac risk factors. This review will be of interest to endocrinologists and cardiologists, and other specialists.
Collapse
Affiliation(s)
- Tatiana L. Karonova
- Almazov National Medical Research Centre; First Pavlov State Medical University of St. Petersburg
| | | | | | - Olga D. Belyaeva
- Almazov National Medical Research Centre; First Pavlov State Medical University of St. Petersburg
| | - Elena N. Grineva
- Almazov National Medical Research Centre; First Pavlov State Medical University of St. Petersburg
| |
Collapse
|
26
|
Roesler AM, Ravix J, Bartman CM, Patel BS, Schiliro M, Roos B, Nesbitt L, Pabelick CM, Martin RJ, MacFarlane PM, Prakash YS. Calcium-Sensing Receptor Contributes to Hyperoxia Effects on Human Fetal Airway Smooth Muscle. Front Physiol 2021; 12:585895. [PMID: 33790802 PMCID: PMC8006428 DOI: 10.3389/fphys.2021.585895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Supplemental O2 (hyperoxia), necessary for maintenance of oxygenation in premature infants, contributes to neonatal and pediatric airway diseases including asthma. Airway smooth muscle (ASM) is a key resident cell type, responding to hyperoxia with increased contractility and remodeling [proliferation, extracellular matrix (ECM) production], making the mechanisms underlying hyperoxia effects on ASM significant. Recognizing that fetal lungs experience a higher extracellular Ca2+ ([Ca2+]o) environment, we previously reported that the calcium sensing receptor (CaSR) is expressed and functional in human fetal ASM (fASM). In this study, using fASM cells from 18 to 22 week human fetal lungs, we tested the hypothesis that CaSR contributes to hyperoxia effects on developing ASM. Moderate hyperoxia (50% O2) increased fASM CaSR expression. Fluorescence [Ca2+]i imaging showed hyperoxia increased [Ca2+]i responses to histamine that was more sensitive to altered [Ca2+]o, and promoted IP3 induced intracellular Ca2+ release and store-operated Ca2+ entry: effects blunted by the calcilytic NPS2143. Hyperoxia did not significantly increase mitochondrial calcium which was regulated by CaSR irrespective of oxygen levels. Separately, fASM cell proliferation and ECM deposition (collagens but not fibronectin) showed sensitivity to [Ca2+]o that was enhanced by hyperoxia, but blunted by NPS2143. Effects of hyperoxia involved p42/44 ERK via CaSR and HIF1α. These results demonstrate functional CaSR in developing ASM that contributes to hyperoxia-induced contractility and remodeling that may be relevant to perinatal airway disease.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brijeshkumar S Patel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Richard J Martin
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Peter M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
Diercks BP, Jensen HH, Chalmers SB, Coode E, Vaughan MB, Tadayon R, Sáez PJ, Davis FM, Brohus M. The first junior European Calcium Society meeting: calcium research across scales, Kingdoms and countries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118999. [PMID: 33711364 DOI: 10.1016/j.bbamcr.2021.118999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 01/09/2023]
Abstract
The first junior European Calcium Society online meeting, held October 20-21, 2020, aimed to promote junior researchers in the Ca2+ community. The meeting included four scientific sessions, covering Ca2+ research from molecular detail to whole organisms. Each session featured one invited speaker and three speakers selected based on submitted abstracts, with the overall aim of actively involving early-career researchers. Consequently, the meeting underlined the diversity of Ca2+ physiology, by showcasing research across scales and Kingdoms, as presented by a correspondingly diverse speaker panel across career stages and countries. In this meeting report, we introduce the visions of the junior European Calcium Society board and summarize the meeting content.
Collapse
Affiliation(s)
- Björn-Philipp Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.
| | - Helene H Jensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Silke B Chalmers
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily Coode
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Michael B Vaughan
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Roya Tadayon
- Department of Biochemistry, School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Pablo J Sáez
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Felicity M Davis
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
28
|
Diao J, DeBono A, Josephs TM, Bourke JE, Capuano B, Gregory KJ, Leach K. Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor. ACS Pharmacol Transl Sci 2021; 4:666-679. [PMID: 33860192 DOI: 10.1021/acsptsci.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/24/2023]
Abstract
The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.
Collapse
Affiliation(s)
- Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Sundararaman SS, van der Vorst EPC. Calcium-Sensing Receptor (CaSR), Its Impact on Inflammation and the Consequences on Cardiovascular Health. Int J Mol Sci 2021; 22:2478. [PMID: 33804544 PMCID: PMC7957814 DOI: 10.3390/ijms22052478] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
The calcium Sensing Receptor (CaSR) is a cell surface receptor belonging to the family of G-protein coupled receptors. CaSR is mainly expressed by parathyroid glands, kidneys, bone, skin, adipose tissue, the gut, the nervous system, and the cardiovascular system. The receptor, as its name implies is involved in sensing calcium fluctuations in the extracellular matrix of cells, thereby having a major impact on the mineral homeostasis in humans. Besides calcium ions, the receptor is also activated by other di- and tri-valent cations, polypeptides, polyamines, antibiotics, calcilytics and calcimimetics, which upon binding induce intracellular signaling pathways. Recent studies have demonstrated that CaSR influences a wide variety of cells and processes that are involved in inflammation, the cardiovascular system, such as vascular calcification, atherosclerosis, myocardial infarction, hypertension, and obesity. Therefore, in this review, the current understanding of the role that CaSR plays in inflammation and its consequences on the cardiovascular system will be highlighted.
Collapse
Affiliation(s)
- Sai Sahana Sundararaman
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
30
|
The Calcilytic Drug Calhex-231 Ameliorates Vascular Hyporesponsiveness in Traumatic Hemorrhagic Shock by Inhibiting Oxidative Stress and miR-208a-Mediated Mitochondrial Fission. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4132785. [PMID: 33343806 PMCID: PMC7732383 DOI: 10.1155/2020/4132785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022]
Abstract
Background The calcium-sensing receptor (CaSR) plays a fundamental role in extracellular calcium homeostasis in humans. Surprisingly, CaSR is also expressed in nonhomeostatic tissues and is involved in regulating diverse cellular functions. The objective of this study was to determine if Calhex-231 (Cal), a negative modulator of CaSR, may be beneficial in the treatment of traumatic hemorrhagic shock (THS) by improving cardiovascular function and investigated the mechanisms. Methods Rats that had been subjected to THS and hypoxia-treated vascular smooth muscle cells (VSMCs) were used in this study. The effects of Cal on cardiovascular function, animal survival, hemodynamics, and vital organ function in THS rats and the relationship to oxidative stress, mitochondrial fusion-fission, and microRNA (miR-208a) were investigated. Results Cal significantly improved hemodynamics, elevated blood pressure, increased vital organ blood perfusion and local oxygen supply, and markedly improved the survival outcomes of THS rats. Furthermore, Cal significantly improved vascular reactivity after THS in vivo and in vitro. Cal also restored the THS-induced decrease in myosin light chain (MLC) phosphorylation (the key element for VSMC contraction). Inhibition of MLC phosphorylation antagonized the Cal-induced restoration of vascular reactivity following THS. Cal suppressed oxidative stress in THS rats and hypoxic-VSMCs. Meanwhile, THS induced expression of mitochondrial fission proteins Drp1 and Fis1 and decreased expression of mitochondrial fusion protein Mfn1 in vascular tissues. Cal reduced expression of Drp1 and Fis1. In hypoxic-VSMCs, Cal inhibited mitochondrial fragmentation and preserved mitochondrial morphology. In addition, miR-208a mimic decreased Fis1 expression, and miR-208a inhibitor prevented Cal-induced Fis1 downregulation in hypoxic-VSMCs. Conclusion Calhex-231 exhibits outstanding potential for effective therapy of traumatic hemorrhagic shock, and the beneficial effects result from its protection of vascular function via inhibition of oxidative stress and miR-208a-mediated mitochondrial fission.
Collapse
|
31
|
Iamartino L, Elajnaf T, Gall K, David J, Manhardt T, Heffeter P, Grusch M, Derdak S, Baumgartner-Parzer S, Schepelmann M, Kallay E. Effects of pharmacological calcimimetics on colorectal cancer cells over-expressing the human calcium-sensing receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118836. [PMID: 32861746 DOI: 10.1016/j.bbamcr.2020.118836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The calcium-sensing receptor (CaSR) is a ubiquitously expressed multifunctional G protein-coupled receptor. Several studies reported that the CaSR plays an anti-inflammatory and anti-tumorigenic role in the intestine, and that it is down-regulated during colorectal carcinogenesis. We hypothesized that positive allosteric CaSR modulators (type II calcimimetics) selectively targeting the intestinal cells could be used for the treatment of intestinal pathologies. Therefore, the aim of this study was to determine the effect of pharmacological stimulation of CaSR on gene expression in vitro and on tumor growth in vivo. We stably transduced two colon cancer cell lines (HT29 and Caco2) with lentiviral vectors containing either the CaSR fused to GFP or GFP only. Using RNA sequencing, RT-qPCR experiments and ELISA, we determined that CaSR over-expression itself had generally little effect on gene expression in these cells. However, treatment with 1 μM of the calcimimetic NPS R-568 increased the expression of pro-inflammatory factors such as IL-23α and IL-8 and reduced the transcription of various differentiation markers in the cells over-expressing the CaSR. In vivo, neither the presence of the CaSR nor p.o. treatment of the animals with the calcimimetic cinacalcet affected tumor growth, tumor cell proliferation or tumor vascularization of murine HT29 xenografts. In summary, CaSR stimulation in CaSR over-expressing cells enhanced the expression of inflammatory markers in vitro, but was not able to repress colorectal cancer tumorigenicity in vivo. These findings suggest potential pro-inflammatory effects of the CaSR and type II calcimimetics in the intestine.
Collapse
Affiliation(s)
- Luca Iamartino
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Taha Elajnaf
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Katharina Gall
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Jacquelina David
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Teresa Manhardt
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Petra Heffeter
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Borschkegasse 8a, 1090 Vienna, Austria
| | - Michael Grusch
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Borschkegasse 8a, 1090 Vienna, Austria
| | - Sophia Derdak
- Medical University of Vienna, Core Facilities, Lazarettgasse 14, 1090 Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Medical University of Vienna, Department of Internal Medicine III, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Martin Schepelmann
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Enikö Kallay
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
32
|
Yarova PL, Huang P, Schepelmann MW, Bruce R, Ecker R, Nica R, Telezhkin V, Traini D, Gomes Dos Reis L, Kidd EJ, Ford WR, Broadley KJ, Kariuki BM, Corrigan CJ, Ward JPT, Kemp PJ, Riccardi D. Characterization of Negative Allosteric Modulators of the Calcium-Sensing Receptor for Repurposing as a Treatment of Asthma. J Pharmacol Exp Ther 2020; 376:51-63. [PMID: 33115824 DOI: 10.1124/jpet.120.000281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is still an incurable disease, and there is a recognized need for novel small-molecule therapies for people with asthma, especially those poorly controlled by current treatments. We previously demonstrated that calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs), calcilytics, uniquely suppress both airway hyperresponsiveness (AHR) and inflammation in human cells and murine asthma surrogates. Here we assess the feasibility of repurposing four CaSR NAMs, which were originally developed for oral therapy for osteoporosis and previously tested in the clinic as a novel, single, and comprehensive topical antiasthma therapy. We address the hypotheses, using murine asthma surrogates, that topically delivered CaSR NAMs 1) abolish AHR; 2) are unlikely to cause unwanted systemic effects; 3) are suitable for topical application; and 4) inhibit airway inflammation to the same degree as the current standard of care, inhaled corticosteroids, and, furthermore, inhibit airway remodeling. All four CaSR NAMs inhibited poly-L-arginine-induced AHR in naïve mice and suppressed both AHR and airway inflammation in a murine surrogate of acute asthma, confirming class specificity. Repeated exposure to inhaled CaSR NAMs did not alter blood pressure, heart rate, or serum calcium concentrations. Optimal candidates for repurposing were identified based on anti-AHR/inflammatory activities, pharmacokinetics/pharmacodynamics, formulation, and micronization studies. Whereas both inhaled CaSR NAMs and inhaled corticosteroids reduced airways inflammation, only the former prevented goblet cell hyperplasia in a chronic asthma model. We conclude that inhaled CaSR NAMs are likely a single, safe, and effective topical therapy for human asthma, abolishing AHR, suppressing airways inflammation, and abrogating some features of airway remodeling. SIGNIFICANCE STATEMENT: Calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs) reduce airway smooth muscle hyperresponsiveness, reverse airway inflammation as efficiently as topical corticosteroids, and suppress airway remodeling in asthma surrogates. CaSR NAMs, which were initially developed for oral therapy of osteoporosis proved inefficacious for this indication despite being safe and well tolerated. Here we show that structurally unrelated CaSR NAMs are suitable for inhaled delivery and represent a one-stop, steroid-free approach to asthma control and prophylaxis.
Collapse
Affiliation(s)
- Polina L Yarova
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Ping Huang
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Martin W Schepelmann
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Richard Bruce
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Rupert Ecker
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Robert Nica
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Vsevolod Telezhkin
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Daniela Traini
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Larissa Gomes Dos Reis
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Emma J Kidd
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - William R Ford
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Kenneth J Broadley
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Benson M Kariuki
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Christopher J Corrigan
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Jeremy P T Ward
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Paul J Kemp
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Daniela Riccardi
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| |
Collapse
|
33
|
|
34
|
Guha S, Paul C, Alvarez S, Mine Y, Majumder K. Dietary γ-Glutamyl Valine Ameliorates TNF-α-Induced Vascular Inflammation via Endothelial Calcium-Sensing Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9139-9149. [PMID: 32786865 PMCID: PMC8012099 DOI: 10.1021/acs.jafc.0c04526] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
γ-Glutamyl valine (γ-EV), commonly found in edible beans, was shown to reduce gastrointestinal inflammation via activation of calcium-sensing receptors (CaSRs). The present study aimed to evaluate the efficacy of γ-EV in modulating the tumor necrosis factor-α-induced inflammatory responses in endothelial cells (ECs) via CaSR-mediated pathways. Human aortic ECs (HAoECs) were pretreated (2 h) with γ-EV (0.01, 0.1, and 1 mM). 1 mM pretreatment of γ-EV significantly reduced the upregulation of inflammatory adhesion molecules, VCAM-1 and E-selectin, by 44.56 and 57.41%, respectively. The production of cytokines IL-8 and IL-6 was significantly reduced by 40 and 51%, respectively, with 1 mM pretreatment of γ-EV. Similarly, there was a significant reduction in chemokine MCP-1 from a positive control of 9.70 ± 0.52 to 6.6 ± 0.43 ng/mL, after γ-EV treatment. The anti-inflammatory effect of γ-EV was attenuated by the treatment of the CaSR-specific inhibitor, NPS-2143, suggesting the involvement of CaSR-mediated pathways. Further studies identified the critical role of key modulators, such as β-arrestin2 and cyclic adenosine monophosphate response element-binding protein, in mediating the CaSR-dependent anti-inflammatory effect of γ-EV. Finally, the transport efficiency of γ-EV was evaluated through a monolayer of intestinal epithelial cells (Caco-2), and the apparent permeability (Papp) of the peptide was found to be 1.56 × 10-6 cm/s.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Catherine Paul
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph N1G2W1, Ontario, Canada
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| |
Collapse
|
35
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
36
|
Patel BS, Ravix J, Pabelick C, Prakash YS. Class C GPCRs in the airway. Curr Opin Pharmacol 2020; 51:19-28. [PMID: 32375079 DOI: 10.1016/j.coph.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Understanding and targeting of GPCRs remain a critical aspect of airway pharmacology and therapeutics for diseases such as asthma or COPD. Most attention has been on the large Class A GPCRs towards improved bronchodilation and blunting of remodeling. Better known in the central or peripheral nervous system, there is increasing evidence that Class C GPCRs which include metabotropic glutamate and GABA receptors, the calcium sensing receptor, sweet/umami taste receptors and a number of orphan receptors, can contribute to airway structure and function. In this review, we will summarize current state of knowledge regarding the pharmacology of Class C GPCRs, their expression and potential functions in the airways, and the application of pharmacological agents targeting this group in the context of airway diseases.
Collapse
Affiliation(s)
- Brijeshkumar S Patel
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina Pabelick
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
37
|
Lubberding AF, Pereira L, Xue J, Gottlieb LA, Matchkov VV, Gomez AM, Thomsen MB. Aberrant sinus node firing during β-adrenergic stimulation leads to cardiac arrhythmias in diabetic mice. Acta Physiol (Oxf) 2020; 229:e13444. [PMID: 31953990 DOI: 10.1111/apha.13444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/25/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023]
Abstract
AIM Cardiovascular complications, including cardiac arrhythmias, result in high morbidity and mortality in patients with type-2 diabetes mellitus (T2DM). Clinical and experimental data suggest electrophysiological impairment of the natural pacemaker of the diabetic heart. The present study examined sinoatrial node (SAN) arrhythmias in a mouse model of T2DM and physiologically probed their underlying cause. METHODS Electrocardiograms were obtained from conscious diabetic db/db and lean control db/+ mice. In vivo SAN function was probed through pharmacological autonomic modulation with isoprenaline, atropine and carbachol. Blood pressure stability and heart rate variability (HRV) were evaluated. Intrinsic SAN function was evaluated through ex vivo imaging of spontaneous Ca2+ transients in isolated SAN preparations. RESULTS While lean control mice showed constant RR intervals during isoprenaline challenge, the diabetic mice experienced SAN arrhythmias with large RR fluctuations in a dose-dependent manner. These arrhythmias were completely abolished by atropine pre-treatment, while carbachol pretreatment significantly increased SAN arrhythmia frequency in the diabetic mice. Blood pressure and HRV were comparable in db/db and db/+ mice, suggesting that neither augmented baroreceptor feedback nor autonomic neuropathy is a likely arrhythmia mechanism. Cycle length response to isoprenaline was comparable in isolated SAN preparations from db/db and db/+ mice; however, Ca2+ spark frequency was significantly increased in db/db mice compared to db/+ at baseline and after isoprenaline. CONCLUSION Our results demonstrate a dysfunction of cardiac pacemaking in an animal model of T2DM upon challenge with a β-adrenergic agonist. Ex vivo, higher Ca2+ spark frequency is present in diabetic mice, which may be directly linked to in vivo arrhythmias.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Laetitia Pereira
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Jianbin Xue
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Lisa A. Gottlieb
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | | | - Ana M. Gomez
- Université Paris‐Saclay Inserm UMR‐S 1180 Châtenay‐Malabry France
| | - Morten B. Thomsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
38
|
Chavkin NW, Hirschi KK. Single Cell Analysis in Vascular Biology. Front Cardiovasc Med 2020; 7:42. [PMID: 32296715 PMCID: PMC7137757 DOI: 10.3389/fcvm.2020.00042] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The ability to quantify DNA, RNA, and protein variations at the single cell level has revolutionized our understanding of cellular heterogeneity within tissues. Via such analyses, individual cells within populations previously thought to be homogeneous can now be delineated into specific subpopulations expressing unique sets of genes, enabling specialized functions. In vascular biology, studies using single cell RNA sequencing have revealed extensive heterogeneity among endothelial and mural cells even within the same vessel, key intermediate cell types that arise during blood and lymphatic vessel development, and cell-type specific responses to disease. Thus, emerging new single cell analysis techniques are enabling vascular biologists to elucidate mechanisms of vascular development, homeostasis, and disease that were previously not possible. In this review, we will provide an overview of single cell analysis methods and highlight recent advances in vascular biology made possible through single cell RNA sequencing.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Karen K Hirschi
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States.,Departments of Medicine and Genetics, Cardiovascular Research Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
39
|
Lagunin AA, Ivanov SM, Gloriozova TA, Pogodin PV, Filimonov DA, Kumar S, Goel RK. Combined network pharmacology and virtual reverse pharmacology approaches for identification of potential targets to treat vascular dementia. Sci Rep 2020; 10:257. [PMID: 31937840 PMCID: PMC6959222 DOI: 10.1038/s41598-019-57199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia. This traditional knowledge can be transformed into novel targets through robust interplay of network pharmacology (NetP) with reverse pharmacology (RevP), without ignoring cutting edge biomedical data. This work demonstrates interaction between recent and traditional data, and aimed at selection of most promising targets for guiding wet lab validations. PROTEOME, DisGeNE, DISEASES and DrugBank databases were used for selection of genes associated with pathogenesis and treatment of vascular dementia (VaD). The selection of new potential drug targets was made by methods of NetP (DIAMOnD algorithm, enrichment analysis of KEGG pathways and biological processes of Gene Ontology) and manual expert analysis. The structures of 1976 phytomolecules from the 573 Indian medicinal plants traditionally used for the treatment of dementia and vascular diseases were used for computational estimation of their interactions with new predicted VaD-related drug targets by RevP approach based on PASS (Prediction of Activity Spectra for Substances) software. We found 147 known genes associated with vascular dementia based on the analysis of the databases with gene-disease associations. Six hundred novel targets were selected by NetP methods based on 147 gene associations. The analysis of the predicted interactions between 1976 phytomolecules and 600 NetP predicted targets leaded to the selection of 10 potential drug targets for the treatment of VaD. The translational value of these targets is discussed herewith. Twenty four drugs interacting with 10 selected targets were identified from DrugBank. These drugs have not been yet studied for the treatment of VaD and may be investigated in this field for their repositioning. The relation between inhibition of two selected targets (GSK-3, PTP1B) and the treatment of VaD was confirmed by the experimental studies on animals and reported separately in our recent publications.
Collapse
Affiliation(s)
- Alexey A Lagunin
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia.
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia.
| | - Sergey M Ivanov
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Tatyana A Gloriozova
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Pavel V Pogodin
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Dmitry A Filimonov
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Sandeep Kumar
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India
| | - Rajesh K Goel
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India.
| |
Collapse
|
40
|
Oinonen L, Koskela J, Eräranta A, Tikkakoski A, Kähönen M, Niemelä O, Mustonen J, Pörsti I. Plasma total calcium concentration is associated with blood pressure and systemic vascular resistance in normotensive and never-treated hypertensive subjects. Blood Press 2019; 29:137-148. [PMID: 31790289 DOI: 10.1080/08037051.2019.1696180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: The underlying causes of primary hypertension are not fully understood. Evidence on the relation of plasma calcium concentration with blood pressure (BP) is inconsistent and relies largely on studies utilizing office BP measurements in populations using cardiovascular drugs. In many studies adjustment for confounders was not optimal. In this cross-sectional study we examined the association of plasma total calcium concentration with the haemodynamic determinants of blood pressure.Subjects and methods: Supine haemodynamics were recorded using pulse wave analysis, whole-body impedance cardiography, and heart rate variability analysis in 618 normotensive or never-treated hypertensive subjects (aged 19-72 years) without diabetes, cardiovascular or renal disease, or cardiovascular medications. Linear regression analysis was used to investigate factors associated with haemodynamic variables.Results: Mean age was 45.0 years, body mass index 26.8 kg/m2, seated office BP 141/89 mmHg, and 307 subjects (49.7%) were male. Mean values of routine blood and plasma chemistry analyses were within the reference limits of the tests except for low-density lipoprotein cholesterol (3.05 mmol/l). In the laboratory, mean supine radial BP was 131/75 mmHg, and both systolic and diastolic BP correlated directly with plasma total calcium concentration (r = 0.25 and r = 0.22, respectively, p < 0.001 for both). In regression analysis plasma total calcium concentration was an independent explanatory variable for radial and aortic systolic and diastolic BP, and systemic vascular resistance, but not for cardiac output, pulse wave velocity, or any of the heart rate variability parameters.Conclusion: Plasma total calcium concentration was directly associated with systolic and diastolic BP and systemic vascular resistance in normotensive or never-treated hypertensive subjects without comorbidities and cardiovascular medications. Higher plasma calcium concentration potentially plays a role in primary hypertension via an effect on vascular resistance.
Collapse
Affiliation(s)
- Lasse Oinonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenni Koskela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Arttu Eräranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Tikkakoski
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
41
|
Renal Ca 2+ and Water Handling in Response to Calcium Sensing Receptor Signaling: Physiopathological Aspects and Role of CaSR-Regulated microRNAs. Int J Mol Sci 2019; 20:ijms20215341. [PMID: 31717830 PMCID: PMC6862519 DOI: 10.3390/ijms20215341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+) is a universal and vital intracellular messenger involved in a diverse range of cellular and biological processes. Changes in the concentration of extracellular Ca2+ can disrupt the normal cellular activities and the physiological function of these systems. The calcium sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and by other physiological cations, aminoacids, and polyamines. CaSR is the main controller of the extracellular Ca2+ homeostatic system by regulating parathyroid hormone (PTH) secretion and, in turn, Ca2+ absorption and resorption. Recent advances highlight novel signaling pathways activated by CaSR signaling involving the regulation of microRNAs (miRNAs). miRNAs are naturally-occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. We previously described that high luminal Ca2+ in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through CaSR activation. Moreover, we demonstrated that CaSR signaling reduces AQP2 abundance via AQP2-targeting miRNA-137. This review summarizes the recent data related to CaSR-regulated miRNAs signaling pathways in the kidney.
Collapse
|
42
|
Greenberg HZE, Carlton-Carew SRE, Zargaran AK, Jahan KS, Birnbaumer L, Albert AP. Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced relaxations and nitric oxide production in mesenteric arteries: comparative study using wild-type and TRPC1 -/- mice. Channels (Austin) 2019; 13:410-423. [PMID: 31603369 PMCID: PMC7426016 DOI: 10.1080/19336950.2019.1673131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have previously provided pharmacological evidence that stimulation of calcium-sensing receptors (CaSR) induces endothelium-dependent relaxations of rabbit mesenteric arteries through activation of heteromeric TRPV4/TRPC1 channels and nitric oxide (NO) production. The present study further investigates the role of heteromeric TRPV4/TRPC1 channels in these CaSR-induced vascular responses by comparing responses in mesenteric arteries from wild-type (WT) and TRPC1-/- mice. In WT mice, stimulation of CaSR induced endothelium-dependent relaxations of pre-contracted tone and NO generation in endothelial cells (ECs), which were inhibited by the TRPV4 channel blocker RN1734 and the TRPC1 blocking antibody T1E3. In addition, TRPV4 and TRPC1 proteins were colocalised at, or close to, the plasma membrane of endothelial cells (ECs) from WT mice. In contrast, in TRPC1-/- mice, CaSR-mediated vasorelaxations and NO generation were greatly reduced, unaffected by T1E3, but blocked by RN1734. In addition, the TRPV4 agonist GSK1016790A (GSK) induced endothelium-dependent vasorelaxations which were blocked by RN1734 and T1E3 in WT mice, but only by RN1734 in TRPC1-/- mice. Moreover, GSK activated cation channel activity with a 6pS conductance in WT ECs but with a 52 pS conductance in TRPC1-/- ECs. These results indicate that stimulation of CaSR activates heteromeric TRPV4/TRPC1 channels and NO production in ECs, which are responsible for endothelium-dependent vasorelaxations. This study also suggests that heteromeric TRPV4-TRPC1 channels may form the predominant TRPV4-containing channels in mouse mesenteric artery ECs. Together, our data further implicates CaSR-induced pathways and heteromeric TRPV4/TRPC1 channels in the regulation of vascular tone.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Simonette R E Carlton-Carew
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Alexander K Zargaran
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Kazi S Jahan
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Anthony P Albert
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| |
Collapse
|
43
|
CaSR participates in the regulation of vascular tension in the mesentery of hypertensive rats via the PLC‑IP3/AC‑V/cAMP/RAS pathway. Mol Med Rep 2019; 20:4433-4448. [PMID: 31485595 PMCID: PMC6797953 DOI: 10.3892/mmr.2019.10620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertension is a cardiovascular disease that severely impairs human health; however, its specific etiology and pathogenesis are complex. The present study investigated the effects of the calcium sensing receptor (CaSR) on vascular tone in spontaneously hypertensive rats (SHRs), and clarified the role and mechanism of CaSR in regulating this property with respect to the phospholipase C (PLC)-inositol 1,4,5-triphosphate (IP3)/adenylate cyclase-V(AC-V)/cyclic adenosine monophosphate (cAMP)/renin-angiotensin system (RAS) pathway in these animals. CaSR protein expression in the mesenteric artery (MA) of rats and CaSR protein expression in SHRs were significantly reduced. Based on wire myography studies, vasoconstriction was significantly augmented and vasodilatation was attenuated in SHRs, and this effect was endothelium-independent. The CaSR calcimimetic NPSR568 and inhibitor NPS2143 reduced vasoconstriction and enhanced vasodilation in SHRs. Furthermore, pretreatment with PLC-IP3/AC-V/cAMP/RAS pathway blockers significantly reduced the vasoconstriction response and enhanced the vasodilator response in SHRs and Wistar-Kyoto rats (WKY), and these effects were partially dependent on the endothelium. Additionally, pretreatment with CaSR inhibitors were determined to cooperate with the PLC-IP3/AC-V/cAMP/RAS pathway inhibitors to significantly reduce vasoconstriction and enhance vasodilation in SHRs and WKY. Our results demonstrated that CaSR is functionally expressed in the MA of SHRs, and that CaSR expression is decreased in SHRs. Additionally, vasoconstriction was enhanced while vasodilatation was attenuated in SHRs; these processes were determined to be endothelium-independent. CaSR is involved in the regulation of blood pressure and vascular tension in SHRs and WKYs. In association with mechanistic differences, this effect was proposed to be partially endothelium-dependent and mediated by the PLC-IP3/AC-V/cAMP/RAS pathway.
Collapse
|
44
|
Douvris A, Zeid K, Hiremath S, Bagshaw SM, Wald R, Beaubien-Souligny W, Kong J, Ronco C, Clark EG. Mechanisms for hemodynamic instability related to renal replacement therapy: a narrative review. Intensive Care Med 2019; 45:1333-1346. [PMID: 31407042 PMCID: PMC6773820 DOI: 10.1007/s00134-019-05707-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Hemodynamic instability related to renal replacement therapy (HIRRT) is a frequent complication of all renal replacement therapy (RRT) modalities commonly used in the intensive care unit. HIRRT is associated with increased mortality and may impair kidney recovery. Our current understanding of the physiologic basis for HIRRT comes primarily from studies of end-stage kidney disease patients on maintenance hemodialysis in whom HIRRT is referred to as ‘intradialytic hypotension’. Nonetheless, there are many studies that provide additional insights into the underlying mechanisms for HIRRT specifically in critically ill patients. In particular, recent evidence challenges the notion that HIRRT is almost entirely related to excessive ultrafiltration. Although excessive ultrafiltration is a key mechanism, multiple other RRT-related mechanisms may precipitate HIRRT and this could have implications for how HIRRT should be managed (e.g., the appropriate response might not always be to reduce ultrafiltration, particularly in the context of significant fluid overload). This review briefly summarizes the incidence and adverse effects of HIRRT and reviews what is currently known regarding the mechanisms underpinning it. This includes consideration of the evidence that exists for various RRT-related interventions to prevent or limit HIRRT. An enhanced understanding of the mechanisms that underlie HIRRT, beyond just excessive ultrafiltration, may lead to more effective RRT-related interventions to mitigate its occurrence and consequences.
Collapse
Affiliation(s)
- Adrianna Douvris
- The Ottawa Hospital, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Drive, Ottawa, ON K1H 7W9 Canada
| | - Khalid Zeid
- Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Swapnil Hiremath
- The Ottawa Hospital, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Drive, Ottawa, ON K1H 7W9 Canada
| | - Sean M. Bagshaw
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Ron Wald
- St. Michael’s Hospital, University Health Network, University of Toronto, Toronto, ON Canada
| | | | - Jennifer Kong
- The Ottawa Hospital, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Drive, Ottawa, ON K1H 7W9 Canada
| | - Claudio Ronco
- Department of Medicine, Università degli Studi di Padova and International Renal Research Institute, St. Bortolo Hospital, Vicenza, Italy
| | - Edward G. Clark
- The Ottawa Hospital, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Drive, Ottawa, ON K1H 7W9 Canada
| |
Collapse
|
45
|
Odutola SO, Bridges LE, Awumey EM. Protein Kinase C Downregulation Enhanced Extracellular Ca 2+-Induced Relaxation of Isolated Mesenteric Arteries from Aged Dahl Salt-Sensitive Rats. J Pharmacol Exp Ther 2019; 370:427-435. [PMID: 31197021 DOI: 10.1124/jpet.119.258475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
The Ca2+-sensing receptor (CaSR) detects small changes in extracellular calcium (Ca2+ e) concentration ([Ca2+]e) and transduces the signal into modulation of various signaling pathways. Ca2+-induced relaxation of isolated phenylephrine-contracted mesenteric arteries is mediated by the CaSR of the perivascular nerve. Elucidation of the regulatory mechanisms involved in vascular CaSR signaling may provide insights into the physiologic functions of the receptor and identify targets for the development of new treatments for cardiovascular pathologies such as hypertension. Protein kinase Cα (PKCα) is a critical regulator of multiple signaling pathways and can phosphorylate the CaSR leading to receptor desensitization. In this study, we used automated wire myography to investigate the effects of CaSR mutation and small-interfering RNA downregulation of PKCα on CaSR-mediated relaxation of phenylephrine-contracted mesenteric arteries from aged Dahl salt-sensitive (SS) rats on a low-salt diet. The data showed minimal relaxation responses of arteries to Ca2+ e in wild-type (SS) and CaSR mutant (SS-Casrem1Mcwi) rats. Mutation of the CaSR gene had no significant effect on relaxation. PKCα expression was similar in wild-type and mutant rats, and small-interfering RNA downregulation of PKCα and/or inhibition of PKC with the Ca2+-sensitive Gӧ 6976 resulted in a >80% increase in relaxation. Significant differences in EC50 values were observed between treated and untreated controls (P < 0.05 analysis of variance). The results indicate that PKCα plays an important role in the regulation of CaSR-mediated relaxation of mesenteric arteries, and its downregulation or pharmacological inhibition may lead to an increased Ca2+ sensitivity of the receptor and reversal of age-related changes in vascular tone. SIGNIFICANCE STATEMENT: G protein-coupled CaSR signaling leads to the regulation of vascular tone and may, therefore, play a vital role in blood pressure regulation. The receptor has several PKC phosphorylation sites in the C-terminal intracellular tail that mediate desensitization. We have previously shown that activation of the CaSR in neuronal cells leads to PKC phosphorylation, indicating that protein kinase C is an important regulator of CaSR function. Therefore, PKC in the CaSR signaling pathway in mesenteric arteries is a potential target for the development of new therapeutic approaches to treat hypertension and age-related vascular dysfunction. The present studies show that small-interfering RNA downregulation of PKCα and pharmacological inhibition of PKC enhanced CaSR-mediated relaxation of phenylephrine-contracted mesenteric arteries from aged Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Samuel O Odutola
- Julius L. Chambers Biomedical/Biotechnology Research Institute (S.O.O., L.E.B., E.M.A.) and Department of Biological and Biomedical Sciences (E.M.A), North Carolina Central University, Durham, North Carolina; and Department of Physiology and Pharmacology, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina (E.M.A.)
| | - Lakeesha E Bridges
- Julius L. Chambers Biomedical/Biotechnology Research Institute (S.O.O., L.E.B., E.M.A.) and Department of Biological and Biomedical Sciences (E.M.A), North Carolina Central University, Durham, North Carolina; and Department of Physiology and Pharmacology, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina (E.M.A.)
| | - Emmanuel M Awumey
- Julius L. Chambers Biomedical/Biotechnology Research Institute (S.O.O., L.E.B., E.M.A.) and Department of Biological and Biomedical Sciences (E.M.A), North Carolina Central University, Durham, North Carolina; and Department of Physiology and Pharmacology, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina (E.M.A.)
| |
Collapse
|
46
|
NLRP3 Inflammasome Is Involved in Calcium-Sensing Receptor-Induced Aortic Remodeling in SHRs. Mediators Inflamm 2019; 2019:6847087. [PMID: 30906225 PMCID: PMC6393924 DOI: 10.1155/2019/6847087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that the NLRP3 (nucleotide oligomerization domain-like receptor family, pyrin domain containing 3) inflammasome participates in cardiovascular diseases. However, its role and activation mechanism during hypertension remains unclear. In this study, we tested the role and mechanism of calcium-sensing receptor (CaSR) in NLRP3 inflammasome activation during hypertension. We observed that the expressions of CaSR and NLRP3 were increased in spontaneous hypertensive rats (SHRs) along with aortic fibrosis. In vascular smooth muscle cells (VSMCs), the activation of NLRP3 inflammasome associated with CaSR and collagen synthesis was induced by angiotensin II (Ang II). Furthermore, inhibition of CaSR and NLRP3 inflammasome attenuated proinflammatory cytokine release, suggesting that CaSR-mediated activation of the NLRP3 inflammasome may be a therapeutic target in aortic dysfunction and vascular inflammatory lesions.
Collapse
|
47
|
Roesler AM, Wicher SA, Ravix J, Britt RD, Manlove L, Teske JJ, Cummings K, Thompson MA, Farver C, MacFarlane P, Pabelick CM, Prakash YS. Calcium sensing receptor in developing human airway smooth muscle. J Cell Physiol 2019; 234:14187-14197. [PMID: 30624783 DOI: 10.1002/jcp.28115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+ ]o ) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+ ]i ) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+ ]i was more sensitive to altered [Ca2+ ]o . The fASM [Ca2+ ]i responses to histamine were also more sensitive to [Ca2+ ]o (0-2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+ ]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+ ]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+ ]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+ ]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Katelyn Cummings
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carol Farver
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Peter MacFarlane
- Division of Neonatology, Case Western University, Cleveland, Ohio
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Jensen BL. Smelling through calcium-sensing receptor affects sympathetic control of blood pressure and regional blood flow. Acta Physiol (Oxf) 2019; 225:e13180. [PMID: 30153373 DOI: 10.1111/apha.13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Boye L. Jensen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense C Denmark
| |
Collapse
|
49
|
Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol 2018; 15:33-51. [PMID: 30443043 PMCID: PMC6535143 DOI: 10.1038/s41574-018-0115-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
50
|
Lu M, Leng B, He X, Zhang Z, Wang H, Tang F. Calcium Sensing Receptor-Related Pathway Contributes to Cardiac Injury and the Mechanism of Astragaloside IV on Cardioprotection. Front Pharmacol 2018; 9:1163. [PMID: 30364197 PMCID: PMC6193074 DOI: 10.3389/fphar.2018.01163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Activation of calcium sensing receptor (CaSR) contributes to cardiac injury, but the underlying mechanism has not yet been examined. Astragaloside IV (AsIV) was previously reported to exhibit protective effects against various myocardial injuries. The aim of the present study was to investigate the underlying mechanism of CaSR in cardiac hypertrophy and apoptosis and to evaluate whether the protective effect of AsIV against myocardial injury is associated with CaSR and its related signaling pathway. In vivo and in vitro myocardial injury was induced by isoproterenol (Iso) or GdCl3 (a CaSR agonist) in rats and heart H9C2 cells. Cardiac cell hypertrophy, apoptosis, function, Mitochondrial Membrane Potential (MMP), mitochondrial ultrastructure, and [Ca2+]i, as well as the protein expression of CaSR, calcium/calmodulin-dependent protein kinase II (CaMKII), calcineurin (CaN), sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a), and the inositol 1,4,5-trisphosphate receptor (IP3R), were measured in vivo and/or in vitro. The results showed that AsIV attenuated cardiac hypertrophy and apoptosis and attenuated impairments in cardiac function, mitochondrial structure, and MMP induced by Iso or GdCl3 in rat myocardial tissue and H9C2 cells. Importantly, AsIV treatment inhibited the enhancement of [Ca2+]i and CaSR expression induced by Iso or GdCl3, an effect similar to that of the CaSR antagonist NPS2143. In addition, AsIV treatment repressed CaSR, CaMKII, and CaN activation and inhibited NFAT-3 nuclear translocation. Mechanistic analysis using lentivirus infection showed that CaSR overexpression activated the CaMKII and CaN signaling pathways and that this response was enhanced by Iso. The results suggested that CaSR-mediated changes in [Ca2+]i and CaMKII and CaN signaling pathways contribute to cardiac hypertrophy and apoptosis and are involved in the protective effect of astragaloside IV against cardiac injury.
Collapse
Affiliation(s)
- Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Bin Leng
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Xin He
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhen Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|