1
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Naranjo-Galvis CA, McLeod R, Gómez-Marín JE, de-la-Torre A, Rocha-Roa C, Cardona N, Sepúlveda-Arias JC. Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia. Microorganisms 2023; 11:2508. [PMID: 37894166 PMCID: PMC10609425 DOI: 10.3390/microorganisms11102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular toxoplasmosis (OT) is characterized by inflammation within the eye and is the most recognized clinical manifestation of toxoplasmosis. The objective of this study was to identify new single-nucleotide polymorphisms (SNPs) in the P2RX7 gene that may have significance in the immune response to OT in Colombian patients. A case-control study was conducted to investigate the associations between SNPs (rs1718119 and rs2230912) in the P2RX7 gene and OT in 64 Colombian patients with OT and 64 controls. Capillary electrophoresis was used to analyze the amplification products, and in silico algorithms were employed to predict deleterious SNPs. Stability analysis of amino acid changes indicated that both mutations could lead to decreased protein structure stability. A nonsynonymous SNP, Gln460Arg, located in the long cytoplasmic tail of the receptor, showed a significant association with OT (Bonferroni correction (BONF) = 0.029; odds ratio OR = 3.46; confidence interval CI: 1.05 to 11.39), while no significant association between rs1718119 and OT risk was observed. Based on the 3D structure analysis of the P2RX7 protein trimer, it is hypothesized that an increase in the flexibility of the cytoplasmic domain of this receptor could alter its function. This SNP could potentially serve as a biomarker for identifying Colombian patients at risk of OT.
Collapse
Affiliation(s)
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences and Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL 60637, USA
| | - Jorge Enrique Gómez-Marín
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
| | - Alejandra de-la-Torre
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
- Grupo de Investigación en Neurociencias (NeURos), Neurovitae Research Center, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110111, Colombia
| | - Cristian Rocha-Roa
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
| | - Néstor Cardona
- Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia 630001, Colombia
- Facultad de Odontología, Universidad Antonio Nariño, Armenia 630004, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
3
|
Hey G, Rao R, Carter A, Reddy A, Valle D, Patel A, Patel D, Lucke-Wold B, Pomeranz Krummel D, Sengupta S. Ligand-Gated Ion Channels: Prognostic and Therapeutic Implications for Gliomas. J Pers Med 2023; 13:jpm13050853. [PMID: 37241023 DOI: 10.3390/jpm13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are common primary brain malignancies that remain difficult to treat due to their overall aggressiveness and heterogeneity. Although a variety of therapeutic strategies have been employed for the treatment of gliomas, there is increasing evidence that suggests ligand-gated ion channels (LGICs) can serve as a valuable biomarker and diagnostic tool in the pathogenesis of gliomas. Various LGICs, including P2X, SYT16, and PANX2, have the potential to become altered in the pathogenesis of glioma, which can disrupt the homeostatic activity of neurons, microglia, and astrocytes, further exacerbating the symptoms and progression of glioma. Consequently, LGICs, including purinoceptors, glutamate-gated receptors, and Cys-loop receptors, have been targeted in clinical trials for their potential therapeutic benefit in the diagnosis and treatment of gliomas. In this review, we discuss the role of LGICs in the pathogenesis of glioma, including genetic factors and the effect of altered LGIC activity on the biological functioning of neuronal cells. Additionally, we discuss current and emerging investigations regarding the use of LGICs as a clinical target and potential therapeutic for gliomas.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan Rao
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ashley Carter
- Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daisy Valle
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anjali Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Drashti Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 23608, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Soma Sengupta
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Blocking P2RX7 Attenuates Ferroptosis in Endothelium and Reduces HG-induced Hemorrhagic Transformation After MCAO by Inhibiting ERK1/2 and P53 Signaling Pathways. Mol Neurobiol 2023; 60:460-479. [PMID: 36282438 DOI: 10.1007/s12035-022-03092-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2023]
Abstract
Hyperglycemia is a risk factor for poor prognosis after acute ischemic stroke and promote the occurrence of hemorrhagic transformation (HT). The activation of P2RX7 play an important role in endotheliocyte damage and BBB disruption. Ferroptosis is a novel pattern of programmed cell death caused by the accumulation of intracellular iron and lipid peroxidation, resulting in ROS production and cell death. This study is to explore the mechanism of P2RX7 in reducing HT pathogenesis after acute ischemic stroke through regulating endotheliocyte ferroptosis. Male SD rats were performed to establish middle cerebral artery occlusion (MCAO) model injected with 50% high glucose (HG) and HUVECs were subjected to OGD/R treated with high glucose (30 mM) for establishing HT model in vivo and in vitro. P2RX7 inhibitor (BBG), and P2RX7 small interfering RNAs (siRNA) were used to investigate the role of P2RX7 in BBB after MCAO in vivo and OGD/R in vitro, respectively. The neurological deficits, infarct volume, degree of intracranial hemorrhage, integrity of the BBB, immunoblotting, and immunofluorescence were evaluated at 24 h after MCAO. Our study found that the level of P2RX7 was gradually increased after MCAO and/or treated with HG. Our results showed that treatment with HG after MCAO can aggravate neurological deficits, infarct volume, oxidative stress, iron accumulation, and BBB injury in HT model, and HG-induced HUVECs damage. The inhibition of P2RX7 reversed the damage effect of HG, significantly downregulated the expression level of P53, HO-1, and p-ERK1/2 and upregulated the level of SLC7A11 and GPX4, which implicated that P2RX7 inhibition could attenuate oxidative stress and ferroptosis of endothelium in vivo and in vitro. Our data provided evidence that the P2RX7 play an important role in HG-associated oxidative stress, endothelial damage, and BBB disruption, which regulates HG-induced HT by ERK1/2 and P53 signaling pathways after MCAO.
Collapse
|
5
|
Matyśniak D, Chumak V, Nowak N, Kukla A, Lehka L, Oslislok M, Pomorski P. P2X7 receptor: the regulator of glioma tumor development and survival. Purinergic Signal 2021; 18:135-154. [PMID: 34964926 PMCID: PMC8850512 DOI: 10.1007/s11302-021-09834-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.
Collapse
Affiliation(s)
- Damian Matyśniak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
- Regenerative Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kukla
- Silesian University of Technology, Gliwice, Poland
| | - Lilya Lehka
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Magdalena Oslislok
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Sidoryk-Węgrzynowicz M, Strużyńska L. Astroglial and Microglial Purinergic P2X7 Receptor as a Major Contributor to Neuroinflammation during the Course of Multiple Sclerosis. Int J Mol Sci 2021; 22:8404. [PMID: 34445109 PMCID: PMC8395107 DOI: 10.3390/ijms22168404] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system that leads to the progressive disability of patients. A characteristic feature of the disease is the presence of focal demyelinating lesions accompanied by an inflammatory reaction. Interactions between autoreactive immune cells and glia cells are considered as a central mechanism underlying the pathology of MS. A glia-mediated inflammatory reaction followed by overproduction of free radicals and generation of glutamate-induced excitotoxicity promotes oligodendrocyte injury, contributing to demyelination and subsequent neurodegeneration. Activation of purinergic signaling, in particular P2X7 receptor-mediated signaling, in astrocytes and microglia is an important causative factor in these pathological processes. This review discusses the role of astroglial and microglial cells, and in particular glial P2X7 receptors, in inducing MS-related neuroinflammatory events, highlighting the importance of P2X7R-mediated molecular pathways in MS pathology and identifying these receptors as a potential therapeutic target.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, 02-106 Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Drill M, Jones NC, Hunn M, O'Brien TJ, Monif M. Antagonism of the ATP-gated P2X7 receptor: a potential therapeutic strategy for cancer. Purinergic Signal 2021; 17:215-227. [PMID: 33728582 PMCID: PMC8155177 DOI: 10.1007/s11302-021-09776-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.
Collapse
Affiliation(s)
- Matthew Drill
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Melbourne University, Parkville, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Martin Hunn
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurosurgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neuroscience, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Department of Physiology, Melbourne University, Parkville, VIC, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
- Department of Neurology, Melbourne Health, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Deletion of P2X7 Receptor Decreases Basal Glutathione Level by Changing Glutamate-Glutamine Cycle and Neutral Amino Acid Transporters. Cells 2020; 9:cells9040995. [PMID: 32316268 PMCID: PMC7226967 DOI: 10.3390/cells9040995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Glutathione (GSH) is an endogenous tripeptide antioxidant that consists of glutamate-cysteine-glycine. GSH content is limited by the availability of glutamate and cysteine. Furthermore, glutamine is involved in the regulation of GSH synthesis via the glutamate–glutamine cycle. P2X7 receptor (P2X7R) is one of the cation-permeable ATP ligand-gated ion channels, which is involved in neuronal excitability, neuroinflammation and astroglial functions. In addition, P2X7R activation decreases glutamate uptake and glutamine synthase (GS) expression/activity. In the present study, we found that P2X7R deletion decreased the basal GSH level without altering GSH synthetic enzyme expressions in the mouse hippocampus. P2X7R deletion also increased expressions of GS and ASCT2 (a glutamine:cysteine exchanger), but diminished the efficacy of N-acetylcysteine (NAC, a GSH precursor) in the GSH level. SIN-1 (500 μM, a generator nitric oxide, superoxide and peroxynitrite), which facilitates the cystine–cysteine shuttle mediated by xCT (a glutamate/cystein:cystine/NAC antiporter), did not affect basal GSH concentration in WT and P2X7R knockout (KO) mice. However, SIN-1 effectively reduced the efficacy of NAC in GSH synthesis in WT mice, but not in P2X7R KO mice. Therefore, our findings indicate that P2X7R may be involved in the maintenance of basal GSH levels by regulating the glutamate–glutamine cycle and neutral amino acid transports under physiological conditions, which may be the defense mechanism against oxidative stress during P2X7R activation.
Collapse
|
9
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Maklad A, Sharma A, Azimi I. Calcium Signaling in Brain Cancers: Roles and Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11020145. [PMID: 30691160 PMCID: PMC6406375 DOI: 10.3390/cancers11020145] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Calcium signaling, in addition to its numerous physiological roles, is also implicated in several pathological conditions including cancer. An increasing body of evidence suggest critical roles of calcium signaling in the promotion of different aspects of cancer, including cell proliferation, therapy resistance and metastatic-related processes. In many cases, this is associated with altered expression and/or activity of some calcium channels and pumps. Brain cancers have also been the subject of many of these studies. In addition to diverse roles of calcium signals in normal brain function, a number of proteins involved in calcium transport are implicated to have specific roles in some brain cancers including gliomas, medulloblastoma, neuroblastoma and meningioma. This review discusses research that has been conducted so far to understand diverse roles of Ca2+-transporting proteins in the progression of brain cancers, as well as any attempts to target these proteins towards a therapeutic approach for the control of brain cancers. Finally, some knowledge gaps in the field that may need to be further considered are also discussed.
Collapse
Affiliation(s)
- Ahmed Maklad
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Anjana Sharma
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
11
|
ATP/P2X7 receptor signaling as a potential anti-inflammatory target of natural polyphenols. PLoS One 2018; 13:e0204229. [PMID: 30248132 PMCID: PMC6152980 DOI: 10.1371/journal.pone.0204229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Innate immune cells, such as macrophages, respond to pathogen-associated molecular patterns, such as a lipopolysaccharide (LPS), to secrete various inflammatory mediators. Recent studies have suggested that damage-associated molecular patterns (DAMPs), released extracellularly from damaged or immune cells, also play a role in the activation of inflammatory responses. In this study, to prevent excess inflammation, we focused on DAMPs-mediated signaling that promotes LPS-stimulated inflammatory responses, especially adenosine 5’-triphosphate (ATP)-triggered signaling through the ionotropic purinergic receptor 7 (P2X7R), as a potential new anti-inflammatory target of natural polyphenols. We focused on the phenomenon that ATP accelerates the production of inflammatory mediators, such as nitric oxide, in LPS-stimulated J774.1 mouse macrophages. Using an siRNA-mediated knockdown and specific antagonist, it was found that the ATP-induced enhanced inflammatory responses were mediated through P2X7R. We then screened 42 polyphenols for inhibiting the ATP/P2X7R-induced calcium influx, and found that several polyphenols exhibited significant inhibitory effects. Especially, a flavonoid baicalein significantly inhibited ATP-induced inflammation, including interleukin-1β secretion, through inhibition of the ATP/P2X7R signaling. These findings suggest that ATP/P2X7R signaling plays an important role in excess inflammatory responses and could be a potential anti-inflammatory target of natural polyphenolic compounds.
Collapse
|
12
|
P2RX7-MAPK1/2-SP1 axis inhibits MTOR independent HSPB1-mediated astroglial autophagy. Cell Death Dis 2018; 9:546. [PMID: 29749377 PMCID: PMC5945848 DOI: 10.1038/s41419-018-0586-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Recently, we have reported that heat shock protein B1 (HSPB1) and purinergic receptor P2X7 (P2RX7) are involved in astroglial autophagy (clasmatodendrosis), following status epilepticus (SE). However, the underlying mechanisms of astroglial autophagy have not been completely established. In the present study, we found that the lacking of P2rx7 led to prolonged astroglial HSPB1 induction due to impaired mitogen-activated protein kinase 1/2 (MAPK1/2)-mediated specificity protein 1 (SP1) phosphorylation, following kainic acid-induced SE. Subsequently, the upregulated HSPB1 itself evoked ER stress and exerted protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1, AMPK1)/unc-51 such as autophagy activating kinase 1 (ULK1)- and AKT serine/threonine kinase 1 (AKT1)/glycogen synthase kinase 3 beta (GSK3B)/SH3-domain GRB2-like B1 (SH3GLB1)-mediated autophagic pathways, independent of mechanistic target of rapamycin (MTOR) activity in astrocytes. These findings provide a novel purinergic suppression mechanism to link chaperone expression to autophagy in astrocytes. Therefore, we suggest that P2RX7 may play an important role in the regulation of autophagy by the fine-tuning of HSPB1 expression.
Collapse
|
13
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
14
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 961] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
15
|
Sáez-Orellana F, Fuentes-Fuentes MC, Godoy PA, Silva-Grecchi T, Panes JD, Guzmán L, Yévenes GE, Gavilán J, Egan TM, Aguayo LG, Fuentealba J. P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer's disease. Neuropharmacology 2017; 128:366-378. [PMID: 29079292 DOI: 10.1016/j.neuropharm.2017.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 12/17/2022]
Abstract
The most common cause of dementia is Alzheimer's disease. The etiology of the disease is unknown, although considerable evidence suggests a critical role for the soluble oligomers of amyloid beta peptide (Aβ). Because Aβ increases the expression of purinergic receptors (P2XRs) in vitro and in vivo, we studied the functional correlation between long-term exposure to Aβ and the ability of P2XRs to modulate network synaptic tone. We used electrophysiological recordings and Ca2+ microfluorimetry to assess the effects of chronic exposure (24 h) to Aβ oligomers (0.5 μM) together with known inhibitors of P2XRs, such as PPADS and apyrase on synaptic function. Changes in the expression of P2XR were quantified using RT-qPCR. We observed changes in the expression of P2X1R, P2X7R and an increase in P2X2R; and also in protein levels in PC12 cells (143%) and hippocampal neurons (120%) with Aβ. In parallel, the reduction on the frequency and amplitude of mEPSCs (72% and 35%, respectively) were prevented by P2XR inhibition using a low PPADS concentration. Additionally, the current amplitude and intracellular Ca2+ signals evoked by extracellular ATP were increased (70% and 75%, respectively), suggesting an over activation of purinergic neurotransmission in cells pre-treated with Aβ. Taken together, our findings suggest that Aβ disrupts the main components of synaptic transmission at both pre- and post-synaptic sites, and induces changes in the expression of key P2XRs, especially P2X2R; changing the neuromodulator function of the purinergic tone that could involve the P2X2R as a key factor for cytotoxic mechanisms. These results identify novel targets for the treatment of dementia and other diseases characterized by increased purinergic transmission.
Collapse
Affiliation(s)
- Francisco Sáez-Orellana
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - María C Fuentes-Fuentes
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Pamela A Godoy
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Tiare Silva-Grecchi
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Jessica D Panes
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Molecular Neurobiology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Neuropharmacology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Terrance M Egan
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Luis G Aguayo
- Neuropharmacology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
16
|
Gentile D, Lazzerini PE, Gamberucci A, Natale M, Selvi E, Vanni F, Alì A, Taddeucci P, Del-Ry S, Cabiati M, Della-Latta V, Abraham DJ, Morales MA, Fulceri R, Laghi-Pasini F, Capecchi PL. Searching Novel Therapeutic Targets for Scleroderma: P2X7-Receptor Is Up-regulated and Promotes a Fibrogenic Phenotype in Systemic Sclerosis Fibroblasts. Front Pharmacol 2017; 8:638. [PMID: 28955239 PMCID: PMC5602350 DOI: 10.3389/fphar.2017.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca2+ fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca2+ permeability induced by the selective P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca2+-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc.
Collapse
Affiliation(s)
- Daniela Gentile
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pietro E Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariarita Natale
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Enrico Selvi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca Vanni
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Alì
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paolo Taddeucci
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - David J Abraham
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, University College London, London, United Kingdom
| | | | - Rosella Fulceri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pier L Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
17
|
Caglayan B, Caglayan AB, Beker MC, Yalcin E, Beker M, Kelestemur T, Sertel E, Ozturk G, Kilic U, Sahin F, Kilic E. Evidence that activation of P2X7R does not exacerbate neuronal death after optic nerve transection and focal cerebral ischemia in mice. Exp Neurol 2017; 296:23-31. [PMID: 28669743 DOI: 10.1016/j.expneurol.2017.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/01/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
Conflicting data in the literature about the function of P2X7R in survival following ischemia necessitates the conductance of in-depth studies. To investigate the impacts of activation vs inhibition of the receptor on neuronal survival as well as the downstream signaling cascades, in addition to optic nerve transection (ONT), 30min and 90min of middle cerebral artery occlusion (MCAo) models were performed in mice. Intracellular calcium levels were assessed in primary cortical neuron cultures. Here, we show that P2X7R antagonist Brilliant Blue G (BBG) decreased DNA fragmentation, infarct volume, brain swelling, neurological deficit scores and activation of microglial cells after focal cerebral ischemia. BBG also significantly increased the number of surviving retinal ganglion cells (RGCs) after ONT and the number of surviving neurons following MCAo. Importantly, receptor agonist BzATP resulted in increased activation of microglial cells and induced phosphorylation of ERK, AKT and JNK. These results indicated that inhibition of P2X7R with BBG promoted neuronal survival, not through the activation of survival kinase pathways, but possibly by improved intracellular Ca2+ overload and decreased the levels of Caspase 1, IL-1β and Bax proteins. On the other hand, BzATP-mediated increased number of activated microglia and increased survival kinase levels in addition to increased caspase-1 and IL-1β levels indicate the complex nature of the P2X7 receptor-mediated signaling in neuronal injury.
Collapse
Affiliation(s)
- Berrak Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey; Yeditepe University, Dept. of Genetics and Bioengineering, Istanbul, Turkey
| | - Ahmet B Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey
| | - Mustafa C Beker
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey
| | - Esra Yalcin
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey
| | - Merve Beker
- Bezmialem Vakif University, Dept. of Medical Biology, Istanbul, Turkey
| | - Taha Kelestemur
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey
| | - Elif Sertel
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey
| | - Gürkan Ozturk
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey
| | - Ulkan Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Medical Biology, Istanbul, Turkey
| | - Fikrettin Sahin
- Yeditepe University, Dept. of Genetics and Bioengineering, Istanbul, Turkey
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey; Istanbul Medipol University, Dept. of Physiology, Istanbul, Turkey.
| |
Collapse
|
18
|
P2X7 Participates in Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats via MAPKs Signaling Pathways. Neurochem Res 2017; 42:2372-2383. [PMID: 28488233 DOI: 10.1007/s11064-017-2257-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/31/2023]
Abstract
This study aimed to study the role of P2X7 in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI) and the underlying mechanisms. An autologous blood injection was used to induce ICH model in Sprague-Dawley rats, and cultured primary rat cortical neurons were exposed to oxyhemoglobin to mimic ICH in vitro. siRNA interference and over-expression of P2X7, agonists and antagonists of P2X7, p38 MAPK and ERK were exploited. The protein levels were assessed using Western blotting and immunofluorescence staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining and Fluoro-Jade B were conducted to detect apoptotic and degenerating neurons. The protein levels of P2X7, phosphorylated p38, ERK, active caspase-3 and NF-κB were significantly increased by ICH, which could be further increased by BzATP (P2X7 agonist) and reduced by BBG (P2X7 antagonist). And BzATP demonstrated a significant increase in cell death ratio and brain water content, while BBG led to a reverse results. In addition, Over- P2X7 increased the levels of P2X7, phosphorylated p38, ERK, active caspase-3 and NF-κB, and aggravated cell apoptosis, while si P2X7 resulted in opposite effects. Finally, the protein levels of phosphorylated P38 and active caspase 3 were decreased by BzATP plus Hydrochloride (p38 MAPK antagonist) and increased vy BBG plus Asiatic acid (p38 MAPK agonist), while the protein levels of phosphorylated ERK and NF-κB were decreased with BzATP plus Nimbolide (ERK antagonist) and increased with BBG plus Saikosaponin C (ERK agonist). This study demonstrates that inhibition of P2X7 could prevent ICH-induced SBI via MAPKs signaling pathway.
Collapse
|
19
|
Hirata Y, Takahashi M, Kudoh Y, Kano K, Kawana H, Makide K, Shinoda Y, Yabuki Y, Fukunaga K, Aoki J, Noguchi T, Matsuzawa A. trans-Fatty acids promote proinflammatory signaling and cell death by stimulating the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway. J Biol Chem 2017; 292:8174-8185. [PMID: 28360100 DOI: 10.1074/jbc.m116.771519] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Food-borne trans-fatty acids (TFAs) are mainly produced as byproducts during food manufacture. Recent epidemiological studies have revealed that TFA consumption is a major risk factor for various disorders, including atherosclerosis. However, the underlying mechanisms in this disease etiology are largely unknown. Here we have shown that TFAs potentiate activation of apoptosis signal-regulating kinase 1 (ASK1) induced by extracellular ATP, a damage-associated molecular pattern leaked from injured cells. Major food-associated TFAs such as elaidic acid (EA), linoelaidic acid, and trans-vaccenic acid, but not their corresponding cis isomers, dramatically enhanced extracellular ATP-induced apoptosis, accompanied by elevated activation of the ASK1-p38 pathway in a macrophage-like cell line, RAW264.7. Moreover, knocking out the ASK1-encoding gene abolished EA-mediated enhancement of apoptosis. We have reported previously that extracellular ATP induces apoptosis through the ASK1-p38 pathway activated by reactive oxygen species generated downstream of the P2X purinoceptor 7 (P2X7). However, here we show that EA did not increase ATP-induced reactive oxygen species generation but, rather, augmented the effects of calcium/calmodulin-dependent kinase II-dependent ASK1 activation. These results demonstrate that TFAs promote extracellular ATP-induced apoptosis by targeting ASK1 and indicate novel TFA-associated pathways leading to inflammatory signal transduction and cell death that underlie the pathogenesis and progression of TFA-induced atherosclerosis. Our study thus provides insight into the pathogenic mechanisms of and proposes potential therapeutic targets for these TFA-related disorders.
Collapse
Affiliation(s)
| | | | | | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, 100-0004 Tokyo, Japan
| | | | | | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, 100-0004 Tokyo, Japan
| | | | | |
Collapse
|
20
|
Jiang X, Mao W, Yang Z, Zeng J, Zhang Y, Song Y, Kong Y, Ren S, Zuo Y. Silencing P2X7 receptor downregulates the expression of TCP-1 involved in lymphoma lymphatic metastasis. Oncotarget 2016; 6:42105-17. [PMID: 26556873 PMCID: PMC4747213 DOI: 10.18632/oncotarget.5870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023] Open
Abstract
P2X7R is an ATP-gated cation channel that participates in cell proliferation and apoptosis. TCP-1 assists with the protein folding. According to our previous research, the P2X7R has a potential role in P388D1 lymphoid neoplasm cells dissemination to peripheral lymph nodes. In order to make a further exploration about the probable mechanism, the lymph nodes which metastasized by P2X7R-silenced P388D1 cells or non-silenced cells were analyzed by 2DE and a MALDI-TOF-based proteomics approach. In the 64 proteins which were differentially expressed between two groups, TCP-1 was found to be significantly decreased in P2X7R shRNA group compared to controls. This correlation was also found in subsequent experiments in vivo and in vitro. The positive correlation between P2X7R and TCP-1 was also proved in both lymphoma and benign lymphadenopathy tissues from patients. It indicates that TCP-1 may be a crucial downstream molecular of P2X7R and plays a novel role in lymphoid neoplasm metastasis.
Collapse
Affiliation(s)
- Xudong Jiang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Wenjuan Mao
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Ziyi Yang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Jia Zeng
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| | - Yi Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China.,Department of Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yang Song
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China.,Department of Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Ying Kong
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuangyi Ren
- Department of Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yunfei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
21
|
Mishra A, Guo Y, Zhang L, More S, Weng T, Chintagari NR, Huang C, Liang Y, Pushparaj S, Gou D, Breshears M, Liu L. A Critical Role for P2X7 Receptor-Induced VCAM-1 Shedding and Neutrophil Infiltration during Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2016; 197:2828-37. [PMID: 27559050 DOI: 10.4049/jimmunol.1501041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/25/2016] [Indexed: 01/23/2023]
Abstract
Pulmonary neutrophils are the initial inflammatory cells that are recruited during lung injury and are crucial for innate immunity. However, pathological recruitment of neutrophils results in lung injury. The objective of this study is to determine whether the novel neutrophil chemoattractant, soluble VCAM-1 (sVCAM-1), recruits pathological levels of neutrophils to injury sites and amplifies lung inflammation during acute lung injury. The mice with P2X7 receptor deficiency, or treated with a P2X7 receptor inhibitor or anti-VCAM-1 Abs, were subjected to a clinically relevant two-hit LPS and mechanical ventilation-induced acute lung injury. Neutrophil infiltration and lung inflammation were measured. Neutrophil chemotactic activities were determined by a chemotaxis assay. VCAM-1 shedding and signaling pathways were assessed in isolated lung epithelial cells. Ab neutralization of sVCAM-1 or deficiency or antagonism of P2X7R reduced neutrophil infiltration and proinflammatory cytokine levels. The ligands for sVCAM-1 were increased during acute lung injury. sVCAM-1 had neutrophil chemotactic activities and activated alveolar macrophages. VCAM-1 is released into the alveolar airspace from alveolar epithelial type I cells through P2X7 receptor-mediated activation of the metalloproteinase ADAM-17. In conclusion, sVCAM-1 is a novel chemoattractant for neutrophils and an activator for alveolar macrophages. Targeting sVCAM-1 provides a therapeutic intervention that could block pathological neutrophil recruitment, without interfering with the physiological recruitment of neutrophils, thus avoiding the impairment of host defenses.
Collapse
Affiliation(s)
- Amarjit Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Yujie Guo
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Li Zhang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Sunil More
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Tingting Weng
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Chaoqun Huang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Yurong Liang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Samuel Pushparaj
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China; and
| | - Melanie Breshears
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Department of Pathobiology, Oklahoma State University, Stillwater, OK 74078
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
22
|
Morrone FB, Gehring MP, Nicoletti NF. Calcium Channels and Associated Receptors in Malignant Brain Tumor Therapy. Mol Pharmacol 2016; 90:403-9. [PMID: 27418672 DOI: 10.1124/mol.116.103770] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/11/2016] [Indexed: 12/25/2022] Open
Abstract
Malignant brain tumors are highly lethal and aggressive. Despite recent advances in the current therapies, which include the combination of surgery and radio/chemotherapy, the average survival rate remains poor. Altered regulation of ion channels is part of the neoplastic transformation, which suggests that ion channels are involved in cancer. Distinct classes of calcium-permeable channels are abnormally expressed in cancer and are likely involved in the alterations underlying malignant growth. Specifically, cytosolic Ca(2+) activity plays an important role in the regulation of cell proliferation, and Ca(2+) signaling is altered in proliferating tumor cells. A series of previous studies emphasized the importance of the T-type low-voltage-gated calcium channels (VGCC) in different cancer types, including gliomas, and remarkably, pharmacologic inhibition of T-type VGCC caused antiproliferative effects and triggered apoptosis of human glioma cells. Other calcium permeable channels, such as transient receptor potential (TRP) channels, contribute to changes in Ca(2+) by modulating the driving force for Ca(2+) entry, and some TRP channels are required for proliferation and migration in gliomas. Furthermore, recent evidence shows that TRP channels contribute to the progression and survival of the glioblastoma patients. Likewise, the purinergic P2X7 receptor acts as a direct conduit for Ca(2+)-influx and an indirect activator of voltage-gated Ca(2+)-channel. Evidence also shows that P2X7 receptor activation is linked to elevated expression of inflammation promoting factors, tumor cell migration, an increase in intracellular mobilization of Ca(2+), and membrane depolarization in gliomas. Therefore, this review summarizes the recent findings on calcium channels and associated receptors as potential targets to treat malignant gliomas.
Collapse
Affiliation(s)
- Fernanda B Morrone
- Programa de Pós-graduação em Biologia Celular e Molecular (F.B.M., M.P.G., N.F.N), Programa de Pós-graduação em Medicina e Ciências da Saúde, Faculdade de Farmácia, Pontifícia Universidade Católica do RS, Porto Alegre (F.B.M.); Laboratório de Terapia Celular, Centro de Ciências Biológicas e da Saúde, Universidade de Caxias do Sul, Caxias do Sul (N.F.N.), Brasil
| | - Marina P Gehring
- Programa de Pós-graduação em Biologia Celular e Molecular (F.B.M., M.P.G., N.F.N), Programa de Pós-graduação em Medicina e Ciências da Saúde, Faculdade de Farmácia, Pontifícia Universidade Católica do RS, Porto Alegre (F.B.M.); Laboratório de Terapia Celular, Centro de Ciências Biológicas e da Saúde, Universidade de Caxias do Sul, Caxias do Sul (N.F.N.), Brasil
| | - Natália F Nicoletti
- Programa de Pós-graduação em Biologia Celular e Molecular (F.B.M., M.P.G., N.F.N), Programa de Pós-graduação em Medicina e Ciências da Saúde, Faculdade de Farmácia, Pontifícia Universidade Católica do RS, Porto Alegre (F.B.M.); Laboratório de Terapia Celular, Centro de Ciências Biológicas e da Saúde, Universidade de Caxias do Sul, Caxias do Sul (N.F.N.), Brasil
| |
Collapse
|
23
|
Aprile-Garcia F, Metzger MW, Paez-Pereda M, Stadler H, Acuña M, Liberman AC, Senin SA, Gerez J, Hoijman E, Refojo D, Mitkovski M, Panhuysen M, Stühmer W, Holsboer F, Deussing JM, Arzt E. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function. PLoS One 2016; 11:e0151862. [PMID: 26986975 PMCID: PMC4795689 DOI: 10.1371/journal.pone.0151862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/04/2016] [Indexed: 01/04/2023] Open
Abstract
The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.
Collapse
Affiliation(s)
- Fernando Aprile-Garcia
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | - Matías Acuña
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Sergio A. Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Juan Gerez
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Esteban Hoijman
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Damian Refojo
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mišo Mitkovski
- Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | | | - Walter Stühmer
- Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- HMNC Brain Health, Munich, Germany
| | | | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- * E-mail:
| |
Collapse
|
24
|
Emerging role of P2X7 receptors in CNS health and disease. Ageing Res Rev 2015; 24:328-42. [PMID: 26478005 DOI: 10.1016/j.arr.2015.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Purinergic signalling in the brain is becoming an important focus in the study of CNS health and disease. Various purinergic receptors are found to be present in different brain cells in varying extent, which get activated upon binding of ATP or its analogues. Conventionally, ATP was considered only as a major metabolic fuel of the cell but its recognition as a neurotransmitter in early 1970s, brought meaningful insights in neuron glia crosstalk, participating in various physiological functions in the brain. P2X7R, a member of ligand gated purinergic receptor (P2X) family, is gaining attention in the field of neuroscience because of its emerging role in broad spectrum of ageing and age related neurological disorders. The aim of this review is to provide an overview about the structure and function of P2X7R highlighting its unique features which distinguish it from the other members of its family. This review critically analyzes the literature mentioning the details about the agonist and antagonist of the P2X7R. It also emphasizes the advancements in understanding the dual role of P2X7R in brain development and disorders inviting meaningful insights about its involvement in Alzheimer's disease, Huntington's disease, Multiple Sclerosis, Neuropathic pain, Spinal Cord Injury and NeuroAIDS. Exploring the roles of P2X7R in detail is critical to identify its therapeutic potential in the treatment of acute and chronic neurodegenerative diseases. Moreover, this review also helps to raise more interest in the neurobiology of the purinergic receptors and thus providing new avenues for future research.
Collapse
|
25
|
Martínez-Ramírez AS, Vázquez-Cuevas FG. Purinergic signaling in the ovary. Mol Reprod Dev 2015; 82:839-48. [PMID: 26275037 DOI: 10.1002/mrd.22537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/05/2015] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate (ATP) is released from the cell by multiple mechanisms. The extracellular form of this purine is processed by ectonucleotidases, resulting in a variety of dephosphorylated metabolites that can bind to specific receptors found in the membrane of target cells; such purinergic signaling is important as an autocrine-paracrine intercellular communication system that influences tissue physiology. In this review, we summarize the studies analyzing purinergic activity in the ovary, which can modulate cellular physiology-including sensitivity to gonadotropins-in several ovarian cell types, including the cumulus-cell complex, granulosa cells, theca cells, and the ovarian surface epithelium. These functions support a role for ATP as an important intra-ovarian messenger, and open new lines of research that can improve our understanding of mechanisms regulating ovarian function and the fine-tuning of folliculogenesis.
Collapse
Affiliation(s)
- Angélica S Martínez-Ramírez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, Querétaro, México
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, Querétaro, México
| |
Collapse
|
26
|
Brassai A, Suvanjeiev RG, Bán EG, Lakatos M. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 2015; 112:1-6. [DOI: 10.1016/j.brainresbull.2014.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
27
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
28
|
Pathological potential of astroglial purinergic receptors. ADVANCES IN NEUROBIOLOGY 2014; 11:213-56. [PMID: 25236731 DOI: 10.1007/978-3-319-08894-5_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute brain injury and neurodegenerative disorders may result in astroglial activation. Astrocytes are able to determine the progression and outcome of these neuropathologies in a beneficial or detrimental way. Nucleotides, e.g. adenosine 5'-triphosphate (ATP), released after acute or chronic neuronal injury, are important mediators of glial activation and astrogliosis.Acute injury may cause significant changes in ATP balance, resulting in (1) a decline of intracellular ATP levels and (2) an increase in extracellular ATP concentrations via efflux from the intracellular space. The released ATP may have trophic effects, but can also act as a proinflammatory mediator or cytotoxic factor, inducing necrosis/apoptosis as a universal "danger" signal. Furthermore, ATP, primarily released from astrocytes, is a means of communication between neurons, glial cells, and intracerebral blood vessels.Astrocytes express a heterogeneous battery of purinergic ionotropic and metabotropic receptors (P2XRs and P2YRs, respectively) to respond to extracellular nucleotides.In this chapter, we summarize the contemporary knowledge on the pathological potential of P2Rs in relation to changes of astrocytic functions, determined by distinct molecular signaling cascades, in a variety of diseases. We discuss specific aspects of reactive astrogliosis, with respect to the involvement of prominent receptor subtypes, such as the P2X7 and P2Y1/2Rs. Examples of purinergic signaling of microglia, oligodendrocytes, and blood vessels under pathophysiological conditions will also be presented.The understanding of the pathological potential of purinergic signaling in "controlling and fine-tuning" of astrocytic responses is important for identifying possible therapeutic principles to treat acute and chronic central nervous system diseases.
Collapse
|
29
|
Fan B, Liu S, Xu C, Liu J, Kong F, Li G, Zhang C, Gao Y, Xu H, Yu S, Zheng C, Peng L, Song M, Wu B, Lv Q, Zou L, Ying M, Zhang X, Liang S. The role of P2X7 receptor in PC12 cells after exposure to oxygen-glucose deprivation. Auton Neurosci 2014; 185:36-42. [PMID: 24746144 DOI: 10.1016/j.autneu.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 12/13/2022]
Abstract
Adenosine triphosphate (ATP) plays an important role in signal transmission via acting on P2X receptors. P2X7 receptor is involved in pathophysiological changes of ischemic diseases. The PC12 cell line is a popular model system to study sympathetic neuronal function. In this study, the effects of P2X7 on the viability or [Ca(2+)]i in PC12 cells after exposure to oxygen-glucose deprivation (OGD) were investigated. The results showed that the viability of PC12 cells was decreased under the condition of OGD. BzATP, a P2X7 agonist, decreased the viability, while P2X7 antagonist oxATP or P2X7 siRNA reversed the viability of PC12 cells under the condition of OGD. The expression levels of P2X7 mRNA and protein in PC12 cells were up-regulated under the condition of OGD or BzATP treatment. The expression levels of P2X7 mRNA and protein were significantly decreased in OGD PC12 cells, which were pretreated with oxATP or P2X7 siRNA. It was also found that oxATP or P2X7 siRNA effectively suppressed the increase of [Ca(2+)]i induced by OGD. P2X7 agonist ATP or BzATP enhanced the [Ca(2+)]i rise induced by OGD in PC12 cells. The [Ca(2+)]i peak induced by ATP or BzATP in OGD group was decreased by ERK inhibitor U0126. Therefore, P2X7 antagonists or P2X7 siRNA could depress the sympathetic neuronal damage induced by ischemia.
Collapse
Affiliation(s)
- Bo Fan
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Changshui Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Jun Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Fanjun Kong
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Chunping Zhang
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Shicheng Yu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Chaoran Zheng
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Lichao Peng
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Miaomiao Song
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Qiulan Lv
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Mofeng Ying
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Xi Zhang
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
30
|
Muzzachi S, Blasi A, Ciani E, Favia M, Cardone RA, Marzulli D, Reshkin SJ, Merizzi G, Casavola V, Soleti A, Guerra L. MED1101: A new dialdehydic compound regulating P2×7 receptor cell surface expression in U937 cells. Biol Cell 2013; 105:399-413. [DOI: 10.1111/boc.201200088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Stefania Muzzachi
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Elena Ciani
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Maria Favia
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Rosa A. Cardone
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Domenico Marzulli
- Institute of Biomembranes and Bioenergetics; CNR; Bari; 70126; Italy
| | - Stephan J. Reshkin
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Valeria Casavola
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Lorenzo Guerra
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| |
Collapse
|
31
|
Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta Gen Subj 2013; 1830:4650-9. [PMID: 23711511 DOI: 10.1016/j.bbagen.2013.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation. METHODS J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases. RESULTS ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP. CONCLUSIONS Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin. GENERAL SIGNIFICANCE ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.
Collapse
|
32
|
Bourzac JF, L'Ériger K, Larrivée JF, Arguin G, Bilodeau MS, Stankova J, Gendron FP. Glucose transporter 2 expression is down regulated following P2X7 activation in enterocytes. J Cell Physiol 2012; 228:120-9. [PMID: 22566162 DOI: 10.1002/jcp.24111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two-thirds of villi. These data suggest a different role for this receptor in IECs. Using the non-cancerous IEC-6 cells and differentiated Caco-2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7-induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7-dependent Glut2 internalization involved the calcium-independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption.
Collapse
Affiliation(s)
- Jean-François Bourzac
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|
34
|
Keim A, Müller I, Thiel G. Efficient genetic manipulation of 1321N1 astrocytoma cells using lentiviral gene transfer. J Neurosci Methods 2012; 206:138-42. [DOI: 10.1016/j.jneumeth.2012.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
35
|
Grol MW, Zelner I, Dixon SJ. P2X₇-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells. Am J Physiol Endocrinol Metab 2012; 302:E561-75. [PMID: 22185840 DOI: 10.1152/ajpendo.00209.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The P2X₇ receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X₇ function exhibit altered bone formation. Moreover, activation of P2X₇ in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X₇ agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 μM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X₇ receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 μM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (∼2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 μM), which activate P2 receptors other than P2X₇, failed to elicit a sustained increase in proton efflux. Specific P2X₇ receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca²⁺ was required during P2X₇ receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X₇ receptors on osteoblast-like cells triggers a dramatic, Ca²⁺-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.
Collapse
Affiliation(s)
- Matthew W Grol
- Dept. of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Univ. of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
36
|
Abstract
Different types of ionotropic P2X purinoceptors are expressed in all major types of neuroglia, where they mediate a variety of physiological and pathological signaling. Cortical astrocytes express specific P2X1/5 heteromeric receptors that are activated by ongoing synaptic transmission and can trigger fast local signaling through elevation in cytoplasmic Ca2+ and Na+ concentrations. Oligodendrocytes express several types of P2X receptors that may control their development and mediate axonal-glial interactions. In microglia, P2X4 and P2X7 receptors regulate numerous events associated with microglial activation, motility, and release of proinflammatory factors.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK ; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ; Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Yuri Pankratov
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ulyana Lalo
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
37
|
Ortega F, Pérez-Sen R, Delicado EG, Teresa Miras-Portugal M. ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons. Neuropharmacology 2011; 61:1210-21. [PMID: 21798274 DOI: 10.1016/j.neuropharm.2011.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
Cerebellar granule neurons express several types of nucleotide receptors, with the metabotropic P2Y(13) and the ionotropic P2X7 being the most relevant in this model. In the present study we investigated the role of P2Y(13) and P2X7 nucleotide receptors in ERK1/2 signalling. The nucleotidic agonists 2MeSADP (2-methylthioadenosine-5'-diphosphate) for P2Y(13) and BzATP (2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate) for P2X7 receptors were coupled to ERK1/2 activation in granule neurons, being able to increase around two-fold the levels of ERK1/2 phosphorylation. These effects were sensitive to the inhibitory action of the antagonists MRS-2211 and A-438079, specific for P2Y(13) and P2X7 receptors, respectively. Although both receptor subtypes shared the same pattern of transient ERK1/2 phosphorylation, they differed in the intracellular cascades they triggered, being PI3K-dependent for P2Y(13) and calcium/calmodulin kinase II (CaMKII)-dependent for P2X7. These two different ERK-mediated pathways were involved in the neuroprotective effects displayed by both P2Y(13) and P2X7 receptors against apoptosis induced by an excitotoxic concentration of glutamate, in a similar manner to the neurotrophin, BDNF. In addition, P2Y(13) and P2X7 receptor agonists were also able to phosphorylate and activate the ERK-dependent target CREB, which could be involved in their neuroprotective effect. These results indicate that nucleotide receptors share with trophic factors the same survival routes in neurons, such as the ERK signalling route, and therefore, can contribute to the maintenance of granule neurons in conditions in which survival is being compromised.
Collapse
Affiliation(s)
- Felipe Ortega
- Department of Biochemistry, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
38
|
Targeting P2X₇ receptor inhibits the metastasis of murine P388D1 lymphoid neoplasm cells to lymph nodes. Cell Biol Int 2011; 34:1205-11. [PMID: 20722629 DOI: 10.1042/cbi20090428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The P2X₇R (P2X₇ receptor) is an ATP-gated cation channel expressed in normal cells that participates in both cell proliferation and apoptosis. Here, we have confirmed P2X₇R expression on murine P388D1 lymphoid neoplasm cells. In addition, ATP-stimulated P2X₇R expression was found to trigger increased intracellular calcium flux. Furthermore, silencing with short hairpin RNA and blocking with P2X₇R antibody significantly reduced the metastasis of P388D1 cells to lymph nodes. These results indicate that inhibition of the expression and function of P2X₇R attenuates the metastatic ability of murine lymphoid neoplasm cell line P388D1, which represents a new potential target for anti-metastatic therapy.
Collapse
|
39
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
40
|
Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos JM. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein. J Biol Chem 2010; 286:2596-606. [PMID: 21081501 DOI: 10.1074/jbc.m110.200618] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.
Collapse
|
41
|
Yan GR, Xiao CL, He GW, Yin XF, Chen NP, Cao Y, He QY. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics 2010; 10:976-86. [PMID: 20049867 DOI: 10.1002/pmic.200900662] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genistein is a natural protein tyrosine kinase inhibitor that exerts anti-cancer effect by inducing G2/M arrest and apoptosis. However, the phosphotyrosine signaling pathways mediated by genistein are largely unknown. In this study, we combined tyrosine phosphoprotein enrichment with MS-based quantitative proteomics technology to globally identify genistein-regulated tyrosine phosphoproteins aiming to depict genistein-inhibited phosphotyrosine cascades. Our experiments resulted in the identification of 213 phosphotyrosine sites on 181 genistein-regulated proteins. Many identified phosphoproteins, including nine protein kinases, eight receptors, five protein phosphatases, seven transcriptical regulators and four signal adaptors, were novel inhibitory effectors with no previously known function in the anti-cancer mechanism of genistein. Functional analysis suggested that genistein-regulated protein tyrosine phosphorylation mainly by inhibiting the activity of tyrosine kinase EGFR, PDGFR, insulin receptor, Abl, Fgr, Itk, Fyn and Src. Core signaling molecules inhibited by genistein can be functionally categorized into the canonial Receptor-MAPK or Receptor-PI3K/AKT cascades. The method used here may be suitable for the identification of inhibitory effectors and tyrosine kinases regulated by anti-cancer drugs.
Collapse
Affiliation(s)
- Guang-Rong Yan
- Institute of Life and Health Engineering, and National Engineering and Research Center for Genetic Medicine, Jinan University, Guangzhou, P R China
| | | | | | | | | | | | | |
Collapse
|
42
|
Faria RX, Cascabulho CM, Reis RAM, Alves LA. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:73-87. [PMID: 20508916 DOI: 10.1007/s00210-010-0523-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
The P2X(7) receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X(7) receptor is induced by increasing the intracellular Ca(2+) concentration (Faria et al., Am J Physiol Cell Physiol 297:C28-C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X(7) large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca(2+)-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X(7) receptor large-channel formation in 2BH4 cells and peritoneal macrophages.
Collapse
Affiliation(s)
- R X Faria
- Laboratory of Cellular Communication, Department of Immunology, Oswaldo Cruz Institute, FIOCRUZ (Oswaldo Cruz Foundation), Av. Brazil, 4365, Manguinhos, Rio de Janeiro 21045-900, Brazil.
| | | | | | | |
Collapse
|
43
|
Chong JH, Zheng GG, Zhu XF, Guo Y, Wang L, Ma CH, Liu SY, Xu LL, Lin YM, Wu KF. Abnormal expression of P2X family receptors in Chinese pediatric acute leukemias. Biochem Biophys Res Commun 2009; 391:498-504. [PMID: 19919827 DOI: 10.1016/j.bbrc.2009.11.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Nucleotides are new players in intercellular communication network. P2X family receptors are ATP-gated plasma membrane ion channels with diverse biological functions. Their distribution patterns and significance in pediatric leukemias have not been established. Here we investigated the expression of P2X receptors in BMMC samples from Chinese pediatric acute leukemias. Real-time PCR and Western blot results showed that P2X1, P2X4, P2X5 and P2X7 receptors were simultaneously over expressed in leukemias compared with controls, whereas P2X2, P2X3 and P2X6 were absent or marginally expressed in both groups. It was worth noting that the co-expression feature of them, especially between P2X4 and P2X7, could be observed and the highest expression of P2X7 was detected in relapsed patients. Moreover, concomitant decrease of P2X4, P2X5 and P2X7 expressions was observed at CR stage in a follow-up study. Functional P2X7 was also verified. These results suggested that P2X1, P2X4, P2X5 and P2X7 were hematopoiesis-related P2X receptors, and their signaling, especially for P2X7, might play important roles in pediatric leukemias. P2X receptors might co-operatively contribute to the malignant phenotype in human pediatric leukemias.
Collapse
Affiliation(s)
- Jing-Hui Chong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Carrasquero LMG, Delicado EG, Bustillo D, Gutiérrez-Martín Y, Artalejo AR, Miras-Portugal MT. P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. J Neurochem 2009; 110:879-89. [PMID: 19457067 DOI: 10.1111/j.1471-4159.2009.06179.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous work has established the presence of functional P2X(7) subunits in rat cerebellar astrocytes, which after stimulation with 3'-O-(4-benzoyl)benzoyl ATP (BzATP) evoked morphological changes that were not reproduced by any other nucleotide. To further characterize the receptor(s) and signaling mechanisms involved in the action of BzATP, we have employed fura-2 microfluorometry and the patch-clamp technique. BzATP elicited intracellular calcium responses that typically exhibited two components: the first one was transient and metabotropic in nature--sensitive to phospholipase C inhibition and pertussis toxin treatment, whereas the second one was sustained and depended on the presence of extracellular calcium. The ionotropic nature of this latter component was corroborated by measurements of Mn(2+) entry and macroscopic non-selective cation currents evoked by either BzATP (100 muM) or ATP (1 mM). The two components of the calcium response to BzATP differed in their pharmacological sensitivity. The metabotropic component was partially sensitive to pyridoxalphosphate-5'-phosphate-6-azo-(-2-chloro-5-nitrophenyl)-2,4-disulfonate, a selective antagonist of P2Y(13) receptors, while the ionotropic component was modulated by external magnesium and markedly reduced by brilliant blue G and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079), thus implying the involvement of P2X(7) purinergic receptors. It is concluded that P2Y(13) and P2X(7) purinergic receptors are functionally expressed in rat cerebellar astrocytes and mediate the increase in intracellular calcium elicited by BzATP in these cells.
Collapse
Affiliation(s)
- Luz María G Carrasquero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Verkhrasky A, Krishtal OA, Burnstock G. Purinoceptors on Neuroglia. Mol Neurobiol 2009; 39:190-208. [DOI: 10.1007/s12035-009-8063-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/24/2009] [Indexed: 02/06/2023]
|
46
|
Bianco F, Colombo A, Saglietti L, Lecca D, Abbracchio MP, Matteoli M, Verderio C. Different properties of P2X(7) receptor in hippocampal and cortical astrocytes. Purinergic Signal 2009; 5:233-40. [PMID: 19280367 DOI: 10.1007/s11302-009-9137-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/16/2008] [Indexed: 11/25/2022] Open
Abstract
P2X(7) receptor is a ligand-gated ion channel, which can induce the opening of large membrane pores. Here, we provide evidence that the receptor induces pore formation in astrocytes cultured from cortex, but not from the hippocampus. Furthermore, P2X(7) receptor activation promptly induces p38 mitogen-activated protein kinase (MAPK) phosphorylation in cortical but not in hippocampal astrocytes. Given the role of p38 MAPK activation in pore opening, these data suggest that defective coupling of the receptor to the enzyme could occur in hippocampal cultures. The different capabilities of the receptor to open membrane pores cause relevant functional consequences. Upon pore formation, caspase-1 is activated and pro-IL1-beta is cleaved and released extracellularly. The receptor stimulation does not result in interleukin-1beta secretion from hippocampal astrocytes, although the pro-cytokine is present in the cytosol of lipopolysaccharide-primed cultures. These results open the possibility that activation of P2X(7) receptors differently influences the neuroinflammatory processes in distinct brain regions.
Collapse
Affiliation(s)
- Fabio Bianco
- Department of Medical Pharmacology, CNR Institute of Neuroscience, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Barbieri R, Alloisio S, Ferroni S, Nobile M. Differential crosstalk between P2X7 and arachidonic acid in activation of mitogen-activated protein kinases. Neurochem Int 2008; 53:255-62. [PMID: 18804898 DOI: 10.1016/j.neuint.2008.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/27/2008] [Indexed: 11/27/2022]
Abstract
Accumulating evidence indicates that astroglial syncytium plays key role in normal and pathological brain functions. Astrocytes both in vitro and in situ respond to extracellular adenine-based nucleotides via the activation of P2 receptors. Massive release of ATP from neurons and glial cells occurs as a result of pathological conditions of the brain leading to neuroinflammation and involving P2X7 receptors. In this study, we investigated whether P2X7 stimulation on cultured cortical astrocytes promoted a differential activation of mitogen-activated protein kinases (MAPKs), and whether the second messenger arachidonic acid (AA), which is also a key modulator of neuroinflammation, affected the P2X7-mediated MAPK phosphorylation. The results show that the synthetic P2X7 receptor agonist 2',3'-O-(4-benzoyl)benzoyl-ATP (BzATP), induced a concentration-dependent phosphorylation of MAPK ERK1/2, JNK and p38. Stimulation of ERK1/2, JNK and p38 phosphorylation was also obtained by pathophysiological levels of extracellularly applied AA. Interestingly, a robust potentiation of ERK1/2 phosphorylation was elicited by co-application of BzATP and AA, whereas no differences were observed in JNK or p38 phosphosignals. The kinases activation showed a differential dependence on the presence of extracellular Ca(2+). The potentiation of BzATP-mediated ERK1/2 phosphorylation was also observed in human embryonic kidney cells (HEK293) stably transfected with rat P2X7, but not in HEK cells expressing truncated P2X7 receptor lacking the full cytoplasmic carboxy-terminal or in those carrying the structurally related rat P2X2. AA and BzATP synergism in ERK1/2 activation was abolished by cyclo-oxygenase and lipoxygenase pathway inhibitors. The result that ERK1/2-mediated transduction pathway is synergistically modulated by ATP and AA signalling depicts possible novel pharmacological targets for interfering with pathological activation of astroglial cells.
Collapse
|
48
|
P2x7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J Neuroinflammation 2008; 5:33. [PMID: 18691411 PMCID: PMC2518548 DOI: 10.1186/1742-2094-5-33] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/08/2008] [Indexed: 11/19/2022] Open
Abstract
Background The purinergic receptor P2x7 is expressed on myeloid cells as well as on CNS glial cells, and P2x7 activation has been shown to increase both glial and T-cell activation. These properties suggest a role in the development of autoimmune disease including multiple sclerosis. Methods The animal model of MS, experimental autoimmune encephalomyelitis (EAE) using myelin oligodendrocyte glycoprotein (MOG) peptide residues 35–55 was induced in wildtype C57BL6 mice and in P2x7 deficient mice ('P2x7 mice') that were backcrossed to C57BL6 mice. Disease progression was monitored by appearance of clinical signs, immunocytochemical staining to assess brain inflammation and neuronal damage, and by measurement of Tcell cytokine production. Results The incidence of EAE disease in P2x7 mice was reduced 4-fold compared to the wildtype mice; however the P2x7 mice that became ill had similar days of onset and clinical scores as the wildtype mice. Splenic T-cells isolated from P2x7 null mice produced greater IFNγ and IL-17 (from 3 to 12 fold greater levels) than wildtype cells, however cytokine production from P2x7 derived cells was not increased by a selective P2x7 agonist as was cytokine production from wildtype cells. Although infiltrating cells were detected in brains of both the P2x7 and wildtype mice, astroglial activation and axonal damage was reduced versus wildtype mice, and the distribution of astroglial activation was markedly distinct in the two strains. In contrast, microglial activation was similar in the two strains. Conclusion P2x7 deficiency resulted in compensatory changes leading to increased T-cell cytokine production, and activated T-cells were detected in the brains of P2x7 null mice with no clinical signs. However, the greatly reduced incidence of disease suggests that an initiating event is absent in these mice, and points to a role for astroglial P2x7 in development of EAE disease.
Collapse
|
49
|
Gavala ML, Pfeiffer ZA, Bertics PJ. The nucleotide receptor P2RX7 mediates ATP-induced CREB activation in human and murine monocytic cells. J Leukoc Biol 2008; 84:1159-71. [PMID: 18625910 DOI: 10.1189/jlb.0907612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleotide receptors serve as sensors of extracellular ATP and are important for immune function. The nucleotide receptor P2RX7 is a cell-surface, ligand-gated cation channel that has been implicated in many diseases, including arthritis, granuloma formation, sepsis, and tuberculosis. These disorders are often exacerbated by excessive mediator release from activated macrophages in the inflammatory microenvironment. Although P2RX7 activation can modulate monocyte/macrophage-induced inflammatory events, the relevant molecular mechanisms are poorly understood. Previous studies suggest that MAPK cascades and transcriptional control via CREB-linked pathways regulate the inflammatory capacity of monocytic cells. As P2RX7 promotes MAPK activation and inflammatory mediator production, we examined the involvement MAPK-induced CREB activation in P2RX7 action. Our data reveal that stimulation of multiple monocytic cell lines with P2RX7 agonists induces rapid CREB phosphorylation. In addition, we observed a lack of nucleotide-induced CREB phosphorylation in RAW 264.7 cells expressing nonfunctional P2RX7 and a gain of nucleotide-induced CREB phosphorylation in human embryonic kidney-293 cells that heterologously express human P2RX7. Furthermore, our results indicate that P2RX7 agonist-induced CREB phosphorylation is partly mediated via Ca(2+) fluxes and the MEK/ERK system. Mechanistic analyses revealed that macrophage stimulation with a P2RX7 agonist induces CREB/CREB-binding protein complex formation, which is necessary for CREB transcriptional activation. Also, we demonstrate that P2RX7 activation induces a known CREB-dependent gene (c-fos) and that dominant-negative CREB constructs attenuate this response. These studies support the idea that P2RX7 stimulation can directly regulate protein expression that is not dependent on costimulation with other immune modulators such as LPS.
Collapse
Affiliation(s)
- Monica L Gavala
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
50
|
Carroll WA, Donnelly-Roberts D, Jarvis MF. Selective P2X(7) receptor antagonists for chronic inflammation and pain. Purinergic Signal 2008; 5:63-73. [PMID: 18568426 PMCID: PMC2721772 DOI: 10.1007/s11302-008-9110-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/24/2008] [Indexed: 11/30/2022] Open
Abstract
ATP, acting on P2X7 receptors, stimulates changes in intracellular calcium concentrations, maturation, and release of interleukin-1β (IL-1β), and following prolonged agonist exposure, cell death. The functional effects of P2X7 receptor activation facilitate several proinflammatory processes associated with arthritis. Within the nervous system, these proinflammatory processes may also contribute to the development and maintenance of chronic pain. Emerging data from genetic knockout studies have indicated specific roles for P2X7 receptors in inflammatory and neuropathic pain states. The discovery of multiple distinct chemical series of potent and highly selective P2X7 receptor antagonists have enhanced our understanding of P2X7 receptor pharmacology and the diverse array of P2X7 receptor signaling mechanisms. These antagonists have provided mechanistic insight into the role(s) P2X7 receptors play under pathophysiological conditions. In this review, we integrate the recent discoveries of novel P2X7 receptor-selective antagonists with a brief update on P2X7 receptor pharmacology and its therapeutic potential.
Collapse
Affiliation(s)
- William A Carroll
- Abbott Laboratories, Neuroscience Research, Global Pharmaceutical Research and Development, R47W, AP10, 100 Abbott Park Road, Abbott Park, IL, 60064-6101, USA,
| | | | | |
Collapse
|