1
|
Friedman P, Mamonova T. The molecular sociology of NHERF1 PDZ proteins controlling renal hormone-regulated phosphate transport. Biosci Rep 2024; 44:BSR20231380. [PMID: 38465463 PMCID: PMC10987488 DOI: 10.1042/bsr20231380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024] Open
Abstract
Parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) control extracellular phosphate levels by regulating renal NPT2A-mediated phosphate transport by a process requiring the PDZ scaffold protein NHERF1. NHERF1 possesses two PDZ domains, PDZ1 and PDZ2, with identical core-binding GYGF motifs explicitly recognizing distinct binding partners that play different and specific roles in hormone-regulated phosphate transport. The interaction of PDZ1 and the carboxy-terminal PDZ-binding motif of NPT2A (C-TRL) is required for basal phosphate transport. PDZ2 is a regulatory domain that scaffolds multiple biological targets, including kinases and phosphatases involved in FGF23 and PTH signaling. FGF23 and PTH trigger disassembly of the NHERF1-NPT2A complex through reversible hormone-stimulated phosphorylation with ensuing NPT2A sequestration, down-regulation, and cessation of phosphate absorption. In the absence of NHERF1-NPT2A interaction, inhibition of FGF23 or PTH signaling results in disordered phosphate homeostasis and phosphate wasting. Additional studies are crucial to elucidate how NHERF1 spatiotemporally coordinates cellular partners to regulate extracellular phosphate levels.
Collapse
Affiliation(s)
- Peter A. Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Tatyana Mamonova
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| |
Collapse
|
2
|
Vistrup-Parry M, Sneddon WB, Bach S, Strømgaard K, Friedman PA, Mamonova T. Multisite NHERF1 phosphorylation controls GRK6A regulation of hormone-sensitive phosphate transport. J Biol Chem 2021; 296:100473. [PMID: 33639163 PMCID: PMC8042174 DOI: 10.1016/j.jbc.2021.100473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The type II sodium-dependent phosphate cotransporter (NPT2A) mediates renal phosphate uptake. The NPT2A is regulated by parathyroid hormone (PTH) and fibroblast growth factor 23, which requires Na+/H+ exchange regulatory factor-1 (NHERF1), a multidomain PDZ-containing phosphoprotein. Phosphocycling controls the association between NHERF1 and the NPT2A. Here, we characterize the critical involvement of G protein–coupled receptor kinase 6A (GRK6A) in mediating PTH-sensitive phosphate transport by targeted phosphorylation coupled with NHERF1 conformational rearrangement, which in turn allows phosphorylation at a secondary site. GRK6A, through its carboxy-terminal PDZ recognition motif, binds NHERF1 PDZ1 with greater affinity than PDZ2. However, the association between NHERF1 PDZ2 and GRK6A is necessary for PTH action. Ser162, a PKCα phosphorylation site in PDZ2, regulates the binding affinity between PDZ2 and GRK6A. Substitution of Ser162 with alanine (S162A) blocks the PTH action but does not disrupt the interaction between NHERF1 and the NPT2A. Replacement of Ser162 with aspartic acid (S162D) abrogates the interaction between NHERF1 and the NPT2A and concurrently PTH action. We used amber codon suppression to generate a phosphorylated Ser162(pSer162)-PDZ2 variant. KD values determined by fluorescence anisotropy indicate that incorporation of pSer162 increased the binding affinity to the carboxy terminus of GRK6A 2-fold compared with WT PDZ2. Molecular dynamics simulations predict formation of an electrostatic network between pSer162 and Asp183 of PDZ2 and Arg at position −1 of the GRK6A PDZ-binding motif. Our results suggest that PDZ2 plays a regulatory role in PTH-sensitive NPT2A-mediated phosphate transport and phosphorylation of Ser162 in PDZ2 modulates the interaction with GRK6A.
Collapse
Affiliation(s)
- Maria Vistrup-Parry
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - W Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sofie Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Mamonova T, Friedman PA. Noncanonical Sequences Involving NHERF1 Interaction with NPT2A Govern Hormone-Regulated Phosphate Transport: Binding Outside the Box. Int J Mol Sci 2021; 22:1087. [PMID: 33499384 PMCID: PMC7866199 DOI: 10.3390/ijms22031087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | | |
Collapse
|
4
|
The potential rewarding and reinforcing effects of the substituted benzofurans 2-EAPB and 5-EAPB in rodents. Eur J Pharmacol 2020; 885:173527. [DOI: 10.1016/j.ejphar.2020.173527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
|
5
|
Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res 2020; 88:209-217. [PMID: 31945773 PMCID: PMC7363505 DOI: 10.1038/s41390-019-0740-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC), a necrotic inflammation of the intestine, represents a major health problem in the very premature infant. Although prevention is difficult, the combination of ingestion of maternal-expressed breastmilk in conjunction with a probiotic provides the best protection. In this study, we establish a mechanism for breastmilk/probiotic protection. METHODS Ultra-high-performance liquid chromatography-tandem mass spectrometry of Bifidobacterium longum subsp. infantis (B. infantis) secretions was used to identify an anti-inflammatory molecule. Indole-3-lactic acid (ILA) was then tested in an established human immature small intestinal cell line, necrotizing colitis enterocytes, and other immature human enteroids for anti-inflammatory effects and to establish developmental function. ILA was also examined in immature and mature enterocytes. RESULTS We have identified ILA, a metabolite of breastmilk tryptophan, as the anti-inflammatory molecule. This molecule is developmentally functional in immature but not mature intestinal enterocytes; ILA reduces the interleukin-8 (IL-8) response after IL-1β stimulus. It interacts with the transcription factor aryl hydrocarbon receptor (AHR) and prevents transcription of the inflammatory cytokine IL-8. CONCLUSIONS This molecule produced by B. infantis (ATCC No. 15697) interaction with ingested breastmilk functions in a complementary manner and could become useful in the treatment of all at-risk premature infants for NEC if safety and clinical studies are performed.
Collapse
|
6
|
Pushpakumar S, Ahmad A, Ketchem CJ, Jose PA, Weinman EJ, Sen U, Lederer ED, Khundmiri SJ. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging. Life Sci 2020; 243:117226. [PMID: 31904366 PMCID: PMC7015806 DOI: 10.1016/j.lfs.2019.117226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Hypertension is a risk factor for premature death and roughly 50% of hypertensive patients are salt-sensitive. The incidence of salt-sensitive hypertension increases with age. However, the mechanisms of salt-sensitive hypertension are not well understood. We had demonstrated decreased renal sodium‑hydrogen exchanger regulatory factor 1 (NHERF1) expression in old salt-resistant F344 rats. Based on those studies we hypothesized that NHERF1 expression is required for the development of some forms of salt-sensitive hypertension. To address this hypothesis, we measured blood pressure in NHERF1 expressing salt-sensitive 4-mo and 24-mo-old male and female Fischer Brown Norway (FBN) rats male and female 18-mo-old NHERF1 knock-out (NHERF1-/-) mice and wild-type (WT) littermates on C57BL/6J background after feeding high salt (8% NaCl) diet for 7 days. Our data demonstrate that 8% salt diet increased blood pressure in both male and female 24-mo-old FBN rats but not in 4-mo-old FBN rats and in 18-mo-old male and female WT mice but not in NHERF1-/- mice. Renal dopamine 1 receptor (D1R) expression was decreased in 24-mo-old rats, compared with 4-mo-old FBN rats. However, sodium chloride cotransporter (NCC) expression increased in 24-mo-old FBN rats. In FBN rats, age had no effect on NaK ATPase α1 and NKCC2 expression. By contrast, high salt diet increased the renal expressions of NKCC2, and NCC in 24-mo-old FBN rats. High salt diet also increased NKCC2 and NCC expression in WT mice but not NHERF1-/- mice. Our data suggest that renal NHERF1 expression confers salt sensitivity with aging, associated with increased expression of sodium transporters.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Asrar Ahmad
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, United States of America
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Utpal Sen
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Eleanor D Lederer
- Department of Physiology, University of Louisville, Louisville, KY, United States of America; Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America; Robley Rex VA Medical Center, Louisville, KY, United States of America
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America.
| |
Collapse
|
7
|
Rukavina Mikusic NL, Kouyoumdzian NM, Del Mauro JS, Cao G, Trida V, Gironacci MM, Puyó AM, Toblli JE, Fernández BE, Choi MR. Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage. J Nutr Biochem 2017; 51:47-55. [PMID: 29091814 DOI: 10.1016/j.jnutbio.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/11/2023]
Abstract
Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na+, K+-ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina.
| | - Nicolás M Kouyoumdzian
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Julieta S Del Mauro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Gabriel Cao
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Verónica Trida
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Ana M Puyó
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Jorge E Toblli
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Belisario E Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Av. Gral Las Heras 2191, C1127AAD CABA, Buenos Aires, Argentina
| | - Marcelo R Choi
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Fisetin inhibits liver cancer growth in a mouse model: Relation to dopamine receptor. Oncol Rep 2017; 38:53-62. [PMID: 28560391 PMCID: PMC5492805 DOI: 10.3892/or.2017.5676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Fisetin (3,3',4',7-tetrahydroxyflavone), a natural abundant flavonoid, is produced in different vegetables and fruits. Fisetin has been reported to relate to various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Dopamine receptors (DRs) belonging to G protein‑coupled receptor family, are known as the target of ~50% of all modern medicinal drugs. DRs consist of various proteins, functioning as transduction of intracellular signals for extracellular stimuli. We found that fisetin performed as DR2 agonist to suppress liver cancer cells proliferation, migration and invasion. Caspase-3 signaling was activated to induce apoptosis for fisetin administration. Furthermore, TGF‑β1 was also inhibited in fisetin-treated liver cancer cells, reducing epithelial-mesenchymal transition (EMT). Additionally, fisetin downregulated VEGFR1, p-ERK1/2, p38 and pJNK, ameliorating liver cancer progression. In vivo, the orthotopically implanted tumors from mice were inhibited by fisetin adminisatration accompanied by prolonged survival rate and higher levels of dopamine. Together, the results indicated a novel therapeutic strategy to suppress liver cancer progression associated with DR2 regulation, indicating that dopamine might be of importance in liver cancer progression.
Collapse
|
9
|
Barati MT, Ketchem CJ, Merchant ML, Kusiak WB, Jose PA, Weinman EJ, LeBlanc AJ, Lederer ED, Khundmiri SJ. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats. Am J Physiol Cell Physiol 2017; 313:C197-C206. [PMID: 28515088 DOI: 10.1152/ajpcell.00219.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
Dopamine decreases Na-K-ATPase (NKA) activity by PKC-dependent phosphorylation and endocytosis of the NKA α1. Dopamine-mediated regulation of NKA is impaired in aging and some forms of hypertension. Using opossum (OK) proximal tubule cells (PTCs), we demonstrated that sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) associates with NKA α1 and dopamine-1 receptor (D1R). This association is required for the dopamine-mediated regulation of NKA. In OK cells, dopamine decreases NHERF-1 association with NKA α1 but increases its association with D1R. However, it is not known whether NHERF-1 plays a role in dopamine-mediated NKA regulation in animal models of hypertension. We hypothesized that defective dopamine-mediated regulation of NKA results from the decrease in NHERF-1 expression in rat renal PTCs isolated from animal models of hypertension [spontaneously hypertensive rats (SHRs) and aged F344 rats]. To test this hypothesis, we isolated and cultured renal PTCs from 22-mo-old F344 rats and their controls, normotensive 4-mo-old F344 rats, and SHRs and their controls, normotensive Wistar-Kyoto (WKY) rats. The results demonstrate that in both hypertensive models (SHR and aged F344), NHERF-1 expression, dopamine-mediated phosphorylation of NKA, and ouabain-inhibitable K+ transport are reduced. Transfection of NHERF-1 into PTCs from aged F344 and SHRs restored dopamine-mediated inhibition of NKA. These results suggest that decreased renal NHERF-1 expression contributes to the impaired dopamine-mediated inhibition of NKA in PTCs from animal models of hypertension.
Collapse
Affiliation(s)
- Michelle T Barati
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Michael L Merchant
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Walter B Kusiak
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, and Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amanda J LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Eleanor D Lederer
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, Kentucky.,Department of Physiology, University of Louisville, Louisville, Kentucky.,Robley Rex VA Medical Center, Louisville, Kentucky; and
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, District of Columbia
| |
Collapse
|
10
|
Feng L, Li W, Liu Y, Jiang WD, Kuang SY, Wu P, Jiang J, Tang L, Tang WN, Zhang YA, Zhou XQ. Protective role of phenylalanine on the ROS-induced oxidative damage, apoptosis and tight junction damage via Nrf2, TOR and NF-κB signalling molecules in the gill of fish. FISH & SHELLFISH IMMUNOLOGY 2017; 60:185-196. [PMID: 27888130 DOI: 10.1016/j.fsi.2016.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 05/12/2023]
Abstract
This study explored the possible preventive effects of dietary phenylalanine (Phe) on antioxidant responses, apoptosis and tight junction protein transcription in the gills of young grass carp (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of Phe (3.4-16.8 g kg-1) for 8 weeks. The results showed that Phe deficiency induced protein oxidation and lipid peroxidation by decreasing the glutathione content and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) in fish gill (P < 0.05). These results may be ascribed to the downregulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), and the upregulation of Kelch-like-ECH-associated protein 1 a (Keap1a) expression in grass carp gills (P < 0.05). Additionally, Phe deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 mRNA expression (P < 0.05). These results may be ascribed to the improvement in reactive oxygen species (ROS) levels in the fish gills (P < 0.05). Furthermore, the results indicated that Phe deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gills (P < 0.05). These effects were partly due to the downregulation of interleukin 10 (IL-10), transforming growth factor β (TGF-β) and inhibitor factor κBα (iκBα) and the upregulation of relative mRNA expression of interleukin 1β (IL-1β), interleukin 8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear transcription factor-κB p65 (NF-κB p65) (P < 0.05). Taken together, the results showed that Phe deficiency impaired the structural integrity of fish gills by regulating the expression of tight junction proteins, cytokines, antioxidant enzymes, NF-κB p65, iκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gills.
Collapse
Affiliation(s)
- Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wen Li
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
11
|
Yang J, Villar VAM, Armando I, Jose PA, Zeng C. G Protein-Coupled Receptor Kinases: Crucial Regulators of Blood Pressure. J Am Heart Assoc 2016; 5:JAHA.116.003519. [PMID: 27390269 PMCID: PMC5015388 DOI: 10.1161/jaha.116.003519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Feng L, Li W, Liu Y, Jiang WD, Kuang SY, Jiang J, Tang L, Wu P, Tang WN, Zhang YA, Zhou XQ. Dietary phenylalanine-improved intestinal barrier health in young grass carp (Ctenopharyngodon idella) is associated with increased immune status and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes and related signalling molecules. FISH & SHELLFISH IMMUNOLOGY 2015; 45:495-509. [PMID: 25979603 DOI: 10.1016/j.fsi.2015.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 05/03/2015] [Accepted: 05/04/2015] [Indexed: 05/12/2023]
Abstract
The present work evaluated the effects of dietary phenylalanine (Phe) on the intestinal immune response, tight junction proteins transcript abundance, and the gene expression of immune- and antioxidant-related signalling molecules in the intestine. In addition, the dietary Phe (and Phe + Tyr) requirement of young grass carp (Ctenopharyngodon idella) was also estimated. Fish were fed fish meal-casein-gelatin based diets (302.3 g crude protein kg(-1)) containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g Phe kg(-1) with a fixed amount of 10.7 g tyrosine kg(-1) for 8 weeks. The results showed that Phe deficiency or excess Phe reduced the lysozyme and acid phosphatase activities and complement C 3 content in the intestine (P < 0.05). Moreover, zonula occludens-1 (ZO-1), occludin and claudin c mRNA levels were highest in the fish fed the diet containing 11.5 g Phe kg(-1) (P < 0.05). However, claudin 12 and claudin b mRNA levels were not significantly affected by dietary Phe (P > 0.05). Gene expression of interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), target of rapamycin (TOR) and inhibitor of nuclear factor κBα (IκBα) in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) increased as dietary Phe increased up to 6.1, 9.1, 11.5 and 14.0 g kg(-1), respectively (P < 0.05). However, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and nuclear factor-κB p65 (NF-κB p65) mRNA levels showed opposite tendencies. In addition, the mRNA level of superoxide dismutase (SOD) was significantly lower in the intestinal tissue of the group fed a diet with Phe levels of 16.8 g kg(-1) than in those of other groups (P < 0.05). The expression of NF-E2-related factor 2 (Nrf2) gene was increased as dietary Phe increased up to 9.1 g kg(-1) (P < 0.05). In conclusion, Phe improved intestinal immune status, and regulated gene expression of cytokines, tight junction proteins, antioxidant enzymes, NF-κB p65, IκBα, TOR, and Nrf2 in the fish intestine. Based on the quadratic regression analysis of lysozyme activity at a 95% maximum, the dietary Phe requirement of young grass carp (256-629 g) was estimated to be 8.31 g kg(-1), corresponding to 2.75 g 100 g(-1) protein.
Collapse
Affiliation(s)
- Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wen Li
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
13
|
D. Murray R, D. Lederer E, J. Khundmiri S. Role of PTH in the Renal Handling of Phosphate. AIMS MEDICAL SCIENCE 2015. [DOI: 10.3934/medsci.2015.3.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Leslie KL, Song GJ, Barrick S, Wehbi VL, Vilardaga JP, Bauer PM, Bisello A. Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) and nuclear factor-κB (NF-κB): a feed-forward loop for systemic and vascular inflammation. J Biol Chem 2013; 288:36426-36. [PMID: 24196963 DOI: 10.1074/jbc.m113.483339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.
Collapse
|
15
|
Zhang LN, Li JX, Hao L, Sun YJ, Xie YH, Wu SM, Liu L, Chen XL, Gao ZB. Crosstalk between dopamine receptors and the Na⁺/K⁺-ATPase (review). Mol Med Rep 2013; 8:1291-9. [PMID: 24065247 DOI: 10.3892/mmr.2013.1697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
Abstract
Dopamine (DA) receptors, which belong to the G protein-coupled receptor family, are the target of ~50% of all modern medicinal drugs and constitute a large and diverse class of proteins whose primary function is to transduce extracellular stimuli into intracellular signals. Na+/K+-ATPase (NKA) is ubiquitous and crucial for the maintenance of intracellular ion homeostasis and excitability. Furthermore, it plays a critical role in diverse effects, including clinical cardiotonic and cardioprotective effects, ischemic preconditioning in the brain, natriuresis, lung edema clearance and other processes. NKA regulation is of physiological and pharmacological importance and has species- and tissue-specific variations. The activation of DA receptors regulates NKA expression/activity and trafficking in various tissues and cells, for example in the kidney, lung, intestine, brain, non-pigmented ciliary epithelium and the vascular bed. DA receptor-mediated regulation of NKA mediates a diverse range of cellular responses and includes endocytosis/exocytosis, phosphorylation/dephosphorylation of the α subunit of NKA and multiple signaling pathways, including phosphatidylinositol (PI)-phospholipase C/protein kinase (PK) C, cAMP/PKA, PI3K, adaptor protein 2, tyrosine phosphatase and mitogen-activated protein kinase/extracellular signal-regulated protein kinase. Furthermore, in brain and HEK293T cells, D1 and D2 receptors exist in a complex with NKA. Among D1 and D2 receptors and NKA, regulations are reciprocal, which leads to crosstalk between DA receptors and NKA. In the present study, the current understanding of signaling mechanisms responsible for the crosstalk between DA receptors and NKA, as well as with specific consequent functions, is reviewed.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen Y, Asico LD, Zheng S, Villar VAM, He D, Zhou L, Zeng C, Jose PA. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis. Hypertension 2013; 62:927-33. [PMID: 24019399 DOI: 10.1161/hypertensionaha.113.01094] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oral NaCl produces a greater natriuresis and diuresis than the intravenous infusion of the same amount of NaCl. Gastrin is the major gastrointestinal hormone taken up by renal proximal tubule (RPT) cells. We hypothesized that renal gastrin and dopamine receptors interact to synergistically increase sodium excretion, an impaired interaction of which may be involved in the pathogenesis of hypertension. In Wistar-Kyoto rats, infusion of gastrin induced natriuresis and diuresis, which was abrogated in the presence of a gastrin (cholecystokinin B receptor [CCKBR]; CI-988) or a D1-like receptor antagonist (SCH23390). Similarly, the natriuretic and diuretic effects of fenoldopam, a D1-like receptor agonist, were blocked by SCH23390, as well as by CI-988. However, the natriuretic effects of gastrin and fenoldopam were not observed in spontaneously hypertensive rats. The gastrin/D1-like receptor interaction was also confirmed in RPT cells. In RPT cells from Wistar-Kyoto but not spontaneously hypertensive rats, stimulation of either D1-like receptor or gastrin receptor inhibited Na(+)-K(+)-ATPase activity, an effect that was blocked in the presence of SCH23390 or CI-988. In RPT cells from Wistar-Kyoto and spontaneously hypertensive rats, CCKBR and D1 receptor coimmunoprecipitated, which was increased after stimulation of either D1 receptor or CCKBR in RPT cells from Wistar-Kyoto rats; stimulation of one receptor increased the RPT cell membrane expression of the other receptor, effects that were not observed in spontaneously hypertensive rats. These data suggest that there is a synergism between CCKBR and D1-like receptors to increase sodium excretion. An aberrant interaction between the renal CCK BR and D1-like receptors (eg, D1 receptor) may play a role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Aperia A. 2011 Homer Smith Award: To serve and protect: classic and novel roles for Na+, K+ -adenosine triphosphatase. J Am Soc Nephrol 2012; 23:1283-90. [PMID: 22745476 DOI: 10.1681/asn.2012010102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of cells to maintain sharp ion gradients across their membranes is the foundation for the molecular transport and electrical excitability. Across animal species and cell types, Na(+),K(+)-adenosine triphosphatase (ATPase) is arguably the most powerful contributor to this phenomenon. By producing a steep concentration difference of sodium and potassium between the intracellular and extracellular milieu, Na(+),K(+)-ATPase in the tubules provides the driving force for renal sodium reabsorption. Pump activity is downregulated by natriuretic hormones, such as dopamine, and is upregulated by antinatriuretic hormones, such as angiotensin. In the past decade, studies have revealed a novel and surprising role: that Na(+),K(+)-ATPase is a transducer of signals from extracellular to intracellular compartments. The signaling function of Na(+),K(+)-ATPase is activated by ouabain, a mammalian steroid hormone, at far lower concentrations than those that inhibit pump activity. By promoting growth and inhibiting apoptosis, activation of Na(+),K(+)-ATPase exerts tissue-protective effects. Ouabain-stimulated Na(+),K(+)-ATPase signaling has recently shown clinical promise by protecting the malnourished embryonic kidney from adverse developmental programming. A deeper understanding of the tissue-protective role of Na(+),K(+)-ATPase signaling and the regulation of Na(+),K(+)-ATPase pumping activity is of fundamental importance for the understanding and treatment of kidney diseases and kidney-related hypertension.
Collapse
Affiliation(s)
- Anita Aperia
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Q2-09 SE-171 76 Stockholm, Sweden.
| |
Collapse
|