1
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Streifer M, Hilz EN, Raval R, Wylie DC, Gore AC. Transcriptomic analysis of effects of developmental PCB exposure in the hypothalamus of female rats. Mol Cell Endocrinol 2025; 599:112460. [PMID: 39798907 DOI: 10.1016/j.mce.2025.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
This study investigated the consequences of perinatal exposure to Aroclor 1221 (A1221), a weakly estrogenic polychlorinated biphenyl (PCB) mixture and known endocrine-disrupting chemical (EDC), in female rats. Previous work has shown behavioral and physiological effects of A1221, and the current study extended this work to comprehensive transcriptomic profiling of two hypothalamic regions involved in the control of reproduction: the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV). Female Sprague-Dawley rats were fed a cookie treated with a small volume of A1221 (1 mg/kg) or vehicle (3% DMSO in sesame oil) during pregnancy from gestational days 8-18 and after birth from postnatal (P) days 1-21, exposing the offspring via placental and lactational transfer. In female offspring, developmental, physiological, and hormonal effects of A1221 were relatively modest. However, because prior work has implicated this exposure in neurobehavioral disruptions, we sought to determine whether developmental programming of the brain transcriptome could underlie these latter phenotypes. We used 3' targeted RNA sequencing in the hypothalamus (arcuate nucleus, anteroventral periventricular nucleus) of experimental females at P8, 30, and 60 and identified significant alterations in gene expression and gene ontology (GO) terms in an age- and tissue-specific manner. Most notably, terms related to synaptic signaling, neurotransmitter regulation, immune response, and cellular structure were identified. Changes in pathways associated with synaptic functions and cellular metabolism were further identified, indicating that A1221 exposure can impact neurodevelopmental and neuroendocrine processes at a molecular level, even in the absence of overt developmental changes. These findings of molecular reprogramming may explain the behavioral effects of A1221 and highlight novel molecular targets and pathways that warrant further investigation to understand the effects of EDCs on the developing brain.
Collapse
Affiliation(s)
- Madeline Streifer
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Molecular Carcinogenesis & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Molecular Carcinogenesis & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Raj Raval
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Molecular Carcinogenesis & Toxicology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Zuccaro MV, LeDuc CA, Thaker VV. Updates on Rare Genetic Variants, Genetic Testing, and Gene Therapy in Individuals With Obesity. Curr Obes Rep 2024; 13:626-641. [PMID: 38822963 PMCID: PMC11694263 DOI: 10.1007/s13679-024-00567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW The goal of this paper is to aggregate information on monogenic contributions to obesity in the past five years and to provide guidance for genetic testing in clinical care. RECENT FINDINGS Advances in sequencing technologies, increasing awareness, access to testing, and new treatments have increased the utilization of genetics in clinical care. There is increasing recognition of the prevalence of rare genetic obesity from variants with mean allele frequency < 5% -new variants in known genes as well as identification of novel genes- causing monogenic obesity. While most of these genes are in the leptin melanocortin pathway, those in adipocytes may also contribute. Common variants may contribute either to higher lifetime tendency for weight gain or provide protection from monogenic obesity. While specific genetic mutations are rare, these segregate in individuals with early-onset severe obesity; thus, collectively genetic etiologies are not as rare. Some genetic conditions are amenable to targeted treatment. Research into the discovery of novel genetic causes as well as targeted treatment is growing over time. The utility of therapeutic strategies based on the genetic risk of obesity is an advancing frontier.
Collapse
Affiliation(s)
- Michael V Zuccaro
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, 1150, St. Nicholas Avenue, NY 10032, United States
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, United States
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, 1150, St. Nicholas Avenue, NY 10032, United States.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, United States.
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
4
|
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design. J Med Chem 2024; 67:2690-2711. [PMID: 38345933 DOI: 10.1021/acs.jmedchem.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Collapse
Affiliation(s)
- Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Charlie Hollanders
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
5
|
Schaefer L. From promise to success: AJP-Cell Physiology's journey of accomplishments and future vision. Am J Physiol Cell Physiol 2024; 326:C382-C385. [PMID: 38884633 DOI: 10.1152/ajpcell.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Affiliation(s)
- Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Hernandez CC, Gimenez LE, Cone RD. Automated Patch Clamp Recordings of GPCR-Gated Ion Channels: Targeting the MC4-R/Kir7.1 Potassium Channel Complex. Methods Mol Biol 2024; 2796:229-248. [PMID: 38856905 DOI: 10.1007/978-1-0716-3818-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
8
|
Zietara A, Palygin O, Levchenko V, Dissanayake LV, Klemens CA, Geurts A, Denton JS, Staruschenko A. K ir7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2023; 325:F177-F187. [PMID: 37318990 PMCID: PMC10393338 DOI: 10.1152/ajprenal.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.
Collapse
Affiliation(s)
- Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans Hospital, Tampa, Florida, United States
| |
Collapse
|
9
|
Denton JS, Delpire E. Special collection on inward rectifying K + channels. Am J Physiol Cell Physiol 2023; 324:C603-C605. [PMID: 36689674 PMCID: PMC9942886 DOI: 10.1152/ajpcell.00457.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|