1
|
Lopez MA, Si Y, Hu X, Williams V, Qushair F, Carlyle J, Alesce L, Conklin M, Gilbert S, Bamman MM, Alexander MS, King PH. Smad8 Is Increased in Duchenne Muscular Dystrophy and Suppresses miR-1, miR-133a, and miR-133b. Int J Mol Sci 2022; 23:7515. [PMID: 35886863 PMCID: PMC9323105 DOI: 10.3390/ijms23147515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor β (TGFβ) signaling. In this report, we investigated the major transducers of TGFβ signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.
Collapse
Affiliation(s)
- Michael A. Lopez
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - Xianzhen Hu
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Valentyna Williams
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Fuad Qushair
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Jackson Carlyle
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Lyndsy Alesce
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
| | - Michael Conklin
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Shawn Gilbert
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Marcas M. Bamman
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Cell, Development and Integrative Biology, Birmingham, AL 35233, USA
| | - Matthew S. Alexander
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- UAB Civitan International Research Center (CIRC), Birmingham, AL 35233, USA
- Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Forouhan M, Lim WF, Zanetti-Domingues LC, Tynan CJ, Roberts TC, Malik B, Manzano R, Speciale AA, Ellerington R, Garcia-Guerra A, Fratta P, Sorarú G, Greensmith L, Pennuto M, Wood MJA, Rinaldi C. AR cooperates with SMAD4 to maintain skeletal muscle homeostasis. Acta Neuropathol 2022; 143:713-731. [PMID: 35522298 PMCID: PMC9107400 DOI: 10.1007/s00401-022-02428-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022]
Abstract
Androgens and androgen-related molecules exert a plethora of functions across different tissues, mainly through binding to the transcription factor androgen receptor (AR). Despite widespread therapeutic use and misuse of androgens as potent anabolic agents, the molecular mechanisms of this effect on skeletal muscle are currently unknown. Muscle mass in adulthood is mainly regulated by the bone morphogenetic protein (BMP) axis of the transforming growth factor (TGF)-β pathway via recruitment of mothers against decapentaplegic homolog 4 (SMAD4) protein. Here we show that, upon activation, AR forms a transcriptional complex with SMAD4 to orchestrate a muscle hypertrophy programme by modulating SMAD4 chromatin binding dynamics and enhancing its transactivation activity. We challenged this mechanism of action using spinal and bulbar muscular atrophy (SBMA) as a model of study. This adult-onset neuromuscular disease is caused by a polyglutamine expansion (polyQ) in AR and is characterized by progressive muscle weakness and atrophy secondary to a combination of lower motor neuron degeneration and primary muscle atrophy. Here we found that the presence of an elongated polyQ tract impairs AR cooperativity with SMAD4, leading to an inability to mount an effective anti-atrophy gene expression programme in skeletal muscle in response to denervation. Furthermore, adeno-associated virus, serotype 9 (AAV9)-mediated muscle-restricted delivery of BMP7 is able to rescue the muscle atrophy in SBMA mice, supporting the development of treatments able to fine-tune AR-SMAD4 transcriptional cooperativity as a promising target for SBMA and other conditions associated with muscle loss.
Collapse
Affiliation(s)
- Mitra Forouhan
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Christopher J Tynan
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Bilal Malik
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alfina A Speciale
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Ruth Ellerington
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Antonio Garcia-Guerra
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Gianni Sorarú
- Department of Neurosciences, Neurology Unit, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Pennuto
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Ning Y, Zhang L, Wang W, Wu S. Effect of genetic variants in the SMAD1 and SMAD5 genes promoter on growth and beef quality traits in cattle. Gene 2022; 819:146220. [PMID: 35093446 DOI: 10.1016/j.gene.2022.146220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
The SMAD1 and SMAD5 genes belong to mothers against decapentaplegic proteins family, which participate in the BMP pathway to control skeletal myogenesis and growth. In the present study, we analyzed the associations between polymorphisms of SMAD1 and SMAD5 genes promoter and important economical traits in Qinchuan cattle. Four SNPs in the SMAD1 gene promoter and three SNPs in the SMAD5 promoter were identified by sequencing of 448 Qinchuan cattles. Allelic and frequency analyses of these SNPs resulted in eight haplotypes both in the promoters of the two genes promoter and identified potential cis-regulatory transcription factor (TF) components. In addition, correlation analysis showed that cattle SMAD1 promoter activity of individuals with Hap4 (P < 0.01) was stronger than that of individuals with Hap2. while the transcriptional activity of individuals with Hap3 within SMAD5 gene promoter was significantly (P < 0.01) higher followed by H2. Uniformly, diplotypes H4-H6 of SMAD1 gene and H1-H3 of SMAD5 gene performed significant (P < 0.01) associations with body measurement and improved carcass quality traits. All these results have indicated that polymorphisms in SMAD1 and SMAD5 genes promoter could impact the transcriptional regulation and then affect muscle content in beef cattle. Moreover, both the SMAD1 and SMAD5 genes were expressed ubiquitously in 10 tissues and had higher expression in the longissimus thoracis tissue from 6-month-old and 12-month-old cattle than in cattle of other ages. We can conclude that SMAD1 and SMAD5 genes may play an important role in muscle growth and development, and the variants mapped within SMAD1 and SMAD5 genes can be utilized in molecular marker-assisted selection for cattle carcass quality and body measurement traits in breed improvement programs of Qinchuan cattle.
Collapse
Affiliation(s)
- Yue Ning
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China
| | - Sen Wu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
4
|
Osinski V, Srikakulapu P, Haider YM, Marshall MA, Ganta VC, Annex BH, McNamara CA. Loss of Id3 (Inhibitor of Differentiation 3) Increases the Number of IgM-Producing B-1b Cells in Ischemic Skeletal Muscle Impairing Blood Flow Recovery During Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2022; 42:6-18. [PMID: 34809449 PMCID: PMC8702457 DOI: 10.1161/atvbaha.120.315501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Neovascularization can maintain and even improve tissue perfusion in the setting of limb ischemia during peripheral artery disease. The molecular and cellular mechanisms mediating this process are incompletely understood. We investigate the potential role(s) for Id3 (inhibitor of differentiation 3) in regulating blood flow in a murine model of hindlimb ischemia (HLI). Approach and Results: HLI was modeled through femoral artery ligation and resection and blood flow recovery was quantified by laser Doppler perfusion imaging. Mice with global Id3 deletion had significantly impaired perfusion recovery at 14 and 21 days of HLI. Endothelial- or myeloid cell-specific deletion of Id3 revealed no effect on perfusion recovery while B-cell-specific knockout of Id3 (Id3BKO) revealed a significant attenuation of perfusion recovery. Flow cytometry revealed no differences in ischemia-induced T cells or myeloid cell numbers at 7 days of HLI, yet there was a significant increase in B-1b cells in Id3BKO. Consistent with these findings, ELISA (enzyme-linked immunoassay) demonstrated increases in skeletal muscle and plasma IgM. In vitro experiments demonstrated reduced proliferation and increased cell death when endothelial cells were treated with conditioned media from IgM-producing B-1b cells and tibialis anterior muscles in Id3BKO mice showed reduced density of total CD31+ and αSMA+CD31+ vessels. CONCLUSIONS This study is the first to demonstrate a role for B-cell-specific Id3 in maintaining blood flow recovery during HLI. Results suggest a role for Id3 in promoting blood flow during HLI and limiting IgM-expressing B-1b cell expansion. These findings present new mechanisms to investigate in peripheral artery disease pathogenesis.
Collapse
Affiliation(s)
- Victoria Osinski
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Prasad Srikakulapu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Young Min Haider
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Melissa A. Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
| | - Vijay C. Ganta
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
| | - Brian H. Annex
- Vascular Biology Center, Augusta University, Augusta, Georgia 30912
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
5
|
Abdel-Raouf KMA, Rezgui R, Stefanini C, Teo JCM, Christoforou N. Transdifferentiation of Human Fibroblasts into Skeletal Muscle Cells: Optimization and Assembly into Engineered Tissue Constructs through Biological Ligands. BIOLOGY 2021; 10:biology10060539. [PMID: 34208436 PMCID: PMC8235639 DOI: 10.3390/biology10060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Engineered human skeletal muscle tissue is a platform tool that can help scientists and physicians better understand human physiology, pharmacology, and disease modeling. Over the past few years this area of research has been actively being pursued by many labs worldwide. Significant challenges remain, including accessing an adequate cell source, and achieving proper physiological-like architecture of the engineered tissue. To address cell resourcing we aimed at further optimizing a process called transdifferentiation which involves the direct conversion of fibroblasts into skeletal muscle cells. The opportunity here is that fibroblasts are readily available and can be expanded sufficiently to meet the needs of a tissue engineering approach. Additionally, we aimed to demonstrate the applicability of transdifferentiation in assembling tissue engineered skeletal muscle. We implemented a screening process of protein ligands in an effort to refine transdifferentiation, and identified that most proteins resulted in a deficit in transdifferentiation efficiency, although one resulted in robust expansion of cultured cells. We were also successful in assembling engineered constructs consisting of transdifferentiated cells. Future directives involve demonstrating that the engineered tissues are capable of contractile and functional activity, and pursuit of optimizing factors such as electrical and chemical exposure, towards achieving physiological parameters observed in human muscle. Abstract The development of robust skeletal muscle models has been challenging due to the partial recapitulation of human physiology and architecture. Reliable and innovative 3D skeletal muscle models recently described offer an alternative that more accurately captures the in vivo environment but require an abundant cell source. Direct reprogramming or transdifferentiation has been considered as an alternative. Recent reports have provided evidence for significant improvements in the efficiency of derivation of human skeletal myotubes from human fibroblasts. Herein we aimed at improving the transdifferentiation process of human fibroblasts (tHFs), in addition to the differentiation of murine skeletal myoblasts (C2C12), and the differentiation of primary human skeletal myoblasts (HSkM). Differentiating or transdifferentiating cells were exposed to single or combinations of biological ligands, including Follistatin, GDF8, FGF2, GDF11, GDF15, hGH, TMSB4X, BMP4, BMP7, IL6, and TNF-α. These were selected for their critical roles in myogenesis and regeneration. C2C12 and tHFs displayed significant differentiation deficits when exposed to FGF2, BMP4, BMP7, and TNF-α, while proliferation was significantly enhanced by FGF2. When exposed to combinations of ligands, we observed consistent deficit differentiation when TNF-α was included. Finally, our direct reprogramming technique allowed for the assembly of elongated, cross-striated, and aligned tHFs within tissue-engineered 3D skeletal muscle constructs. In conclusion, we describe an efficient system to transdifferentiate human fibroblasts into myogenic cells and a platform for the generation of tissue-engineered constructs. Future directions will involve the evaluation of the functional characteristics of these engineered tissues.
Collapse
Affiliation(s)
- Khaled M. A. Abdel-Raouf
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
- Correspondence: (K.M.A.A.-R.); (N.C.)
| | - Rachid Rezgui
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Cesare Stefanini
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jeremy C. M. Teo
- Department of Mechanical and Biomedical Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Nicolas Christoforou
- Pfizer Inc., Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, USA
- Correspondence: (K.M.A.A.-R.); (N.C.)
| |
Collapse
|
6
|
Wu Z, Xu H, Xu Y, Fan W, Yao H, Wang Y, Hu W, Lou G, Shi Y, Chen X, Yang L, Wen L, Xiao H, Wang B, Yang Y, Liu W, Meng X, Wang Y. Andrographolide promotes skeletal muscle regeneration after acute injury through epigenetic modulation. Eur J Pharmacol 2020; 888:173470. [PMID: 32822641 DOI: 10.1016/j.ejphar.2020.173470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
Myopathy is a muscle disease in which muscle fibers do not function properly, and eventually cause severe diseases, such as muscular dystrophy. The properly regeneration of skeletal muscle plays a pivotal role to maintain the muscle function after muscle injury. The aim of this study is to determine whether andrographolide plays an effect role on regulating skeletal muscle regeneration. Mouse satellite cells, C2C12 cells and Cardiotoxin (CTX) intramuscular injection induced acute skeletal muscle injury model were used to evaluate whether andrographolide is essential for skeletal muscle regeneration. The underling mechanism detected using immunohistochemistry stain, western blot, real time PCR. Andrographolide promotes mouse skeletal muscle regeneration. In cardiotoxin induced skeletal muscle injury model, andrographolide treatment enhanced myotube generation and promoted myotube fusion. Andrographolide treatment dramatically increased expression of myotube differentiation related genes, including Desmin, MyoD, MyoG, Myomaker, Tnni2, Dmd, Myoz1 and Myoz3. For the mechanism studies, we observed that andrographolide treatment significantly promoted histone modification, such as H3K4Me2, H3K4Me3 and H3K36Me2, both in vivo and in vitro. Treatment with DZNep, a Lysine methyltransferase EZH2 inhibitor, significantly attenuated andrographolide-induced expression of Myf5, Myomaker, Skeletal muscle α-actin, MyoD and MyoG. Taken together, our data in this study demonstrate andrographolide epigenetically drives differentiation and fusion of myotube, eventually promotes skeletal muscle regeneration. This should be a therapeutic treatment for skeletal muscle regeneration after muscle damage.
Collapse
Affiliation(s)
- Ziqiang Wu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China; Chengdu University of Traditional Chinese Medicine, College Pharmacy, Chengdu, China
| | - Huan Xu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Yiming Xu
- Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou, China
| | - Weichuan Fan
- Chengdu Tongde Pharmaceutical CO., LTD, Chengdu, China
| | - Huan Yao
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Yang Wang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Wangming Hu
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Guanhua Lou
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Yaping Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Xiongbing Chen
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Lan Yang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Li Wen
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Han Xiao
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Baojia Wang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Youjun Yang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China
| | - Weiming Liu
- China Rehabilitation Research Center, Department of Intensive Care Medicine, Beijing Bo Ai Hospital, Beijing, China
| | - Xianli Meng
- Chengdu University of Traditional Chinese Medicine, College Pharmacy, Chengdu, China.
| | - Yong Wang
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu, China.
| |
Collapse
|
7
|
Li L, Tuan RS. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors. J Cell Mol Med 2020; 24:11046-11055. [PMID: 32853465 PMCID: PMC7576286 DOI: 10.1111/jcmm.15735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue. Three factors have been proposed as required to induce HO: (a) osteogenic precursor cells, (b) osteoinductive agents and (c) an osteoconductive environment. Since Urist's landmark discovery of bone induction in skeletal muscle tissue by demineralized bone matrix, it is generally believed that skeletal muscle itself is a conductive environment for osteogenesis and that resident progenitor cells in skeletal muscle are capable of differentiating into osteoblast to form bone. However, little is known about the naturally occurring osteoinductive agents that triggered this osteogenic response in the first place. This article provides a review of the emerging findings regarding distinct types of HO to summarize the current understanding of HO mechanisms, with special attention to the osteogenic factors that are induced following injury. Specifically, we hypothesize that muscle injury‐induced up‐regulation of local bone morphogenetic protein‐7 (BMP‐7) level, combined with glucocorticoid excess‐induced down‐regulation of circulating transforming growth factor‐β1 (TGF‐β1) level, could be an important causative mechanism of traumatic HO formation.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Dawson LE, D'Agostino L, Hakim AA, Lackman RD, Brown SA, Sensenig RB, Antonello ZA, Kuzin II. Induction of Myogenic Differentiation Improves Chemosensitivity of Chemoresistant Cells in Soft-Tissue Sarcoma Cell Lines. Sarcoma 2020; 2020:8647981. [PMID: 32300280 PMCID: PMC7136814 DOI: 10.1155/2020/8647981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Rhabdomyosarcoma (RMS) and rhabdoid tumors (RT) are rare soft-tissue malignancies with the highest incidence in infants, children, and adolescents. Advanced, recurrent, and/or metastatic RMS and RT exhibit poor response to treatment. One of the main mechanisms behind resistance to treatment is believed to be intratumoral heterogeneity. In this study, we investigated the myogenic determination factor 1 (MYOD1) and Noggin (NOG) markers in an embryonal RMS (ERMS) cell line and an RT cell line and the differential response of the MYOD1 and NOG expressing subpopulations to chemotherapy. Importantly, we found that these markers together identify a subpopulation of cells (MYOD1+ NOG+ cells) with primary resistance to Vincristine and Doxorubicin, two commonly used chemotherapies for ERMS and RT. The chemoresistant MYOD1+ NOG+ cells express markers of undifferentiated cells such as myogenin and ID1. Combination of Vincristine with TPA/GSK126, a drug combination shown to induce differentiation of RMS cell lines, is able to partially overcome MYOD1/NOG cells chemoresistance.
Collapse
Affiliation(s)
| | | | | | - Richard D. Lackman
- Cooper University Hospital, Camden, NJ, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | | | | | - Zeus A. Antonello
- Cooper University Hospital, Camden, NJ, USA
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Igor I. Kuzin
- Cooper University Hospital, Camden, NJ, USA
- Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
9
|
Libetti D, Bernardini A, Sertic S, Messina G, Dolfini D, Mantovani R. The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation. Cells 2020; 9:cells9030789. [PMID: 32214056 PMCID: PMC7140862 DOI: 10.3390/cells9030789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/19/2022] Open
Abstract
NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, “long” (NF-YAl) and “short” (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and—to a lesser extent, MyoD— levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.
Collapse
|
10
|
Borok MJ, Mademtzoglou D, Relaix F. Bu-M-P-ing Iron: How BMP Signaling Regulates Muscle Growth and Regeneration. J Dev Biol 2020; 8:jdb8010004. [PMID: 32053985 PMCID: PMC7151139 DOI: 10.3390/jdb8010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.
Collapse
Affiliation(s)
- Matthew J Borok
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Despoina Mademtzoglou
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Frederic Relaix
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
- Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France
- Etablissement Français du Sang, 94017 Créteil, France
- APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
- Correspondence: ; Tel.: +33-149-813-940
| |
Collapse
|
11
|
Li L, Jiang Y, Lin H, Shen H, Sohn J, Alexander PG, Tuan RS. Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. J Orthop Translat 2019; 18:142-153. [PMID: 31508317 PMCID: PMC6718974 DOI: 10.1016/j.jot.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue, which causes pain and restricted range of motion in patients. There are two broad categories of HO, hereditary and acquired. Although different types of HO do not use identical mechanistic pathways of pathogenesis, muscle injury appears to be a unifying feature for all types of HO. However, little is known about the mechanisms by which muscle injury facilitates HO formation. Objective and method This study aimed to explore the cellular and molecular mechanisms linking muscle injury to HO by using cardiotoxin to induce muscle injury in a bone morphogenetic protein-2 (BMP-2)-induced HO mouse model. Results We found that muscle injury augmented HO formation and that this effect was correlated with BMP signalling activation and upregulation of BMP-7 expression at the early phase of HO progression. We further demonstrated that inhibition of BMP-7 activity in vitro suppressed the osteogenesis-promoting effect of conditioned medium derived from injured muscle tissue and in vivo reduced the volume of HO formation. We also showed that antiinflammatory drug treatment reduced the volume of HO with concomitant reduction in BMP-7 production. Conclusion In summary, our study has identified BMP-7 as a key osteoinductive factor in injured muscle that facilitates HO formation. The translational potential of this article Our results provide a candidate mechanistic rationale for the use of antiinflammatory drugs in the prevention of HO.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Corresponding author. Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Addison WN, Hall KC, Kokabu S, Matsubara T, Fu MM, Gori F, Baron R. Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Mol Cell Biol 2019; 39:e00447-18. [PMID: 30692273 PMCID: PMC6447414 DOI: 10.1128/mcb.00447-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Satellite cells (SCs) are skeletal muscle stem cells that proliferate in response to injury and provide myogenic precursors for growth and repair. Zfp423 is a transcriptional cofactor expressed in multiple immature cell populations, such as neuronal precursors, mesenchymal stem cells, and preadipocytes, where it regulates lineage allocation, proliferation, and differentiation. Here, we show that Zfp423 regulates myogenic progression during muscle regeneration. Zfp423 is undetectable in quiescent SCs but becomes expressed during SC activation. After expansion, Zfp423 is gradually downregulated as committed SCs terminally differentiate. Mice with satellite-cell-specific Zfp423 deletion exhibit severely impaired muscle regeneration following injury, with aberrant SC expansion, defective cell cycle exit, and failure to transition efficiently from the proliferative stage toward commitment. Consistent with a cell-autonomous role of Zfp423, shRNA-mediated knockdown of Zfp423 in myoblasts inhibits differentiation. Surprisingly, forced expression of Zfp423 in myoblasts induces differentiation into adipocytes and arrests myogenesis. Affinity purification of Zfp423 in myoblasts identified Satb2 as a nuclear partner of Zfp423 that cooperatively enhances Zfp423 transcriptional activity, which in turn affects myoblast differentiation. In conclusion, by controlling SC expansion and proliferation, Zfp423 is essential for muscle regeneration. Tight regulation of Zfp423 expression is essential for normal progression of muscle progenitors from proliferation to differentiation.
Collapse
MESH Headings
- Adipocytes/cytology
- Animals
- Cell Differentiation/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mesenchymal Stem Cells/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Development/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction
- Stem Cells/cytology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wound Healing
Collapse
Affiliation(s)
- William N Addison
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Katherine C Hall
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Martin M Fu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Haupt J, Xu M, Shore EM. Variable signaling activity by FOP ACVR1 mutations. Bone 2018; 109:232-240. [PMID: 29097342 PMCID: PMC5866189 DOI: 10.1016/j.bone.2017.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/10/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
Most patients with fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder of heterotopic ossification, have the same causative mutation in ACVR1, R206H. However, additional mutations within the ACVR1 BMP type I receptor have been identified in a small number of FOP cases, often in patients with disease of lesser or greater severity than occurs with R206H mutations. Genotype-phenotype correlations have been suggested in patients, resulting in classification of FOP mutations based on location within different receptor domains and structural modeling. However while each of the mutations induces increased signaling through the BMP-pSmad1/5/8 pathway, the molecular mechanisms underlying functional differences of these FOP variant receptors remained undetermined. We now demonstrate that FOP mutations within the ACVR1 receptor kinase domain are more sensitive to low levels of BMP than mutations in the ACVR1 GS domain. Our data additionally confirm responsiveness of cells with FOP ACVR1 mutations to both BMP and Activin A ligands. We also have determined that constructs with FOP ACVR1 mutations that are engineered without the ligand-binding domain retain increased BMP-pSmad1/5/8 pathway activation relative to wild-type ACVR1, supporting that the mutant receptors can function through ligand-independent mechanisms either directly through mutant ACVR1 or through indirect mechanisms.
Collapse
Affiliation(s)
- Julia Haupt
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Meiqi Xu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Lees-Shepard JB, Goldhamer DJ. Stem cells and heterotopic ossification: Lessons from animal models. Bone 2018; 109:178-186. [PMID: 29409971 PMCID: PMC5866227 DOI: 10.1016/j.bone.2018.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Put most simply, heterotopic ossification (HO) is the abnormal formation of bone at extraskeletal sites. HO can be classified into two main subtypes, genetic and acquired. Acquired HO is a common complication of major connective tissue injury, traumatic central nervous system injury, and surgical interventions, where it can cause significant pain and postoperative disability. A particularly devastating form of HO is manifested in the rare genetic disorder, fibrodysplasia ossificans progressiva (FOP), in which progressive heterotopic bone formation occurs throughout life, resulting in painful and disabling cumulative immobility. While the central role of stem/progenitor cell populations in HO is firmly established, the identity of the offending cell type(s) remains to be conclusively determined, and little is known of the mechanisms that direct these progenitor cells to initiate cartilage and bone formation. In this review, we summarize current knowledge of the cells responsible for acquired HO and FOP, highlighting the strengths and weaknesses of animal models used to interrogate the cellular origins of HO.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States
| | - David J Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
15
|
Neppl RL, Wu CL, Walsh K. lncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. J Cell Biol 2017; 216:3497-3507. [PMID: 28855249 PMCID: PMC5674882 DOI: 10.1083/jcb.201612100] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/28/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
Neppl et al. identify a long noncoding RNA named Chronos whose expression increases with age and decreases in Akt-mediated growth. Inhibition of Chronos induces myofiber hypertrophy in vitro and in vivo, in part, through the epigenetic modulation of Bmp7 signaling. Skeletal muscle exhibits remarkable plasticity in its ability to modulate its mass in response to the physiologic changes associated with functional use, systemic disease, and aging. Although a gradual loss of muscle mass normally occurs with advancing age, its increasingly rapid progression results in sarcopenia in a subset of individuals. The identities of muscle-enriched, long noncoding RNAs that regulate this process are unknown. Here, we identify a long noncoding RNA, named Chronos, whose expression in muscle is positively regulated with advancing age and negatively regulated during Akt1-mediated growth. Inhibition of Chronos induces myofiber hypertrophy both in vitro and in vivo, in part, through the epigenetic modulation of Bmp7 signaling.
Collapse
Affiliation(s)
- Ronald L Neppl
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA .,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Chia-Ling Wu
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Kenneth Walsh
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| |
Collapse
|
16
|
Chen YW, Gregory C, Ye F, Harafuji N, Lott D, Lai SH, Mathur S, Scarborough M, Gibbs P, Baligand C, Vandenborne K. Molecular signatures of differential responses to exercise trainings during rehabilitation. ACTA ACUST UNITED AC 2017; 2. [PMID: 28845464 PMCID: PMC5568829 DOI: 10.15761/bgg.1000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The loss and recovery of muscle mass and function following injury and during rehabilitation varies among individuals. While recent expression profiling studies have illustrated transcriptomic responses to muscle disuse and remodeling, how these changes contribute to the physiological responses are not clear. In this study, we quantified the effects of immobilization and subsequent rehabilitation training on muscle size and identified molecular pathways associated with muscle responsiveness in an orthopaedic patient cohort study. The injured leg of 16 individuals with ankle injury was immobilized for a minimum of 4 weeks, followed by a 6-week rehabilitation program. The maximal cross-sectional area (CSA) of the medial gastrocnemius muscle of the immobilized and control legs were determined by T1-weighted axial MRI images. Genome-wide mRNA profiling data were used to identify molecular signatures that distinguish the patients who responded to immobilization and rehabilitation and those who were considered minimal responders. RESULTS: Using 6% change as the threshold to define responsiveness, a greater degree of changes in muscle size was noted in high responders (−14.9 ± 3.6%) compared to low responders (0.1 ± 0.0%) during immobilization. In addition, a greater degree of changes in muscle size was observed in high responders (20.5 ± 3.2%) compared to low responders (2.5 ± 0.9%) at 6-week rehabilitation. Microarray analysis showed a higher number of genes differentially expressed in the responders compared to low responders in general; with more expression changes observed at the acute stage of rehabilitation in both groups. Pathways analysis revealed top molecular pathways differentially affected in the groups, including genes involved in mitochondrial function, protein turn over, integrin signaling and inflammation. This study confirmed the extent of muscle atrophy due to immobilization and recovery by exercise training is associated with distinct remodeling signature, which can potentially be used for evaluating and predicting clinical outcomes.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, George Washington University, Washington DC, USA
| | - Chris Gregory
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Fan Ye
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Naoe Harafuji
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Donovan Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - San-Huei Lai
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, USA
| | - Mark Scarborough
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Parker Gibbs
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Celine Baligand
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Stantzou A, Schirwis E, Swist S, Alonso-Martin S, Polydorou I, Zarrouki F, Mouisel E, Beley C, Julien A, Le Grand F, Garcia L, Colnot C, Birchmeier C, Braun T, Schuelke M, Relaix F, Amthor H. BMP signaling regulates satellite cell-dependent postnatal muscle growth. Development 2017; 144:2737-2747. [PMID: 28694257 DOI: 10.1242/dev.144089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 06/21/2017] [Indexed: 02/03/2023]
Abstract
Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool.
Collapse
Affiliation(s)
- Amalia Stantzou
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux 78180, France.,Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité University-Medicine, Berlin 10117, Germany.,Pierre et Marie Curie University, Paris Sorbonne, INSERM, UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Elija Schirwis
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux 78180, France.,Pierre et Marie Curie University, Paris Sorbonne, INSERM, UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France.,Developmental Biology/Signal Transduction Group, Max Delbruck Center for Molecular Medicine, Berlin 13092, Germany
| | - Sandra Swist
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.,Department of Cardiovascular Physiology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Sonia Alonso-Martin
- Pierre et Marie Curie University, Paris Sorbonne, INSERM, UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France.,INSERM, Paris Est University, IMRB U955-E10, Créteil 94010, France
| | - Ioanna Polydorou
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux 78180, France.,Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité University-Medicine, Berlin 10117, Germany
| | - Faouzi Zarrouki
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux 78180, France
| | - Etienne Mouisel
- Pierre et Marie Curie University, Paris Sorbonne, INSERM, UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France.,Paul Sabatier University, Inserm UMR 1048, Toulouse 31432, France
| | | | - Anaïs Julien
- Paris Descartes-Sorbonne Paris Cité University, Inserm UMR1163, Imagine Institute, Paris 75015, France
| | - Fabien Le Grand
- Pierre et Marie Curie University, Paris Sorbonne, INSERM, UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Luis Garcia
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux 78180, France
| | - Céline Colnot
- Paris Descartes-Sorbonne Paris Cité University, Inserm UMR1163, Imagine Institute, Paris 75015, France
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max Delbruck Center for Molecular Medicine, Berlin 13092, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité University-Medicine, Berlin 10117, Germany
| | - Frédéric Relaix
- Pierre et Marie Curie University, Paris Sorbonne, INSERM, UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France.,INSERM, Paris Est University, IMRB U955-E10, Créteil 94010, France
| | - Helge Amthor
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux 78180, France .,Pediatric Department, University Hospital Raymond Poincaré, Garches 92380, France
| |
Collapse
|
18
|
Paris ND, Soroka A, Klose A, Liu W, Chakkalakal JV. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration. eLife 2016; 5. [PMID: 27855784 PMCID: PMC5138033 DOI: 10.7554/elife.19484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023] Open
Abstract
Skeletal muscle regenerative potential declines with age, in part due to deficiencies in resident stem cells (satellite cells, SCs) and derived myogenic progenitors (MPs); however, the factors responsible for this decline remain obscure. TGFβ superfamily signaling is an inhibitor of myogenic differentiation, with elevated activity in aged skeletal muscle. Surprisingly, we find reduced expression of Smad4, the downstream cofactor for canonical TGFβ superfamily signaling, and the target Id1 in aged SCs and MPs during regeneration. Specific deletion of Smad4 in adult mouse SCs led to increased propensity for terminal myogenic commitment connected to impaired proliferative potential. Furthermore, SC-specific Smad4 disruption compromised adult skeletal muscle regeneration. Finally, loss of Smad4 in aged SCs did not promote aged skeletal muscle regeneration. Therefore, SC-specific reduction of Smad4 is a feature of aged regenerating skeletal muscle and Smad4 is a critical regulator of SC and MP amplification during skeletal muscle regeneration. DOI:http://dx.doi.org/10.7554/eLife.19484.001 Even in adulthood, injured muscles can repair themselves largely because they contain groups of stem cells known as satellite cells. These cells divide to produce progenitor cells that later develop, or differentiate, into new muscle fibers. However as muscles get older, this repair process becomes less effective, in part because the satellite cells do not respond as strongly to injury. It remains obscure precisely why the repair process declines with age. A protein called TGFβ is part of a signaling pathway that prevents the muscle progenitor cells from differentiating into muscle fibers, and TGFβ signaling is overactive in older muscles. Most TGFβ signaling operates via a protein called Smad4, and Paris et al. now show that older satellite cells and progenitor cells from the muscles of old mice produce less Smad4 when they are regenerating. Next, the gene for Smad4 was deleted specifically from the satellite cells of mice. By examining the fate of these cells, Paris et al. found that Smad4 normally maintained the population of satellite cells by preventing them from differentiating into muscle fibers too soon. This was the case when both adult and aged muscle was regenerating. All in all, Smad4 is clearly important for directing satellite cells to regenerate properly; aged cells have less Smad4 and are less able to regenerate. Future studies are now needed to determine how disrupting Smad4 in other resident cell types may influence the regeneration of muscles in mice. DOI:http://dx.doi.org/10.7554/eLife.19484.002
Collapse
Affiliation(s)
- Nicole D Paris
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
| | - Andrew Soroka
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States.,Department of Pathology, University of Rochester Medical Center, Rochester, United States
| | - Alanna Klose
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States
| | - Wenxuan Liu
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Joe V Chakkalakal
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, United States.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, United States.,The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
19
|
Pasteuning-Vuhman S, Boertje-van der Meulen JW, van Putten M, Overzier M, Ten Dijke P, Kiełbasa SM, Arindrarto W, Wolterbeek R, Lezhnina KV, Ozerov IV, Aliper AM, Hoogaars WM, Aartsma-Rus A, Loomans CJM. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. FASEB J 2016; 31:238-255. [PMID: 27733450 PMCID: PMC5161514 DOI: 10.1096/fj.201600675r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
| | | | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology Leiden University Medical Center, Leiden, The Netherlands.,Cancer Genomics Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wibowo Arindrarto
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ksenia V Lezhnina
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Ivan V Ozerov
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Aleksandr M Aliper
- InSilico Medicine, Incorporated, Emerging Technology Centers, Johns Hopkins University, Baltimore, Maryland, USA; and
| | - Willem M Hoogaars
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Move Research Institute Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands;
| | - Cindy J M Loomans
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Costamagna D, Mommaerts H, Sampaolesi M, Tylzanowski P. Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo. Sci Rep 2016; 6:31949. [PMID: 27573479 PMCID: PMC5004166 DOI: 10.1038/srep31949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/28/2016] [Indexed: 10/25/2022] Open
Abstract
Inactivation of Noggin, a secreted antagonist of Bone Morphogenetic Proteins (BMPs), in mice leads, among others, to severe malformations of the appendicular skeleton and defective skeletal muscle fibers. To determine the molecular basis of the phenotype, we carried out a histomorphological and molecular analysis of developing muscles Noggin(-/-) mice. We show that in 18.5 dpc embryos there is a marked reduction in muscle fiber size and a failure of nuclei migration towards the cell membrane. Molecularly, the absence of Noggin results in an increased BMP signaling in muscle tissue as shown by the increase in SMAD1/5/8 phosphorylation, concomitant with the induction of BMP target genes such as Id1, 2, 3 as well as Msx1. Finally, upon removal of Noggin, the number of mesenchymal Pax7(+) muscle precursor cells is reduced and they are more prone to differentiate into adipocytes in vitro. Thus, our results highlight the importance of Noggin/BMP balance for myogenic commitment of early fetal progenitor cells.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Laboratory of Experimental Medicine and Clinical Pathology, Dept. Clinical and Biological Sciences, University of Turin, Italy
| | - Hendrik Mommaerts
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Division of Human Anatomy, Dept. of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium.,Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
| |
Collapse
|
21
|
Molligan J, Mitchell R, Schon L, Achilefu S, Zahoor T, Cho Y, Loube J, Zhang Z. Influence of Bone and Muscle Injuries on the Osteogenic Potential of Muscle Progenitors: Contribution of Tissue Environment to Heterotopic Ossification. Stem Cells Transl Med 2016; 5:745-53. [PMID: 27112178 DOI: 10.5966/sctm.2015-0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED : By using surgical mouse models, this study investigated how the tissue environment influences the osteogenic potential of muscle progenitors (m-progenitors) and potentially contributes to heterotopic ossification (HO). Injury was induced by clamping the gluteus maximus and medius (group M) or osteotomy of greater trochanter (group O) on the right hip, as well as combined muscle injury and osteotomy of greater trochanter (group M+O). The gluteus maximus and medius of the operated hips were harvested at days 1, 3, 5, and 10 for isolation of m-progenitors. The cells were cultured in an osteogenic medium for 3 weeks, and osteogenesis was evaluated by matrix mineralization and the expression of osteogenesis-related genes. The expression of type I collagen, RUNX2 (runt-related transcription factor 2), and osteocalcin by the m-progenitors of group M+O was significantly increased, compared with groups M and O. Osteogenic m-progenitors in group O increased the expression of bone morphogenetic protein 2 and also bone morphogenetic protein antagonist differential screening-selected gene aberrative in neuroblastoma. On histology, there was calcium deposition mostly in the muscles of group M+O harvested at day 10. CD56, representing myogenic progenitors, was highly expressed in the m-progenitors isolated from group M (day 10), but m-progenitors of group M+O (day 10) exhibited the highest expression of platelet-derived growth factor receptor α (PDGFR-α), a marker of muscle-derived mesenchymal stem cells (M-MSCs). The expressions of PDGFR-α and RUNX2 were colocalized in osteogenic m-progenitors. The data indicate that the tissue environment simulated in the M+O model is a favorable condition for HO formation. Most likely, M-MSCs, rather than myogenic progenitors, in the m-progenitors participate in HO formation. SIGNIFICANCE The prevalence of traumatic heterotopic ossification (HO) is high in war injury. The pathogenesis of HO is still unknown. This study clarified the contribution of a tissue environment created by bone or muscle injury to the formation of HO. The study also found that muscle-derived mesenchymal stem cells, but not myogenic progenitors, are involved in the formation of HO. The findings of this study could be used to strategize the prevention and treatment of HO.
Collapse
Affiliation(s)
- Jeremy Molligan
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Samuel Achilefu
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Young Cho
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Jeffery Loube
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Kaplan FS, Pignolo RJ, Shore EM. Granting immunity to FOP and catching heterotopic ossification in the Act. Semin Cell Dev Biol 2016; 49:30-6. [PMID: 26706149 PMCID: PMC4898187 DOI: 10.1016/j.semcdb.2015.12.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023]
Abstract
The progressive transformation of one organ system into another is a fundamental signature of fibrodysplasia ossificans progressiva (FOP), the most catastrophic form of extraskeletal bone formation in humans. In all affected individuals, FOP is caused by heterozygous missense gain-of-function mutations in Activin receptor A type I (ACVR1), a bone morphogenetic protein (BMP) type I receptor. Loss of autoinhibition of the mutant receptor (mACVR1) results in dysregulated BMP pathway signaling, and is necessary for the myriad developmental features of FOP, but does not appear sufficient to induce the episodic flare-ups that lead to disabling post-natal heterotopic endochondral ossification (HEO) and that are a hallmark of the disease. Post-natal FOP flare-ups strongly implicate an underlying immunological trigger involving inflammation and the innate immune system. Recent studies implicate canonical and non-canonical TGFβ/BMP family ligands in the amplification of mACVR1 signaling leading to the formation of FOP lesions and resultant HEO. BMP and Activin ligands that stimulate mACVR1 signaling also have critical regulatory functions in the immune system. Cross-talk between the morphogenetic and immunological pathways that regulate tissue maintenance and wound healing identifies potential robust therapeutic targets for FOP. Here we review current evidence for an immunological trigger for flare-ups and HEO in FOP, propose a working schema for the pathophysiology of observed phenomena, and highlight outstanding questions under investigation.
Collapse
Affiliation(s)
- Frederick S Kaplan
- The Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Department of Medicine, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert J Pignolo
- The Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Department of Medicine, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Eileen M Shore
- The Department of Orthopaedic Surgery, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Department of Genetics, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Research in FOP & Related Disorders, The Perelman School of Medicine of The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Abstract
Muscle and bone are two intimately connected tissues. A coordinated interplay between these tissues at mechanical levels is required for their development, function and ageing. Evidence is emerging that several genes and molecular pathways exert a pleiotropic effect on both muscle and bone. Bone morphogenetic proteins (BMPs) are secreted signal factors belonging to the transforming growth factor β (TGFβ) superfamily. BMPs have an essential role during bone and cartilage formation and maintenance. Recently, we and others have demonstrated that the BMP pathway also has a role in controlling adult skeletal muscle mass. Thus, BMPs become crucial regulators of both bone and muscle formation and homeostasis. In this review we will discuss the signalling downstream BMP and its role in muscle-bone interaction. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Roberta Sartori
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| | - Marco Sandri
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy.
| |
Collapse
|
24
|
Costamagna D, Quattrocelli M, van Tienen F, Umans L, de Coo IFM, Zwijsen A, Huylebroeck D, Sampaolesi M. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 2015; 8:73-87. [PMID: 26450990 PMCID: PMC4710210 DOI: 10.1093/jmcb/mjv059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2023] Open
Abstract
Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein (BMP) signalling during proliferation and differentiation of adult myogenic precursors, such as satellite cells, has recently been established. We evaluated whether BMP signalling impacts on the myogenic potential of embryonic and adult MABs both in vitro and in vivo. Addition of BMP inhibited MAB myogenic differentiation, whereas interference with the interactions between BMPs and receptor complexes induced differentiation. Similarly, siRNA-mediated knockdown of Smad8 in Smad1/5-null MABs or inhibition of SMAD1/5/8 phosphorylation with Dorsomorphin (DM) also improved myogenic differentiation, demonstrating a novel role of SMAD8. Moreover, using a transgenic mouse model of Smad8 deletion, we demonstrated that the absence of SMAD8 protein improved MAB myogenic differentiation. Furthermore, once injected into α-Sarcoglycan (Sgca)-null muscles, DM-treated MABs were more efficacious to restore α-sarcoglycan (αSG) protein levels and re-establish functional muscle properties. Similarly, in acute muscle damage, DM-treated MABs displayed a better myogenic potential compared with BMP-treated and untreated cells. Finally, SMADs also control the myogenic commitment of human MABs (hMABs). BMP signalling antagonists are therefore novel candidates to improve the therapeutic effects of hMABs.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium Laboratory of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mattia Quattrocelli
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Florence van Tienen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lieve Umans
- Laboratory for Developmental Signalling, VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Irineus F M de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - An Zwijsen
- Laboratory for Developmental Signalling, VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven, Belgium Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium Division of Human Anatomy, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Di Rocco A, Uchibe K, Larmour C, Berger R, Liu M, Barton ER, Iwamoto M. Selective Retinoic Acid Receptor γ Agonists Promote Repair of Injured Skeletal Muscle in Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2495-504. [PMID: 26205250 PMCID: PMC4597269 DOI: 10.1016/j.ajpath.2015.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 04/16/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Retinoic acid signaling regulates several biological events, including myogenesis. We previously found that retinoic acid receptor γ (RARγ) agonist blocks heterotopic ossification, a pathological bone formation that mostly occurs in the skeletal muscle. Interestingly, RARγ agonist also weakened deterioration of muscle architecture adjacent to the heterotopic ossification lesion, suggesting that RARγ agonist may oppose skeletal muscle damage. To test this hypothesis, we generated a critical defect in the tibialis anterior muscle of 7-week-old mice with a cautery, treated them with RARγ agonist or vehicle corn oil, and examined the effects of RARγ agonist on muscle repair. The muscle defects were partially repaired with newly regenerating muscle cells, but also filled with adipose and fibrous scar tissue in both RARγ-treated and control groups. The fibrous or adipose area was smaller in RARγ agonist-treated mice than in the control. In addition, muscle repair was remarkably delayed in RARγ-null mice in both critical defect and cardiotoxin injury models. Furthermore, we found a rapid increase in retinoid signaling in lacerated muscle, as monitored by retinoid signaling reporter mice. Together, our results indicate that endogenous RARγ signaling is involved in muscle repair and that selective RARγ agonists may be beneficial to promote repair in various types of muscle injuries.
Collapse
Affiliation(s)
- Agnese Di Rocco
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Research Institute, Philadelphia
| | - Kenta Uchibe
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Research Institute, Philadelphia
| | - Colleen Larmour
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Research Institute, Philadelphia
| | - Rebecca Berger
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Research Institute, Philadelphia
| | - Min Liu
- Department of Physiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia Research Institute, Philadelphia.
| |
Collapse
|
26
|
Biressi S, Gopinath SD. The quasi-parallel lives of satellite cells and atrophying muscle. Front Aging Neurosci 2015; 7:140. [PMID: 26257645 PMCID: PMC4510774 DOI: 10.3389/fnagi.2015.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.
Collapse
Affiliation(s)
- Stefano Biressi
- Dulbecco Telethon Institute and Centre for Integrative Biology (CIBIO), University of TrentoTrento, Italy
| | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to discuss the involvement of bone and morphogenetic proteins (BMPs) in the control of muscle mass. RECENT FINDINGS The transforming growth factor-beta (TGFβ) superfamily comprises a large number of secreted proteins that regulate a variety of fundamental biological processes. Sequence similarities define two ligand subfamilies: the TGFβ/Activin subfamily and the BMP subfamily. Within the members of TGFβ subfamily, myostatin emerged as the most critical ligand that affects muscle size and function. Indeed, mutations that inactivate Myostatin lead to important muscle growth in animals and humans. However, recent findings have increased the complexity of the TGFβ superfamily. Indeed, two independent groups have shown that BMP pathway, acting through Smad1/5/8, is the fundamental hypertrophic signal and dominates Myostatin signalling. Moreover, BMP-Smad1/5/8 negatively regulates a novel ubiquitin ligase, named MUSA1 that is required for muscle loss. This article reviews the rapid progress made in the last year regarding the signalling downstream TGFβ superfamily and its involvement in the homeostasis of adult muscle fibres. SUMMARY The recent insights gained into the interplay of TGFβ and BMP signalling in muscle have challenged our pre-existing ideas of how the adult skeletal muscle phenotype is regulated in health and disease.
Collapse
Affiliation(s)
- Roberta Sartori
- aDulbecco Telethon Institute, Venetian Institute of Molecular Medicine bDepartment of Biomedical Sciences, University of Padova, Padova cTelethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
| | | |
Collapse
|
28
|
Osses N, Henríquez JP. Bone morphogenetic protein signaling in vertebrate motor neurons and neuromuscular communication. Front Cell Neurosci 2015; 8:453. [PMID: 25674047 PMCID: PMC4307192 DOI: 10.3389/fncel.2014.00453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/15/2014] [Indexed: 01/28/2023] Open
Abstract
An accurate communication between motor neurons and skeletal muscle fibers is required for the proper assembly, growth and maintenance of neuromuscular junctions (NMJs). Several signaling and extracellular matrix molecules play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in Drosophila have revealed crucial functions for early morphogens, such as members of the Wnt and Bone Morphogenetic Proteins (BMP) signaling pathways, during the assembly and maturation of the NMJ. Here, we bring together recent findings that led us to propose that BMPs also work in vertebrate organisms as diffusible cues to communicate motor neurons and skeletal muscles.
Collapse
Affiliation(s)
- Nelson Osses
- BMP Research Group, Institute of Chemistry, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Juan P Henríquez
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción Concepción, Chile
| |
Collapse
|
29
|
Hadjiargyrou M, O'Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J Bone Miner Res 2014; 29:2307-22. [PMID: 25264148 PMCID: PMC4455538 DOI: 10.1002/jbmr.2373] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023]
Abstract
The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | | |
Collapse
|
30
|
Abstract
Ectopic bone formation refers to the ossification of tissue outside of its typical microenvironment. Numerous animal models exist to experimentally induce ectopic bone formation in order to examine the process of osteogenesis or to evaluate the "osteogenic potential" of a given implant. The most widely employed methods in the rodent include subcutaneous, intramuscular, and renal capsule implantation. This chapter will outline the (1) clinical correlates to ectopic ossification, (2) a brief history of experimental models of ectopic ossification, (3) advantages and disadvantages of various models (with a focus on rodent models), and (4) detailed methods and explanation of a mouse intramuscular implantation procedure.
Collapse
Affiliation(s)
- Greg Asatrian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
31
|
Hoppeler H, Baum O, Lurman G, Mueller M. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2013; 1:1383-412. [PMID: 23733647 DOI: 10.1002/cphy.c100042] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Collapse
Affiliation(s)
- Hans Hoppeler
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
32
|
Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC, Beyer C, Watt KI, Thomson RE, Connor T, Turner BJ, McMullen JR, Larsson L, McGee SL, Harrison CA, Gregorevic P. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. ACTA ACUST UNITED AC 2013; 203:345-57. [PMID: 24145169 PMCID: PMC3812980 DOI: 10.1083/jcb.201211134] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The BMP signaling pathway promotes muscle growth and inhibits muscle wasting via SMAD1/5-dependent signaling. Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders.
Collapse
Affiliation(s)
- Catherine E Winbanks
- Division of Cell Signaling and Metabolism, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ieronimakis N, Pantoja M, Hays AL, Dosey TL, Qi J, Fischer KA, Hoofnagle AN, Sadilek M, Chamberlain JS, Ruohola-Baker H, Reyes M. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice. Skelet Muscle 2013; 3:20. [PMID: 23915702 PMCID: PMC3750760 DOI: 10.1186/2044-5040-3-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. METHODS We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. RESULTS Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. CONCLUSIONS These data show that S1P is beneficial for muscle regeneration and functional gain in dystrophic mice, and that THI, or other pharmacological agents that raise S1P levels systemically, may be developed into an effective treatment for improving muscle function and reducing the pathology of DMD.
Collapse
Affiliation(s)
- Nicholas Ieronimakis
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mohamed JS, Lopez MA, Cox GA, Boriek AM. Ankyrin repeat domain protein 2 and inhibitor of DNA binding 3 cooperatively inhibit myoblast differentiation by physical interaction. J Biol Chem 2013; 288:24560-8. [PMID: 23824195 DOI: 10.1074/jbc.m112.434423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMB(mdm)) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.
Collapse
Affiliation(s)
- Junaith S Mohamed
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
35
|
Foxc2 induces Wnt4 and Bmp4 expression during muscle regeneration and osteogenesis. Cell Death Differ 2013; 20:1031-42. [PMID: 23645207 DOI: 10.1038/cdd.2013.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023] Open
Abstract
Proliferation and fusion of myoblasts is a well-orchestrated process occurring during muscle development and regeneration. Although myoblasts are known to originate from muscle satellite cells, the molecular mechanisms that coordinate their commitment toward differentiation are poorly understood. Here, we present a novel role for the transcription factor Forkhead box protein C2 (Foxc2) in regulating proliferation and preventing premature differentiation of activated muscle satellite cells. We demonstrate that Foxc2 expression is upregulated early in activated mouse muscle satellite cells and then diminishes during myogenesis. In undifferentiated C2C12 myoblasts, downregulation of endogenous Foxc2 expression leads to a decrease in proliferation, whereas forced expression of FOXC2 sustains proliferation and prevents differentiation into myotubes. We also show that FOXC2 induces Wnt signaling by direct interaction with the Wnt4 (wingless-type MMTV integration site family member-4) promoter region. The resulting elevated expression of bone morphogenetic protein-4 (Bmp4) and RhoA-GTP proteins inhibits the proper myoblast alignment and fusion required for myotube formation. Interestingly, continuous forced expression of FOXC2 alters the commitment of C2C12 myoblasts toward osteogenic differentiation, which is consistent with FOXC2 expression observed in patients with myositis ossificans, an abnormal bone growth within muscle tissue. In summary, our results suggest that (a) Foxc2 regulates the proliferation of multipotent muscle satellite cells; (b) downregulation of Foxc2 is critical for myogenesis to progress; and (c) sustained Foxc2 expression in myoblast cells suppresses myogenesis and alters their lineage commitment toward osteogenesis by inducing the Wnt4 and Bmp4 signaling pathways.
Collapse
|
36
|
Leblanc E, Drouin G, Grenier G, Faucheux N, Hamdy R. From skeletal to non skeletal: The intriguing roles of BMP-9: A literature review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410a4004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Abstract
OBJECTIVES Traumatized muscle is a complex healing environment containing cells with robust reparative and regenerative potential interacting in a cytokine milieu that influences the function and differentiation of these cells, leading to a spectrum of healing responses. In particular, bone morphogenetic protein-4 (BMP-4) is of interest as a potential modulator of healing because its dysregulation has been associated with fibrosis and heterotopic ossification formation. We propose a descriptive study of altered BMP-4 expression in traumatized muscle tissue and to evaluate its role in the fibroregulatory function of resident mesenchymal progenitor cells (MPCs) at the protein- and gene-expression levels. METHODS Protein-level expression of BMP-4 from cells resident in traumatized muscle specimens was evaluated using ELISA and also using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to compare BMP-4 in homogenized muscle tissue specimens. BMP-4, cartilage oligomeric matrix protein (COMP), and osteocalcin expression localization was analyzed via immunohistochemistry. Reverse transcription-polymerase chain reaction was performed to evaluate fibroregulatory gene expression in MPCs after treatment with BMP-4. RESULTS BMP-4 was present in all traumatized muscle tissue specimens. Immunohistochemistry demonstrated that traumatized muscle fibers contained greater number of cells expressing BMP-4 in a more disorganized fashion compared with control samples. Reverse transcription-polymerase chain reaction demonstrated that COMP, growth and differentiation factor-10, and integrin beta-2 were up-regulated, whereas tumor necrosis factor-alpha was significantly down-regulated. COMP expression was colocalized in the traumatized muscle tissue with osteocalcin. CONCLUSIONS BMP-4 has an effect on MPCs that seems to promote fibrotic tissue formation. These findings suggest that BMP-4, while promoting osteoinduction, may also act on MPCs to promote formation of a fibrotic osteoinductive matrix. Thus, this signaling axis might be a potential target for heterotopic ossification prevention.
Collapse
|
38
|
Salisbury EA, Lazard ZW, Ubogu EE, Davis AR, Olmsted-Davis EA. Transient brown adipocyte-like cells derive from peripheral nerve progenitors in response to bone morphogenetic protein 2. Stem Cells Transl Med 2012; 1:874-85. [PMID: 23283549 DOI: 10.5966/sctm.2012-0090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Perineurial-associated brown adipocyte-like cells were rapidly generated during bone morphogenetic protein 2 (BMP2)-induced sciatic nerve remodeling in the mouse. Two days after intramuscular injection of transduced mouse fibroblast cells expressing BMP2 into wild-type mice, there was replication of beta-3 adrenergic receptor(+) (ADRB3(+)) cells within the sciatic nerve perineurium. Fluorescence-activated cell sorting and analysis of cells isolated from these nerves confirmed ADRB3(+) cell expansion and their expression of the neural migration marker HNK1. Similar analysis performed 4 days after BMP2 delivery revealed a significant decrease in ADRB3(+) cells from isolated sciatic nerves, with their concurrent appearance within the adjacent soft tissue, suggesting migration away from the nerve. These soft tissue-derived cells also expressed the brown adipose marker uncoupling protein 1 (UCP1). Quantification of ADRB3-specific RNA in total hind limb tissue revealed a 3-fold increase 2 days after delivery of BMP2, followed by a 70-fold increase in UCP1-specific RNA after 3 days. Expression levels then rapidly returned to baseline by 4 days. Interestingly, these ADRB3(+) UCP1(+) cells also expressed the neural guidance factor reelin. Reelin(+) cells demonstrated distinct patterns within the injected muscle, concentrated toward the area of BMP2 release. Blocking mast cell degranulation-induced nerve remodeling resulted in the complete abrogation of UCP1-specific RNA and protein expression within the hind limbs following BMP2 injection. The data collectively suggest that local BMP2 administration initiates a cascade of events leading to the expansion, migration, and differentiation of progenitors from the peripheral nerve perineurium to brown adipose-like cells in the mouse, a necessary prerequisite for associated nerve remodeling.
Collapse
|
39
|
Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol Life Sci 2012; 70:407-23. [PMID: 22752156 PMCID: PMC3541930 DOI: 10.1007/s00018-012-1054-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.
Collapse
|
40
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Scott MA, Levi B, Askarinam A, Nguyen A, Rackohn T, Ting K, Soo C, James AW. Brief review of models of ectopic bone formation. Stem Cells Dev 2012; 21:655-67. [PMID: 22085228 DOI: 10.1089/scd.2011.0517] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ectopic bone formation is a unique biologic entity--distinct from other areas of skeletal biology. Animal research models of ectopic bone formation most often employ rodent models and have unique advantages over orthotopic (bone) environments, including a relative lack of bone cytokine stimulation and cell-to-cell interaction with endogenous (host) bone-forming cells. This allows for relatively controlled in vivo experimental bone formation. A wide variety of ectopic locations have been used for experimentation, including subcutaneous, intramuscular, and kidney capsule transplantation. The method, benefits and detractions of each method are summarized in the following review. Briefly, subcutaneous implantation is the simplest method. However, the most pertinent concern is the relative paucity of bone formation in comparison to other models. Intramuscular implantation is also widely used and relatively simple, however intramuscular implants are exposed to skeletal muscle satellite progenitor cells. Thus, distinguishing host from donor osteogenesis becomes challenging without cell-tracking studies. The kidney capsule (perirenal or renal capsule) method is less widely used and more technically challenging. It allows for supraphysiologic blood and nutrient resource, promoting robust bone growth. In summary, ectopic bone models are extremely useful in the evaluation of bone-forming stem cells, new osteoinductive biomaterials, and growth factors; an appropriate choice of model, however, will greatly increase experimental success.
Collapse
Affiliation(s)
- Michelle A Scott
- Orthodontics and Dentofacial Orthopedics, Roseman University of Health Sciences, Henderson, Nevada, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rodenberg E, Azhdarinia A, Lazard ZW, Hall M, Kwon SK, Wilganowski N, Salisbury EA, Merched-Sauvage M, Olmsted-Davis EA, Sevick-Muraca EM, Davis AR. Matrix metalloproteinase-9 is a diagnostic marker of heterotopic ossification in a murine model. Tissue Eng Part A 2011; 17:2487-96. [PMID: 21599541 DOI: 10.1089/ten.tea.2011.0007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterotopic ossification (HO) is a serious disorder that occurs when there is aberrant bone morphogenic protein (BMP) signaling in soft tissues. Currently, there are no methods to detect HO before mineralization occurs. Yet once mineralization occurs, there are no effective treatments, short of surgery, to reverse HO. Herein, we used in vivo molecular imaging and confirmatory ex vivo tissue analyses of an established murine animal model of BMP-induced HO to show that matrix metalloproteinase-9 (MMP-9) can be detected as an early-stage biomarker before mineralization. Ex vivo analyses show that active MMP-9 protein is significantly elevated within tissues undergoing HO as early as 48 h after BMP induction, with its expression co-localizing to nerves and vessels. In vivo molecular imaging with a dual-labeled near-infrared fluorescence and micro-positron emission tomography (μPET) agent specific to MMP-2/-9 expression paralleled the ex vivo observations and reflected the site of HO formation as detected from microcomputed tomography 7 days later. The results suggest that the MMP-9 is a biomarker of the early extracellular matrix (ECM) re-organization and could be used as an in vivo diagnostic with confirmatory ex vivo tissue analysis for detecting HO or conversely for monitoring the success of tissue-engineered bone implants that employ ECM biology for engraftment.
Collapse
Affiliation(s)
- Eric Rodenberg
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Friedrichs M, Wirsdöerfer F, Flohé SB, Schneider S, Wuelling M, Vortkamp A. BMP signaling balances proliferation and differentiation of muscle satellite cell descendants. BMC Cell Biol 2011; 12:26. [PMID: 21645366 PMCID: PMC3149017 DOI: 10.1186/1471-2121-12-26] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/06/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors. RESULTS Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation. CONCLUSION Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.
Collapse
Affiliation(s)
- Melanie Friedrichs
- Center for Medical Biotechnology, Faculty of Biology, Department of Developmental Biology, University of Duisburg-Essen, D-45117 Essen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Hara M, Yuasa S, Shimoji K, Onizuka T, Hayashiji N, Ohno Y, Arai T, Hattori F, Kaneda R, Kimura K, Makino S, Sano M, Fukuda K. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. ACTA ACUST UNITED AC 2011; 208:715-27. [PMID: 21422169 PMCID: PMC3135344 DOI: 10.1084/jem.20101059] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Granulocyte colony-stimulating factor and its receptor are needed for skeletal muscle development and injury-induced regeneration in mice. After skeletal muscle injury, neutrophils, monocytes, and macrophages infiltrate the damaged area; this is followed by rapid proliferation of myoblasts derived from muscle stem cells (also called satellite cells). Although it is known that inflammation triggers skeletal muscle regeneration, the underlying molecular mechanisms remain incompletely understood. In this study, we show that granulocyte colony-stimulating factor (G-CSF) receptor (G-CSFR) is expressed in developing somites. G-CSFR and G-CSF were expressed in myoblasts of mouse embryos during the midgestational stage but not in mature myocytes. Furthermore, G-CSFR was specifically but transiently expressed in regenerating myocytes present in injured adult mouse skeletal muscle. Neutralization of endogenous G-CSF with a blocking antibody impaired the regeneration process, whereas exogenous G-CSF supported muscle regeneration by promoting the proliferation of regenerating myoblasts. Furthermore, muscle regeneration was markedly impaired in G-CSFR–knockout mice. These findings indicate that G-CSF is crucial for skeletal myocyte development and regeneration and demonstrate the importance of inflammation-mediated induction of muscle regeneration.
Collapse
Affiliation(s)
- Mie Hara
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shi S, Hoogaars WMH, de Gorter DJJ, van Heiningen SH, Lin HY, Hong CC, Kemaladewi DU, Aartsma-Rus A, ten Dijke P, 't Hoen PAC. BMP antagonists enhance myogenic differentiation and ameliorate the dystrophic phenotype in a DMD mouse model. Neurobiol Dis 2010; 41:353-60. [PMID: 20940052 DOI: 10.1016/j.nbd.2010.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/23/2010] [Accepted: 10/01/2010] [Indexed: 12/29/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked lethal muscle wasting disease characterized by muscle fiber degeneration and necrosis. The progressive pathology of DMD can be explained by an insufficient regenerative response resulting in fibrosis and adipose tissue formation. BMPs are known to inhibit myogenic differentiation and in a previous study we found an increased expression of a BMP family member BMP4 in DMD myoblasts. The aim of the current study was therefore to investigate whether inhibition of BMP signaling could be beneficial for myoblast differentiation and muscle regeneration processes in a DMD context. All tested BMP inhibitors, Noggin, dorsomorphin and LDN-193189, were able to accelerate and enhance myogenic differentiation. However, dorsomorphin repressed both BMP and TGFβ signaling and was found to be toxic to primary myoblast cell cultures. In contrast, Noggin was found to be a potent and selective BMP inhibitor and was therefore tested in vivo in a DMD mouse model. Local adenoviral-mediated overexpression of Noggin in muscle resulted in an increased expression of the myogenic regulatory genes Myog and Myod1 and improved muscle histology. In conclusion, our results suggest that repression of BMP signaling may constitute an attractive adjunctive therapy for DMD patients.
Collapse
Affiliation(s)
- SongTing Shi
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ono Y, Calhabeu F, Morgan JE, Katagiri T, Amthor H, Zammit PS. BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ 2010; 18:222-34. [PMID: 20689554 DOI: 10.1038/cdd.2010.95] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Satellite cells are the resident stem cells of adult skeletal muscle, supplying myonuclei for homoeostasis, hypertrophy and repair. In this study, we have examined the role of bone morphogenetic protein (BMP) signalling in regulating satellite cell function. Activated satellite cells expressed BMP receptor type 1A (BMPR-1A/Alk-3) and contained phosphorylated Smad proteins, indicating that BMP signalling is operating during proliferation. Indeed, exogenous BMP4 stimulated satellite cell division and inhibited myogenic differentiation. Conversely, interfering with the interactions between BMPs and their receptors by the addition of either the BMP antagonist Noggin or soluble BMPR-1A fragments, induced precocious differentiation. Similarly, blockade of BMP signalling by siRNA-mediated knockdown of BMPR-1A, disruption of the intracellular pathway by either Smad5 or Smad4 knockdown or inhibition of Smad1/5/8 phosphorylation with Dorsomorphin, also caused premature myogenic differentiation. BMP signalling acted to inhibit the upregulation of genes associated with differentiation, in part, through regulating Id1. As satellite cells differentiated, Noggin levels increased to antagonise BMP signalling, since Noggin knockdown enhanced proliferation and impeded myoblast fusion into large multinucleated myotubes. Finally, interference of normal BMP signalling after muscle damage in vivo perturbed the regenerative process, and resulted in smaller regenerated myofibres. In conclusion, BMP signalling operates during routine satellite cell function to help coordinate the balance between proliferation and differentiation, before Noggin is activated to antagonise BMPs and facilitate terminal differentiation.
Collapse
Affiliation(s)
- Y Ono
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, UK
| | | | | | | | | | | |
Collapse
|
47
|
Nojima J, Kanomata K, Takada Y, Fukuda T, Kokabu S, Ohte S, Takada T, Tsukui T, Yamamoto TS, Sasanuma H, Yoneyama K, Ueno N, Okazaki Y, Kamijo R, Yoda T, Katagiri T. Dual roles of smad proteins in the conversion from myoblasts to osteoblastic cells by bone morphogenetic proteins. J Biol Chem 2010; 285:15577-15586. [PMID: 20231279 DOI: 10.1074/jbc.m109.028019] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) induce ectopic bone formation in muscle tissue in vivo and convert myoblasts such that they differentiate into osteoblastic cells in vitro. We report here that constitutively active Smad1 induced osteoblastic differentiation of C2C12 myoblasts in cooperation with Smad4 or Runx2. In floxed Smad4 mice-derived cells, Smad4 ablation partially suppressed BMP-4-induced osteoblast differentiation. In contrast, the BMP-4-induced inhibition of myogenesis was lost by Smad4 ablation and restored by Smad4 overexpression. A nuclear zinc finger protein, E4F1, was identified as a possible component of the Smad4 complex that suppresses myogenic differentiation in response to BMP signaling. In the presence of Smad4, E4F1 stimulated the expression of Ids. Taken together, these findings suggest that the Smad signaling pathway may play a dual role in the BMP-induced conversion of myoblasts to osteoblastic cells.
Collapse
Affiliation(s)
- Junya Nojima
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, 38 Moro Hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495
| | - Kazuhiro Kanomata
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Yumi Takada
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-5555
| | - Toru Fukuda
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Shoichiro Kokabu
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, 38 Moro Hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495
| | - Satoshi Ohte
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Takatora Takada
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-5555
| | - Tohru Tsukui
- Divisions of Experimental Animal Laboratory, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Sasanuma
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Katsumi Yoneyama
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yasushi Okazaki
- Divisions of Functional Genomics and System Research, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-5555
| | - Tetsuya Yoda
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, 38 Moro Hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495
| | - Takenobu Katagiri
- Divisions of Pathophysiology, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241.
| |
Collapse
|
48
|
Abstract
Heterotopic ossification, defined as the formation of bone in abnormal anatomic locations, can be clinically insignificant or devastating and debilitating, depending on the site and duration of new bone formation. There are many causes of heterotopic ossification (HO), including soft tissue trauma, central nervous system injury, vasculopathies, arthropathies, and inheritance. One of the least understood components of HO is the interaction of the peripheral nervous system with the induction of this process. Recent work has shown that, upon traumatic injury, a cascade of events termed neurogenic inflammation is initiated, which involves the release of neuropeptides, such as substance P and calcitonin gene related peptide. Release of these peptides ultimately leads to the recruitment of activated platelets, mast cells, and neutrophils to the injury site. These cells appear to be involved with both remodeling of the nerve, as well as potentially recruiting additional cells from the bone marrow to the injury site. Further, sensory neurons stimulated at the injury site relay local information to the brain, which can then redirect neuroendocrine signaling in the hypothalamus towards repair of the injured site. While numerous studies have highlighted the important role of nerve-derived signals, both central and peripheral, in the regulation of normal bone remodeling of the skeleton,1 this review focuses on the role of the local, peripheral nerves in the formation of heterotopic bone. We concentrate on the manner in which local changes in bone morphogenetic protein (BMP) expression contribute to a cascade of events within the peripheral nerves, both sensory and sympathetic, in the immediate area of HO formation.
Collapse
Affiliation(s)
- Elizabeth Salisbury
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Corinne Sonnet
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Heggeness
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan R. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|