1
|
Huisman BD, Michelson DA, Rubin SA, Kohlsaat K, Gomarga W, Fang Y, Lee JM, Del Nido P, Nathan M, Benoist C, Zon L, Mathis D. Cross-species analyses of thymic mimetic cells reveal evolutionarily ancient origins and both conserved and species-specific elements. Immunity 2024:S1074-7613(24)00540-5. [PMID: 39731911 DOI: 10.1016/j.immuni.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/27/2024] [Indexed: 12/30/2024]
Abstract
Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models. To provide the high resolution that proved revelatory for mice, we performed single-cell RNA sequencing on purified mimetic-cell compartments from human pediatric donors. The single-cell profiles of individual donors were surprisingly similar, with diversification of neuroendocrine subtypes and expansion of the muscle subtype relative to mice. Informatic and imaging studies on the muscle-mTEC population highlighted a maturation trajectory suggestive of skeletal-muscle differentiation, some striated structures, and occasional cellular groupings reminiscent of neuromuscular junctions. We also profiled thymic mimetic cells from zebrafish. Integration of data from the three species identified species-specific adaptations but substantial interspecies conservation, highlighting the evolutionarily ancient nature of mimetic mTECs. Our findings provide a landscape view of human mimetic cells, with anticipated relevance in autoimmunity.
Collapse
Affiliation(s)
- Brooke D Huisman
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA; PhD Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Sara A Rubin
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA; PhD Program in Immunology, Harvard Medical School, Boston, MA, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Katherine Kohlsaat
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wilson Gomarga
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Yuan Fang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ji Myung Lee
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Meena Nathan
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | | | - Leonard Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute and Boston Children's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
3
|
Lin LY, Cheng CA, Liu ST, Horng JL. Investigation of ammonia-induced lethal toxicity toward ion regulation in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109807. [PMID: 38013044 DOI: 10.1016/j.cbpc.2023.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Ammonia is an environmental pollutant that is toxic to all aquatic animals. However, the mechanism of ammonia toxicity toward the ion regulatory function of early-stage fish has not been fully documented. We addressed this issue using zebrafish embryos as a model. We hypothesized that ammonia might impair ion regulation by inducing oxidative stress, mitochondrial dysfunction, and cell death of epidermal ionocytes and keratinocytes in zebrafish embryos. After exposure to various concentrations (10- 30 mM) of NH4Cl for 96 h, mortality increased up to 50 % and 100 % at 25 and 30 mM, respectively. Whole-embryo sodium, potassium, and calcium contents decreased at ≥10 mM, suggesting dysfunction of ion regulation. Numbers of H+-ATPase-rich (HR) cells and Na+/K+-ATPase-rich (NaR) cells (two ionocyte subtypes) were not significantly altered at 15 or 20 mM, while the mitochondrial abundance significantly decreased and reactive oxygen species (ROS) levels significantly increased in ionocytes. Moreover, caspase-3-dependent apoptosis was found in epidermal keratinocytes. Whole-embryo transcript levels of several genes involved in ion regulation, antioxidation, and apoptosis were upregulated after ammonia exposure. In conclusion, ammonia exposure was shown to induce oxidative stress and mitochondrial dysfunction in ionocytes and apoptosis in keratinocytes, thereby impairing ion regulation and ultimately leading to the death of zebrafish embryos.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chieh-An Cheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| |
Collapse
|
4
|
Hung GY, Pan YC, Horng JL, Lin LY. Sublethal effects of methylmercury on lateral line sensory and ion-regulatory functions in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109700. [PMID: 37442313 DOI: 10.1016/j.cbpc.2023.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Methylmercury can interfere with the normal functioning of the nervous system, causing a variety of behavioral and physiological changes in fish. However, the influence of MeHg on the lateral line sensory and ion-regulatory functions of fish is not clear. Zebrafish embryos were utilized as a model to address this question. After exposure to water-borne MeHg (5, 10, 50, or 100 ppb) for 96 h (4-100 h post-fertilization), the survival rate declined by ca. 50 % at 100 ppb. However, MeHg at sublethal concentrations delayed hatching and decreased heart rates and body length. As to effects on the lateral line sensory system, MeHg at ≥10 ppb decreased the number of hair cells and impaired hair bundles and Ca2+-mediated mechanical transduction. As to ion regulation, MeHg at ≥10 ppb decreased the densities of skin stem cells and ionocytes, leading to declines in ion (Na+, K+, and Ca2+) contents and H+/NH4+ excretion levels. A gene expression analysis also revealed declines in messenger RNA levels of several ion-regulatory genes (ncc2b, trpv6v1a, trpv5/6, ncx1b, and rhcg1). This study demonstrated that the lateral line sensory and ion regulatory functions of fish are extremely sensitive to MeHg.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chin Pan
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
5
|
Bobylev EO, Knol RA, Mathew S, Poole DA, Kotsogianni I, Martin NI, de Bruin B, Kros A, Reek JNH. In vivo biodistribution of kinetically stable Pt 2L 4 nanospheres that show anti-cancer activity. Chem Sci 2023; 14:6943-6952. [PMID: 37389250 PMCID: PMC10306072 DOI: 10.1039/d3sc01086d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
There is an increasing interest in the application of metal-organic cages (MOCs) in a biomedicinal context, as they can offer non-classical distribution in organisms compared to molecular substrates, while revealing novel cytotoxicity mechanisms. Unfortunately, many MOCs are not sufficiently stable under in vivo conditions, making it difficult to study their structure-activity relationships in living cells. As such, it is currently unclear whether MOC cytotoxicity stems from supramolecular features or their decomposition products. Herein, we describe the toxicity and photophysical properties of highly-stable rhodamine functionalized platinum-based Pt2L4 nanospheres as well as their building blocks under in vitro and in vivo conditions. We show that in both zebrafish and human cancer cell lines, the Pt2L4 nanospheres demonstrate reduced cytotoxicity and altered biodistribution within the body of zebrafish embryos compared to the building blocks. We anticipate that the composition-dependent biodistribution of Pt2L4 spheres together with their cytotoxic and photophysical properties provides the fundament for MOC application in cancer therapy.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Renzo A Knol
- Dept. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Simon Mathew
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - David A Poole
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden The Netherlands
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Alexander Kros
- Dept. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
6
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
7
|
Tunnah L, Turko AJ, Wright PA. Skin ionocyte density of amphibious killifishes is shaped by phenotypic plasticity and constitutive interspecific differences. J Comp Physiol B 2022; 192:701-711. [PMID: 36056931 DOI: 10.1007/s00360-022-01457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
When amphibious fishes are on land, gill function is reduced or eliminated and the skin is hypothesized to act as a surrogate site of ionoregulation. Skin ionocytes are present in many fishes, particularly those with amphibious life histories. We used nine closely related killifishes spanning a range of amphibiousness to first test the hypothesis that amphibious killifishes have evolved constitutively increased skin ionocyte density to promote ionoregulation on land. We found that skin ionocyte densities were constitutively higher in five of seven amphibious species examined relative to exclusively water-breathing species when fish were prevented from leaving water, strongly supporting our hypothesis. Next, to examine the scope for plasticity, we tested the hypothesis that skin ionocyte density in amphibious fishes would respond plastically to air-exposure to promote ionoregulation in terrestrial environments. We found that air-exposure induced plasticity in skin ionocyte density only in the two species classified as highly amphibious, but not in moderately amphibious species. Specifically, skin ionocyte density significantly increased in Anablepsoides hartii (168%) and Kryptolebias marmoratus (37%) following a continuous air-exposure, and only in K. marmoratus (43%) following fluctuating air-exposure. Collectively, our data suggest that highly amphibious killifishes have evolved both increased skin ionocyte density as well as skin that is more responsive to air-exposure compared to exclusively water-breathing and less amphibious species. Our findings are consistent with the idea that gaining the capacity for cutaneous ionoregulation is a key evolutionary step that enables amphibious fishes to survive on land.
Collapse
Affiliation(s)
- Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Hung GY, Wu CL, Motoyama C, Horng JL, Lin LY. Zebrafish embryos as an in vivo model to investigate cisplatin-induced oxidative stress and apoptosis in mitochondrion-rich ionocytes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109395. [PMID: 35697282 DOI: 10.1016/j.cbpc.2022.109395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Pharmaceuticals and personal care products are emerging environmental pollutants. Cisplatin, one of the most widely used platinum-based chemotherapeutic agents, has been found to contaminate aquatic environments. Using zebrafish embryos as a model, cisplatin was previously found to impair skin ionocytes and ion regulation. The purpose of this study was to further investigate how cisplatin damages ionocytes. Zebrafish embryos were exposed to cisplatin (0, 50, and 100 μM) for 96 h (4-100 h post-fertilization) and then stained with fluorescent dyes to reveal mitochondrial activity (rhodamine123), apoptosis (acridine orange), and oxidative stress (CellROX/MitoSOX) in ionocytes of living embryos. Results showed that cisplatin exposure decreased rhodamine 123-labeled ionocytes, induced oxidative stress in ionocytes, and promoted apoptosis in a concentration-dependent manner. Quantitative PCR analysis showed that mRNA levels of antioxidative genes (sod1, sod2, gpx1a, and cat) and an apoptotic gene (caps3a) were induced. In the time-course experiment at 96-98 h post-fertilization, cisplatin increased oxidative stress and apoptosis in ionocytes in a time-dependent manner. In conclusion, this study demonstrates that cisplatin exposure induces oxidative stress, mitochondrial damage, and apoptosis in ionocytes of zebrafish embryos.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ciao-Ling Wu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiharu Motoyama
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
9
|
Genome-wide identification of the NHE gene family in Coilia nasus and its response to salinity challenge and ammonia stress. BMC Genomics 2022; 23:526. [PMID: 35858854 PMCID: PMC9297642 DOI: 10.1186/s12864-022-08761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background In aquatic environments, pH, salinity, and ammonia concentration are extremely important for aquatic animals. NHE is a two-way ion exchange carrier protein, which can transport Na+ into cells and exchange out H+, and also plays key roles in regulating intracellular pH, osmotic pressure, and ammonia concentration. Results In the present study, ten NHEs, the entire NHE gene family, were identified from Coilia nasus genome and systemically analyzed via phylogenetic, structural, and synteny analysis. Different expression patterns of C. nasus NHEs in multiple tissues indicated that expression profiles of NHE genes displayed tissue-specific. Expression patterns of C. nasus NHEs were related to ammonia excretion during multiple embryonic development stages. To explore the potential functions on salinity challenge and ammonia stress, expression levels of ten NHEs were detected in C. nasus gills under hypotonic stress, hypertonic stress, and ammonia stress. Expression levels of all NHEs were upregulated during hypotonic stress, while they were downregulated during hypertonic stress. NHE2 and NHE3 displayed higher expression levels in C. nasus larvae and juvenile gills under ammonia stress. Conclusions Our study revealed that NHE genes played distinct roles in embryonic development, salinity stress, and ammonia exposure. Syntenic analysis showed significant difference between stenohaline fish and euryhaline fishes. Our findings will provide insight into effects of C. nasus NHE gene family on ion transport and ammonia tolerance and be beneficial for healthy aquaculture of C. nasus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08761-9.
Collapse
|
10
|
Kantha P, Liu ST, Horng JL, Lin LY. Acute exposure to polystyrene nanoplastics impairs skin cells and ion regulation in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106203. [PMID: 35617773 DOI: 10.1016/j.aquatox.2022.106203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The presence of nanoplastics in aquatic environments is a global problem. Accumulating evidence shows that nanoplastics can accumulate in fish and influence internal organs. However, it is still unknown if nanoplastics can impair skin cells (keratinocytes and ionocytes), which play critical roles in maintaining body fluid homeostasis. In the present study, zebrafish embryos were exposed to polystyrene nanoplastics (PS-NPs; 25 nm in size, at 0, 10, 25, and 50 mg/L) for 96 h to test the effects of PS-NPs on skin functions. After exposure to 50 mg/L, the survival rate, ion (Na+, K+, and Ca2+) contents, and acid/ammonia excretion by skin cells of embryos significantly declined. The apical structure of skin keratinocytes was damaged at 10, 25, and 50 mg/L. The number and mitochondrial activity of ionocytes were reduced at 25 and 50 mg/L. Reactive oxygen species (ROS) levels indicated by CellROX staining showed that both ionocytes and keratinocytes were under oxidative stress. PS-NPs reduced the mRNA expression of antioxidant genes (sod1, sod2, cat, and gpx1a), and promoted apoptosis-related genes (casp3a). Taken together, this study suggests that PS-NPs might suppress antioxidative reactions and induce oxidative stress, leading to mitochondrial damage and cell death of ionocytes, eventually impairing skin functions including ion uptake, pH regulation, and ammonia excretion.
Collapse
Affiliation(s)
- Phunsin Kantha
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
11
|
Shih SW, Yan JJ, Tsou YL, Lu SW, Wang MC, Chou MY, Hwang PP. In Vivo Functional Assay in Fish Gills: Exploring Branchial Acid-Excreting Mechanisms in Zebrafish. Int J Mol Sci 2022; 23:ijms23084419. [PMID: 35457237 PMCID: PMC9031880 DOI: 10.3390/ijms23084419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular and physiological analyses in ionoregulatory organs (e.g., adult gills and embryonic skin) are essential for studying fish ion regulation. Recent progress in the molecular physiology of fish ion regulation was mostly obtained in embryonic skin; however, studies of ion regulation in adult gills are still elusive and limited because there are no direct methods for in vivo functional assays in the gills. The present study applied the scanning ion-selective electrode technique (SIET) in adult gills to investigate branchial H+-excreting functions in vivo. We removed the opercula from zebrafish and then performed long-term acid acclimation experiments. The results of Western blot and immunofluorescence showed that the protein expression of H+-ATPase (HA) and the number of H+-ATPase-rich ionocytes were increased under acidic situations. The SIET results proved that the H+ excretion capacity is indeed enhanced in the gills acclimated to acidic water. In addition, both HA and Na+/H+ exchanger (Nhe) inhibitors suppressed the branchial H+ excretion capacity, suggesting that H+ is excreted in association with HA and Nhe in zebrafish gills. These results demonstrate that SIET is effective for in vivo detection in fish gills, representing a breakthrough approach for studying the molecular physiology of fish ion regulation.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Yi-Ling Tsou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Min-Chen Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence:
| |
Collapse
|
12
|
Charmantier G, Nguyen-Chi M, Lutfalla G. Ontogenetic Changes in Blood Osmolality During the Postembryonic Development of Zebrafish ( Danio rerio). Zebrafish 2022; 19:1-6. [PMID: 35128940 PMCID: PMC8884165 DOI: 10.1089/zeb.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The zebrafish Danio rerio is a teleost model species widely used in developmental genetics, biomedical studies, toxicology, and drug screening. Despite the interest of this species in research, little is known through indirect observations about its blood osmolality, which is a key parameter for diverse experiments. In this study, we directly measured blood osmolality using nano-osmometry at different stages of zebrafish postembryonic development. We found that blood osmolality is close to 240 mOsm·kg−1 in early larvae. It progressively increased to ∼270 mOsm·kg−1 during the larval development before reaching ∼300 mOsm·kg−1 after metamorphosis in juveniles and later in adults. These ontogenetic changes in blood osmolality illustrate the physiological changes in osmoregulation associated with postembryonic development, including metamorphosis. These values are of practical interest for adjusting the osmolality of fixatives and cell and tissue culture media for research using zebrafish as a model.
Collapse
Affiliation(s)
- Guy Charmantier
- CNRS, Ifremer, IRD, UM, Marbec, University of Montpellier, Montpellier, France
| | - Mai Nguyen-Chi
- LPHI, CNRS, University of Montpellier, Montpellier, France
| | | |
Collapse
|
13
|
Horng JL, Lee CY, Liu ST, Hung GY, Lin LY. Differential effects of silver nanoparticles on two types of mitochondrion-rich ionocytes in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109244. [PMID: 34785368 DOI: 10.1016/j.cbpc.2021.109244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Silver nanoparticles (AgNPs) are increasingly used in our daily life and have become a potential environmental hazard. However, the toxic effects of AgNPs on the early stages of fish are not fully understood, and little is known about their effects on specific types of ionocytes. Using zebrafish embryos as a model, this study examined the effects (changes in cell number, morphology, NH4+ secretion and gene expression) of sublethal concentrations of AgNPs (0.1, 1, and 3 mg/L) on two major types of ionocytes: H+ pump-rich (HR) ionocytes, and Na+ pump-rich (NaR) ionocytes in the skin of embryos. After exposure to AgNPs for 96 h, the number of HR ionocytes significantly declined by 30% and 41% in the 1 and 3 mg/L AgNP groups, respectively. In addition, the apical opening of HR ionocytes became smaller, suggesting that AgNPs impaired the critical structure for ion transport. NH4+ secretion by HR ionocytes of embryos also declined significantly after AgNP exposure. In contrast, the number of NaR ionocytes increased by 29% and 43% in the 1 and 3 mg/L AgNP groups, respectively, while these cells deformed their shape. AgNPs altered mRNA levels of several ion channel and transporter genes involved in the functions of HR ionocytes and NaR ionocytes, and influenced hormone genes involved in regulating calcium homeostasis. This study shows that AgNPs can cause differential adverse effects on two types of ionocytes and the effects can threaten fish survival.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ying Lee
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
14
|
Shah VS, Chivukula RR, Lin B, Waghray A, Rajagopal J. Cystic Fibrosis and the Cells of the Airway Epithelium: What Are Ionocytes and What Do They Do? ANNUAL REVIEW OF PATHOLOGY 2022; 17:23-46. [PMID: 34437820 PMCID: PMC10837786 DOI: 10.1146/annurev-pathol-042420-094031] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystic fibrosis (CF) is caused by defects in an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Recently, a new airway epithelial cell type has been discovered and dubbed the pulmonary ionocyte. Unexpectedly, these ionocytes express higher levels of CFTR than any other airway epithelial cell type. However, ionocytes are not the sole CFTR-expressing airway epithelial cells, and CF-associated disease genes are in fact expressed in multiple airway epithelial cell types. The experimental depletion of ionocytes perturbs epithelial physiology in the mouse trachea, but the role of these rare cells in the pathogenesis of human CF remains mysterious. Ionocytes have been described in diverse tissues(kidney and inner ear) and species (frog and fish). We draw on these prior studies to suggest potential roles of airway ionocytes in health and disease. A complete understanding of ionocytes in the mammalian airway will ultimately depend on cell type-specific genetic manipulation.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Raghu R Chivukula
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Brian Lin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Avinash Waghray
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jayaraj Rajagopal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; , , , ,
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
15
|
Aranda-Morales SA, Peña-Marín ES, Jiménez-Martínez LD, Martínez-Burguete T, Martínez-Bautista G, Álvarez-Villagómez CS, De la Rosa-García S, Camarillo-Coop S, Martínez-García R, Guzmán-Villanueva LT, Álvarez-González CA. Expression of ion transport proteins and routine metabolism in juveniles of tropical gar (Atractosteus tropicus) exposed to ammonia. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109166. [PMID: 34411697 DOI: 10.1016/j.cbpc.2021.109166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Tropical gar (Atractosteus tropicus) thrives in aquatic habitats with high levels of total nitrogen (TAN) and unionized ammonia (NH3). However, the tolerance of TAN and NH3, the excretion mechanisms involved, and the effects of these chemicals on routine metabolism are still unknown. Therefore, our objectives were to assess the acute toxicity of TAN and NH3 in A. tropicus juveniles after a 96-h exposure (LC50-96 h) to NH4Cl and after chronic exposure to two concentrations (15% and 30% of LC50-96 h TAN) for 12 days, as well as to evaluate the transcriptional effects associated with Rhesus proteins (rhag, rhbg, rhcg) and ion transporters (NHE, NKA, NKCC, and CFTR) in gills and skin; and to determine the effects of TAN and NH3 on routine metabolism through oxygen consumption (μM g-1 h-1) and gill ventilation frequency (beats min-1). LC50-96 h values were 100.20 ± 11.21 mg/L for TAN and 3.756 ± 0.259 mg/L for NH3. The genes encoding Rhesus proteins and ion transporters in gills and skin showed a differential expression according to TAN concentrations and exposure time. Oxygen consumption on day 12 showed significant differences between treatments with 15% and 30% TAN. Gill ventilation frequency on day 12 was higher in fish exposed to 30% TAN. In conclusion, A. tropicus juveniles are highly tolerant to TAN, showing upregulation of the genes involved in TAN excretion through gills and skin, which affects routine oxygen consumption and energetic cost. These findings are relevant for understanding adaptations in the physiological response of a tropical ancestral air-breathing fish.
Collapse
Affiliation(s)
- Sonia A Aranda-Morales
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Emyr S Peña-Marín
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico; Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico
| | - Luis D Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Nacajuca-Jalpa de Méndez R/a Rivera Alta, C.P. 86200 Jalpa de Méndez, Tabasco, Mexico
| | - Talhia Martínez-Burguete
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Gil Martínez-Bautista
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Carina S Álvarez-Villagómez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana De la Rosa-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana Camarillo-Coop
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Rafael Martínez-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Laura T Guzmán-Villanueva
- Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico; Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional 195. Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Carlos A Álvarez-González
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico.
| |
Collapse
|
16
|
Kumar V, Singh C, Singh A. Zebrafish an experimental model of Huntington's disease: molecular aspects, therapeutic targets and current challenges. Mol Biol Rep 2021; 48:8181-8194. [PMID: 34665402 DOI: 10.1007/s11033-021-06787-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a lethal autosomal dominant neurodegenerative disease whose exact causative mechanism is still unknown. It can transform from one generation to another generation. The CAG triplet expansion on polyglutamine (PolyQ) tract on Huntingtin protein primarily contributes in HD pathogenesis. Apart from this some another molecular mechanisms are also involved in HD pathology such as loss of Brain derived neurotrophic factor in medium spiny neurons, mitochondrial dysfunction, and alterations in synaptic plasticity are briefly discussed in this review. However, several chemicals (3-nitropropionic acid, and Quinolinic acid) and genetic (mHTT-ΔN17-97Q over expression) experimental models are used to explore the exact pathogenic mechanism and finding of new drug targets for the development of novel therapeutic approaches. The zebrafish (Danio rerio) is widely used in in-vivo screening of several central nervous system (CNS) diseases such as HD, Alzheimer's disease (AD), Parkinson's disease (PD), and in memory deficits. Thus, this makes zebrafish as an excellent animal model for the development of new therapeutic strategies against various CNS disorders. We had reviewed several publications utilizing zebrafish and rodents to explore the disease pathology. Studies suggested that zebrafish genes and their human homologues have conserved functions. Zebrafish advantages and their characteristics over the other experimental animals make it an excellent tool for the disease study. This review explains the possible pathogenic mechanism of HD and also discusses about possible treatment therapies, apart from this we also discussed about possible potential therapeutic targets which will helps in designing of novel therapeutic approaches to overcome the disease progression. Diagrammatic depiction shows prevention of HD pathogenesis through attenuation of various biochemical alterations.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
17
|
Longo-Pendy NM, Tene-Fossog B, Tawedi RE, Akone-Ella O, Toty C, Rahola N, Braun JJ, Berthet N, Kengne P, Costantini C, Ayala D. Ecological plasticity to ions concentration determines genetic response and dominance of Anopheles coluzzii larvae in urban coastal habitats of Central Africa. Sci Rep 2021; 11:15781. [PMID: 34349141 PMCID: PMC8338965 DOI: 10.1038/s41598-021-94258-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
In Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns. Then, we assessed the expression variation of 10 candidate genes in An. coluzzii, previously incriminated with insecticide resistance and osmoregulation in urban settings. Our results confirmed the ecological plasticity of An. coluzzii larvae to breed in a large range of aquatic conditions and its predominance in breeding sites rich in ions. Gene expression patterns were comparable between urban and rural habitats, suggesting a broad response to ions concentrations of whatever origin. Altogether, An. coluzzii exhibits a plastic response to occupy both coastal and urban habitats. This entails important consequences for malaria control in the context of the rapid urban expansion in Africa in the coming years.
Collapse
Affiliation(s)
| | | | - Robert E. Tawedi
- grid.473396.cInstitut de Recherches Géologiques Et Minières / Centre de Recherches Hydrologiques, Yaoundé, Cameroon
| | | | - Celine Toty
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Nil Rahola
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Jean-Jacques Braun
- grid.473396.cInstitut de Recherches Géologiques Et Minières / Centre de Recherches Hydrologiques, Yaoundé, Cameroon ,grid.462928.30000 0000 9033 1612Géosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France ,International Joint Laboratory DYCOFAC, IRGM-UY1-IRD, BP 1857, Yaoundé, Cameroon
| | - Nicolas Berthet
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.428999.70000 0001 2353 6535Institut Pasteur, Unité Environnement Et Risque Infectieux, Cellule D’Intervention Biologique D’Urgence, Paris, France
| | - Pierre Kengne
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Carlo Costantini
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Diego Ayala
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| |
Collapse
|
18
|
Lin CH, Hu HJ, Chuang HJ, Tsou YL, Hwang PP. Cortisol and glucocorticoid receptor 2 regulate acid secretion in medaka (Oryzias latipes) larvae. J Comp Physiol B 2021; 191:855-864. [PMID: 34274982 DOI: 10.1007/s00360-021-01390-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/19/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
Freshwater fish live in environments where pH levels fluctuate more than those in seawater. During acidic stress, the acid-base balance in these fish is regulated by ionocytes in the gills, which directly contact water and function as an external kidney. In ionocytes, apical acid secretion is largely mediated by H+-ATPase and the sodium/hydrogen exchanger (NHE). Control of this system was previously proposed to depend on the hormone, cortisol, mostly based on studies of zebrafish, a stenohaline fish, which utilize H+-ATPase as the main route for apical acid secretion. However, the role of cortisol is poorly understood in euryhaline fish species that preferentially use NHE as the main transporter. In the present study, we explored the role of cortisol in NHE-mediated acid secretion in medaka larvae. mRNA expression levels of transporters related to acid secretion and cortisol-synthesis enzyme were enhanced by acidic FW treatment (pH 4.5, 2 days) in medaka larvae. Moreover, exogenous cortisol treatment (25 mg/L, 2 days) resulted in upregulation of nhe3 and rhcg1 expression, as well as acid secretion in 7 dpf medaka larvae. In loss-of-function experiments, microinjection of glucocorticoid receptor (GR)2 morpholino (MO) caused reductions in nhe3 and rhcg1 expression and diminished acid secretion, but microinjection of mineralocorticoid receptor (MR) and GR1 MOs did not. Together, these results suggest a conserved action of cortisol and GR2 on fish body fluid acid-base regulation.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, 81143, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Huei-Jyun Hu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Ju Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Department of Life Science, National Taiwan University, Taipei, 10607, Taiwan
| | - Yi-Ling Tsou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
19
|
Kowalewski J, Paris T, Gonzalez C, Lelièvre E, Castaño Valencia L, Boutrois M, Augier C, Lutfalla G, Yatime L. Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis. PLoS One 2021; 16:e0254533. [PMID: 34252160 PMCID: PMC8274849 DOI: 10.1371/journal.pone.0254533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.
Collapse
Affiliation(s)
- Julien Kowalewski
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Théo Paris
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Catherine Gonzalez
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Lelièvre
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lina Castaño Valencia
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Morgan Boutrois
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Augier
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laure Yatime
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
20
|
Metikala S, Casie Chetty S, Sumanas S. Single-cell transcriptome analysis of the zebrafish embryonic trunk. PLoS One 2021; 16:e0254024. [PMID: 34234366 PMCID: PMC8263256 DOI: 10.1371/journal.pone.0254024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022] Open
Abstract
During embryonic development, cells differentiate into a variety of distinct cell types and subtypes with diverse transcriptional profiles. To date, transcriptomic signatures of different cell lineages that arise during development have been only partially characterized. Here we used single-cell RNA-seq to perform transcriptomic analysis of over 20,000 cells disaggregated from the trunk region of zebrafish embryos at the 30 hpf stage. Transcriptional signatures of 27 different cell types and subtypes were identified and annotated during this analysis. This dataset will be a useful resource for many researchers in the fields of developmental and cellular biology and facilitate the understanding of molecular mechanisms that regulate cell lineage choices during development.
Collapse
Affiliation(s)
- Sanjeeva Metikala
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL, United States of America
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
22
|
Wang Z, Mizoguchi T, Kuribara T, Nakajima M, Iwata M, Sakamoto Y, Nakamura H, Murayama T, Nemoto T, Itoh M. Py 3-FITC: a new fluorescent probe for live cell imaging of collagen-rich tissues and ionocytes. Open Biol 2021; 11:200241. [PMID: 33561382 PMCID: PMC8061698 DOI: 10.1098/rsob.200241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
Polypyrrole-based polyamides are used as sequence-specific DNA probes. However, their cellular uptake and distribution are affected by several factors and have not been extensively studied in vivo. Here, we generated a series of fluorescence-conjugated polypyrrole compounds and examined their cellular distribution using live zebrafish and cultured human cells. Among the evaluated compounds, Py3-FITC was able to visualize collagen-rich tissues, such as the jaw cartilage, opercle and bulbus arteriosus, in early-stage living zebrafish embryos. Then, we stained cultured human cells with Py3-FITC and found that the staining became more intense as the amount of collagen was increased. In addition, Py3-FITC-stained HR cells, which represent a type of ionocyte on the body surface of living zebrafish embryos. Py3-FITC has low toxicity, and collagen-rich tissues and ionocytes can be visualized when soaked in Py3-FITC solution. Therefore, Py3-FITC may be a useful live imaging tool for detecting changes in collagen-rich tissue and ionocytes, including their mammalian analogues, during both normal development and disease progression.
Collapse
Affiliation(s)
- Zhaotong Wang
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Mayuu Iwata
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Yuka Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| |
Collapse
|
23
|
Zimmer AM, Mandic M, Yew HM, Kunert E, Pan YK, Ha J, Kwong RWM, Gilmour KM, Perry SF. Use of a carbonic anhydrase Ca17a knockout to investigate mechanisms of ion uptake in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2021; 320:R55-R68. [PMID: 33085911 DOI: 10.1152/ajpregu.00215.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In fishes, branchial cytosolic carbonic anhydrase (CA) plays an important role in ion and acid-base regulation. The Ca17a isoform in zebrafish (Danio rerio) is expressed abundantly in Na+-absorbing/H+-secreting H+-ATPase-rich (HR) cells. The present study aimed to identify the role of Ca17a in ion and acid-base regulation across life stages using CRISPR/Cas9 gene editing. However, in preliminary experiments, we established that ca17a knockout is lethal with ca17a-/- mutants exhibiting a significant decrease in survival beginning at ∼12 days postfertilization (dpf) and with no individuals surviving past 19 dpf. Based on these findings, we hypothesized that ca17a-/- mutants would display alterations in ion and acid-base balance and that these physiological disturbances might underlie their early demise. Na+ uptake rates were significantly increased by up to 300% in homozygous mutants compared with wild-type individuals at 4 and 9 dpf; however, whole body Na+ content remained constant. While Cl- uptake was significantly reduced in ca17a-/- mutants, Cl- content was unaffected. Reduction of CA activity by Ca17a morpholino knockdown or ethoxzolamide treatments similarly reduced Cl- uptake, implicating Ca17a in the mechanism of Cl- uptake by larval zebrafish. H+ secretion, O2 consumption, CO2 excretion, and ammonia excretion were generally unaltered in ca17a-/- mutants. In conclusion, while the loss of Ca17a caused marked changes in ion uptake rates, providing strong evidence for a Ca17a-dependent Cl- uptake mechanism, the underlying causes of the lethality of this mutation in zebrafish remain unclear.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Milica Mandic
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hong Meng Yew
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma Kunert
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yihang K Pan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jimmy Ha
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Porteus C, Kumai Y, Abdallah SJ, Yew HM, Kwong RW, Pan Y, Milsom WK, Perry SF. Respiratory responses to external ammonia in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110822. [DOI: 10.1016/j.cbpa.2020.110822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
|
25
|
Hung GY, Chen PY, Horng JL, Lin LY. Vincristine exposure impairs skin keratinocytes, ionocytes, and lateral-line hair cells in developing zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105703. [PMID: 33249295 DOI: 10.1016/j.aquatox.2020.105703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Environmental contamination by anticancer pharmaceuticals has been widely reported. These drugs are not readily biodegradable, and their parent compounds and/or metabolites have been detected in surface waters and groundwater throughout the world. Adverse effects of anticancer drugs occur frequently in cancer patients, and a large body of clinical knowledge has accumulated. However, the effects of these drugs on aquatic organisms have not been thoroughly studied. This study aimed to investigate the effects of acute exposure to a common anticancer drug, vincristine (VCR), on zebrafish embryonic development and skin function. After 96 h of VCR exposure (0, 1, 10, 15, and 25 mg/L), significant teratogenic effects were observed, including growth retardation, pericardial edema, spine, tail, and yolk sac malformations (VCR ≥ 15 mg/L), a decreased heart rate, and ocular malformations (VCR ≥ 10 mg/L). The value of the half lethal concentration for zebrafish embryos was 20.6 mg/L. At ≥10 mg/L VCR, systemic ion contents and acid secretion in the skin over the yolk-sac decreased, and these findings were associated with decreases in skin ionocytes (H+-ATPase-rich cells and Na+-K+-ATPase-rich cells). Also, the microridge-structure of skin keratinocytes was significantly damaged. The number of lateral line hair cells was reduced when VCR was ≥10 mg/L, and functional impairment was detected when VCR was as low as 1 mg/L. Results of this in vivo study in zebrafish embryos indicate that acute exposure to VCR can lead to developmental defects, impairment of skin functions, and even fish death.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei 11217, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, 155 Linong St., Sec. 2, Taipei 11221, Taiwan; Department of Life Science, School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei 11677, Taiwan.
| | - Po-Yen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei 11677, Taiwan.
| |
Collapse
|
26
|
Lee CY, Horng JL, Liu ST, Lin LY. Exposure to copper nanoparticles impairs ion uptake, and acid and ammonia excretion by ionocytes in zebrafish embryos. CHEMOSPHERE 2020; 261:128051. [PMID: 33113650 DOI: 10.1016/j.chemosphere.2020.128051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The potential toxicity of copper nanoparticles (CuNPs) to early stages of fishes is not fully understood, and little is known about their effects on ionocytes and associated functions. This study used zebrafish embryos as a model to investigate the toxic effects of CuNPs on two subtypes of ionocytes. Zebrafish embryos were exposed to 0.1, 1, and 3 mg L-1 CuNPs for 96 h. After exposure, whole-body Na+ and Ca2+ contents were significantly reduced at ≥0.1 mg L-1, while the K+ content had decreased at ≥1 mg L-1. H+ and NH4+ excretion by the skin significantly decreased at ≥1 mg L-1. The number of living ionocytes labeled with rhodamine-123 had significantly decreased with ≥0.1 mg L-1 CuNPs. The ionocyte subtypes of H+-ATPase-rich (HR) and Na+/K+-ATPase-rich (NaR) cells were labeled by immunostaining and had decreased with ≥1 mg L-1. Shrinkage of the apical opening of ionocytes was revealed by scanning electronic microscopy. Functional impairment was also reflected by changes in gene expressions, including ion transporters/channels and Ca2+-regulatory hormones. This study shows that CuNP exposure can impair two subtypes of ionocytes and their associated functions, including Na+/Ca2+ uptake and H+/NH4+ excretion in zebrafish embryos.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
27
|
Yao Z, Schauer KL, Ruhr IM, Mager EM, Heuer RM, Grosell M. A marine teleost, Opsanus beta, compensates acidosis in hypersaline water by H + excretion or reduced HCO 3- excretion rather than HCO 3- uptake. J Comp Physiol B 2020; 191:85-98. [PMID: 33070210 DOI: 10.1007/s00360-020-01320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Increases in ambient salinity demand parallel increases in intestinal base secretion for maintenance of osmoregulatory status, which is likely the cause of a transient acidosis following transfer of euryhaline fish from freshwater to seawater. It was predicted that transfer of the marine Gulf toadfish (Opsanus beta) from seawater (35 ppt) to hypersaline (60 ppt) seawater (HSW) would lead to a transient acidosis that would be compensated by increases in branchial acid excretion to offset the acid-base disturbance. Toadfish exposed to HSW showed a significant decrease in blood pH and [HCO3-] but no increase in pCO2, followed by a full recovery after 48-96 h. A similar metabolic acidosis and recovery was found when fish were exposed to 60-ppt HCO3--free seawater (HEPES-buffered), which may suggest that compensation for intestinal base loss during hypersaline treatment is from gill H+ excretion rather than gill HCO3- uptake. However, we cannot rule out that reduced branchial HCO3- excretion contributed to an increase in net acid excretion. Since colchicine prevents full compensation, translocation of H+ and/or HCO3- transporters between cytosolic compartments and plasma membrane fractions might be involved in compensating for the hypersalinity-induced acidosis. Translocation of transporters rather than de novo synthesis may represent a faster and less energetically demanding response to rapidly fluctuating and high salinities encountered by toadfish in their natural environment.
Collapse
Affiliation(s)
- Zongli Yao
- Sino-US joint laboratory of Aquatic Animal Physiology, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, China. .,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Ilan M Ruhr
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.,Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Edward M Mager
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Rachael M Heuer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Sino-US joint laboratory of Aquatic Animal Physiology, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, China.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| |
Collapse
|
28
|
Hare AJ, Zimmer AM, LePabic R, Morgan AL, Gilmour KM. Early-life stress influences ion balance in developing zebrafish (Danio rerio). J Comp Physiol B 2020; 191:69-84. [PMID: 33064210 DOI: 10.1007/s00360-020-01319-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
As a key endocrine axis involved in responding to stress, the hypothalamic-pituitary-interrenal axis plays dual roles in mobilizing energy and maintaining ionic/osmotic balance in fishes. Although these roles have been examined independently in detail in adult fishes, less attention has been paid to the effects of an endogenous stress response during early life, particularly with respect to its potential effects on ionic/osmotic balance. The present study tested the hypothesis that exposure of zebrafish to stress during early development would alter ion balance later in life. Zebrafish at three developmental stages (4, 7, or 15 days post-fertilization, dpf) were subjected to an air-exposure stressor twice a day for 2 days, causing elevation of whole-body cortisol levels. Individuals stressed early in life exhibited decreased survival and growth, altered cortisol responses to a subsequent air-exposure stressor, and increased whole-body Na+ and Ca2+ concentrations. Changes in whole-body Ca2+ concentrations were accompanied by increased ionocyte abundance at 7 dpf and increased rates of Ca2+ uptake from the environment. Differences in whole-body ion concentrations at 15 and 35 dpf were not accompanied by altered ion uptake rates. Across all ages examined, air-exposure stress experienced at 7 dpf was particularly effective at eliciting phenotypic changes, suggesting a critical window at this age for a stress response to influence development. These findings demonstrate that early-life stress in zebrafish triggers developmental plasticity, with age-dependent effects on both the cortisol stress axis and ion balance.
Collapse
Affiliation(s)
- A J Hare
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - A M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - R LePabic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - A L Morgan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Breus O, Dickmeis T. Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration. Biol Chem 2020; 402:363-378. [PMID: 33021959 DOI: 10.1515/hsz-2020-0269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Important roles for reactive oxygen species (ROS) and redox signaling in embryonic development and regenerative processes are increasingly recognized. However, it is difficult to obtain information on spatiotemporal dynamics of ROS production and signaling in vivo. The zebrafish is an excellent model for in vivo bioimaging and possesses a remarkable regenerative capacity upon tissue injury. Here, we review data obtained in this model system with genetically encoded redox-sensors targeting H2O2 and glutathione redox potential. We describe how such observations have prompted insight into regulation and downstream effects of redox alterations during tissue differentiation, morphogenesis and regeneration. We also discuss the properties of the different sensors and their consequences for the interpretation of in vivo imaging results. Finally, we highlight open questions and additional research fields that may benefit from further application of such sensor systems in zebrafish models of development, regeneration and disease.
Collapse
Affiliation(s)
- Oksana Breus
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
30
|
Shir-Mohammadi K, Perry SF. Expression of ion transport genes in ionocytes isolated from larval zebrafish ( Danio rerio) exposed to acidic or Na +-deficient water. Am J Physiol Regul Integr Comp Physiol 2020; 319:R412-R427. [PMID: 32755465 DOI: 10.1152/ajpregu.00095.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In zebrafish (Danio rerio), a specific ionocyte subtype, the H+-ATPase-rich (HR) cell, is presumed to be a significant site of transepithelial Na+ uptake/acid secretion. During acclimation to environments differing in ionic composition or pH, ionic and acid-base regulations are achieved by adjustments to the activity level of HR cell ion transport proteins. In previous studies, the quantitative assessment of mRNA levels for genes involved in ionic and acid-base regulations relied on measurements using homogenates derived from the whole body (larvae) or the gill (adult). Such studies cannot distinguish whether any differences in gene expression arise from adjustments of ionocyte subtype numbers or transcriptional regulation specifically within individual ionocytes. The goal of the present study was to use fluorescence-activated cell sorting to separate the HR cells from other cellular subpopulations to facilitate the measurement of gene expression of HR cell-specific transporters and enzymes from larvae exposed to low pH (pH 4.0) or low Na+ (5 μM) conditions. The data demonstrate that treatment of larvae with acidic water for 4 days postfertilization caused cell-specific increases in H+-ATPase (atp6v1aa), ca17a, ca15a, nhe3b, and rhcgb mRNA in addition to increases in mRNA linked to cell proliferation. In fish exposed to low Na+, expression of nhe3b and rhcgb was increased owing to HR cell-specific regulation and elevated numbers of HR cells. Thus, the results of this study demonstrate that acclimation to low pH or low Na+ environmental conditions is facilitated by HR cell-specific transcriptional control and by HR cell proliferation.
Collapse
Affiliation(s)
| | - S F Perry
- Department of Biology, University of Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Parker JJ, Zimmer AM, Perry SF. Respirometry and cutaneous oxygen flux measurements reveal a negligible aerobic cost of ion regulation in larval zebrafish ( Danio rerio). J Exp Biol 2020; 223:jeb226753. [PMID: 32709624 DOI: 10.1242/jeb.226753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/19/2020] [Indexed: 08/26/2023]
Abstract
Fishes living in fresh water counter the passive loss of salts by actively absorbing ions through specialized cells termed ionocytes. Ionocytes contain ATP-dependent transporters and are enriched with mitochondria; therefore ionic regulation is an energy-consuming process. The purpose of this study was to assess the aerobic costs of ion transport in larval zebrafish (Danio rerio). We hypothesized that changes in rates of Na+ uptake evoked by acidic or low Na+ rearing conditions would result in corresponding changes in whole-body oxygen consumption (ṀO2 ) and/or cutaneous oxygen flux (JO2 ), measured at the ionocyte-expressing yolk sac epithelium using the scanning micro-optrode technique (SMOT). Larvae at 4 days post-fertilization (dpf) that were reared under low pH (pH 4) conditions exhibited a higher rate of Na+ uptake compared with fish reared under control conditions (pH 7.6), yet they displayed a lower ṀO2 and no difference in cutaneous JO2 Despite a higher Na+ uptake capacity in larvae reared under low Na+ conditions, there were no differences in ṀO2 and JO2 at 4 dpf. Furthermore, although Na+ uptake was nearly abolished in 2 dpf larvae lacking ionocytes after morpholino knockdown of the ionocyte proliferation regulating transcription factor foxi3a, ṀO2 and JO2 were unaffected. Finally, laser ablation of ionocytes did not affect cutaneous JO2 Thus, we conclude that the aerobic costs of ion uptake by ionocytes in larval zebrafish, at least in the case of Na+, are below detection using whole-body respirometry or cutaneous SMOT scans, providing evidence that ion regulation in zebrafish larvae incurs a low aerobic cost.
Collapse
Affiliation(s)
- Julian J Parker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
32
|
Lonthair J, Dichiera AM, Esbaugh AJ. Mechanisms of acid-base regulation following respiratory alkalosis in red drum (Sciaenops ocellatus). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110779. [PMID: 32763467 DOI: 10.1016/j.cbpa.2020.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Respiratory acidosis and subsequent metabolic compensation are well-studied processes in fish exposed to elevated CO2 (hypercapnia). Yet, such exposures in the marine environment are invariably accompanied by a return of environmental CO2 to atmospheric baselines. This understudied phenomenon has the potential to cause a respiratory alkalosis that would necessitate base excretion. Here we sought to explore this question and the associated physiological mechanisms that may accompany base excretions using the red drum (Sciaenops ocellatus). As expected, when high pCO2 (15,000 μatm CO2) acclimated red drum were transferred to normal pCO2, their net H+ excretion shifted from positive (0.157 ± 0.044 μmol g-1 h-1) to negative (-0.606 ± 0.116 μmol g-1 h-1) in the 2 h post-transfer period. Net H+ excretion returned to control rates during the 3 to 24 h flux period. Gene expression and enzyme activity assays demonstrated that while the acidosis resulted in significant changes in several relevant transporters, no significant changes accompanied the alkalosis phase. Confocal microscopy was used to assess alkalosis-stimulated translocation of V-type H+ ATPase to the basolateral membrane previously seen in other marine species; however, no apparent translocation was observed. Overall, these data demonstrate that fluctuations in environmental CO2 result in both acidic and alkalotic respiratory disturbances; however, red drum maintain sufficient regulatory capacity to accommodate base excretion. Furthermore, this work does not support a role for basolateral VHA translocation in metabolic compensation from a systemic alkalosis in teleosts.
Collapse
Affiliation(s)
- Joshua Lonthair
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA; Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA.
| | - Angelina M Dichiera
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
33
|
Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW, Wang ECE, DeStefano GM, O'Donnell-Luria AH, Christiano AM, Riley B, Butler SJ, Luria V. Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Dev Biol 2020; 464:71-87. [PMID: 32320685 PMCID: PMC7307705 DOI: 10.1016/j.ydbio.2020.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.
Collapse
Affiliation(s)
- Alin Vonica
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Biology, The Nazareth College, Rochester, NY, 14618, USA
| | - Neha Bhat
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Keith Phan
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Jinbai Guo
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA
| | - Lăcrimioara Iancu
- Institut für Algebra und Zahlentheorie, Universität Stuttgart, D-70569, Stuttgart, Germany; Institute of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Jessica A Weber
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA, 02115, USA
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA
| | - Etienne C E Wang
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gina M DeStefano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Angela M Christiano
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Bruce Riley
- Department of Biology, Texas A&M University, College Station, TX, 7783-3258, USA.
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, 90095-7239, USA.
| | - Victor Luria
- Departments of Genetics and Development, and Dermatology, Columbia University Medical Center, New York, NY, 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Zimmer AM, Perry SF. The Rhesus glycoprotein Rhcgb is expendable for ammonia excretion and Na + uptake in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110722. [PMID: 32437959 DOI: 10.1016/j.cbpa.2020.110722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 11/27/2022]
Abstract
In zebrafish (Danio rerio), the ammonia-transporting Rhesus glycoprotein Rhcgb is implicated in mechanisms of ammonia excretion and Na+ uptake. In particular, Rhcgb is thought to play an important role in maintaining ammonia excretion in response to alkaline conditions and high external ammonia (HEA) exposure, in addition to facilitating Na+ uptake via a functional metabolon with the Na+/H+-exchanger Nhe3b, specifically under low Na+ conditions. In the present study, we hypothesized that CRISPR/Cas9 knockout of rhcgb would reduce ammonia excretion and Na+ uptake capacity, particularly under the conditions listed above that have elicited increases in Rhcgb-mediated ammonia excretion and/or Na+ uptake. Contrary to this hypothesis, however, larval and juvenile rhcgb knockout (KO) mutants showed no reductions in ammonia excretion or Na+ uptake under any of the conditions tested in our study. In fact, under control conditions, rhcgb KO mutants generally displayed an increase in ammonia excretion, potentially due to increased transcript abundance of another rh gene, rhbg. Under alkaline conditions, rhcgb KO mutants were also able to maintain ammonia excretion, similar to wild-type fish, and stimulation of ammonia excretion after HEA exposure also was not affected by rhcgb KO. Surprisingly, ammonia excretion and Na+ uptake were unaffected by rhcgb or nhe3b KO in juvenile zebrafish acclimated to normal (800 μmol/L) or low (10 μmol/L) Na+ conditions. These results demonstrate that Rhcgb is expendable for ammonia excretion and Na+ uptake in zebrafish, highlighting the plasticity and flexibility of these physiological systems in this species.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Kumar M, Varghese T, Sahu NP, Gupta G, Dasgupta S. Pseudobranch mimics gill in expressing Na +K +-ATPase 1 α-subunit and carbonic anhydrase in concert with H +-ATPase in adult hilsa (Tenualosa ilisha) during river migration. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:725-738. [PMID: 31848826 DOI: 10.1007/s10695-019-00746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In hilsa (Tenualosa ilisha), pseudobranch comprises a row of parallel filaments bear numerous leaf-like lamellae arranged on both sides throughout its length. The purpose of this study was to elucidate involvement of pseudobranchial Na+, K+-ATPase (NKA) 1 α-subunit, and carbonic anhydrase (CA) in concert with H+-ATPase (HAT) compared to their branchial counterparts in freshwater acclimation of hilsa during spawning migration from off-shore of the Bay of Bengal to the Bhagirathi-Hooghly zones of the Ganga river system in India. Adult hilsa fish were collected from seawater (SW), freshwater 1 (FW1), and freshwater 2 (FW2) locations, where the salinity level was 26-28‰, 1-5‰, and 0-0.04‰, respectively. Hilsa migrating through freshwater showed a consistent decrease in the plasma osmolality, sodium (Na+) and chloride (Cl-) ion levels indicates unstable ionic homeostasis. The mRNA expression and activity of NKA 1 α-subunit in pseudobranch as well as in true gills declined with the migration to upstream locations. The pseudobranchial CA activity almost mirrors its branchial counterpart most notably while hilsa entered the freshwater zone, in the upstream river suggesting its diverse role in hypo-osmotic regulatory acclimation. Nevertheless, the H+-ATPase activity of both the tissues increased with the freshwater entry and remained similar during up-river movement into the freshwater environment. The results confirm that the pseudobranchial NKA 1 α-subunit mRNA expression and activity mimic its branchial counterpart in the process of ionoregulatory acclimation during migration through salt barriers. Also, the increase in the activities of pseudobranchial and branchial CA in concert with H+-ATPase (HAT) during freshwater acclimation of hilsa suggests their critical involvement in ion uptake.
Collapse
Affiliation(s)
- Munish Kumar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Narottam Prasad Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Gyandeep Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education, 32 GN Block, Sector V, Salt Lake City, Kolkata, West Bengal, 700 091, India.
| |
Collapse
|
36
|
Dave PH, Kwong RWM. Cadmium exposure reduces the density of a specific ionocyte subtype in developing zebrafish. CHEMOSPHERE 2020; 244:125535. [PMID: 32050336 DOI: 10.1016/j.chemosphere.2019.125535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 05/28/2023]
Abstract
The present study examined the effects of waterborne cadmium (Cd) exposure on ionic balance and ionocyte density in developing zebrafish (Danio rerio) (0-4 days post-fertilization). Fish exposed to 1 or 10 μg Cd/L exhibited an increase in whole body Cd level. Exposure to 10 μg Cd/L also significantly reduced whole body content of Ca2+, but not other major ions (e.g., Na+, K+ and Mg2+). Such reduction was accompanied by a decrease in the density of Ca2+-transporting ionocytes, the Na+/K+-ATPase-rich cells (NaRCs). However, the densities of other ionocyte subtypes (e.g., Na+-transporting ionocytes) remained unchanged after exposure to 10 μg Cd/L. The potential interactive effects between water chemistry and Cd exposure on ionocyte density were examined further in Cd-exposed larvae acclimated to different water NaCl or Ca2+ levels. The results demonstrated that NaRC density increased in fish acclimated to low Ca2+ water, presumably increasing Ca2+ uptake for maintaining Ca2+ homeostasis. However, Cd exposure completely abolished the increased NaRC density in low water Ca2+ environments. The increased NaRCs over development was also reduced in Cd-exposed larvae. In conclusion, our study suggested that Cd exposure reduces the density of NaRCs and suppresses the compensatory regulation of NaRCs during acclimation to low water Ca2+ level. These inhibitory effects by Cd exposure ultimately disrupt Ca2+ balance in the early life stages of zebrafish.
Collapse
Affiliation(s)
- Preeti H Dave
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Tseng YC, Yan JJ, Furukawa F, Hwang PP. Did Acidic Stress Resistance in Vertebrates Evolve as Na + /H + Exchanger-Mediated Ammonia Excretion in Fish? Bioessays 2020; 42:e1900161. [PMID: 32163625 DOI: 10.1002/bies.201900161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/20/2020] [Indexed: 12/21/2022]
Abstract
How vertebrates evolved different traits for acid excretion to maintain body fluid pH homeostasis is largely unknown. The evolution of Na+ /H+ exchanger (NHE)-mediated NH4 + excretion in fishes is reported, and the coevolution with increased ammoniagenesis and accompanying gluconeogenesis is speculated to benefit vertebrates in terms of both internal homeostasis and energy metabolism response to acidic stress. The findings provide new insights into our understanding of the possible adaptation of fishes to progressing global environmental acidification. In human kidney, titratable H+ and NH4 + comprise the two main components of net acid excretion. V-type H+ -ATPase-mediated H+ excretion may have developed in stenohaline lampreys when they initially invaded freshwater from marine habitats, but this trait is lost in most fishes. Instead, increased reliance on NHE-mediated NH4 + excretion is gradually developed and intensified during fish evolution. Further investigations on more species will be needed to support the hypothesis. Also see the video abstract here https://youtu.be/vZuObtfm-34.
Collapse
Affiliation(s)
- Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Fumiya Furukawa
- Kitasato University, School of Marine Biosciences, Tokyo, 2520373, Japan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
38
|
Yew HM, Zimmer AM, Perry SF. Assessing intracellular pH regulation in H +-ATPase-rich ionocytes in zebrafish larvae using in vivo ratiometric imaging. J Exp Biol 2020; 223:jeb212928. [PMID: 32029462 DOI: 10.1242/jeb.212928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
The H+-ATPase-rich (HR) cells of zebrafish larvae are a sub-type of ion-transporting cell located on the yolk sac epithelium that are responsible for Na+ uptake and H+ extrusion. Current models of HR cell ion transport mechanisms in zebrafish larvae are well established, but little is known about the involvement of the various ion transport pathways in regulating intracellular acid-base status. Here, a ratiometric imaging technique was developed and validated to monitor intracellular pH (pHi) continuously in larval zebrafish HR cells in vivo Gene knockdown or CRISPR/Cas9 knockout approaches were used to evaluate the roles of the two principal apical membrane acid excretory pathways, the Na+/H+ exchanger (NHE3b; slc9a3.2) and the H+-ATPase (atpv1aa). Additionally, the role of HR cell cytosolic carbonic anhydrase (CAc) was investigated because of its presumed role in providing H+ for Na+/H+ exchange and H+-ATPase. The temporal pattern and extent of intracellular acidification during exposure of fish to 1% CO2 and the extent of post-CO2 alkalisation were altered markedly in fish experiencing knockdown/knockout of CAc, NHE3b or H+-ATPase. Although there were slight differences among the three knockdown/knockout experiments, the typical response was a greater degree of intracellular acidification during CO2 exposure and a reduced capacity to restore pHi to baseline levels post-hypercapnia. The metabolic alkalosis and subsequent acidification associated with 20 mmol l-1 NH4Cl exposure and its washout were largely unaffected by gene knockdown. Overall, the results suggest markedly different mechanisms of intracellular acid-base regulation in zebrafish HR cells depending on the nature of the acid-base disturbance.
Collapse
Affiliation(s)
- H M Yew
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| | - A M Zimmer
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| | - S F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| |
Collapse
|
39
|
Lin LY, Hung GY, Yeh YH, Chen SW, Horng JL. Acidified water impairs the lateral line system of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105351. [PMID: 31711007 DOI: 10.1016/j.aquatox.2019.105351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Acidification of freshwater ecosystems is recognized as a global environmental problem. However, the influence of acidic water on the early stages of freshwater fish is still unclear. This study focused on the sublethal effects of acidic water on the lateral line system of zebrafish embryos. Zebrafish embryos were exposed to water at different pH values (pH 4, 5, 7, 9, and 10) for 96 (0-96 h post-fertilization (hpf)) and 48 h (48∼96 hpf). The survival rate, body length, and heart rate significantly decreased in pH 4-exposed embryos during the 96-h incubation. The number of lateral-line neuromasts and the size of otic vesicles/otoliths also decreased in pH 4-exposed embryos subjected to 96- and 48-h incubations. The number of neuromasts decreased in pH 5-exposed embryos during the 96-h incubation. Alkaline water (pH 9 and 10) did not influence embryonic development but suppressed the hatching process. The mechanotransducer channel-mediated Ca2+ influx was measured to reveal the function of lateral line hair cells. The Ca2+ influx of hair cells decreased in pH 5-exposed embryos subjected to the 48-h incubation, and both the number and Ca2+ influx of hair cells had decreased in pH 5-exposed embryos after 96 h of incubation. In addition, the number and function of hair cells were suppressed in H+-ATPase- or GCM2-knockdown embryos, which partially lost the ability to secrete acid into the ambient water. In conclusion, this study suggests that lateral line hair cells are sensitive to an acidic environment, and freshwater acidification could be a threat to the early stages of fishes.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Wen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
40
|
JavadiEsfahani R, Kwong RWM. The sensory-motor responses to environmental acidosis in larval zebrafish: Influences of neurotransmitter and water chemistry. CHEMOSPHERE 2019; 235:383-390. [PMID: 31271998 DOI: 10.1016/j.chemosphere.2019.06.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The sensory-motor function in larval zebrafish (Danio rerio) following exposure to low water pH was investigated. The results suggested that acid exposure (pH 4.0-5.0; control: pH 7.4) significantly reduced the touch-evoked escape response of larval zebrafish at 3 days post fertilization (dpf). A significant number of pH 4.0-exposed larvae also exhibited a lack of escape response. Treatment with neurotransmitters showed that serotonin or acetylcholine, but not dopamine, reduced the adverse effects of acid exposure on the escape response of larvae. Co-exposure to serotonin and acetylcholine did not further improve the escape response of acid-exposed larvae, suggesting no additive effect by these neurotransmitters. Interestingly, the negative effects of acid exposure on the escape response could be completely rescued by elevating the water levels of Ca2+, but not NaCl. Collectively, these results suggested that acid-induced disruption in Ca2+ balance suppressed the serotonin- and acetylcholine-mediated neuronal signaling, thereby affecting the sensory-motor function and escape response of larval zebrafish. Findings from the present study may have important implication for the survival (e.g., escape from adverse conditions) of larval fish in acid-impacted environments, particularly during early development when they are still incapable of spontaneous swimming.
Collapse
|
41
|
Lee CY, Horng JL, Chen PY, Lin LY. Silver nanoparticle exposure impairs ion regulation in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105263. [PMID: 31376794 DOI: 10.1016/j.aquatox.2019.105263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The potential toxicity of silver nanoparticles (AgNPs) to the early stages of fish is still unclear. This study used zebrafish embryos as a model to investigate the toxic effects of AgNPs on ion regulation by skin ionocytes. Zebrafish embryos were exposed to AgNPs for 96 h (4-100 h post-fertilization (hpf)) or 4 h (96-100 hpf). After 96 h of exposure to 5 and 10 mg/L AgNPs, survival rates had decreased to 42% and 0%, respectively; the body length had also significantly decreased at 5 mg/L. Whole-body Na+ and K+ contents significantly decreased at 1 and 3 mg/L, while Ca2+ contents decreased at ≥0.1 mg/L. H+ secretion by the skin significantly decreased at 1 mg/L. The density of skin ionocytes labeled with rhodamine 123 (a mitochondrion marker) decreased by 25% and 55% at 1 and 3 mg/L, respectively; and 54% of ionocytes (at 3 mg/L) were deformed from an oval to a spinous shape. After 4 h of exposure to 1 and 5 mg/L, whole-body Na+ and Ca2+ contents, H+ secretion, and density of ionocytes had also significantly decreased. This study revealed the toxicity of AgNPs to skin ionocytes and ion regulation in the early stages of zebrafish embryos.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Yen Chen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
42
|
Gordon WE, Espinoza JA, Leerberg DM, Yelon D, Hamdoun A. Xenobiotic transporter activity in zebrafish embryo ionocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:88-97. [PMID: 31077970 PMCID: PMC6561644 DOI: 10.1016/j.aquatox.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Ionocytes are specialized cells in the epidermis of embryonic zebrafish (Danio rerio) that play important roles in ion homeostasis and have functional similarities to mammalian renal cells. Here, we examined whether these cells might also share another functional similarity with renal cells, which is the presence of efflux transporter activities useful for elimination of toxic small molecules. Xenobiotic transporters (XTs), including the ATP-Binding Cassette (ABC) family, are a major defense mechanism against diffusible toxic molecules in aquatic embryos, including zebrafish, but their activity in the ionocytes has not previously been studied. Using fluorescent small molecule substrates of XT, we observed that specific populations of ionocytes uptake and efflux fluorescent small molecules in a manner consistent with active transport. We specifically identified a P-gp/ABCB1 inhibitor-sensitive efflux activity in the H+-ATPase-rich (HR) ionocytes, and show that these cells exhibit enriched expression of the ABCB gene, abcb5. The results extend our understanding of the functional significance of zebrafish ionocytes and indicate that these cells could play an important role in protection of the fish embryo from harmful small molecules.
Collapse
Affiliation(s)
- Wei E Gordon
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jose A Espinoza
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Dena M Leerberg
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 2019; 20:ijms20102409. [PMID: 31096646 PMCID: PMC6567007 DOI: 10.3390/ijms20102409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.
Collapse
Affiliation(s)
- Gianluca Fichi
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Valentina Naef
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | - Maria Marchese
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
44
|
Hung GY, Wu CL, Chou YL, Chien CT, Horng JL, Lin LY. Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:168-177. [PMID: 30784778 DOI: 10.1016/j.aquatox.2019.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to assess the sublethal effects of a platinum-based compound, cisplatin, using a zebrafish model. Zebrafish embryos were incubated in different concentrations of cisplatin at 0-96 h post-fertilization. Using a non-invasive, scanning ion-selective electrode technique (SIET), we measured the functions of hair cells (Ca2+ influx) and ionocytes ([H+] gradients). The survival rate, hatching rate, phenotype, body length, whole-body ion (Na+, Cl-, and Ca2+) and Pt contents were also determined. The effects of cisplatin on zebrafish embryos were demonstrated as first impairing hair cell function (at 1 μM of cisplatin), the hair cell number, and body ion content of Cl- (at 10 μM of cisplatin), then decreasing ionocyte acid secretion and overall body ion contents of Na+ and Ca2+ (at 50 μM of cisplatin). The body length and ionocyte density decreased at 100 μM of cisplatin, and survival decreased at 500 μM of cisplatin. As the cisplatin concentration increased, the accumulation of Pt in fish embryos also increased. These results revealed that hair cells are significantly more susceptible to cisplatin toxicity than ionocytes. By determining the lowest observed effective concentration of cisplatin that caused in vivo functional alterations of zebrafish hair cells and skin ionocytes, this model demonstrated 500-fold greater sensitivity than by detecting changes in survival, for early assessment of the effects of platinum-based chemotherapeutic drugs on fish.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ciao-Ling Wu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Ling Chou
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
45
|
Zimmer AM, Shir-Mohammadi K, Kwong RWM, Perry SF. Reassessing the contribution of the Na+/H+ exchanger Nhe3b to Na+ uptake in zebrafish (Danio rerio) using CRISPR/Cas9 gene editing. J Exp Biol 2019; 223:jeb.215111. [DOI: 10.1242/jeb.215111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
Freshwater fishes absorb Na+ from their dilute environment using ion-transporting cells. In larval zebrafish (Danio rerio), Na+ uptake is coordinated by (1) Na+/H+-exchanger 3b (Nhe3b) and (2) H+-ATPase-powered electrogenic uptake in H+-ATPase-rich (HR) cells and by (3) Na+-Cl−-cotransporter (Ncc) expressed in NCC cells. The present study aimed to better understand the roles of these 3 proteins in Na+ uptake by larval zebrafish under ‘normal’ (800 µmol/L) and ‘low’ (10 µmol/L) Na+ conditions. We hypothesized that Na+ uptake would be reduced by CRISPR/Cas9 knockout (KO) of slc9a3.2 (encoding Nhe3b), particularly in low Na+ where Nhe3b is believed to play a dominant role. Contrary to this hypothesis, Na+ uptake was sustained in nhe3b KO larvae under both Na+ conditions, which led to the exploration of whether compensatory regulation of H+-ATPase or Ncc was responsible for maintaining Na+ uptake in nhe3b KO larvae. mRNA expression of the genes encoding H+-ATPase and Ncc were not altered in nhe3b KO. Moreover, morpholino knockdown of H+-ATPase, which significantly reduced H+ flux by HR cells, did not reduce Na+ uptake in nhe3b KO larvae, nor did rearing larvae in chloride-free conditions, thereby eliminating any driving force for Na+-Cl−-cotransport via Ncc. Finally, simultaneously treating nhe3b KO larvae with H+-ATPase morpholino and chloride-free conditions did not reduce Na+ uptake under normal or low Na+. These findings highlight the flexibility of the Na+ uptake system and demonstrate that Nhe3b is expendable to Na+ uptake in zebrafish and that our understanding of Na+ uptake mechanisms in this species is incomplete.
Collapse
Affiliation(s)
- Alex M. Zimmer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Steve F. Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Brix KV, Brauner CJ, Schluter D, Wood CM. Pharmacological evidence that DAPI inhibits NHE2 in Fundulus heteroclitus acclimated to freshwater. Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:1-6. [PMID: 29763692 DOI: 10.1016/j.cbpc.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
Ionoregulation in the euryhaline killifish Fundulus heteroclitus has been intensively studied over the last two decades using a variety of techniques. However, there has been limited use of pharmacological inhibitors to identify proteins involved in ion transport for this species. In this study, we used a range of pharmacological inhibitors (EIPA, DAPI, ethoxzolamide, bumetanide, bafilomycin, phenamil, hydrochlorothiazide) to investigate the proteins involved in Na+ transport in freshwater (1 mM Na+) acclimated F. heteroclitus. Our results indicate that Na+ uptake under these conditions is sensitive to both EIPA (NHE-specific inhibitor) and DAPI (putative ASIC-specific inhibitor), but not to any of the other inhibitors. Results for EIPA are consistent with previous studies indicating F. heteroclitus relies solely on NHE2 for Na+ transport across the apical membrane of ionocytes. In contrast, results for DAPI are surprising given previous studies that have indicated the H+-ATPase is basolaterally located in F. heteroclitus and so cannot contribute to Na+ uptake via ASIC. The lack of bafilomycin sensitivity in the current study is consistent with a basolaterally located H+-ATPase. This suggests that DAPI is not an ASIC-specific inhibitor as has been previously assumed, and that it may also inhibit NHE2. Finally, we did not observe Na+ uptake to be sensitive to ethoxzolamide, suggesting that carbonic anhydrase may not be involved in generating the H+ needed to maintain NHE activity in freshwater as has been previously proposed.
Collapse
Affiliation(s)
- Kevin V Brix
- EcoTox, Miami, FL, United States; University of Miami, RSMAS, Miami, FL, United States.
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Zimmer AM, Dymowska AK, Kumai Y, Goss GG, Perry SF, Kwong RWM. Assessing the role of the acid-sensing ion channel ASIC4b in sodium uptake by larval zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018; 226:1-10. [PMID: 29913320 DOI: 10.1016/j.cbpa.2018.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
Abstract
Na+ uptake in larval zebrafish (Danio rerio) is coordinated by three mechanisms: Na+/H+-exchanger 3b (NHE3b) expressed in H+-ATPase-rich (HR) cells, an unidentified Na+ channel coupled to electrogenic H+-ATPase expressed in HR cells, and Na+-Cl--cotransporter (NCC) expressed in NCC cells. Recently, acid-sensing ion channels (ASICs) were proposed to be the putative Na+ channel involved in H+-ATPase-mediated Na+ uptake in adult zebrafish and rainbow trout. In the present study, we hypothesized that ASICs also play this role in Na+ uptake in larval zebrafish. In support of this hypothesis, immunohistochemical analyses revealed that ASIC4b was expressed in HR cells on the yolk sac skin at 4 days post-fertilization (dpf). However, neither treatment with the ASIC-specific blocker 4,6-diamidino-2-phenylindole (DAPI) nor morpholino knockdown of ASIC4b reduced Na+ uptake in circumneutral conditions at 4 dpf. However, because ASIC4b knockdown led to significant increases in the mRNA expression of nhe3b and ncc and a significant increase in HR cell density, it is possible that Na+ influx was sustained by increased participation of non-ASIC4b pathways. Moreover, when fish were reared in acidic water (pH = 4), ASIC4b knockdown led to a stimulation of Na+ uptake at 3 and 4 dpf, results which also were inconsistent with an essential role for ASIC-mediated Na+ uptake, even under conditions known to constrain Na+ uptake via NHE3b. Thus, while ASIC4b clearly is expressed in HR cells, the current functional experiments cannot confirm its involvement in Na+ uptake in larval zebrafish.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Agnieszka K Dymowska
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; College of Marine Sciences, University of South Florida, Saint Petersburg, USA
| | - Yusuke Kumai
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Zimmer AM, Wright PA, Wood CM. Ammonia and urea handling by early life stages of fishes. ACTA ACUST UNITED AC 2018; 220:3843-3855. [PMID: 29093184 DOI: 10.1242/jeb.140210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N57
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
49
|
Lewis L, Kwong RWM. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 2018; 19:E1087. [PMID: 29621145 PMCID: PMC5979485 DOI: 10.3390/ijms19041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct). Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na⁺, Cl- and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.
Collapse
Affiliation(s)
- Lletta Lewis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
50
|
Brannen M, Gilmour KM. Carbonic anhydrase expression in the branchial ionocytes of rainbow trout. J Exp Biol 2018; 221:jeb.164582. [DOI: 10.1242/jeb.164582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) exposed to acid-base challenges activate branchial mechanisms for the excretion of acid-base equivalents. Current models of branchial acid-base excretion in freshwater rainbow trout propose two main ionocyte types; the peanut lectin agglutinin-positive (PNA+) mitochondrion-rich cell or ionocyte is believed to secrete HCO3− in exchange for Cl−, whereas H+ secretion is thought to occur across PNA− ionocytes in exchange for Na+. Both HCO3− and H+ are supplied by intracellular hydration of CO2 catalyzed by cytosolic carbonic anhydrase (CAc). Immunohistochemical approaches revealed that under control conditions, CAc was detectable in 92.3±1.0% (N=11) of PNA− ionocytes, and the abundance of PNA− ionocytes increased in response to systemic acidosis elicited by 72 h exposure to water of low pH (nominally pH 4.5), hypercapnia (1% CO2, nominally 7.6 Torr) or hyperoxia (achieved by gassing water with pure O2), as did the abundance of PNA− ionocytes that exhibited immunofluorescence for CAc. However, just 4.3 ± 0.6% (N=11) of PNA+ ionocytes expressed detectable CAc under control conditions. Marked increases in the abundance of CAc-positive PNA+ ionocytes were detected following exposure of trout to a base load via recovery from hypercapnia, or base infusion (72 h infusion with 140 mmol L−1 NaHCO3). The percentage of CAc-positive PNA+ ionocytes also was increased in trout treated with cortisol (10 mg kg−1 hydrocortisone 21-hemisuccinate daily for 7 d). These results suggest that regulation of CA within PNA+ ionocytes and/or the abundance of CAc-positive PNA+ ionocytes plays a role in activating base secretion in response to systemic alkalosis.
Collapse
Affiliation(s)
- Michael Brannen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|