1
|
Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol 2023; 13:1081119. [PMID: 36714307 PMCID: PMC9874005 DOI: 10.3389/fphys.2022.1081119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Endothelial cells, the inner lining of the blood vessels, are well-known to play a critical role in vascular function, while endothelial dysfunction due to different cardiovascular risk factors or accumulation of disruptive mechanisms that arise with aging lead to cardiovascular disease. In this review, we focus on endothelial stiffness, a fundamental biomechanical property that reflects cell resistance to deformation. In the first part of the review, we describe the mechanisms that determine endothelial stiffness, including RhoA-dependent contractile response, actin architecture and crosslinking, as well as the contributions of the intermediate filaments, vimentin and lamin. Then, we review the factors that induce endothelial stiffening, with the emphasis on mechanical signals, such as fluid shear stress, stretch and stiffness of the extracellular matrix, which are well-known to control endothelial biomechanics. We also describe in detail the contribution of lipid factors, particularly oxidized lipids, that were also shown to be crucial in regulation of endothelial stiffness. Furthermore, we discuss the relative contributions of these two mechanisms of endothelial stiffening in vasculature in cardiovascular disease and aging. Finally, we present the current state of knowledge about the role of endothelial stiffening in the disruption of endothelial cell-cell junctions that are responsible for the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Victor M. Aguilar
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States,Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Amit Paul
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dana Lazarko
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States,Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Irena Levitan,
| |
Collapse
|
2
|
Caveolin-1 is a primary determinant of endothelial stiffening associated with dyslipidemia, disturbed flow, and ageing. Sci Rep 2022; 12:17822. [PMID: 36280774 PMCID: PMC9592578 DOI: 10.1038/s41598-022-20713-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/16/2022] [Indexed: 01/20/2023] Open
Abstract
Endothelial stiffness is emerging as a major determinant in endothelial function. Here, we analyzed the role of caveolin-1 (Cav-1) in determining the stiffness of endothelial cells (EC) exposed to oxidized low density lipoprotein (oxLDL) under static and hemodynamic conditions in vitro and of aortic endothelium in vivo in mouse models of dyslipidemia and ageing. Elastic moduli of cultured ECs and of the endothelial monolayer of freshly isolated mouse aortas were measured using atomic force microscopy (AFM). We found that a loss of Cav-1 abrogates the uptake of oxLDL and oxLDL-induced endothelial stiffening, as well as endothelial stiffening induced by disturbed flow (DF), which was also oxLDL dependent. Mechanistically, Cav-1 is required for the expression of CD36 (cluster of differentiation 36) scavenger receptor. Genetic deletion of Cav-1 abrogated endothelial stiffening observed in the DF region of the aortic arch, and induced by a high fat diet (4-6 weeks) and significantly blunted endothelial stiffening that develops with advanced age. This effect was independent of stiffening of the sub-endothelium layer. Additionally, Cav-1 expression significantly increased with age. No differences in elastic modulus were observed between the sexes in advanced aged wild type and Cav-1 knockout mice. Taken together, this study demonstrates that Cav-1 plays a critical role in endothelial stiffening induced by oxLDL in vitro and by dyslipidemia, disturbed flow and ageing in vivo.
Collapse
|
3
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. Int J Mol Sci 2022; 23:ijms23169199. [PMID: 36012465 PMCID: PMC9409144 DOI: 10.3390/ijms23169199] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dyslipidaemia leads to proatherogenic oxidative lipid stress that promotes vascular inflammation and thrombosis, the pathologies that underpin myocardial infarction, stroke, and deep vein thrombosis. These prothrombotic states are driven, at least in part, by platelet hyperactivity, and they are concurrent with the appearancxe of oxidatively modified low-density lipoproteins (LDL) in the circulation. Modified LDL are heterogenous in nature but, in a general sense, constitute a prototype circulating transporter for a plethora of oxidised lipid epitopes that act as danger-associated molecular patterns. It is well-established that oxidatively modified LDL promote platelet activation and arterial thrombosis through a number of constitutively expressed scavenger receptors, which transduce atherogenic lipid stress to a complex array of proactivatory signalling pathways in the platelets. Stimulation of these signalling events underlie the ability of modified LDL to induce platelet activation and blunt platelet inhibitory pathways, as well as promote platelet-mediated coagulation. Accumulating evidence from patients at risk of arterial thrombosis and experimental animal models of disease suggest that oxidised LDL represents a tangible link between the dyslipidaemic environment and increased platelet activation. The aim of this review is to summarise recent advances in our understanding of the pro-thrombotic signalling events induced in platelets by modified LDL ligation, describe the contribution of individual platelet scavenger receptors, and highlight potential future challenges of targeting these pathways.
Collapse
|
5
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
6
|
Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2021; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
|
7
|
Sanyour HJ, Rickel AP, Hong Z. The interplay of membrane cholesterol and substrate on vascular smooth muscle biomechanics. CURRENT TOPICS IN MEMBRANES 2020; 86:279-299. [PMID: 33837696 PMCID: PMC8041049 DOI: 10.1016/bs.ctm.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Cardiovascular disease (CVD) remains the primary cause of death worldwide. Specifically, atherosclerosis is a CVD characterized as a slow progressing chronic inflammatory disease. During atherosclerosis, vascular walls accumulate cholesterol and cause fatty streak formation. The progressive changes in vascular wall stiffness exert alternating mechanical cues on vascular smooth muscle cells (VSMCs). The detachment of VSMCs in the media layer of the vessel and migration toward the intima is a critical step in atherosclerosis. VSMC phenotypic switching is a complicated process that modifies VSMC structure and biomechanical function. These changes affect the expression and function of cell adhesion molecules, thus impacting VSMC migration. Accumulating evidence has shown cholesterol is capable of regulating cellular migration, proliferation, and spreading. However, the interaction and coordinated effects of both cellular cholesterol and the extracellular matrix (ECM) stiffness/composition on VSMC biomechanics remains to be elucidated.
Collapse
Affiliation(s)
- Hanna J Sanyour
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Alex P Rickel
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
8
|
Couto NF, Rezende L, Fernandes-Braga W, Alves AP, Agero U, Alvarez-Leite J, Damasceno NRT, Castro-Gomes T, Andrade LO. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183139. [PMID: 31812625 DOI: 10.1016/j.bbamem.2019.183139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MβCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MβCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.
Collapse
Affiliation(s)
- Natália Fernanda Couto
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Biswas A, Kashyap P, Datta S, Sengupta T, Sinha B. Cholesterol Depletion by MβCD Enhances Cell Membrane Tension and Its Variations-Reducing Integrity. Biophys J 2019; 116:1456-1468. [PMID: 30979551 PMCID: PMC6486507 DOI: 10.1016/j.bpj.2019.03.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022] Open
Abstract
Cholesterol depletion by methyl-β-cyclodextrin (MβCD) remodels the plasma membrane’s mechanics in cells and its interactions with the underlying cytoskeleton, whereas in red blood cells, it is also known to cause lysis. Currently it’s unclear if MβCD alters membrane tension or only enhances membrane-cytoskeleton interactions—and how this relates to cell lysis. We map membrane height fluctuations in single cells and observe that MβCD reduces temporal fluctuations robustly but flattens spatial membrane undulations only slightly. Utilizing models explicitly incorporating membrane confinement besides other viscoelastic factors, we estimate membrane mechanical parameters from the fluctuations’ frequency spectrum. This helps us conclude that MβCD enhances membrane tension and does so even on ATP-depleted cell membranes where this occurs despite reduction in confinement. Additionally, on cholesterol depletion, cell membranes display higher intracellular heterogeneity in the amplitude of spatial undulations and membrane tension. MβCD also has a strong impact on the cell membrane’s tenacity to mechanical stress, making cells strongly prone to rupture on hypo-osmotic shock with larger rupture diameters—an effect not hindered by actomyosin perturbations. Our study thus demonstrates that cholesterol depletion increases membrane tension and its variability, making cells prone to rupture independent of the cytoskeletal state of the cell.
Collapse
Affiliation(s)
- Arikta Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Purba Kashyap
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sanchari Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Titas Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
10
|
Ma LD, Wang YT, Wang JR, Wu JL, Meng XS, Hu P, Mu X, Liang QL, Luo GA. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. LAB ON A CHIP 2018; 18:2547-2562. [PMID: 30019731 DOI: 10.1039/c8lc00333e] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Spheroid-based three-dimensional (3D) liver culture models, offering a desirable biomimetic microenvironment, are useful for recapitulating liver functions in vitro. However, a user-friendly, robust and specially optimized method has not been well developed for a convenient, highly efficient, and safe in situ perfusion culture of spheroid-based 3D liver models. Here, we have developed a biomimetic and reversibly assembled liver-on-a-chip (3D-LOC) platform and presented a proof of concept for long-term perfusion culture of 3D human HepG2/C3A spheroids for building a 3D liver spheroid model. On the basis of a fast and reversible seal of concave microwell-based PDMS-membrane-PDMS sandwich multilayer chips, it enables a high-throughput and parallel perfusion culture of 1080 cell spheroids in a high mass transfer and low fluid shear stress biomimetic microenvironment as well as allowing the convenient collection and analysis of the cell spheroids. In terms of reducing spheroid loss and maintaining cell morphology and viability in long-term perfusion culture, the cell spheroids in the 3D-LOC were more safe and efficient. Notably, the polarisation, liver-specific functions, and metabolic activity of the cell spheroids in 3D-LOC were also remarkably improved and exhibited better long-term maintenance over conventional perfusion methods. Additionally, a robust micromilling method that incorporates secondary PDMS coating techniques (SPCs) for fabricating V-shaped concave microwells was also developed. The V-shaped concave microwell arrays exhibited a higher distribution density and aperture ratio, making it easy to form large-scale and uniform-sized cell spheroids with minimum cell loss. In summary, the proposed 3D-LOC could provide a convenient and robust solution for the long-term safe perfusion culture of hepatic spheroids and be beneficial for a variety of potential applications including development of bio-artificial livers, disease modeling, and drug toxicity screening.
Collapse
Affiliation(s)
- Li-Dong Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang C, Adamos C, Oh MJ, Baruah J, Ayee MAA, Mehta D, Wary KK, Levitan I. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27 kip1 signaling: opposite effects of oxLDL and cholesterol loading. Am J Physiol Cell Physiol 2017; 313:C340-C351. [PMID: 28701359 DOI: 10.1152/ajpcell.00249.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu2+-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu2+-oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu2+-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27kip1). Both Cu2+-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu2+- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chongxu Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Crystal Adamos
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Jugajyoti Baruah
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Manuela A A Ayee
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Dolly Mehta
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
12
|
Ayee MAA, LeMaster E, Shentu TP, Singh DK, Barbera N, Soni D, Tiruppathi C, Subbaiah PV, Berdyshev E, Bronova I, Cho M, Akpa BS, Levitan I. Molecular-Scale Biophysical Modulation of an Endothelial Membrane by Oxidized Phospholipids. Biophys J 2017; 112:325-338. [PMID: 28122218 DOI: 10.1016/j.bpj.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
The influence of two bioactive oxidized phospholipids on model bilayer properties, membrane packing, and endothelial cell biomechanics was investigated computationally and experimentally. The truncated tail phospholipids, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), are two major oxidation products of the unsaturated phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphocholine. A combination of coarse-grained molecular dynamics simulations, Laurdan multiphoton imaging, and atomic force microscopy microindentation experiments was used to determine the impact of POVPC and PGPC on the structure of a multicomponent phospholipid bilayer and to assess the consequences of their incorporation on membrane packing and endothelial cell stiffness. Molecular simulations predicted differential bilayer perturbation effects of the two oxidized phospholipids based on the chemical identities of their truncated tails, including decreased bilayer packing, decreased bilayer bending modulus, and increased water penetration. Disruption of lipid order was consistent with Laurdan imaging results indicating that POVPC and PGPC decrease the lipid packing of both ordered and disordered membrane domains. Computational predictions of a larger membrane perturbation effect by PGPC correspond to greater stiffness of PGPC-treated endothelial cells observed by measuring cellular elastic moduli using atomic force microscopy. Our results suggest that disruptions in membrane structure by oxidized phospholipids play a role in the regulation of overall endothelial cell stiffness.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth LeMaster
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tzu Pin Shentu
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dev K Singh
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nicolas Barbera
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dheeraj Soni
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Papasani V Subbaiah
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | | | - Michael Cho
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Belinda S Akpa
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
13
|
Oh MJ, Zhang C, LeMaster E, Adamos C, Berdyshev E, Bogachkov Y, Kohler EE, Baruah J, Fang Y, Schraufnagel DE, Wary KK, Levitan I. Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. J Lipid Res 2016; 57:791-808. [PMID: 26989083 DOI: 10.1194/jlr.m062539] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Indexed: 12/26/2022] Open
Abstract
Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity.
Collapse
Affiliation(s)
- Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Chongxu Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Elizabeth LeMaster
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Crystal Adamos
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Evgeny Berdyshev
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Yedida Bogachkov
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Erin E Kohler
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Jugajyoti Baruah
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL
| | - Dean E Schraufnagel
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
14
|
Nadkarni SK. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:121507. [PMID: 24296995 PMCID: PMC4696609 DOI: 10.1117/1.jbo.18.12.121507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 05/19/2023]
Abstract
During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.
Collapse
Affiliation(s)
- Seemantini K. Nadkarni
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Address all correspondence to: Seemantini K. Nadkarni, Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114. Tel: (617)-724-1381; Fax: (617)-7264103; E-mail:
| |
Collapse
|
15
|
Hong Z, Ersoy I, Sun M, Bunyak F, Hampel P, Hong Z, Sun Z, Li Z, Levitan I, Meininger GA, Palaniappan K. Influence of membrane cholesterol and substrate elasticity on endothelial cell spreading behavior. J Biomed Mater Res A 2012; 101:1994-2004. [PMID: 23239612 DOI: 10.1002/jbm.a.34504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 02/05/2023]
Abstract
Interactions between implanted materials and the surrounding host cells critically affect the fate of bioengineered materials. In this study, the biomechanical response of bovine aortic endothelial cells (BAECs) with different membrane cholesterol levels to polyacrylamide (PA) gels was investigated by measuring cell adhesion and spreading behaviors at varying PA elasticity. The elasticity of gel substrates was manipulated by cross-linker content. Type I collagen (COL1) was coated on PA gel to provide a biologically functional environment for cell spreading. Precise quantitative characterization of changes in cell area and perimeter of cells across two treatments and three bioengineered substrates were determined using a customized software developed for computational image analysis. We found that the initial response of endothelial cells to changes in substrate elasticity was determined by membrane cholesterol levels, and that the extent of endothelial cell spreading increases with membrane cholesterol content. All of the BAECs with different cholesterol levels showed little growth on substrates with elasticity below 20 kPa, but increased spreading at higher substrate elasticity. Cholesterol-depleted cells were consistently smaller than control and cholesterol-enriched cells regardless of substrate elasticity. These observations indicate that membrane cholesterol plays an important role in cell spreading on soft biomimetic materials constructed with appropriate elasticity.
Collapse
Affiliation(s)
- Zhongkui Hong
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wei D, Chen Y, Tang C, Huang H, Liu L, Wang Z, Li R, Wang G. LDL decreases the membrane compliance and cell adhesion of endothelial cells under fluid shear stress. Ann Biomed Eng 2012; 41:611-8. [PMID: 23076600 DOI: 10.1007/s10439-012-0677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/08/2012] [Indexed: 02/01/2023]
Abstract
Atherosclerosis is an inflammatory disease of large and medium sized arteriole walls that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. However, the mechanisms that lead to the initiation of atherosclerosis are not fully understood. In this study, endothelial cells (ECs) were incubated with LDL for 24 h, and then the lipid was detected with Oil Red O staining and cholesterol ester was assayed with high-performance liquid chromatography (HPLC). F-actin was examined by fluorescence microscopy and the viscoelasticity of ECs was investigated using the micropipette aspiration technique. Then, a parallel-plate flow chamber device was used to observe the adhesion and retention of ECs under shear stress. The results demonstrated that elevated LDL significantly increased the cellular lipid content and induced the rearrangement of cytoskeletal F-actin. The initial rapid deformability (l/K 1 + l/K 2) was reduced by elevated cellular LDL levels, while membrane viscosity (μ) was increased by LDL accumulation. After treatment with 150 mg L(-1) LDL for 24 h, the adhesion of ECs under fluid shear stress was significantly decreased (p < 0.05). These results suggested that LDL induced cellular lipid accumulation and cytoskeleton reorganization which increased the cellular stiffness and decreased the adhesion of ECs.
Collapse
Affiliation(s)
- Dangheng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, The Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Oh MJ, Kuhr F, Byfield F, Levitan I. Micropipette aspiration of substrate-attached cells to estimate cell stiffness. J Vis Exp 2012:3886. [PMID: 23051713 PMCID: PMC3490255 DOI: 10.3791/3886] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Growing number of studies show that biomechanical properties of individual cells play major roles in multiple cellular functions, including cell proliferation, differentiation, migration and cell-cell interactions. The two key parameters of cellular biomechanics are cellular deformability or stiffness and the ability of the cells to contract and generate force. Here we describe a quick and simple method to estimate cell stiffness by measuring the degree of membrane deformation in response to negative pressure applied by a glass micropipette to the cell surface, a technique that is called Micropipette Aspiration or Microaspiration. Microaspiration is performed by pulling a glass capillary to create a micropipette with a very small tip (2-50 μm diameter depending on the size of a cell or a tissue sample), which is then connected to a pneumatic pressure transducer and brought to a close vicinity of a cell under a microscope. When the tip of the pipette touches a cell, a step of negative pressure is applied to the pipette by the pneumatic pressure transducer generating well-defined pressure on the cell membrane. In response to pressure, the membrane is aspirated into the pipette and progressive membrane deformation or "membrane projection" into the pipette is measured as a function of time. The basic principle of this experimental approach is that the degree of membrane deformation in response to a defined mechanical force is a function of membrane stiffness. The stiffer the membrane is, the slower the rate of membrane deformation and the shorter the steady-state aspiration length. The technique can be performed on isolated cells, both in suspension and substrate-attached, large organelles, and liposomes. Analysis is performed by comparing maximal membrane deformations achieved under a given pressure for different cell populations or experimental conditions. A "stiffness coefficient" is estimated by plotting the aspirated length of membrane deformation as a function of the applied pressure. Furthermore, the data can be further analyzed to estimate the Young's modulus of the cells (E), the most common parameter to characterize stiffness of materials. It is important to note that plasma membranes of eukaryotic cells can be viewed as a bi-component system where membrane lipid bilayer is underlied by the sub-membrane cytoskeleton and that it is the cytoskeleton that constitutes the mechanical scaffold of the membrane and dominates the deformability of the cellular envelope. This approach, therefore, allows probing the biomechanical properties of the sub-membrane cytoskeleton.
Collapse
Affiliation(s)
- Myung-Jin Oh
- Section of Respiratory, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois, USA
| | | | | | | |
Collapse
|
18
|
Overexpression of actin-depolymerizing factor blocks oxidized low-density lipoprotein-induced mouse brain microvascular endothelial cell barrier dysfunction. Mol Cell Biochem 2012; 371:1-8. [PMID: 22926402 DOI: 10.1007/s11010-012-1415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
Abstract
The aim of present work was to elucidate the role of actin-depolymerizing factor (ADF), an important regulator of actin cytoskeleton, in the oxidized low-density lipoprotein (ox-LDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to ox-LDL. Treatment with LDL served as control. It was found that ADF mRNA level and protein expression were decreased when exposed to ox-LDL in MBMECs. Then, we investigated the influence of ADF overexpression on ox-LDL-treated MBMECs. Structurally, overexpression of ADF inhibited ox-LDL-induced F-actin formation. Functionally, overexpression of ADF attenuated ox-LDL-induced disruption of endothelial barrier marked by restoration of transendothelial electrical resistance, permeability of Evans Blue and expression of tight junction-associated proteins including ZO-1 and occludin, and blocked ox-LDL-induced oxidative stress marked by inhibition of reactive oxygen species (ROS) formation and activity of NADPH oxidase and Nox2 expression. However, overexpression of ADF in control cells had no significant effect on endothelial permeability and ROS formation. In conclusion, overexpression of ADF blocks ox-LDL-induced disruption of endothelial barrier. In addition, siRNA-mediated downregulation of ADF expression aggravated ox-LDL-induced disruption of endothelial barrier and ROS formation. These findings identify ADF as a key signaling molecule in the regulation of BBB integrity and suggest that ADF might be used as a target to modulate diseases accompanied by ox-LDL-induced BBB compromise.
Collapse
|
19
|
Stroka KM, Levitan I, Aranda-Espinoza H. OxLDL and substrate stiffness promote neutrophil transmigration by enhanced endothelial cell contractility and ICAM-1. J Biomech 2012; 45:1828-34. [PMID: 22560286 DOI: 10.1016/j.jbiomech.2012.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/05/2012] [Accepted: 04/09/2012] [Indexed: 01/28/2023]
Abstract
Elevated levels of oxLDL in the bloodstream and increased vasculature stiffness are both associated with cardiovascular disease in patients. However, it is not known how oxLDL and subendothelial matrix stiffness together regulate an immune response. Here, we used an in vitro model of the vascular endothelium to explore the combined effects of oxLDL and subendothelial matrix stiffening on neutrophil transmigration. We prepared fibronectin-coated polyacrylamide gels of varying stiffness and plated human umbilical vein endothelial cells (ECs) onto the gels. We observed that oxLDL treatment of the endothelium promoted neutrophil transmigration (from <1% to 26% on soft 0.87kPa substrates), with stiffer substrates further promoting transmigration (54% on 5kPa and 41% on 280kPa). OxLDL exposure enhanced intercellular adhesion molecule-1 (ICAM-1) expression on the endothelium, which was likely responsible for the oxLDL-induced transmigration. Importantly, inhibition of MLCK-mediated EC contraction reduced transmigration to ∼9% on all substrates and eliminated the effects of subendothelial matrix stiffness. In addition, large holes, thousands of square microns in size, formed in monolayers on stiff substrates following transmigration, indicating that oxLDL treatment and subsequent neutrophil transmigration caused serious damage to the endothelium. Our results reveal that an interplay between ICAM-1 and MLCK-dependent contractile forces mediates neutrophil transmigration through oxLDL-treated endothelium. Thus, microvasculature stiffness, which likely varies depending on tissue location and health, is an important regulator of the transmigration step of the immune response in the presence of oxLDL.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
20
|
Shentu TP, Singh DK, Oh MJ, Sun S, Sadaat L, Makino A, Mazzone T, Subbaiah PV, Cho M, Levitan I. The role of oxysterols in control of endothelial stiffness. J Lipid Res 2012; 53:1348-58. [PMID: 22496390 DOI: 10.1194/jlr.m027102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelial dysfunction is a key step in atherosclerosis development. Our recent studies suggested that oxLDL-induced increase in endothelial stiffness plays a major role in dyslipidemia-induced endothelial dysfunction. In this study, we identify oxysterols, as the major component of oxLDL, responsible for the increase in endothelial stiffness. Using Atomic Force Microscopy to measure endothelial elastic modulus, we show that endothelial stiffness increases with progressive oxidation of LDL and that the two lipid fractions that contribute to endothelial stiffening are oxysterols and oxidized phosphatidylcholines, with oxysterols having the dominant effect. Furthermore, endothelial elastic modulus increases as a linear function of oxysterol content of oxLDL. Specific oxysterols, however, have differential effects on endothelial stiffness with 7-ketocholesterol and 7α-hydroxycholesterol, the two major oxysterols in oxLDL, having the strongest effects. 27-hydroxycholesterol, found in atherosclerotic lesions, also induces endothelial stiffening. For all oxysterols, endothelial stiffening is reversible by enriching the cells with cholesterol. oxLDL-induced stiffening is accompanied by incorporation of oxysterols into endothelial cells. We find significant accumulation of three oxysterols, 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, in mouse aortas of dyslipidemic ApoE⁻/⁻ mice at the early stage of atherosclerosis. Remarkably, these are the same oxysterols we have identified to induce endothelial stiffening.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kowalsky GB, Beam D, Oh MJ, Sachs F, Hua SZ, Levitan I. Cholesterol depletion facilitates recovery from hypotonic cell swelling in CHO cells. Cell Physiol Biochem 2011; 28:1247-54. [PMID: 22179012 DOI: 10.1159/000335856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2011] [Indexed: 12/12/2022] Open
Abstract
The maintenance of cell volume homeostasis is critical for preventing pathological cell swelling that may lead to severe cellular dysfunction or cell death. Our earlier studies have shown that volume-regulated anion channels that play a major role in the regulation of cell volume are facilitated by a decrease in cellular cholesterol suggesting that cholesterol depletion should also facilitate regulatory volume decrease (RVD), the ability of cells to recover from hypotonic swelling. In this study, we test this hypothesis using a novel methodology developed to measure changes in cell volume using a microfluidics chamber. Our data show that cholesterol depletion of Chinese Hamster Ovary (CHO) significantly facilitates the recovery process, as is apparent from a faster onset of the RVD (162±10 s. vs. 114±5 s. in control and cholesterol depleted cells respectively) and a higher degree of volume recovery after 10 min of the hypotonic challenge (41%±6% vs. 65%±6% in control and cholesterol depleted cells respectively). In contrast, enriching cells with cholesterol had no effect on the RVD process. We also show here that similarly to our previous observations in endothelial cells, cholesterol depletion significantly increases the stiffness of CHO cells suggesting that facilitation of RVD may be associated with cell stiffening. Furthermore, we also show that increasing cell stiffness by stabilizing F-actin with jasplakinolide also facilitates RVD development. We propose that cell stiffening enhances cell mechano-sensitivity, which in turn facilitates the RVD process.
Collapse
Affiliation(s)
- Gregory B Kowalsky
- Section of Respiratory, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
22
|
Walsh TG, Murphy RP, Fitzpatrick P, Rochfort KD, Guinan AF, Murphy A, Cummins PM. Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 2011; 226:3053-63. [PMID: 21302304 DOI: 10.1002/jcp.22655] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blood-brain barrier (BBB) regulation involves the coordinated interaction of intercellular adherens and tight junctions in response to stimuli. One such stimulus, shear stress, has been shown to upregulate brain microvascular endothelial cell (BMvEC) barrier function, although our knowledge of the signaling mechanisms involved is limited. In this article, we examined the hypothesis that VE-cadherin can transmit shear signals to tight junction occludin with consequences for pTyr-occludin and barrier function. In initial studies, chronic shear enhanced membrane localization of ZO-1 and claudin-5, decreased pTyr-occludin (in part via a dephostatin-sensitive mechanism), and reduced BMvEC permeability, with flow reduction in pre-sheared BMvECs having converse effects. In further studies, VE-cadherin inhibition (VE-cad ΔEXD) blocked shear-induced Rac1 activation, pTyr-occludin reduction, and barrier upregulation, consistent with an upstream role for VE-cadherin in transmitting shear signals to tight junctions through Rac1. As VE-cadherin is known to mediate Rac1 activation via Tiam1 recruitment, we subsequently confirmed that Tiam1 inhibition (Tiam1-C580) could elicit effects similar to VE-cad ΔEXD. Finally, the observed attenuation of shear-induced changes in pTyr-occludin level and barrier phenotype following Rac1 inhibition (NSC23766, T17N) establishes a downstream role for Rac1 in this pathway. In summary, we describe for the first time in BMvECs a role for VE-cadherin in the transmission of physiological shear signals to tight junction occludin through engagement of Tiam1/Rac1 leading to barrier stabilization. A downstream role is also strongly indicated for a protein tyrosine phosphatase in pTyr-occludin modulation. Importantly, these findings suggest an important route of inter-junctional signaling cross-talk during BBB response to flow.
Collapse
Affiliation(s)
- Tony G Walsh
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
23
|
Impact of oxLDL on Cholesterol-Rich Membrane Rafts. J Lipids 2011; 2011:730209. [PMID: 21490811 PMCID: PMC3066652 DOI: 10.1155/2011/730209] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022] Open
Abstract
Numerous studies have demonstrated that cholesterol-rich membrane rafts play critical roles in multiple cellular functions. However, the impact of the lipoproteins on the structure, integrity and cholesterol composition of these domains is not well understood. This paper focuses on oxidized low-density lipoproteins (oxLDLs) that are strongly implicated in the development of the cardiovascular disease and whose impact on membrane cholesterol and on membrane rafts has been highly controversial. More specifically, we discuss three major criteria for the impact of oxLDL on membrane rafts: distribution of different membrane raft markers, changes in membrane cholesterol composition, and changes in lipid packing of different membrane domains. We also propose a model to reconcile the controversy regarding the relationship between oxLDL, membrane cholesterol, and the integrity of cholesterol-rich membrane domains.
Collapse
|
24
|
Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 2010; 13:39-75. [PMID: 19888833 PMCID: PMC2877120 DOI: 10.1089/ars.2009.2733] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/09/2009] [Accepted: 11/02/2009] [Indexed: 02/06/2023]
Abstract
Oxidative modification of LDL is known to elicit an array of pro-atherogenic responses, but it is generally underappreciated that oxidized LDL (OxLDL) exists in multiple forms, characterized by different degrees of oxidation and different mixtures of bioactive components. The variable effects of OxLDL reported in the literature can be attributed in large part to the heterogeneous nature of the preparations employed. In this review, we first describe the various subclasses and molecular composition of OxLDL, including the variety of minimally modified LDL preparations. We then describe multiple receptors that recognize various species of OxLDL and discuss the mechanisms responsible for the recognition by specific receptors. Furthermore, we discuss the contentious issues such as the nature of OxLDL in vivo and the physiological oxidizing agents, whether oxidation of LDL is a prerequisite for atherogenesis, whether OxLDL is the major source of lipids in foam cells, whether in some cases it actually induces cholesterol depletion, and finally the Janus-like nature of OxLDL in having both pro- and anti-inflammatory effects. Lastly, we extend our review to discuss the role of LDL oxidation in diseases other than atherosclerosis, including diabetes mellitus, and several autoimmune diseases, such as lupus erythematosus, anti-phospholipid syndrome, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irena Levitan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
25
|
Shentu TP, Titushkin I, Singh DK, Gooch KJ, Subbaiah PV, Cho M, Levitan I. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 2010; 299:C218-29. [PMID: 20410437 DOI: 10.1152/ajpcell.00383.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-keto-cholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDL-induced changes in endothelial biomechanics.
Collapse
Affiliation(s)
- Tzu Pin Shentu
- Pulmonary, Critical Care and Sleep Medicine, Dept. of Medicine, University of Illinois, Chicago, Illinois 60612-7323, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Norman LL, Oetama RJ, Dembo M, Byfield F, Hammer DA, Levitan I, Aranda-Espinoza H. Modification of Cellular Cholesterol Content Affects Traction Force, Adhesion and Cell Spreading. Cell Mol Bioeng 2010; 3:151-162. [PMID: 21461187 DOI: 10.1007/s12195-010-0119-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cellular cholesterol is a critical component of the plasma membrane, and plays a key role in determining the physical properties of the lipid bilayer, such as elasticity, viscosity, and permeability. Surprisingly, it has been shown that cholesterol depletion increases cell stiffness, not due to plasma membrane stiffening, but rather, due to the interaction between the actin cytoskeleton and the plasma membrane. This indicates that traction stresses of the acto-myosin complex likely increase during cholesterol depletion. Here we use force traction microscopy to quantify the forces individual cells are exerting on the substrate, and total internal reflection fluorescence microscopy as well as interference reflection microscopy to observe cell-substrate adhesion and spreading. We show that single cells depleted of cholesterol produce larger traction forces and have large focal adhesions compared to untreated or cholesterol-enriched cells. Cholesterol depletion also causes a decrease in adhesion area for both single cells and monolayers. Spreading experiments illustrate a decrease in spreading area for cholesterol-depleted cells, and no effect on cholesterol-enriched cells. These results demonstrate that cholesterol plays an important role in controlling and regulating the cell-substrate interactions through the actin-plasma membrane complex, cell-cell adhesion, and spreading.
Collapse
Affiliation(s)
- Leann L Norman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Morris HL, Reed CI, Haycock JW, Reilly GC. Mechanisms of fluid-flow-induced matrix production in bone tissue engineering. Proc Inst Mech Eng H 2010; 224:1509-21. [DOI: 10.1243/09544119jeim751] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Matrix production by tissue-engineered bone is enhanced when the growing tissue is subjected to mechanical forces and/or fluid flow in bioreactor culture. Cells deposit collagen and mineral, depending upon the mechanical loading that they receive. However, the molecular mechanisms of flow-induced signal transduction in bone are poorly understood. The hyaluronan (HA) glycocalyx has been proposed as a potential mediator of mechanical forces in bone. Using a parallel-plate flow chamber the effects of removal of HA on flow-induced collagen production and NF-κB activation in MLO-A5 osteoid osteocytes were investigated. Short periods of fluid flow significantly increased collagen production and induced translocation of the NF-κB subunit p65 to the cell's nuclei in 65 per cent of the cell population. Enzymatic removal of the HA coat and antibody blocking of CD44 (a transmembrane protein that binds to HA) eliminated the fluid-flow-induced increase in collagen production but had no effect on the translocation of p65. HA and CD44 appear to play roles in transducing the flow signals that modulate collagen production over long-term culture but not in the short-term flow-induced activation of NF-κB, implying that multiple signalling events are initiated from the commencement of flow. Understanding the mechanotransduction events that enable fluid flow to stimulate bone matrix production will allow the optimization of bioreactor design and flow profiles for bone tissue engineering.
Collapse
Affiliation(s)
- H L Morris
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, Broad Lane, UK
| | - C I Reed
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, Broad Lane, UK
| | - J W Haycock
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, Broad Lane, UK
| | - G C Reilly
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, Broad Lane, UK
| |
Collapse
|
28
|
Brower JB, Targovnik JH, Bowen BP, Caplan MR, Massia SP. Elevated Glucose Impairs the Endothelial Cell Response to Shear Stress. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|