1
|
Wilson ZT, Jiang M, Geng J, Kaur S, Workman SW, Hao J, Bernas T, Tseng GN. Delayed KCNQ1/KCNE1 assembly on the cell surface helps I Ks fulfil its function as a repolarization reserve in the heart. J Physiol 2021; 599:3337-3361. [PMID: 33963564 DOI: 10.1113/jp281773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In adult ventricular myocytes, the slow delayed rectifier (IKs ) channels are distributed on the surface sarcolemma, not t-tubules. In adult ventricular myocytes, KCNQ1 and KCNE1 have distinct cell surface and cytoplasmic pools. KCNQ1 and KCNE1 traffic from the endoplasmic reticulum to the plasma membrane by separate routes, and assemble into IKs channels on the cell surface. Liquid chromatography/tandem mass spectrometry applied to affinity-purified KCNQ1 and KCNE1 interacting proteins reveals novel interactors involved in protein trafficking and assembly. Microtubule plus-end binding protein 1 (EB1) binds KCNQ1 preferentially in its dimer form, and promotes KCNQ1 to reach the cell surface. An LQT1-associated mutation, Y111C, reduces KCNQ1 binding to EB1 dimer. ABSTRACT Slow delayed rectifier (IKs ) channels consist of KCNQ1 and KCNE1. IKs functions as a 'repolarization reserve' in the heart by providing extra current for ventricular action potential shortening during β-adrenergic stimulation. There has been much debate about how KCNQ1 and KCNE1 traffic in cells, where they associate to form IKs channels, and the distribution pattern of IKs channels relative to β-adrenergic signalling complex. We used experimental strategies not previously applied to KCNQ1, KCNE1 or IKs , to provide new insights into these issues. 'Retention-using-selected-hook' experiments showed that newly translated KCNE1 constitutively trafficked through the conventional secretory path to the cell surface. KCNQ1 largely stayed in the endoplasmic reticulum, although dynamic KCNQ1 vesicles were observed in the submembrane region. Disulphide-bonded KCNQ1/KCNE1 constructs reported preferential association after they had reached cell surface. An in situ proximity ligation assay detected IKs channels in surface sarcolemma but not t-tubules of ventricular myocytes, similar to the reported location of adenylate cyclase 9/yotiao. Fluorescent protein-tagged KCNQ1 and KCNE1, in conjunction with antibodies targeting their extracellular epitopes, detected distinct cell surface and cytoplasmic pools of both proteins in myocytes. We conclude that, in cardiomyocytes, KCNQ1 and KCNE1 traffic by different routes to surface sarcolemma where they assemble into IKs channels. This mode of delayed channel assembly helps IKs fulfil its function of repolarization reserve. Proteomic experiments revealed a novel KCNQ1 interactor, microtubule plus-end binding protein 1 (EB1). EB1 dimer (active form) bound KCNQ1 and increased its surface level. An LQT1 mutation, Y111C, reduced KCNQ1 binding to EB1 dimer.
Collapse
Affiliation(s)
- Zachary T Wilson
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Min Jiang
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, USA.,Institute of Medicinal biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Geng
- Institute of Medicinal biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sukhleen Kaur
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Samuel W Workman
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, USA.,Present address: School of Medicine, Rutgers University, Piscataway, NJ, USA
| | - Jon Hao
- Poochon Scientific, Frederick, MD, USA
| | - Tytus Bernas
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gea-Ny Tseng
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Molecular Mechanism of Autosomal Recessive Long QT-Syndrome 1 without Deafness. Int J Mol Sci 2021; 22:ijms22031112. [PMID: 33498651 PMCID: PMC7865240 DOI: 10.3390/ijms22031112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
KCNQ1 encodes the voltage-gated potassium (Kv) channel KCNQ1, also known as KvLQT1 or Kv7.1. Together with its ß-subunit KCNE1, also denoted as minK, this channel generates the slowly activating cardiac delayed rectifier current IKs, which is a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function mutations in KCNQ1 cause congenital long QT1 (LQT1) syndrome, characterized by a delayed cardiac repolarization and a prolonged QT interval in the surface electrocardiogram. Autosomal dominant loss-of-function mutations in KCNQ1 result in long QT syndrome, called Romano–Ward Syndrome (RWS), while autosomal recessive mutations lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. Here, we identified a homozygous KCNQ1 mutation, c.1892_1893insC (p.P631fs*20), in a patient with an isolated LQT syndrome (LQTS) without hearing loss. Nevertheless, the inheritance trait is autosomal recessive, with heterozygous family members being asymptomatic. The results of the electrophysiological characterization of the mutant, using voltage-clamp recordings in Xenopus laevis oocytes, are in agreement with an autosomal recessive disorder, since the IKs reduction was only observed in homomeric mutants, but not in heteromeric IKs channel complexes containing wild-type channel subunits. We found that KCNE1 rescues the KCNQ1 loss-of-function in mutant IKs channel complexes when they contain wild-type KCNQ1 subunits, as found in the heterozygous state. Action potential modellings confirmed that the recessive c.1892_1893insC LQT1 mutation only affects the APD of homozygous mutation carriers. Thus, our study provides the molecular mechanism for an atypical autosomal recessive LQT trait that lacks hearing impairment.
Collapse
|
3
|
Abstract
Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.
Collapse
|
4
|
Serrano-Novillo C, Oliveras A, Ferreres JC, Condom E, Felipe A. Remodeling of Kv7.1 and Kv7.5 Expression in Vascular Tumors. Int J Mol Sci 2020; 21:ijms21176019. [PMID: 32825637 PMCID: PMC7503939 DOI: 10.3390/ijms21176019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Voltage-dependent potassium (Kv) channels contribute to the excitability of nerves and muscles. In addition, Kv participates in several cell functions, including cell cycle progression and proliferation. Kv channel remodeling has been associated with neoplastic cell growth and cancer. Kv7 channels are expressed in blood vessels, and they participate in the maintenance of vascular tone and are implicated in myocyte proliferation. Although evidence links Kv7 remodeling to different types of cancer, its expression in vascular tumors has never been studied. Endothelium-derived vascular neoplasms range from indolent lesions to highly aggressive and metastasizing cancers. Here, we show that Kv7.1 and Kv7.5 are evenly distributed in tunicas as well as the endothelium of healthy veins and arteries. The layered structure of vessels is lost in vascular tumors. By studying eight vascular tumors with different origins and characteristics, we found that Kv7.1 and Kv7.5 expression was changed in vascular cancers. While both channels were generally downregulated, Kv7.5 expression was clearly correlated with neoplastic malignancy. The vascular tumors did not contract; therefore, the role of Kv7 channels is probably related to proliferation rather than controlling vascular tone. Our results identify vascular Kv7 channels as targets for cancer detection and anticancer therapies.
Collapse
Affiliation(s)
- Clara Serrano-Novillo
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (C.S.-N.); (A.O.)
| | - Anna Oliveras
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (C.S.-N.); (A.O.)
| | - Joan Carles Ferreres
- Consorci Corporació Sanitària Parc Taulí-Parc Taulí Hospital Universitari, Universitat Autónoma de Barcelona, 08208 Sabadell, Spain;
| | - Enric Condom
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (C.S.-N.); (A.O.)
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934034616; Fax: +34-934021559
| |
Collapse
|
5
|
Hu B, Zeng WP, Li X, Al-Sheikh U, Chen SY, Ding J. A conserved arginine/lysine-based motif promotes ER export of KCNE1 and KCNE2 to regulate KCNQ1 channel activity. Channels (Austin) 2020; 13:483-497. [PMID: 31679457 PMCID: PMC6833972 DOI: 10.1080/19336950.2019.1685626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
KCNE β-subunits play critical roles in modulating cardiac voltage-gated potassium channels. Among them, KCNE1 associates with KCNQ1 channel to confer a slow-activated IKs current, while KCNE2 functions as a dominant negative modulator to suppress the current amplitude of KCNQ1. Any anomaly in these channels will lead to serious myocardial diseases, such as the long QT syndrome (LQTS). Trafficking defects of KCNE1 have been reported to account for the pathogenesis of LQT5. However, the molecular mechanisms underlying KCNE forward trafficking remain elusive. Here, we describe an arginine/lysine-based motif ([R/K](S)[R/K][R/K]) in the proximal C-terminus regulating the endoplasmic reticulum (ER) export of KCNE1 and KCNE2 in HEK293 cells. Notably, this motif is highly conserved in the KCNE family. Our results indicate that the forward trafficking of KCNE2 controlled by the motif (KSKR) is essential for suppressing the cell surface expression and current amplitude of KCNQ1. Unlike KCNE2, the motif (RSKK) in KCNE1 plays important roles in modulating the gating of KCNQ1 in addition to mediating the ER export of KCNE1. Furthermore, truncations of the C-terminus did not reduce the apparent affinity of KCNE2 for KCNQ1, demonstrating that the rigid C-terminus of KCNE2 may not physically interact with KCNQ1. In contrast, the KCNE1 C-terminus is critical for its interaction with KCNQ1. These results contribute to the understanding of the mechanisms of KCNE1 and KCNE2 membrane targeting and how they coassemble with KCNQ1 to regulate the channels activity.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Ping Zeng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Umar Al-Sheikh
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - San-You Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.,CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Wang Y, Eldstrom J, Fedida D. Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes. Front Physiol 2020; 11:504. [PMID: 32581825 PMCID: PMC7287213 DOI: 10.3389/fphys.2020.00504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The IKs channel complex is formed by the co-assembly of Kv7.1 (KCNQ1), a voltage-gated potassium channel, with its β-subunit, KCNE1 and the association of numerous accessory regulatory molecules such as PIP2, calmodulin, and yotiao. As a result, the IKs potassium current shows kinetic and regulatory flexibility, which not only allows IKs to fulfill physiological roles as disparate as cardiac repolarization and the maintenance of endolymph K+ homeostasis, but also to cause significant disease when it malfunctions. Here, we review new areas of understanding in the assembly, kinetics of activation and inactivation, voltage-sensor pore coupling, unitary events and regulation of this important ion channel complex, all of which have been given further impetus by the recent solution of cryo-EM structural representations of KCNQ1 alone and KCNQ1+KCNE3. Recently, the stoichiometric ratio of KCNE1 to KCNQ1 subunits has been confirmed to be variable up to a ratio of 4:4, rather than fixed at 2:4, and we will review the results and new methodologies that support this conclusion. Significant advances have been made in understanding differences between KCNQ1 and IKs gating using voltage clamp fluorimetry and mutational analysis to illuminate voltage sensor activation and inactivation, and the relationship between voltage sensor translation and pore domain opening. We now understand that the KCNQ1 pore can open with different permeabilities and conductance when the voltage sensor is in partially or fully activated positions, and the ability to make robust single channel recordings from IKs channels has also revealed the complicated pore subconductance architecture during these opening steps, during inactivation, and regulation by 1−4 associated KCNE1 subunits. Experiments placing mutations into individual voltage sensors to drastically change voltage dependence or prevent their movement altogether have demonstrated that the activation of KCNQ1 alone and IKs can best be explained using allosteric models of channel gating. Finally, we discuss how the intrinsic gating properties of KCNQ1 and IKs are highly modulated through the impact of intracellular signaling molecules and co-factors such as PIP2, protein kinase A, calmodulin and ATP, all of which modulate IKs current kinetics and contribute to diverse IKs channel complex function.
Collapse
Affiliation(s)
- Yundi Wang
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Oliveras A, Serrano-Novillo C, Moreno C, de la Cruz A, Valenzuela C, Soeller C, Comes N, Felipe A. The unconventional biogenesis of Kv7.1-KCNE1 complexes. SCIENCE ADVANCES 2020; 6:eaay4472. [PMID: 32270035 PMCID: PMC7112945 DOI: 10.1126/sciadv.aay4472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/09/2020] [Indexed: 06/11/2023]
Abstract
The potassium channel Kv7.1 associates with the KCNE1 regulatory subunit to trigger cardiac I Ks currents. Although the Kv7.1/KCNE1 complex has received much attention, the subcellular compartment hosting the assembly is the subject of ongoing debate. Evidence suggests that the complex forms either earlier in the endoplasmic reticulum or directly at the plasma membrane. Kv7.1 and KCNE1 mutations, responsible for long QT syndromes, impair association and traffic, thereby altering I Ks currents. We found that Kv7.1 and KCNE1 do not assemble in the first stages of their biogenesis. Data support an unconventional secretory pathway for Kv7.1-KCNE1 that bypasses Golgi. This route targets channels to endoplasmic reticulum-plasma membrane junctions, where Kv7.1-KCNE1 assemble. This mechanism helps to resolve the ongoing controversy about the subcellular compartment hosting the association. Our results also provide new insights into I Ks channel localization at endoplasmic reticulum-plasma membrane junctions, highlighting an alternative anterograde trafficking mechanism for oligomeric ion channels.
Collapse
Affiliation(s)
- Anna Oliveras
- Molecular Physiology Laboratory, Departamento de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Departamento de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Cristina Moreno
- National Institute of Neurological Disorders and Stroke (NIH), Bethesda, MD, USA
| | - Alicia de la Cruz
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Soeller
- Living Systems Institute and Biomedical Physics, University of Exeter, Exeter, UK
| | - Núria Comes
- Departamento De Biomedicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departamento de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Chen J, Liu Z, Creagh J, Zheng R, McDonald TV. Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits. Am J Physiol Heart Circ Physiol 2019; 318:H212-H222. [PMID: 31834838 DOI: 10.1152/ajpheart.00459.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cardiac potassium IKs current is carried by a channel complex formed from α-subunits encoded by KCNQ1 and β-subunits encoded by KCNE1. Deleterious mutations in either gene are associated with hereditary long QT syndrome. Interactions between the transmembrane domains of the α- and β-subunits determine the activation kinetics of IKs. A physical and functional interaction between COOH termini of the proteins has also been identified that impacts deactivation rate and voltage dependence of activation. We sought to explore the specific physical interactions between the COOH termini of the subunits that confer such control. Hydrogen/deuterium exchange coupled to mass spectrometry narrowed down the region of interaction to KCNQ1 residues 352-374 and KCNE1 residues 70-81, and provided evidence of secondary structure within these segments. Key mutations of residues in these regions tended to shift voltage dependence of activation toward more depolarizing voltages. Double-mutant cycle analysis then revealed energetic coupling between KCNQ1-I368 and KCNE1-D76 during channel activation. Our results suggest that the proximal COOH-terminal regions of KCNQ1 and KCNE1 participate in a physical and functional interaction during channel opening that is sensitive to perturbation and may explain the clustering of long QT mutations in the region.NEW & NOTEWORTHY Interacting ion channel subunits KCNQ1 and KCNE1 have received intense investigation due to their critical importance to human cardiovascular health. This work uses physical (hydrogen/deuterium exchange with mass spectrometry) and functional (double-mutant cycle analyses) studies to elucidate precise and important areas of interaction between the two proteins in an area that has eluded structural definition of the complex. It highlights the importance of pathogenic mutations in these regions.
Collapse
Affiliation(s)
- Jerri Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - John Creagh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Renjian Zheng
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Thomas V McDonald
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
9
|
Ion Channel Disorders and Sudden Cardiac Death. Int J Mol Sci 2018; 19:ijms19030692. [PMID: 29495624 PMCID: PMC5877553 DOI: 10.3390/ijms19030692] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/19/2022] Open
Abstract
Long QT syndrome, short QT syndrome, Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia are inherited primary electrical disorders that predispose to sudden cardiac death in the absence of structural heart disease. Also known as cardiac channelopathies, primary electrical disorders respond to mutations in genes encoding cardiac ion channels and/or their regulatory proteins, which result in modifications in the cardiac action potential or in the intracellular calcium handling that lead to electrical instability and life-threatening ventricular arrhythmias. These disorders may have low penetrance and expressivity, making clinical diagnosis often challenging. However, because sudden cardiac death might be the first presenting symptom of the disease, early diagnosis becomes essential. Genetic testing might be helpful in this regard, providing a definite diagnosis in some patients. Yet important limitations still exist, with a significant proportion of patients remaining with no causative mutation identifiable after genetic testing. This review aims to provide the latest knowledge on the genetic basis of cardiac channelopathies and discuss the role of the affected proteins in the pathophysiology of each one of these diseases.
Collapse
|
10
|
Yao H, Ji CC, Cheng YJ, Chen XM, Liu LJ, Fan J, Wu SH. Mutation in KCNE1 associated to early repolarization syndrome by modulation of slowly activating delayed rectifier K + current. Exp Cell Res 2018; 363:315-320. [DOI: 10.1016/j.yexcr.2018.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/20/2018] [Indexed: 01/13/2023]
|
11
|
Barrese V, Stott JB, Greenwood IA. KCNQ-Encoded Potassium Channels as Therapeutic Targets. Annu Rev Pharmacol Toxicol 2018; 58:625-648. [DOI: 10.1146/annurev-pharmtox-010617-052912] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Iain A. Greenwood
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, United Kingdom;, ,
| |
Collapse
|
12
|
Harmer SC, Tinker A. The impact of recent advances in genetics in understanding disease mechanisms underlying the long QT syndromes. Biol Chem 2017; 397:679-93. [PMID: 26910742 DOI: 10.1515/hsz-2015-0306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/18/2016] [Indexed: 11/15/2022]
Abstract
Long QT syndrome refers to a characteristic abnormality of the electrocardiogram and it is associated with a form of ventricular tachycardia known as torsade-de-pointes and sudden arrhythmic death. It can occur as part of a hereditary syndrome or can be acquired usually because of drug administration. Here we review recent genetic, molecular and cellular discoveries and outline how they have furthered our understanding of this disease. Specifically we focus on compound mutations, genome wide association studies of QT interval, modifier genes and the therapeutic implications of this recent work.
Collapse
|
13
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
14
|
Liu L, Tian J, Lu C, Chen X, Fu Y, Xu B, Zhu C, Sun Y, Zhang Y, Zhao Y, Li Y. Electrophysiological Characteristics of the LQT2 Syndrome Mutation KCNH2-G572S and Regulation by Accessory Protein KCNE2. Front Physiol 2016; 7:650. [PMID: 28082916 PMCID: PMC5187237 DOI: 10.3389/fphys.2016.00650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023] Open
Abstract
Mutations in hERG cause long QT syndrome type 2 which is characterized by a prolonged QT interval on electrocardiogram and predisposition to life-threatening ventricular tachyarrhythmia, syncope, and sudden death. hERG-G572S induces trafficking defects of hERG channel protein from Golgi to the plasma membrane and results in a dominant negative suppression of hERG current density. As an accessory β subunit, KCNE2 promotes hERG migration from Golgi to cellular membrane. In this study, we investigated the rescue effect of KCNE2 in a G572S mutation of hERG. Transfection was performed into HEK293 cells. Patch clamp technique, western blotting analyses and confocal microscopic examination were used. Results showed that KCNE2 had a significantly enhanced effect on G572S mutation current. The increase of current was largest at KCNH2:KCNE2 of 1:3. Confocal images showed co-expressing G572S and KCNE2 could cause a substantial up-regulated membrane protein (155 kDa) expression. Expression of membrane protein accumulated markedly with increasing ratio of KCNH2:KCNE2. G572S defective mutant could be restored by both KCNE2 and lower temperature (27°C), which suggested that the lower temperature could be the favorable circumstances for the rescue function of KCNE2. In this study, we successfully set up “the action potential” on the HEK 293 cells by genetically engineered to express Kir2.1, Nav1.5, and Kv11.1, wherein on reaching over an excitation threshold by current injection. The results suggested that KCNE2 could shorten action potential duration which was prolonged by G572S. These findings described electrophysiological characteristics of the LQT2 syndrome mutation KCNH2-G572S and regulation by accessory protein KCNE2, and provided a clue about LQT2 and relative rescue mechanism.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, General Hospital of People's Liberation ArmyBeijing, China; The Third Department of Internal Medicine, Beijing Municipal Corps Hospital of Chinese People's Armed Police ForceBeijing, China
| | - Jinwen Tian
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Caiyi Lu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Xi Chen
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yicheng Fu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Bin Xu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Chao Zhu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yanmei Sun
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yu Zhang
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Ying Zhao
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| |
Collapse
|
15
|
Grandi E, Sanguinetti MC, Bartos DC, Bers DM, Chen-Izu Y, Chiamvimonvat N, Colecraft HM, Delisle BP, Heijman J, Navedo MF, Noskov S, Proenza C, Vandenberg JI, Yarov-Yarovoy V. Potassium channels in the heart: structure, function and regulation. J Physiol 2016; 595:2209-2228. [PMID: 27861921 DOI: 10.1113/jp272864] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
This paper is the outcome of the fourth UC Davis Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias Symposium, a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2016 symposium was 'K+ Channels and Regulation'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies and challenges on the topic of cardiac K+ channels. This paper summarizes the topics of formal presentations and informal discussions from the symposium on the structural basis of voltage-gated K+ channel function, as well as the mechanisms involved in regulation of K+ channel gating, expression and membrane localization. Given the critical role for K+ channels in determining the rate of cardiac repolarization, it is hardly surprising that essentially every aspect of K+ channel function is exquisitely regulated in cardiac myocytes. This regulation is complex and highly interrelated to other aspects of myocardial function. K+ channel regulatory mechanisms alter, and are altered by, physiological challenges, pathophysiological conditions, and pharmacological agents. An accompanying paper focuses on the integrative role of K+ channels in cardiac electrophysiology, i.e. how K+ currents shape the cardiac action potential, and how their dysfunction can lead to arrhythmias, and discusses K+ channel-based therapeutics. A fundamental understanding of K+ channel regulatory mechanisms and disease processes is fundamental to reveal new targets for human therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, 84112, USA
| | - Daniel C Bartos
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA.,Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Holzem KM, Gomez JF, Glukhov AV, Madden EJ, Koppel AC, Ewald GA, Trenor B, Efimov IR. Reduced response to IKr blockade and altered hERG1a/1b stoichiometry in human heart failure. J Mol Cell Cardiol 2016; 96:82-92. [PMID: 26093152 PMCID: PMC4683114 DOI: 10.1016/j.yjmcc.2015.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023]
Abstract
Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus, we aimed to examine whether decreased expression of the rapid delayed rectifier potassium current, IKr, contributes to repolarization abnormalities in human HF. To map functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (∆APD80) and found that ∆APD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p=0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongation was greater in normal conditions than in failing conditions, provided that the cellular model of HF included a significant downregulation of IKr. In human HF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein and functional expression may be important determinants of repolarization remodeling in the failing human LV.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Juan F Gomez
- Polytechnic University of Valencia, Valencia, Spain
| | - Alexey V Glukhov
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Eli J Madden
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Aaron C Koppel
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Gregory A Ewald
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | | | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
17
|
SAKATA SHINJI, KURATA YASUTAKA, LI PEILI, NOTSU TOMOMI, MORIKAWA KUMI, MIAKE JUNICHIRO, HIGAKI KATSUMI, YAMAMOTO YASUTAKA, YOSHIDA AKIO, SHIRAYOSHI YASUAKI, YAMAMOTO KAZUHIRO, HORIE MINORU, NINOMIYA HARUAKI, KANZAKI SUSUMU, HISATOME ICHIRO. Instability of KCNE1-D85N that Causes Long QT Syndrome: Stabilization by Verapamil. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2014; 37:853-63. [DOI: 10.1111/pace.12360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 12/24/2013] [Accepted: 12/29/2013] [Indexed: 11/29/2022]
Affiliation(s)
- SHINJI SAKATA
- Department of Pediatrics; Faculty of Medicine; Tottori University; Yonago Japan
| | - YASUTAKA KURATA
- Department of Physiology; Kanazawa Medical University; Uchinada-machi Kahoku-gun Ishikawa Japan
| | - PEILI LI
- Division of Regenerative Medicine and Therapeutics; Department of Genetic Medicine and Regenerative Therapeutics; Institute of Regenerative Medicine and Biofunction; Tottori University Graduate School of Medical Science; Yonago Japan
| | - TOMOMI NOTSU
- Division of Regenerative Medicine and Therapeutics; Department of Genetic Medicine and Regenerative Therapeutics; Institute of Regenerative Medicine and Biofunction; Tottori University Graduate School of Medical Science; Yonago Japan
| | - KUMI MORIKAWA
- Division of Regenerative Medicine and Therapeutics; Department of Genetic Medicine and Regenerative Therapeutics; Institute of Regenerative Medicine and Biofunction; Tottori University Graduate School of Medical Science; Yonago Japan
| | - JUNICHIRO MIAKE
- Division of Cardiology; Tottori University Hospital; Yonago Japan
| | | | - YASUTAKA YAMAMOTO
- Division of Regenerative Medicine and Therapeutics; Department of Genetic Medicine and Regenerative Therapeutics; Institute of Regenerative Medicine and Biofunction; Tottori University Graduate School of Medical Science; Yonago Japan
| | - AKIO YOSHIDA
- Division of Regenerative Medicine and Therapeutics; Department of Genetic Medicine and Regenerative Therapeutics; Institute of Regenerative Medicine and Biofunction; Tottori University Graduate School of Medical Science; Yonago Japan
| | - YASUAKI SHIRAYOSHI
- Division of Regenerative Medicine and Therapeutics; Department of Genetic Medicine and Regenerative Therapeutics; Institute of Regenerative Medicine and Biofunction; Tottori University Graduate School of Medical Science; Yonago Japan
| | | | - MINORU HORIE
- Department of Cardiovascular and Respiratory Medicine; Shiga University of Medical Science; Shiga Japan
| | - HARUAKI NINOMIYA
- Department of Biological Regulation; Faculty of Medicine; Tottori University; Yonago Japan
| | - SUSUMU KANZAKI
- Department of Pediatrics; Faculty of Medicine; Tottori University; Yonago Japan
| | - ICHIRO HISATOME
- Division of Regenerative Medicine and Therapeutics; Department of Genetic Medicine and Regenerative Therapeutics; Institute of Regenerative Medicine and Biofunction; Tottori University Graduate School of Medical Science; Yonago Japan
| |
Collapse
|
18
|
Spinocerebellar ataxia-13 Kv3.3 potassium channels: arginine-to-histidine mutations affect both functional and protein expression on the cell surface. Biochem J 2013; 454:259-65. [PMID: 23734863 DOI: 10.1042/bj20130034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The voltage-gated potassium channel Kv3.3 is the causative gene of SCA13 (spinocerebellar ataxia type 13), an autosomal dominant neurological disorder. The four dominant mutations identified to date cause Kv3.3 channels to be non-functional or have altered gating properties in Xenopus oocytes. In the present paper, we report that SCA13 mutations affect functional as well as protein expression of Kv3.3 channels in a mammalian cell line. The reduced protein level of SCA13 mutants is caused by a shorter protein half-life, and blocking the ubiquitin-proteasome pathway increases the total protein of SCA13 mutants more than wild-type. SCA13 mutated amino acids are highly conserved, and the side chains of these residues play a critical role in the stable expression of Kv3.3 proteins. In addition, we show that mutant Kv3.3 protein levels could be partially rescued by treatment with the chemical chaperone TMAO (trimethylamine N-oxide) and to a lesser extent with co-expression of Kv3.1b. Thus our results suggest that amino acid side chains of SCA13 positions affect the protein half-life and/or function of Kv3.3, and the adverse effect on protein expression cannot be fully rescued.
Collapse
|
19
|
David JP, Andersen MN, Olesen SP, Rasmussen HB, Schmitt N. Trafficking of the IKs -complex in MDCK cells: site of subunit assembly and determinants of polarized localization. Traffic 2013; 14:399-411. [PMID: 23324056 DOI: 10.1111/tra.12042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 01/08/2013] [Accepted: 01/16/2013] [Indexed: 11/28/2022]
Abstract
The voltage-gated potassium channel KV 7.1 is regulated by non-pore forming regulatory KCNE β-subunits. Together with KCNE1, it forms the slowly activating delayed rectifier potassium current IKs . However, where the subunits assemble and which of the subunits determines localization of the IKs -complex has not been unequivocally resolved yet. We employed trafficking-deficient KV 7.1 and KCNE1 mutants to investigate IKs trafficking using the polarized Madin-Darby Canine Kidney cell line. We find that the assembly happens early in the secretory pathway but provide three lines of evidence that it takes place in a post-endoplasmic reticulum compartment. We demonstrate that KV 7.1 targets the IKs -complex to the basolateral membrane, but that KCNE1 can redirect the complex to the apical membrane upon mutation of critical KV 7.1 basolateral targeting signals. Our data provide a possible explanation to the fact that KV 7.1 can be localized apically or basolaterally in different epithelial tissues and offer a solution to divergent literature results regarding the effect of KCNE subunits on the subcellular localization of KV 7.1/KCNE complexes.
Collapse
Affiliation(s)
- Jens-Peter David
- The Ion Channel Group, Danish National Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | | | | | | | | |
Collapse
|
20
|
Kanda VA, Abbott GW. KCNE Regulation of K(+) Channel Trafficking - a Sisyphean Task? Front Physiol 2012; 3:231. [PMID: 22754540 PMCID: PMC3385356 DOI: 10.3389/fphys.2012.00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Biology, Manhattan College Riverdale, New York, NY, USA
| | | |
Collapse
|
21
|
Roura-Ferrer M, Solé L, Oliveras A, Villarroel A, Comes N, Felipe A. Targeting of Kv7.5 (KCNQ5)/KCNE channels to surface microdomains of cell membranes. Muscle Nerve 2012; 45:48-54. [PMID: 22190306 DOI: 10.1002/mus.22231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Kv7.5 (KCNQ5) channels conduct M-type potassium currents in the brain, are expressed in skeletal muscle, and contribute to vascular muscle tone. METHODS We coexpressed Kv7.5 and KCNE1-3 peptides in HEK293 cells and then analyzed their association using electrophysiology and co-immunoprecipitation, assessed localization using confocal microscopy, examined targeting of the oligomeric channels to cholesterol-rich membrane surface microdomains using lipid raft isolation, and evaluated their membrane dynamics using fluorescence recovery after photobleaching (FRAP). RESULTS Kv7.5 forms oligomeric channels specifically with KCNE1 and KCNE3. The expression of Kv7.5 targeted to cholesterol-rich membrane surface microdomains was very low. Oligomeric Kv7.5/KCNE1 and Kv7.5/KCNE3 channels did not localize to lipid rafts. However, Kv7.5 association impaired KCNE3 expression in lipid raft microdomains. CONCLUSIONS Our results indicate that Kv7.5 contributes to the spatial regulation of KCNE3. This new scenario could greatly assist in determining the physiological relevance of putative KCNE3 interactions in nerve and muscle.
Collapse
Affiliation(s)
- Meritxell Roura-Ferrer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Avenida Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Girmatsion Z, Biliczki P, Takac I, Schwerthelm C, Hohnloser SH, Ehrlich JR. N-terminal arginines modulate plasma-membrane localization of Kv7.1/KCNE1 channel complexes. PLoS One 2011; 6:e26967. [PMID: 22073228 PMCID: PMC3208574 DOI: 10.1371/journal.pone.0026967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/06/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The slow delayed rectifier current (I(Ks)) is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks) and atrial fibrillation (a human arrhythmia). Structure-function relationship of the KCNE1 N-terminus for I(Ks) modulation is poorly understood and was subject of this study. METHODS We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines) at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS All KCNE1 constructs physically interacted with Kv7.1. I(Ks) resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA') were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'). Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks). Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.
Collapse
Affiliation(s)
- Zenawit Girmatsion
- Division of Cardiology, Section of Electrophysiology, JW Goethe-University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Kanda VA, Lewis A, Xu X, Abbott GW. KCNE1 and KCNE2 inhibit forward trafficking of homomeric N-type voltage-gated potassium channels. Biophys J 2011; 101:1354-63. [PMID: 21943416 DOI: 10.1016/j.bpj.2011.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
Potassium currents generated by voltage-gated potassium (Kv) channels comprising α-subunits from the Kv1, 2, and 3 subfamilies facilitate high-frequency firing of mammalian neurons. Within these subfamilies, only three α-subunits (Kv1.4, Kv3.3, and Kv3.4) generate currents that decay rapidly in the open state because an N-terminal ball domain blocks the channel pore after activation-a process termed N-type inactivation. Despite its importance to shaping cellular excitability, little is known of the processes regulating surface expression of N-type α-subunits, versus their slowly inactivating (delayed rectifier) counterparts. Here we found that currents generated by homomeric Kv1.4, Kv3.3, and Kv3.4 channels are all strongly suppressed by the single transmembrane domain ancillary (β) subunits KCNE1 and KCNE2. A combination of electrophysiological, biochemical, and immunofluorescence analyses revealed this suppression is due to KCNE1 and KCNE2 retaining Kv1.4 and Kv3.4 intracellularly, early in the secretory pathway. The retention is specific, requires α-β coassembly, and does not involve the dynamin-dependent endocytosis pathway. However, the small fraction of Kv3.4 that escapes KCNE-dependent retention is regulated by dynamin-dependent endocytosis. The findings illustrate two contrasting mechanisms controlling surface expression of N-type Kv α-subunits and therefore, potentially, cellular excitability and refractory periods.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | |
Collapse
|
24
|
Chen J, Weber M, Um SY, Walsh CA, Tang Y, McDonald TV. A dual mechanism for I(Ks) current reduction by the pathogenic mutation KCNQ1-S277L. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2011; 34:1652-64. [PMID: 21895724 DOI: 10.1111/j.1540-8159.2011.03190.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The hereditary long QT syndrome is characterized by prolonged ventricular repolarization that can be caused by mutations to the KCNQ1 gene, which encodes the α subunits of the cardiac potassium channel complex that carries the I(Ks) current (the β subunits are encoded by KCNE1). In this study, we characterized a deleterious variant, KCNQ1-S277L, found in a patient who presented with sudden cardiac death in the presence of cocaine use. METHODS The KCNQ1-S277L mutation was analyzed via whole-cell patch clamp, confocal imaging, surface biotinylation assays, and computer modeling. RESULTS Homomeric mutant KCNQ1-S277L channels were unable to carry current, either alone or with KCNE1. When co-expressed in a 50/50 ratio with WT KCNQ1, current density was reduced in a dominant-negative manner, with the residual current predominantly wild type. There was no change in the activation rate and minimal changes to voltage-dependent activation for both KCNQ1 current and I(Ks) current. Immunofluorescence confocal imaging revealed reduced surface expression of mutant KCNQ1-S277L, which was biochemically confirmed by surface biotinylation showing a 44% decrease in mutant surface expression. Expression of KCNQ1-S277L with human ether-a-go-go-related gene (HERG) did not significantly affect HERG protein or current density compared to KCNQ1-WT co-expression. CONCLUSION The KCNQ1-S277L mutation causes biophysical defects that result in dominant-negative reduction in KCNQ1 and I(Ks) current density, and a trafficking defect that results in reduced surface expression, both without affecting HERG/I(Kr) . KCNQ1-S277L mutation in the proband resulted in defective channels that compromised repolarization reserve, thereby enhancing the arrhythmic susceptibility to pharmacological blockage of I(Kr) current.
Collapse
Affiliation(s)
- Jerri Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ehrlich JR. Understanding arrhythmogenesis by looking inside the cell. Heart Rhythm 2011; 8:1648-9. [PMID: 21699861 DOI: 10.1016/j.hrthm.2011.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Indexed: 11/17/2022]
|
26
|
Bas T, Gao GY, Lvov A, Chandrasekhar KD, Gilmore R, Kobertz WR. Post-translational N-glycosylation of type I transmembrane KCNE1 peptides: implications for membrane protein biogenesis and disease. J Biol Chem 2011; 286:28150-9. [PMID: 21676880 DOI: 10.1074/jbc.m111.235168] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
N-Glycosylation of membrane proteins is critical for their proper folding, co-assembly and subsequent matriculation through the secretory pathway. Here, we examine the kinetics of N-glycan addition to type I transmembrane KCNE1 K(+) channel β-subunits, where point mutations that prevent N-glycosylation at one consensus site give rise to disorders of the cardiac rhythm and congenital deafness. We show that KCNE1 has two distinct N-glycosylation sites: a typical co-translational site and a consensus site ∼20 residues away that unexpectedly acquires N-glycans after protein synthesis (post-translational). Mutations that ablate the co-translational site concomitantly reduce glycosylation at the post-translational site, resulting in unglycosylated KCNE1 subunits that cannot reach the cell surface with their cognate K(+) channel. This long range inhibition is highly specific for post-translational N-glycosylation because mutagenic conversion of the KCNE1 post-translational site into a co-translational site restored both monoglycosylation and anterograde trafficking. These results directly explain how a single point mutation can prevent N-glycan attachment at multiple sites, providing a new biogenic mechanism for human disease.
Collapse
Affiliation(s)
- Tuba Bas
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chandrasekhar KD, Lvov A, Terrenoire C, Gao GY, Kass RS, Kobertz WR. O-glycosylation of the cardiac I(Ks) complex. J Physiol 2011; 589:3721-30. [PMID: 21669976 DOI: 10.1113/jphysiol.2011.211284] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Post-translational modifications of the KCNQ1–KCNE1 (Kv7) K+ channel complex are vital for regulation of the cardiac IKs current and action potential duration. Here, we show the KCNE1 regulatory subunit is O-glycosylated with mucin-type glycans in vivo. As O-linked glycosylation sites are not recognizable by sequence gazing, we designed a novel set of glycosylation mutants and KCNE chimeras and analysed their glycan content using deglycosylation enzymes. Our results show that KCNE1 is exclusively O-glycosylated at Thr-7, which is also required for N-glycosylation at Asn-5. For wild type KCNE1, the overlapping N- and O-glycosylation sites are innocuous for subunit biogenesis; however, mutation of Thr-7 to a non-hydroxylated residue yielded mostly unglycosylated protein and a small fraction of mono-N-glycosylated protein. The compounded hypoglycosylation was equally deleterious for KCNQ1–KCNE1 cell surface expression, demonstrating that KCNE1 O-glycosylation is a post-translational modification that is integral for the proper biogenesis and anterograde trafficking of the cardiac IKs complex. The enzymatic assays and panel of glycosylation mutants used here will be valuable for identifying the different KCNE1 glycoforms in native cells and determining the roles N- and O-glycosylation play in KCNQ1–KCNE1 function and localization in cardiomyocytes,
Collapse
Affiliation(s)
- Kshama D Chandrasekhar
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | | | | | | | |
Collapse
|
28
|
Harkcom WT, Abbott GW. Emerging concepts in the pharmacogenomics of arrhythmias: ion channel trafficking. Expert Rev Cardiovasc Ther 2010; 8:1161-73. [PMID: 20670193 DOI: 10.1586/erc.10.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Continuous, rhythmic beating of the heart requires exquisite control of expression, localization and function of cardiac ion channels - the foundations of the cardiac myocyte action potential. Disruption of any of these processes can alter the shape of the action potential, predisposing to cardiac arrhythmias. These arrhythmias can manifest in a variety of ways depending on both the channels involved and the type of disruption (i.e., gain or loss of function). As much as 1% of the population of developed countries is affected by cardiac arrhythmia each year, and a detailed understanding of the mechanism of each arrhythmia is crucial to developing and prescribing the proper therapies. Many of the antiarrhythmic drugs currently on the market were developed before the underlying cause of the arrhythmia was known, and as a result lack specificity, causing side effects. The majority of the available drugs target the conductance of cardiac ion channels, either by blocking or enhancing current through the channel. In recent years, however, it has become apparent that specific targeting of ion channel conductance may not be the most effective means for treatment. Here we review increasing evidence that suggests defects in ion channel trafficking play an important role in the etiology of arrhythmias, and small molecule approaches to correct trafficking defects will likely play an important role in the future of arrhythmia treatment.
Collapse
Affiliation(s)
- William T Harkcom
- Department of Pharmacology, Weill Medical College of Cornell University, 520 E 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
29
|
Soma K, Nagaoka K, Kuwahara M, Tsubone H, Ito K. Abundant expression of KCNE1 in the left ventricle of the miniature pig. Heart Vessels 2010; 26:353-6. [PMID: 20978892 DOI: 10.1007/s00380-010-0041-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 03/18/2010] [Indexed: 10/18/2022]
Abstract
Delayed rectifier potassium currents such as I (Kr) and I (Ks) play an important role in the repolarization phase of the action potential in cardiac myocytes. Electrophysiological studies have shown that the pig is a useful animal not only for clinical use as a good candidate for humans, but also for basic research in heart function or arrhythmia. However, no studies concerning the potassium channels on a molecular level have been done. To elucidate the expression level and distribution of delayed rectifier potassium channels in pigs, we quantitatively investigated the I (Kr) and I (Ks) channel subunits using the real-time polymerase chain reaction (PCR) method. The hearts from Clawn miniature pigs were separated into the apical and basal regions, and subsequently excised into transmural trisections within each of the left ventricular walls, epicardium, midcardium, and endocardium. After RNA extraction from these sites, real-time PCR was executed with reverse transcriptional products for quantitative analysis. The expression level of KCNE1 was significantly higher than those of KCNQ1, KCNH2, and KCNE2, which were comparable in all sites. Transmural heterogeneity of these potassium channel subunits was not detected on the mRNA level. These results indicate that KCNE1 is a dominant subunit on the post-transcriptional level in the miniature pig.
Collapse
Affiliation(s)
- Kaori Soma
- Department of Comparative Pathophysiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
30
|
Abstract
The KCNQ1 voltage-gated potassium channel and its auxiliary subunit KCNE1 play a crucial role in the regulation of the heartbeat. The stoichiometry of KCNQ1 and KCNE1 complex has been debated, with some results suggesting that the four KCNQ1 subunits that form the channel associate with two KCNE1 subunits (a 42 stoichiometry), while others have suggested that the stoichiometry may not be fixed. We applied a single molecule fluorescence bleaching method to count subunits in many individual complexes and found that the stoichiometry of the KCNQ1 - KCNE1 complex is flexible, with up to four KCNE1 subunits associating with the four KCNQ1 subunits of the channel (a 44 stoichiometry). The proportion of the various stoichiometries was found to depend on the relative expression densities of KCNQ1 and KCNE1. Strikingly, both the voltage-dependence and kinetics of gating were found to depend on the relative densities of KCNQ1 and KCNE1, suggesting the heart rhythm may be regulated by the relative expression of the auxiliary subunit and the resulting stoichiometry of the channel complex.
Collapse
|
31
|
Roura-Ferrer M, Solé L, Oliveras A, Dahan R, Bielanska J, Villarroel A, Comes N, Felipe A. Impact of KCNE subunits on KCNQ1 (Kv7.1) channel membrane surface targeting. J Cell Physiol 2010; 225:692-700. [PMID: 20533308 DOI: 10.1002/jcp.22265] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The KCNQ1 (Kv7.1) channel plays an important role in cardiovascular physiology. Cardiomyocytes co-express KCNQ1 with KCNE1-5 proteins. KCNQ1 may co-associate with multiple KCNE regulatory subunits to generate different biophysically and pharmacologically distinct channels. Increasing evidence indicates that the location and targeting of channels are important determinants of their function. In this context, the presence of K(+) channels in sphingolipid-cholesterol-enriched membrane microdomains (lipid rafts) is under investigation. Lipid rafts are important for cardiovascular functioning. We aimed to determine whether KCNE subunits modify the localization and targeting of KCNQ1 channels in lipid rafts microdomains. HEK-293 cells were transiently transfected with KCNQ1 and KCNE1-5, and their traffic and presence in lipid rafts were analyzed. Only KCNQ1 and KCNE3, when expressed alone, co-localized in raft fractions. In addition, while KCNE2 and KCNE5 notably stained the cell surface, KCNQ1 and the rest of the KCNEs showed strong intracellular retention. KCNQ1 targets multiple membrane surface microdomains upon association with KCNE peptides. Thus, while KCNQ1/KCNE1 and KCNQ1/KCNE2 channels target lipid rafts, KCNQ1 associated with KCNE3-5 did not. Channel membrane dynamics, analyzed by fluorescence recovery after photobleaching (FRAP) experiments, further supported these results. In conclusion, the trafficking and targeting pattern of KCNQ1 can be influenced by its association with KCNEs. Since KCNQ1 is crucial for cardiovascular physiology, the temporal and spatial regulations that different KCNE subunits may confer to the channels could have a dramatic impact on membrane electrical activity and putative endocrine regulation.
Collapse
Affiliation(s)
- Meritxell Roura-Ferrer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
33
|
Maljevic S, Wuttke TV, Seebohm G, Lerche H. KV7 channelopathies. Pflugers Arch 2010; 460:277-88. [PMID: 20401729 DOI: 10.1007/s00424-010-0831-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 01/02/2023]
Abstract
KV7 voltage-gated potassium channels, encoded by the KCNQ gene family, have caught increasing interest of the scientific community for their important physiological roles, which are emphasized by the fact that four of the five so far identified members are related to different hereditary diseases. Furthermore, these channels prove to be attractive pharmacological targets for treating diseases characterized by membrane hyperexcitability. KV7 channels are expressed in brain, heart, thyroid gland, pancreas, inner ear, muscle, stomach, and intestines. They give rise to functionally important potassium currents, reduction of which results in pathologies such as long QT syndrome, diabetes, neonatal epilepsy, neuromyotonia, or progressive deafness. Here, we summarize some key traits of KV7 channels and review how their molecular deficiencies could explain diverse disease phenotypes. We also assess the therapeutic potential of KV7 channels; in particular, how the activation of KV7 channels by the compounds retigabine and R-L3 may be useful for treatment of epilepsy or cardiac arrhythmia.
Collapse
Affiliation(s)
- Snezana Maljevic
- Department of Neurology and Epileptology, Center for Neurology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
34
|
Vanoye CG, Welch RC, Tian C, Sanders CR, George AL. KCNQ1/KCNE1 assembly, co-translation not required. Channels (Austin) 2010; 4:108-14. [PMID: 20139709 DOI: 10.4161/chan.4.2.11141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated potassium channels are often assembled with accessory proteins that increase their functional diversity. KCNE proteins are small accessory proteins that modulate voltage-gated potassium (K(V)) channels. Although the functional effects of various KCNE proteins have been described, many questions remain regarding their assembly with the pore-forming subunits. For example, while previous experiments with some K(V) channels suggest that the association of the pore-subunit with the accessory subunits occurs co-translationally in the endoplasmic reticulum, it is not known whether KCNQ1 assembly with KCNE1 occurs in a similar manner to generate the medically important cardiac slow delayed rectifier current (I(Ks)). In this study we used a novel approach to demonstrate that purified recombinant human KCNE1 protein (prKCNE1) modulates KCNQ1 channels heterologously expressed in Xenopus oocytes resulting in generation of I(Ks). Incubation of KCNQ1-expressing oocytes with cycloheximide did not prevent I(Ks) expression following prKCNE1 injection. By contrast, incubation with brefeldin A prevented KCNQ1 modulation by prKCNE1. Moreover, injection of the trafficking-deficient KCNE1-L51H reduced KCNQ1 currents. Together, these observations indicate that while assembly of KCNE1 with KCNQ1 does not require co-translation, functional KCNQ1-prKCNE1 channels assemble early in the secretory pathway and reach the plasma membrane via vesicular trafficking.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
35
|
Harmer SC, Wilson AJ, Aldridge R, Tinker A. Mechanisms of disease pathogenesis in long QT syndrome type 5. Am J Physiol Cell Physiol 2009; 298:C263-73. [PMID: 19907016 DOI: 10.1152/ajpcell.00308.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
KCNE1 associates with the pore-forming alpha-subunit KCNQ1 to generate the slow (I(Ks)) current in cardiac myocytes. Mutations in either KCNQ1 or KCNE1 can alter the biophysical properties of I(Ks) and mutations in KCNE1 underlie cases of long QT syndrome type 5 (LQT5). We previously investigated a mutation in KCNE1, T58P/L59P, which causes severe attenuation of I(Ks). However, how T58P/L59P acts to disrupt I(Ks) has not been determined. In this study, we investigate and compare the effects of T58P/L59P with three other LQT5 mutations (G52R, S74L, and R98W) on the biophysical properties of the current, trafficking of KCNQ1, and assembly of the I(Ks) channel. G52R and T58P/L59P produce currents that lack the kinetic behavior of I(Ks). In contrast, S74L and R98W both produce I(Ks)-like currents but with rightward shifted voltage dependence of activation. All of the LQT5 mutants express protein robustly, and T58P/L59P and R98W cause modest, but significant, defects in the trafficking of KCNQ1. Despite defects in trafficking, in the presence of KCNQ1, T58P/L59P and the other LQT5 mutants are present at the plasma membrane. Interestingly, in comparison to KCNE1 and the other LQT5 mutants, T58P/L59P associates only weakly with KCNQ1. In conclusion, we identify the disease mechanisms for each mutation and reveal that T58P/L59P causes disease through a novel mechanism that involves defective I(Ks) complex assembly.
Collapse
Affiliation(s)
- Stephen C Harmer
- Department of Medicine, University College London, London, WC1E 6JJ, UK
| | | | | | | |
Collapse
|
36
|
Solé L, Roura-Ferrer M, Pérez-Verdaguer M, Oliveras A, Calvo M, Fernández-Fernández JM, Felipe A. KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating. J Cell Sci 2009; 122:3738-48. [PMID: 19773357 DOI: 10.1242/jcs.056689] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Voltage-dependent potassium channels (Kv) play a crucial role in the activation and proliferation of leukocytes. Kv channels are either homo- or hetero-oligomers. This composition modulates their surface expression and serves as a mechanism for regulating channel activity. Kv channel interaction with accessory subunits provides mechanisms for channels to respond to stimuli beyond changes in membrane potential. Here, we demonstrate that KCNE4 (potassium voltage-gated channel subfamily E member 4), but not KCNE2, functions as an inhibitory Kv1.3 partner in leukocytes. Kv1.3 trafficking, targeting and activity are altered by the presence of KCNE4. KCNE4 decreases current density, slows activation, accelerates inactivation, increases cumulative inactivation, retains Kv1.3 in the ER and impairs channel targeting to lipid raft microdomains. KCNE4 associates with Kv1.3 in the ER and decreases the number of Kv1.3 channels at the cell surface, which diminishes cell excitability. Kv1.3 and KCNE4 are differentially regulated upon activation or immunosuppression in macrophages. Thus, lipopolysaccharide-induced activation increases Kv1.3 and KCNE4 mRNA, whereas dexamethasone triggers a decrease in Kv1.3 with no changes in KCNE4. The channelosome composition determines the activity and affects surface expression and membrane localization. Therefore, KCNE4 association might play a crucial role in controlling immunological responses. Our results indicate that KCNE ancillary subunits could be new targets for immunomodulation.
Collapse
Affiliation(s)
- Laura Solé
- Departament de Bioquímica i Biologia Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc Natl Acad Sci U S A 2009; 106:11102-6. [PMID: 19549851 DOI: 10.1073/pnas.0904505106] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ion-channel function is determined by its gating movement. Yet, molecular dynamics and electrophysiological simulations were never combined to link molecular structure to function. We performed multiscale molecular dynamics and continuum electrostatics calculations to simulate a cardiac K(+) channel (I(Ks)) gating and its alteration by mutations that cause arrhythmias and sudden death. An all-atom model of the I(Ks) alpha-subunit KCNQ1, based on the recent Kv1.2 structure, is used to calculate electrostatic energies during gating. Simulations are compared with experiments where varying degrees of positive charge-added via point mutation-progressively reduce current. Whole-cell simulations show that mutations cause action potential and ECG QT interval prolongation, consistent with clinical phenotypes. This framework allows integration of multiscale observations to study the molecular basis of excitation and its alteration by disease.
Collapse
|
38
|
Haitin Y, Wiener R, Shaham D, Peretz A, Cohen EBT, Shamgar L, Pongs O, Hirsch JA, Attali B. Intracellular domains interactions and gated motions of I(KS) potassium channel subunits. EMBO J 2009; 28:1994-2005. [PMID: 19521339 DOI: 10.1038/emboj.2009.157] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/11/2009] [Indexed: 01/27/2023] Open
Abstract
Voltage-gated K(+) channels co-assemble with auxiliary beta subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 beta subunits generates the repolarizing K(+) current I(KS). However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studied the interactions and voltage-dependent motions of I(KS) channel intracellular domains, using fluorescence resonance energy transfer combined with voltage-clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C-terminus interacts with the coiled-coil helix C of the Kv7.1 tetramerization domain. This association is important for I(KS) channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant-negative C-terminal domain. On channel opening, the C-termini of Kv7.1 and KCNE1 come close together. Co-expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K(+) currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C-termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation.
Collapse
Affiliation(s)
- Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Functional interactions between KCNE1 C-terminus and the KCNQ1 channel. PLoS One 2009; 4:e5143. [PMID: 19340287 PMCID: PMC2659744 DOI: 10.1371/journal.pone.0005143] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/09/2009] [Indexed: 11/19/2022] Open
Abstract
The KCNE1 gene product (minK protein) associates with the cardiac KvLQT1 potassium channel (encoded by KCNQ1) to create the cardiac slowly activating delayed rectifier, I(Ks). Mutations throughout both genes are linked to the hereditary cardiac arrhythmias in the Long QT Syndrome (LQTS). KCNE1 exerts its specific regulation of KCNQ1 activation via interactions between membrane-spanning segments of the two proteins. Less detailed attention has been focused on the role of the KCNE1 C-terminus in regulating channel behavior. We analyzed the effects of an LQT5 point mutation (D76N) and the truncation of the entire C-terminus (Delta70) on channel regulation, assembly and interaction. Both mutations significantly shifted voltage dependence of activation in the depolarizing direction and decreased I(Ks) current density. They also accelerated rates of channel deactivation but notably, did not affect activation kinetics. Truncation of the C-terminus reduced the apparent affinity of KCNE1 for KCNQ1, resulting in impaired channel formation and presentation of KCNQ1/KCNE1 complexes to the surface. Complete saturation of KCNQ1 channels with KCNE1-Delta70 could be achieved by relative over-expression of the KCNE subunit. Rate-dependent facilitation of K(+) conductance, a key property of I(Ks) that enables action potential shortening at higher heart rates, was defective for both KCNE1 C-terminal mutations, and may contribute to the clinical phenotype of arrhythmias triggered by heart rate elevations during exercise in LQTS mutations. These results support several roles for KCNE1 C-terminus interaction with KCNQ1: regulation of channel assembly, open-state destabilization, and kinetics of channel deactivation.
Collapse
|
41
|
Xu X, Kanda VA, Choi E, Panaghie G, Roepke TK, Gaeta SA, Christini DJ, Lerner DJ, Abbott GW. MinK-dependent internalization of the IKs potassium channel. Cardiovasc Res 2009; 82:430-8. [PMID: 19202166 DOI: 10.1093/cvr/cvp047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control. METHODS AND RESULTS Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1-MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1-MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse. CONCLUSION The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition-and thus current density and gating kinetics-that may also apply to other alpha-beta type Kv channel complexes.
Collapse
Affiliation(s)
- Xianghua Xu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, Starr 463, 520 East 70th Street, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Peroz D, Dahimène S, Baró I, Loussouarn G, Mérot J. LQT1-associated mutations increase KCNQ1 proteasomal degradation independently of Derlin-1. J Biol Chem 2008; 284:5250-6. [PMID: 19114714 DOI: 10.1074/jbc.m806459200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in the potassium channel KCNQ1 that determine retention of the mutated proteins in the endoplasmic reticulum (ER) are associated with the autosomal dominant negative Romano-Ward LQT1 cardiac syndrome. In the present study, we have analyzed the consequences and the potential molecular mechanisms involved in the ER retention of three Romano-Ward mutations located in KCNQ1 N terminus (Y111C, L114P, and P117L). We showed that the mutant KCNQ1 proteins exhibited reduced expression levels with respect to wild-type (WT)-KCNQ1. Radiolabeling pulse-chase experiments revealed that the lower expression levels did not result from reduced rate of synthesis. Instead, using a combination of Western blot and pulse-chase experiments, we showed that the mutant channel Y111C-KCNQ1, used as a model, was ubiquitinated and degraded in the proteasome more rapidly (t((1/2)) = 82 min) than WT-KCNQ1 channel (t((1/2)) = 113 min). On the other hand, KCNQ1 degradation did not appear to involve the GTP-dependent pathway. We also showed that KCNE1 stabilized both wild-type and Y111C proteins. To identify potential actors involved in KCNQ1 degradation, we studied the implication of the ER-resident protein Derlin-1 in KCNQ1 degradation. We showed that although KCNQ1 and Derlin-1 share the same molecular complex and co-immunoprecipitate when co-expressed in HEK293FT cells, Derlin-1 did not affect KCNQ1 steady state expression and degradation. These data were confirmed in T84 cells that express endogenous KCNQ1 and Derlin-1. Small interfering RNA knock-down of Derlin-1 did not modify KCNQ1 expression level, and no interaction between endogenous KCNQ1 and Derlin-1 could be detected.
Collapse
|
43
|
Morokuma J, Blackiston D, Levin M. KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 2008; 21:357-72. [PMID: 18453744 PMCID: PMC3632048 DOI: 10.1159/000129628] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2008] [Indexed: 01/12/2023] Open
Abstract
Several ion transporters have been implicated in left-right (LR) patterning. Here, we characterize a new component of the early bioelectrical circuit: the potassium channel KCNQ1 and its accessory subunit KCNE1. Having cloned the native Xenopus versions of both genes, we show that both are asymmetrically localized as maternal proteins during the first few cleavages of frog embryo development in a process dependent on microtubule and actin organization. Molecular loss-of-function using dominant negative constructs demonstrates that both gene products are required for normal LR asymmetry. We propose a model whereby these channels provide an exit path for K(+) ions brought in by the H(+),K(+)-ATPase. This physiological module thus allows the obligate but electroneutral H(+),K(+)-ATPase to generate an asymmetric voltage gradient on the left and right sides. Our data reveal a new, bioelectrical component of the mechanisms patterning a large-scale axis in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Junji Morokuma
- Center for Regenerative and Developmental Biology, Forsyth Institute, Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
44
|
Abstract
Voltage-gated potassium (K(V)) channels can form heteromultimeric complexes with a variety of accessory subunits, including KCNE proteins. Heterologous expression studies have demonstrated diverse functional effects of KCNE subunits on several K(V) channels, including KCNQ1 (K(V)7.1) that, together with KCNE1, generates the slow-delayed rectifier current (I(Ks)) important for cardiac repolarization. In particular, KCNE4 exerts a strong inhibitory effect on KCNQ1 and other K(V) channels, raising the possibility that this accessory subunit is an important potassium current modulator. A polyclonal KCNE4 antibody was developed to determine the human tissue expression pattern and to investigate the biochemical associations of this protein with KCNQ1. We found that KCNE4 is widely and variably expressed in several human tissues, with greatest abundance in brain, liver and testis. In heterologous expression experiments, immunoprecipitation followed by immunoblotting was used to establish that KCNE4 directly associates with KCNQ1, and can co-associate together with KCNE1 in the same KCNQ1 complex to form a 'triple subunit' complex (KCNE1-KCNQ1-KCNE4). We also used cell surface biotinylation to demonstrate that KCNE4 does not impair plasma membrane expression of either KCNQ1 or the triple subunit complex, indicating that biophysical mechanisms probably underlie the inhibitory effects of KCNE4. The observation that multiple KCNE proteins can co-associate with and modulate KCNQ1 channels to produce biochemically diverse channel complexes has important implications for understanding K(V) channel regulation in human physiology.
Collapse
Affiliation(s)
- Lauren J Manderfield
- Department of Pharmacology, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | |
Collapse
|
45
|
Abstract
LQTS (long QT syndrome) is an important cause of cardiac sudden death. LQTS is characterized by a prolongation of the QT interval on an electrocardiogram. This prolongation predisposes the individual to torsade-de-pointes and subsequent sudden death by ventricular fibrillation. Mutations in a number of genes that encode ion channels have been implicated in LQTS. Hereditary mutations in the alpha- and beta-subunits, KCNQ1 and KCNE1 respectively, of the K(+) channel pore I(Ks) are the commonest cause of LQTS and account for LQTS types 1 and 5 respectively (LQT1 and LQT5). Recently, it has been shown that disease pathogenesis in LQT1 can be influenced by the abnormal trafficking of KCNQ1. In comparison, whether defective trafficking of KCNE1 plays a role in LQT5 is less well established.
Collapse
|
46
|
Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes. Proc Natl Acad Sci U S A 2008; 105:1478-82. [PMID: 18223154 DOI: 10.1073/pnas.0710366105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting alpha-subunits with specific regulatory beta-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of alpha- and beta-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K(+) channel inhibitor and its iterative application to tally the number of beta-subunits in a KCNQ1/KCNE1 K(+) channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K(+) channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE beta-subunit modulation of voltage-gated K(+) channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K(+) channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE beta-subunits.
Collapse
|
47
|
Lowe JS, Palygin O, Bhasin N, Hund TJ, Boyden PA, Shibata E, Anderson ME, Mohler PJ. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. ACTA ACUST UNITED AC 2008; 180:173-86. [PMID: 18180363 PMCID: PMC2213608 DOI: 10.1083/jcb.200710107] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage-gated Nav channels are required for normal electrical activity in neurons, skeletal muscle, and cardiomyocytes. In the heart, Nav1.5 is the predominant Nav channel, and Nav1.5-dependent activity regulates rapid upstroke of the cardiac action potential. Nav1.5 activity requires precise localization at specialized cardiomyocyte membrane domains. However, the molecular mechanisms underlying Nav channel trafficking in the heart are unknown. In this paper, we demonstrate that ankyrin-G is required for Nav1.5 targeting in the heart. Cardiomyocytes with reduced ankyrin-G display reduced Nav1.5 expression, abnormal Nav1.5 membrane targeting, and reduced Na+ channel current density. We define the structural requirements on ankyrin-G for Nav1.5 interactions and demonstrate that loss of Nav1.5 targeting is caused by the loss of direct Nav1.5–ankyrin-G interaction. These data are the first report of a cellular pathway required for Nav channel trafficking in the heart and suggest that ankyrin-G is critical for cardiac depolarization and Nav channel organization in multiple excitable tissues.
Collapse
Affiliation(s)
- John S Lowe
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Poulsen AN, Klaerke DA. The KCNE1 beta-subunit exerts a transient effect on the KCNQ1 K+ channel. Biochem Biophys Res Commun 2007; 363:133-9. [PMID: 17845799 DOI: 10.1016/j.bbrc.2007.08.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/21/2007] [Indexed: 11/23/2022]
Abstract
The KCNE1 beta-subunit is a modulatory one-trans-membrane segment accessory protein that alters KCNQ1 K(+) channel current characteristics, though it is not required for channel expression. The KCNE1 and KCNQ1 interaction was investigated by looking for effects of expression time on channel currents in Xenopus laevis oocytes. We found that long-time expression of KCNQ1+KCNE1 (2-14 days) resulted in gradual changes in current characteristics resembling a disappearance of KCNE1 from the oocyte plasma membrane. Towards the end of the expression period the current of oocytes expressing KCNQ1+KCNE1 was indistinguishable from those expressing KCNQ1 alone. No time dependent effect was seen in oocytes expressing KCNQ1 alone or a concatamer of KCNQ1 and KCNE1. Brefeldin A was tested, showing that measured current was independent of exocytosis (decreased capacitance) thus eliminating a continuous displacement-explanation. Based on the functional data, we suggest that the interaction between KNCE1 and KCNQ1 may be reversible and transient in a "Kiss & Go" manner, supporting a physiological role for KCNE1 as a dynamic regulatory molecule.
Collapse
Affiliation(s)
- Asser Nyander Poulsen
- Department of Physiology and Biochemistry, IBHV, Faculty of Life Sciences, University of Copenhagen, Groennegaardsvej 7, 1870 Frederiksberg C, Denmark.
| | | |
Collapse
|
49
|
Tian C, Vanoye CG, Kang C, Welch RC, Kim HJ, George AL, Sanders CR. Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome. Biochemistry 2007; 46:11459-72. [PMID: 17892302 PMCID: PMC2565491 DOI: 10.1021/bi700705j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KCNE1, also known as minK, is a member of the KCNE family of membrane proteins that modulate the function of KCNQ1 and certain other voltage-gated potassium channels (KV). Mutations in human KCNE1 cause congenital deafness and congenital long QT syndrome, an inherited predisposition to potentially life-threatening cardiac arrhythmias. Although its modulation of KCNQ1 function has been extensively characterized, many questions remain regarding KCNE1's structure and location within the channel complex. In this study, KCNE1 was overexpressed in Escherichia coli and purified. Micellar solutions of the protein were then microinjected into Xenopus oocytes expressing KCNQ1 channels, followed by electrophysiological recordings aimed at testing whether recombinant KCNE1 can co-assemble with the channel. Nativelike modulation of channel properties was observed following injection of KCNE1 in lyso-myristoylphosphatidylglycerol (LMPG) micelles, indicating that KCNE1 is not irreversibly misfolded and that LMPG is able to act as a vehicle for delivering membrane proteins into the membranes of viable cells. 1H-15N TROSY NMR experiments indicated that LMPG micelles are well-suited for structural studies of KCNE1, leading to assignment of its backbone resonances and to relaxation studies. The chemical shift data confirmed that KCNE1's secondary structure includes several alpha-helices and demonstrated that its distal C-terminus is disordered. Surprisingly, for KCNE1 in LMPG micelles, there appears to be a break in alpha-helicity at sites 59-61, near the middle of the transmembrane segment, a feature that is accompanied by increased local backbone mobility. Given that this segment overlaps with sites 57-59, which are known to play a critical role in modulating KCNQ1 channel activation kinetics, this unusual structural feature likely has considerable functional relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Charles R. Sanders
- To whom correspondence should be addressed: E-mail: ; phone: 615−936−3756; fax: 615−936−2211
| |
Collapse
|
50
|
Um SY, McDonald TV. Differential association between HERG and KCNE1 or KCNE2. PLoS One 2007; 2:e933. [PMID: 17895974 PMCID: PMC1978535 DOI: 10.1371/journal.pone.0000933] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 09/04/2007] [Indexed: 12/16/2022] Open
Abstract
The small proteins encoded by KCNE1 and KCNE2 have both been proposed as accessory subunits for the HERG channel. Here we report our investigation into the cell biology of the KCNE-HERG interaction. In a co-expression system, KCNE1 was more readily co-precipitated with co-expressed HERG than was KCNE2. When forward protein trafficking was prevented (either by Brefeldin A or engineering an ER-retention/retrieval signal onto KCNE cDNA) the intracellular abundance of KCNE2 and its association with HERG markedly increased relative to KCNE1. HERG co-localized more completely with KCNE1 than with KCNE2 in all the membrane-processing compartments of the cell (ER, Golgi and plasma membrane). By surface labeling and confocal immunofluorescence, KCNE2 appeared more abundant at the cell surface compared to KCNE1, which exhibited greater co-localization with the ER-marker calnexin. Examination of the extracellular culture media showed that a significant amount of KCNE2 was extracellular (both soluble and membrane-vesicle-associated). Taken together, these results suggest that during biogenesis of channels HERG is more likely to assemble with KCNE1 than KCNE2 due to distinctly different trafficking rates and retention in the cell rather than differences in relative affinity. The final channel subunit constitution, in vivo, is likely to be determined by a combination of relative cell-to-cell expression rates and differential protein processing and trafficking.
Collapse
Affiliation(s)
- Sung Yon Um
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|