1
|
Nieto M, Konigsberg M, Silva-Palacios A. Quercetin and dasatinib, two powerful senolytics in age-related cardiovascular disease. Biogerontology 2024; 25:71-82. [PMID: 37747577 DOI: 10.1007/s10522-023-10068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Cellular senescence is characteristic of the development and progression of multiple age-associated diseases. Accumulation of senescent cells in the heart contributes to various age-related pathologies. Several compounds called senolytics have been designed to eliminate these cells within the tissues. In recent years, the use and study of senolytics increased, representing a promising field for finding accessible and safe therapies for cardiovascular disease (CVD) treatment. This mini-review discusses the changes in the aging heart and the participation of senescent cells in CVD, as well as the use of senolytics to prevent the progression of myocardial damage, mainly the effect of dasatinib and quercetin. In particular, the mechanisms and physiological effects of senolytics therapies in the aged heart are discussed.
Collapse
Affiliation(s)
- Mario Nieto
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, 14080, Mexico City, Mexico
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Mina Konigsberg
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
2
|
Chen Q, Li L, Samidurai A, Thompson J, Hu Y, Willard B, Lesnefsky EJ. Acute endoplasmic reticulum stress-induced mitochondria respiratory chain damage: The role of activated calpains. FASEB J 2024; 38:e23404. [PMID: 38197290 PMCID: PMC11032170 DOI: 10.1096/fj.202301158rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.
Collapse
Affiliation(s)
- Qun Chen
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arun Samidurai
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jeremy Thompson
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ying Hu
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Edward J. Lesnefsky
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
- Richmond Department of Veterans Affairs Medical Center, Richmond, Virginia, USA
| |
Collapse
|
3
|
Qureshi S, Lee S, Steidl W, Ritzer L, Parise M, Chaubal A, Kumar V. Endoplasmic Reticulum Stress Disrupts Mitochondrial Bioenergetics, Dynamics and Causes Corneal Endothelial Cell Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37962528 PMCID: PMC10653263 DOI: 10.1167/iovs.64.14.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Purpose Endoplasmic reticulum (ER) and mitochondrial stress are independently associated with corneal endothelial cell (CEnC) loss in many corneal diseases, including Fuchs' endothelial corneal dystrophy (FECD). However, the role of ER stress in mitochondrial dysfunction contributing to CEnC apoptosis is unknown. The purpose of this study is to explore the crosstalk between ER and mitochondrial stress in CEnC. Methods Human corneal endothelial cell line (HCEnC-21T) and human corneal endothelial tissues were treated with ER stressor tunicamycin. ER stress-reducing chemical 4-phenyl butyric acid (4-PBA) was used in HCEnC-21T after tunicamycin. Fuchs' corneal endothelial cell line (F35T) was used to determine differential activation of ER stress with respect to HCEnC-21T at the baseline. ER stress, mitochondrial-mediated intrinsic apoptotic, mitochondrial fission, and fusion proteins were determined using immunoblotting and immunohistochemistry. Mitochondrial bioenergetics were assessed by mitochondrial membrane potential (MMP) loss and ATP production at 48 hours after tunicamycin. Mitochondria dynamics (shape, area, perimeter) were also analyzed at 24 hours using transmission electron microscopy. Results Treatment of HCEnC-21T cell line with tunicamycin activated three ER stress pathways (PERK-eIF2α-CHOP, IRE1α-XBP1, and ATF6), reduced cell viability, upregulated mitochondrial-mediated intrinsic apoptotic molecules (cleaved caspase 9, caspase 3, PARP, Bax, cytochrome C), downregulated anti-apoptotic Bcl-2 protein, initiated mitochondrial dysfunction by loss of MMP and lowering of ATP production, and caused mitochondrial swelling and fragmentation with increased expression of mitochondrial fission proteins (Fis1 and p-Drp1). Fuchs' CEnC (F35T) cell line also showed activation of the ER stress-related proteins (p-eIF2α, GRP78, CHOP, XBP1) compared to HCEnC-21T at the baseline. The 4-PBA ameliorated cell loss and reduced cleaved caspase 3 and 9, thereby rescuing tunicamycin-induced cell death but not mitochondrial bioenergetics in HCEnC-21T cell line. Conclusions Tunicamycin-induced ER stress disrupts mitochondrial bioenegetics, dynamics and contributes to the loss of CEnC viability. This novel study highlights the importance of ER-mitochondria crosstalk and its contribution to CEnCs apoptosis, seen in many corneal diseases, including FECD.
Collapse
Affiliation(s)
- Saba Qureshi
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Stephanie Lee
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - William Steidl
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Lukas Ritzer
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Michael Parise
- Touro College of Osteopathic Medicine, New York, New York, United States
| | - Ananya Chaubal
- Herricks High School, New Hyde Park, New York, United States
| | - Varun Kumar
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
4
|
Kim S. LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials. Front Physiol 2023; 14:1303151. [PMID: 37881693 PMCID: PMC10597623 DOI: 10.3389/fphys.2023.1303151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Skin aging is a complex process influenced by intrinsic and extrinsic factors. Although dermatology offers advanced interventions, molecular mechanisms in skin aging remain limited. Competing endogenous RNAs (ceRNAs), a subset of coding or non-coding RNAs, regulate gene expression through miRNA competition. Several ceRNA networks investigated up to now offer insights into skin aging and wound healing. In skin aging, RP11-670E13.6-miR-663a-CDK4/CD6 delays senescence induced by UVB radiation. Meg3-miR-93-5p-epiregulin contributes to UVB-induced inflammatory skin damage. Predicted ceRNA networks reveal UVA-induced photoaging mechanisms. SPRR2C sequesters miRNAs in epidermal aging-associated alteration of calcium gradient. H19-miR-296-5p-IGF2 regulates dermal fibroblast senescence. PVT1-miR-551b-3p-AQP3 influences skin photoaging. And bioinformatics analyses identify critical genes and compounds for skin aging interventions. In skin wound healing, MALAT1-miR-124 aids wound healing by activating the Wnt/β-catenin pathway. Hair follicle MSC-derived H19 promotes wound healing by inhibiting pyroptosis. And the SAN-miR-143-3p-ADD3 network rejuvenates adipose-derived mesenchymal stem cells in wound healing. Thus, ceRNA networks provide valuable insights into the molecular underpinnings of skin aging and wound healing, offering potential therapeutic strategies for further investigation. This comprehensive review serves as a foundational platform for future research endeavors in these crucial areas of dermatology.
Collapse
Affiliation(s)
- Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts. Mech Ageing Dev 2023; 215:111859. [PMID: 37661065 PMCID: PMC11103240 DOI: 10.1016/j.mad.2023.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
6
|
Xiao X, Feng H, Liao Y, Tang H, Li L, Li K, Hu F. Identification of lncRNA-miRNA-mRNA Regulatory Network and Therapeutic Agents for Skin Aging by Bioinformatics Analysis. Biochem Genet 2023; 61:1606-1624. [PMID: 36719625 DOI: 10.1007/s10528-023-10334-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Skin aging is the most intuitive manifestation of aging. Skin aging inevitably leads to cosmetic and psychological problems, and even diseases. The present study aims to research the pathological and molecular mechanisms underlying skin aging and identify the therapeutic agents for reversing skin aging. Two available gene expression datasets (GSE55118 and GSE72264) for skin aging were downloaded from Gene Expression Omnibus, followed by bioinformatic analyses performed on the datasets. Firstly, 169 crucial mRNAs, 27 crucial miRNAs and 50 crucial lncRNAs closely related to skin aging were identified by weighted gene co-expression network analysis. Then, function Enrichment Analysis performed by Metascape database showed that skin aging involves a variety of biological functions, such as detection of stimulus, response to steroid hormone and water channel activity, regulation of muscle contraction. Next, ten hub genes including AQP4, TRPM8, TBR1, NTSR2, MPPED1, BARHL2, PAX9, CPN1, CES3, and CHGB were screened out by the protein-protein interaction analysis. Next, the "lncRNA-miRNA-mRNA" network and the "lncRNA-miRNA-hub mRNA" network were constructed to explore the competing endogenous RNAs mechanism of skin aging. Finally, ten significant potential small molecules mitigating skin aging were screened using CMAP platform, including tretinoin, pifithrin, selamectin, entinostat, bretazenil, syringic-acid, BRD-K96475865, emedastine, abacavir, and rotenone, and their reliability was verified by molecular docking experiments. The present study provided basis for revealing the molecular mechanism of skin aging and identified the potential candidate drugs for mitigating skin aging.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hua Tang
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Lan Li
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Ke Li
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Feng Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
7
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
8
|
Murphy E, Liu JC. Mitochondrial calcium and reactive oxygen species in cardiovascular disease. Cardiovasc Res 2023; 119:1105-1116. [PMID: 35986915 PMCID: PMC10411964 DOI: 10.1093/cvr/cvac134] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 08/11/2023] Open
Abstract
Cardiomyocytes are one of the most mitochondria-rich cell types in the body, with ∼30-40% of the cell volume being composed of mitochondria. Mitochondria are well established as the primary site of adenosine triphosphate (ATP) generation in a beating cardiomyocyte, generating up to 90% of its ATP. Mitochondria have many functions in the cell, which could contribute to susceptibility to and development of cardiovascular disease (CVD). Mitochondria are key players in cell metabolism, ATP production, reactive oxygen species (ROS) production, and cell death. Mitochondrial calcium (Ca2+) plays a critical role in many of these pathways, and thus the dynamics of mitochondrial Ca2+ are important in regulating mitochondrial processes. Alterations in these varied and in many cases interrelated functions play an important role in CVD. This review will focus on the interrelationship of mitochondrial energetics, Ca2+, and ROS and their roles in CVD. Recent insights into the regulation and dysregulation of these pathways have led to some novel therapeutic approaches.
Collapse
Affiliation(s)
- Elizabeth Murphy
- NHLBI, NIH, Bethesda, MD and Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
| | - Julia C Liu
- NHLBI, NIH, Bethesda, MD and Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Proteomics as a Tool for the Study of Mitochondrial Proteome, Its Dysfunctionality and Pathological Consequences in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24054692. [PMID: 36902123 PMCID: PMC10003354 DOI: 10.3390/ijms24054692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
Collapse
|
10
|
Alejandro SP. ER stress in cardiac aging, a current view on the D-galactose model. Exp Gerontol 2022; 169:111953. [PMID: 36116694 DOI: 10.1016/j.exger.2022.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Longitudinal studies are mandatory to study aging, however, they have certain drawbacks, for example, they require strict maintenance that is expensive given the breeding time (approximately 2 years) and with a low survival rate, having some animals to study very limitedly. In vitro studies provide useful and invaluable information on the cellular and molecular mechanisms that help understand the aging process to overcome these aspects. In particular, the model of premature aging induced by chronic exposure to D-galactose (D-Gal) offers a very similar picture to that which occurs in natural aging. This model mimics most of the old animals' cellular processes, such as oxidative stress, mitochondrial dysfunction, increased advanced glycation end products (AGEs), inflammation, and senescence-associated secretory phenotype (SASP). However, the information related to the endoplasmic reticulum (ER) stress and, subsequently, the unfolded protein response (UPR) is not fully elucidated. Therefore, this review brings together the most current information on this response in the D-Gal-induced aging model and its effect on cardiac structure and function.
Collapse
Affiliation(s)
- Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico.
| |
Collapse
|
11
|
Tunicamycin-Induced Endoplasmic Reticulum Stress Damages Complex I in Cardiac Mitochondria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081209. [PMID: 36013387 PMCID: PMC9409705 DOI: 10.3390/life12081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Induction of acute ER (endoplasmic reticulum) stress using thapsigargin contributes to complex I damage in mouse hearts. Thapsigargin impairs complex I by increasing mitochondrial calcium through inhibition of Ca2+-ATPase in the ER. Tunicamycin (TUNI) is used to induce ER stress by inhibiting protein folding. We asked if TUNI-induced ER stress led to complex I damage. METHODS TUNI (0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 24 or 72 h following TUNI treatment for mitochondrial functional analysis. RESULTS ER stress was only increased in mice following 72 h of TUNI treatment. TUNI treatment decreased oxidative phosphorylation with complex I substrates compared to vehicle with a decrease in complex I activity. The contents of complex I subunits including NBUPL and NDUFS7 were decreased in TUNI-treated mice. TUNI treatment activated both cytosolic and mitochondrial calpain 1. Our results indicate that TUNI-induced ER stress damages complex I through degradation of its subunits including NDUFS7. CONCLUSION Induction of the ER stress using TUNI contributes to complex I damage by activating calpain 1.
Collapse
|