1
|
Shi J, Wen J, Hu L. 17β-estradiol promotes osteogenic differentiation of BMSCs by regulating mitophagy through ARC. J Orthop Surg Res 2025; 20:35. [PMID: 39794817 PMCID: PMC11724534 DOI: 10.1186/s13018-024-05400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The study aims to elucidate the mechanism through which 17β-estradiol facilitates osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). In our study, lentiviral transfection was employed to establish apoptosis repressor with caspase recruitment domain (ARC) knockdown or overexpression in BMSCs. The impact of 17β-estradiol on ARC expression was assessed using western blot, RT-PCR and immunofluorescence. Techniques such as ALP staining, ALP activity assay, western blot, RT-PCR and immunofluorescence staining were utilized to examine the influence of ARC expression levels on the osteogenic differentiation of BMSCs and the osteoclastic differentiation of Raw264.7 cell lines. Mitophagy flux levels in BMSCs were detected using the mitophagy detection kit. RNA sequencing and bioinformatics analyses were conducted to explore potential mechanisms of ARC regulation in BMSCs osteogenic differentiation. To sum up, 17β-estradiol can modulate bone homeostasis by adjusting ARC expression. ARC stimulates mitophagy in BMSCs via MAPK/Akt pathway, identifying ARC as a promising therapeutic target for postmenopausal osteoporosis (PMOP) treatment.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, Shanghai Jiao Tong University, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology, Shanghai Jiao Tong University, National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Longwei Hu
- Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology, Shanghai Jiao Tong University, National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
2
|
Sigdel S, Chen S, Udoh G, Wang J. Exercise-Intervened Circulating Extracellular Vesicles Alleviate Oxidative Stress in Cerebral Microvascular Endothelial Cells Under Hypertensive Plus Hypoxic Conditions. Antioxidants (Basel) 2025; 14:77. [PMID: 39857411 PMCID: PMC11763325 DOI: 10.3390/antiox14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Our group has recently demonstrated that exercise intervention affects the release and function of bone marrow endothelial progenitor cell-derived extracellular vesicles (EVs) in transgenic hypertensive mice. Whether such an exercise regimen can impact circulating EVs (cEVs) remains unknown. In this study, we investigated the influence of exercise on cEV level and function. Transgenic hypertensive mice (Alb1-Ren) underwent 8-week treadmill exercise (10 m/min for 1 h, 5 days per week). Age- and sex-matched sedentary Alb1-Ren mice served as controls. cEVs were isolated from the blood of exercised and sedentary mice and are denoted as ET-cEV and nET-cEV, respectively. cEVs were labeled to determine their uptake efficiency and pathways. The functions of cEVs were assessed in an Angiotensin II (Ang II) plus hypoxia-injured cerebral microvascular endothelial cell (mBMEC) injury model. Cellular migration ability and oxidative stress were evaluated. We found that treadmill exercise stimulated cEV release, and ET-cEVs were more prone to be internalized by mBMECs. The ET-cEV internalization was mediated by macropinocytosis and endocytosis pathways. Functional studies showed that ET-cEVs can improve the compromised migration capability of mBMECs challenged by Ang II plus hypoxia. Additionally, ET-cEV treatment upregulated the expression of p-Akt/Akt in mBMECs. Compared to nET-cEVs, ET-cEVs significantly reduced ROS overproduction in Ang II plus hypoxia-injured mBMECs, associated with decreased Nox2 expression. All these findings suggest that exercise-intervened cEVs can protect cerebral microvascular endothelial cells against hypertensive and hypoxic injury.
Collapse
Affiliation(s)
| | | | | | - Jinju Wang
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (S.C.); (G.U.)
| |
Collapse
|
3
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2024; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
4
|
Luo L, Peng B, Xiong L, Wang B, Wang L. Ginsenoside Re promotes proliferation of murine bone marrow mesenchymal stem cells in vitro through estrogen-like action. In Vitro Cell Dev Biol Anim 2024; 60:996-1008. [PMID: 39256290 DOI: 10.1007/s11626-024-00969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Ginsenoside Re (GS-Re) is a major saponin monomer found in Panax ginseng Meyer. It has been shown to exhibit a wide range of biological and pharmacological activities. This study aimed to investigate the effect of GS-Re on the proliferation of murine bone marrow-derived MSCs in vitro and to assess whether its effect is dependent on the estrogen receptor-mediated signal transduction. CFU colony formation assay, cell counting, and colorimetric MTT test were employed to examine effects of GS-Re on the in vitro proliferation of MSCs and the mechanisms of the underlying effect were detected by flow cytometric analysis, immunofluorescence staining for BrdU, and Western blotting. GS-Re dose-dependently promoted the in vitro proliferation of murine bone marrow-derived MSCs over a range of concentrations of 0.5 ~ 20 µmol/L, and this effect approached the maximal level at 10 µmol/L. Increases in the expression level of phosphorylated extracellular signal-regulated kinases 1/2 (p-ERK1/2) were observed in the passaged MSCs treated with 10 µmol/L of GS-Re. These effects of GS-Re on the MSCs were significantly counteracted by the addition of ICI 182, 780 (an estrogen receptor antagonist) to the culture media. We concluded that GS-Re is able to exert a proliferation-promoting effect on murine bone marrow-derived mesenchymal stem cells in vitro, and its action is involved in the estrogen receptor-mediated signaling.
Collapse
Affiliation(s)
- Linzi Luo
- Department of Endoscopic Diagnosis and Treatment, Hunan Chest Hospital, Changsha, China
| | - Bin Peng
- School of Life Science, Hunan Normal University, Changsha, China
| | - Lei Xiong
- School of Life Science, Hunan Normal University, Changsha, China
| | - Baohe Wang
- School of Life Science, Hunan Normal University, Changsha, China
| | - Linghao Wang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Elango J. Proliferative and Osteogenic Supportive Effect of VEGF-Loaded Collagen-Chitosan Hydrogel System in Bone Marrow Derived Mesenchymal Stem Cells. Pharmaceutics 2023; 15:pharmaceutics15041297. [PMID: 37111780 PMCID: PMC10143960 DOI: 10.3390/pharmaceutics15041297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The use of hydrogel (HG) in regenerative medicine is an emerging field and thus several approaches have been proposed recently to find an appropriate hydrogel system. In this sense, this study developed a novel HG system using collagen, chitosan, and VEGF composites for culturing mesenchymal stem cells (MSCs), and investigated their ability for osteogenic differentiation and mineral deposition. Our results showed that the HG loaded with 100 ng/mL VEGF (HG-100) significantly supported the proliferation of undifferentiated MSCs, the fibrillary filament structure (HE stain), mineralization (alizarin red S and von Kossa stain), alkaline phosphatase, and the osteogenesis of differentiated MSCs compared to other hydrogels (loaded with 25 and 50 ng/mL VEGF) and control (without hydrogel). HG-100 showed a higher VEGF releasing rate from day 3 to day 7 than other HGs, which substantially supports the proliferative and osteogenic properties of HG-100. However, the HGs did not increase the cell growth in differentiated MSCs on days 14 and 21 due to the confluence state (reach stationary phase) and cell loading ability, regardless of the VEGF content. Similarly, the HGs alone did not stimulate the osteogenesis of MSCs; however, they increased the osteogenic ability of MSCs in presence of osteogenic supplements. Accordingly, a fabricated HG with VEGF could be used as an appropriate system to culture stem cells for bone and dental regeneration.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
7
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials. Acta Biomater 2022; 151:264-277. [PMID: 35981686 DOI: 10.1016/j.actbio.2022.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signalling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: : For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.
Collapse
|
9
|
Modulatory Effects of Estradiol and Its Mixtures with Ligands of GPER and PPAR on MAPK and PI3K/Akt Signaling Pathways and Tumorigenic Factors in Mouse Testis Explants and Mouse Tumor Leydig Cells. Biomedicines 2022; 10:biomedicines10061390. [PMID: 35740412 PMCID: PMC9219706 DOI: 10.3390/biomedicines10061390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was designed to evaluate how estradiol alone or in combination with G protein-coupled estrogen receptor (GPER) agonists and GPER and peroxisome proliferator-activated receptor (PPAR) antagonists alter the expression of tumor growth factor β (TGF-β), cyclooxygenase-2 (COX-2), hypoxia inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF) in mouse testis explants and MA-10 mouse tumor Leydig cells. In order to define the hormone-associated signaling pathway, the expression of MAPK and PI3K/Akt was also examined. Tissue explants and cells were treated with estradiol as well as GPER agonist (ICI 182,780), GPER antagonist (G-15), PPARα antagonist (GW6471), and PPARγ antagonist (T00709072) in various combinations. First, we showed that in testis explants GPER and PPARα expressions were activated by the GPER agonist and estradiol (either alone or in mixtures), whereas PPARγ expression was activated only by GPER agonist. Second, increased TGF-β expression and decreased COX-2 expression were found in all experimental groups of testicular explants and MA-10 cells, except for up-regulated COX-2 expression in estradiol-treated cells, compared to respective controls. Third, estradiol treatment led to elevated expression of HIF-1α and VEGF, while their lower levels versus control were noted in the remaining groups of explants. Finally, we demonstrated the up-regulation of MAPK and PI3Kp85/Akt expressions in estradiol-treated groups of both ex vivo and in vitro models, whereas estradiol in mixtures with compounds of agonistic or antagonistic properties either up-regulated or down-regulated signaling kinase expression levels. Our results suggest that a balanced estrogen level and its action together with proper GPER and PPAR signaling play a key role in the maintenance of testis homeostasis. Moreover, changes in TGF-β and COX-2 expressions (that disrupted estrogen pathway) as well as disturbed GPER-PPAR signaling observed after estradiol treatment may be involved in testicular tumorigenesis.
Collapse
|
10
|
Zeng C, Yuan G, Hu Y, Wang D, Shi X, Zhu D, Hu A, Meng Y, Lu J. Repressing phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma by microRNA-142-3p restrains the progression of hepatocellular carcinoma. Bioengineered 2022; 13:1491-1506. [PMID: 34986757 PMCID: PMC8805872 DOI: 10.1080/21655979.2021.2020549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
This paper probes the mechanisms underlying miR-142-3p's modulation of hepatocellular carcinoma (HCC) invasion and apoptosis. Quantitative real-time PCR and Western blot monitored the miR-142-3p profile in HCC tissues and non-tumor tissues. The correlation between miR-142-3p expression and HCC patients' clinicopathological indicators was analyzed. miR-142-3p overexpression and knockdown models were established in HCC cell lines. Cell proliferation was gauged by the colony formation assay and BrdU staining. For measuring apoptosis, flow cytometry and Western blot were implemented. Transwell assay tested cell migration and invasion. miR-142-3p mimics or inhibitors were transfected in Huh7 and HCCLM3 cells. The targeting association between miR-142-3p and PIK3CG was predicted through bioinformatics and further verified by related experiments. The influence of PIK3CG overexpression on miR-142-3p's role in HCC was assayed. A xenografted tumor model was built in mice to validate miR-142-3p knockdown's influence on HCC in vivo. As a result, miR-142-3p exhibited a decreased profile in HCC tissues and cells. Overexpressing miR-142-3p accelerated apoptosis and suppressed the PI3K/AKT/HIF-1α signal. Knocking down miR-142-3p presented opposite effects. PIK3CG overexpression dampened the anti-tumor effect of miR-142-3p. miR-142-3p repressed HCC invasion and intensified apoptosis to restrain HCC by abating the PIK3CG-mediated PI3K/AKT/HIF-1α pathway.
Collapse
Affiliation(s)
- Chuanli Zeng
- Department of Severe Liver Disease, Ningbo HuaMei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Gang Yuan
- Department of Acute Infection, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System, Tumors of Zhejiang Province, China
| | - Yaoren Hu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Donghui Wang
- Department of Acute Infection, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Xiaojun Shi
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Dedong Zhu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Airong Hu
- Institute of Liver Disease, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yina Meng
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jialin Lu
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Phytoglycoprotein isolated from Dioscorea batatas Decne promotes intestinal epithelial wound healing. Chin J Nat Med 2021; 18:738-748. [PMID: 33039053 DOI: 10.1016/s1875-5364(20)60014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 02/01/2023]
Abstract
Dioscorea batatas Decne (DBD) has been used to heal various illnesses of the kidney and intestine as an herbal medicine in Asia. As a source of therapeutic agents, many glycoproteins have been isolated from mushrooms and plants, but the functional role of glycoprotein in intestinal epithelial wound healing has not been understood yet. In the present study, we investigated the wound healing potentials of the 30 kDa glycoprotein (DBD glycoprotein) isolated from DBD in human intestinal epithelial (INT-407) cells. We found that DBD glycoprotein (100 μg·mL-1) significantly increased the motility of INT-407 cells for 24 h by activating protein kinase C (PKC). DBD glycoprotein stimulated the activation of p38 mitogen-activated protein kinase (MAPK), which is responsible for the phosphorylation of NF-κB inhibitor α (IκBα). DBD glycoprotein increased the level of profilin-1 (PFN1), α-actinin and F-actin expression via activation of transcription factor, nuclear factor-kappa B (NF-κB) during its promotion of cell migration. Experimental mouse colitis was induced by adding dextran sulfate sodium (DSS) to the drinking water at a concentration of 4% (W/V) for 7 days. We figured out that administration of DBD glycoprotein (10 and 20 mg·kg-1) lowers the levels of disease activity index and histological inflammation in DSS-treated ICR mice. In this regard, we suggest that DBD glycoprotein has ability to promote the F-actin-related migration signaling events via activation of PKC and NF-κB in intestinal epithelial cells and prevent inflammatory bowel disease.
Collapse
|
12
|
Tousian H, Razavi BM, Hosseinzadeh H. In search of elixir: Pharmacological agents against stem cell senescence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:868-880. [PMID: 34712416 PMCID: PMC8528253 DOI: 10.22038/ijbms.2021.51917.11773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Stem cell senescence causes different complications. In addition to the aging phenomenon, stem cell senescence has been investigated in various concepts such as cancer, adverse drug effects, and as a limiting factor in cell therapy. This manuscript examines protective medicines and supplements which are capable of hindering stem cell senescence. We searched the databases such as EMBASE, PubMed, and Web of Science with the keywords "stem cell," "progenitor cell," "satellite," "senescence" and excluded the keywords "cancer," "tumor," "malignancy" and "carcinoma" until June 2020. Among these results, we chose 47 relevant studies. Our investigation indicates that most of these studies examined endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells, and a few others were about less-discussed types of stem cells such as cardiac stem cells, myeloblasts, and induced pluripotent stem cells. From another aspect, 17β-Estradiol, melatonin, metformin, rapamycin, coenzyme Q10, N-acetyl cysteine, and vitamin C were the most studied agents, while the main protective mechanism was through telomerase activity enhancement or oxidative damage ablation. Although many of these studies are in vitro, they are still worthwhile. Stem cell senescence in the in vitro expansion stage is an essential concern in clinical procedures of cell therapy. Moreover, in vitro studies are the first step for further in vivo and clinical studies. It is noteworthy to mention the fact that these protective agents have been used in the clinical setting for various purposes for a long time. Given that, we only need to examine their systemic anti-senescence effects and effective dosages.
Collapse
Affiliation(s)
- Hourieh Tousian
- Vice-chancellery of Food and Drug,Shahroud University of Medical Sciences, Shahroud, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Liu X, Liu L, Chen K, Sun L, Li W, Zhang S. Huaier shows anti-cancer activities by inhibition of cell growth, migration and energy metabolism in lung cancer through PI3K/AKT/HIF-1α pathway. J Cell Mol Med 2020; 25:2228-2237. [PMID: 33377619 PMCID: PMC7882940 DOI: 10.1111/jcmm.16215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
Huaier has been verified to have anti-cancer effects on many tumours. However, little information is available about the effects of Huaier on non-small cell lung cancer (NSCLC). We sought to probe the anti-cancer effects and related mechanisms of Huaier on lung cancer. A549 cells were pre-treated with 2, 4 and 8 mg/mL Huaier at different time points. Thereafter, cell viability was analysed by CCK-8 and the migration and invasion were detected by Scratch test and Transwell chamber migration assay. Moreover, ELISA, Western blot, shRNA transfection and RT-PCR were conducted to discover the related gene and protein expressions of energy metabolism and phosphatidylinositol 3-kinase (PI3K)/AKT/hypoxia-inducible factor 1α (HIF-1α) pathway. Furthermore, tumour xenografts were accomplished to inspect the anti-cancer effects of Huaier. Our consequences suggested that Huaier considerably repressed cell viability and migration in a dose-dependent way. In addition, Huaier statistically suppressed glycolysis, glucose transport and lactic acid (LA) accumulation. Besides, we detected that Huaier could inactivate the PI3K/AKT/HIF-1α pathway. The in vivo data confirmed that Huaier obviously decreased tumour volume and tumour growth, reduced the glycolysis, glucose transport and HIF-1α expression in the tumour-bearing tissues. Our results suggested Huaier revealed anti-tumour effects in both in vivo and in vitro possibly through PI3K/AKT/HIF-1α pathway.
Collapse
Affiliation(s)
- Xiangli Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Lei Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenya Li
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuguang Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Kim JY, Min T, Lee SJ. Nanospheres loaded with curcumin promote gut epithelial motility through F-actin-related migration signaling events. J Nutr Biochem 2020; 88:108555. [PMID: 33249186 DOI: 10.1016/j.jnutbio.2020.108555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/15/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as an herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we investigated the functional role of nanospheres loaded with curcumin (nCur) with regard to the motility of gut epithelial HCT116 cells and enterocyte migration along the crypt-villus axis. nCur significantly increased the motility of HCT116 cells and showed much higher migration efficacy than the curcumin. nCur stimulated the small GTPases Rac1 and the phosphorylation of protein kinase C, responsible for the distinctive activation of the mitogen-activated protein kinases. Interestingly, nCur significantly induced the expression of α-actinin, profilin-1, and filamentous (F)-actin as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In mouse models of gut epithelial migration, treatment with nCur had an enhancing effect on the movement of enterocytes along the crypt-villus axis and the expression of cytoskeletal reorganization-related factors. These results indicate that nCur is a functional agent that promotes gut epithelial motility through F-actin-related migration signaling events.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Faculty of Biotechnology, SARI, Jeju National University, Jeju, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, Republic of Korea.
| |
Collapse
|
15
|
Florea V, Rieger AC, Natsumeda M, Tompkins BA, Banerjee MN, Schulman IH, Premer C, Khan A, Valasaki K, Heidecker B, Mantero A, Balkan W, Mitrani RD, Hare JM. The impact of patient sex on the response to intramyocardial mesenchymal stem cell administration in patients with non-ischaemic dilated cardiomyopathy. Cardiovasc Res 2020; 116:2131-2141. [PMID: 32053144 PMCID: PMC7584465 DOI: 10.1093/cvr/cvaa004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Sex differences impact the occurrence, presentation, prognosis, and response to therapy in heart disease. Particularly, the phenotypic presentation of patients with non-ischaemic dilated cardiomyopathy (NIDCM) differs between men and women. However, whether the response to mesenchymal stem cell (MSC) therapy is influenced by sex remains unknown. We hypothesize that males and females with NIDCM respond similarly to MSC therapy. METHODS AND RESULTS Male (n = 24) and female (n = 10) patients from the POSEIDON-DCM trial who received MSCs via transendocardial injections were evaluated over 12 months. Endothelial function was measured at baseline and 3 months post-transendocardial stem cell injection (TESI). At baseline, ejection fraction (EF) was lower (P = 0.004) and end-diastolic volume (EDV; P = 0.0002) and end-systolic volume (ESV; P = 0.0002) were higher in males vs. females. In contrast, baseline demographic characteristics, Minnesota Living with Heart Failure Questionnaire (MLHFQ), and 6-min walk test (6MWT) were similar between groups. EF improved in males by 6.2 units (P = 0.04) and in females by 8.6 units (P = 0.04; males vs. females, P = 0.57). EDV and ESV were unchanged over time. The MLHFQ score, New York Heart Association (NYHA) class, endothelial progenitor cell-colony forming units, and serum tumour necrosis factor alpha improved similarly in both groups. CONCLUSION Despite major differences in phenotypic presentation of NIDCM in males and females, this study is the first of its kind to demonstrate that MSC therapy improves a variety of parameters in NIDCM irrespective of patient sex. These findings have important clinical and pathophysiologic implications regarding the impact of sex on responses to cell-based therapy for NIDCM.
Collapse
Affiliation(s)
- Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Makoto Natsumeda
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Bryon A Tompkins
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monisha N Banerjee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Bettina Heidecker
- Department of Cardiology, Charite Berlin University of Medicine, Berlin, Germany
| | - Alejandro Mantero
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Raul D Mitrani
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Al Hosni R, Shah M, Cheema U, Roberts HC, Luyten FP, Roberts SJ. Mapping human serum-induced gene networks as a basis for the creation of biomimetic periosteum for bone repair. Cytotherapy 2020; 22:424-435. [PMID: 32522398 DOI: 10.1016/j.jcyt.2020.03.434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The periosteum is a highly vascularized, collagen-rich tissue that plays a crucial role in directing bone repair. This is orchestrated primarily by its resident progenitor cell population. Indeed, preservation of periosteum integrity is critical for bone healing. Cells extracted from the periosteum retain their osteochondrogenic properties and as such are a promising basis for tissue engineering strategies for the repair of bone defects. However, the culture expansion conditions and the way in which the cells are reintroduced to the defect site are critical aspects of successful translation. Indeed, expansion in human serum and implantation on biomimetic materials has previously been shown to improve in vivo bone formation. AIM This study aimed to develop a protocol to allow for the expansion of human periosteum derived cells (hPDCs) in a biomimetic periosteal-like environment. METHODS The expansion conditions were defined through the investigation of the bioactive cues involved in augmenting hPDC proliferative and multipotency characteristics, based on transcriptomic analysis of cells cultured in human serum. RESULTS Master regulators of transcriptional networks were identified, and an optimized periosteum-derived growth factor cocktail (PD-GFC; containing β-estradiol, FGF2, TNFα, TGFβ, IGF-1 and PDGF-BB) was generated. Expansion of hPDCs in PD-GFC resulted in serum mimicry with regard to the cell morphology, proliferative capacity and chondrogenic differentiation. When incorporated into a three-dimensional collagen type 1 matrix and cultured in PD-GFC, the hPDCs migrated to the surface that represented the matrix topography of the periosteum cambium layer. Furthermore, gene expression analysis revealed a down-regulated WNT and TGFβ signature and an up-regulation of CREB, which may indicate the hPDCs are recreating their progenitor cell signature. CONCLUSION This study highlights the first stage in the development of a biomimetic periosteum, which may have applications in bone repair.
Collapse
Affiliation(s)
- Rawiya Al Hosni
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Umber Cheema
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Roberts
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, London, UK
| | - Frank P Luyten
- Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and
| | - Scott J Roberts
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK; Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and; Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| |
Collapse
|
17
|
Aonuma T, Tamamura N, Fukunaga T, Sakai Y, Takeshita N, Shigemi S, Yamashiro T, Thesleff I, Takano-Yamamoto T. Delayed tooth movement in Runx2 +/- mice associated with mTORC2 in stretch-induced bone formation. Bone Rep 2020; 12:100285. [PMID: 32509933 PMCID: PMC7264061 DOI: 10.1016/j.bonr.2020.100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Runt-related transcription factor 2 (Runx2) is an essential transcription factor for osteoblast differentiation, and is activated by mechanical stress to promote osteoblast function. Cleidocranial dysplasia (CCD) is caused by mutations of RUNX2, and CCD patients exhibit malocclusion and often need orthodontic treatment. However, treatment is difficult because of impaired tooth movement, the reason of which has not been clarified. We examined the amount of experimental tooth movement in Runx2+/− mice, the animal model of CCD, and investigated bone formation on the tension side of experimental tooth movement in vivo. Continuous stretch was conducted to bone marrow stromal cells (BMSCs) as an in vitro model of the tension side of tooth movement. Compared to wild-type littermates the Runx2+/− mice exhibited delayed experimental tooth movement, and osteoid formation and osteocalcin (OSC) mRNA expression were impaired in osteoblasts on the tension side of tooth movement. Runx2 heterozygous deficiency delayed stretch-induced increase of DNA content in BMSCs, and also delayed and reduced stretch-induced alkaline phosphatase (ALP) activity, OSC mRNA expression, and calcium content of BMSCs in osteogenic medium. Furthermore Runx2+/− mice exhibited delayed and suppressed expression of mammalian target of rapamycin (mTOR) and rapamycin-insensitive companion of mTOR (Rictor), essential factors of mTORC2, which is regulated by Runx2 to phosphorylate Akt to regulate cell proliferation and differentiation, in osteoblasts on the tension side of tooth movement in vivo and in vitro. Loss of half Runx2 gene dosage inhibited stretch-induced PI3K dependent mTORC2/Akt activity to promote BMSCs proliferation. Furthermore, Runx2+/− BMSCs in osteogenic medium exhibited delayed and suppressed stretch-induced expression of mTOR and Rictor. mTORC2 regulated stretch-elevated Runx2 and ALP mRNA expression in BMSCs in osteogenic medium. We conclude that Runx2+/− mice present a useful model of CCD patients for elucidation of the molecular mechanisms in bone remodeling during tooth movement, and that Runx2 plays a role in stretch-induced proliferation and osteogenesis in BMSCs via mTORC2 activation. Experimental tooth movement is delayed in Runx2+/− mice compared with wild-type mice. Runx2 plays a role in stretch-induced proliferation and differentiation of BMSCs via mTORC2 activation. Runx2+/− mice are useful model to clarify the mechanical stress-induced bone remodeling in CCD patients.
Collapse
Affiliation(s)
- Tomo Aonuma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nagato Tamamura
- Department of Orthodontics and Dentofacial Orthopedics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuichi Sakai
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shohei Shigemi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Irma Thesleff
- Research Program in Developmental Biology, Institute of Biotechnology, POB56, University of Helsinki, 00014 Helsinki, Finland
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| |
Collapse
|
18
|
Li HY, Yuan Y, Fu YH, Wang Y, Gao XY. Hypoxia-inducible factor-1α: A promising therapeutic target for vasculopathy in diabetic retinopathy. Pharmacol Res 2020; 159:104924. [PMID: 32464323 DOI: 10.1016/j.phrs.2020.104924] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a serious condition that can cause blindness in diabetic patients. It is a neurovascular disease, but the pathogenesis leading to the onset of this disease is still not completely understood. However, hypoxia with subsequent neovascularization is a characteristic phenomenon observed with DR. Cellular response to hypoxia is mediated by the transcriptional regulator hypoxia-inducible factor (HIF). Long-term research has shown that one isotype of HIF, HIF-1α, may play a pivotal role under hypoxic conditions, and an increasing number of studies have shown that HIF-1α and its target genes contribute to retinal neovascularization. Therefore, targeting HIF-1α may lead to more effective DR treatments. This review describes the possible mechanisms of HIF-1α in neovascularization of DR. Furthermore, various inhibitors of HIF-1α that may have viable potential in the treatment of DR are also discussed.
Collapse
Affiliation(s)
- Hui-Yao Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yue Yuan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yu-Hong Fu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ying Wang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin-Yuan Gao
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
19
|
Tousian H, Razavi BM, Hosseinzadeh H. Looking for immortality: Review of phytotherapy for stem cell senescence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:154-166. [PMID: 32405357 PMCID: PMC7211350 DOI: 10.22038/ijbms.2019.40223.9522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, we discussed natural agents with protective effects against stem cell senescence. Different complications have been observed due to stem cell senescence and the most important of them is "Aging". Senescent cells have not normal function and their secretary inflammatory factors induce chronic inflammation in body which causes different pathologies. Stem cell senescence also has been investigated in different diseases or as drug adverse effects. We searched databases such as Embase, Pubmed and Web of Science with keywords "stem cell", "progenitor cell", "satellite", "senescence" and excluded keywords "cancer", "tumor", "malignancy" and "carcinoma" without time limitation until May 2019. Among them we chose 52 articles that have investigated protective effects of natural agents (extracts or molecules) against cellular senescence in different kind of adult stem cells. Most of these studies were in endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells and few were about other kinds of stem cells. Most studied agents were resveratrol and ginseng which are also commercially available as supplement. Most protective molecular targets were telomerase and anti-oxidant enzymes to preserve genome integrity and reduce senescence-inducing signals. Due to the safe and long history of herbal usage in clinic, phytotherapy can be used for preventing stem cell senescence and their related complication. Resveratrol and ginseng can be the first choice for this aim due to their protective mechanisms in various kinds of stem cells and their long term clinical usage.
Collapse
Affiliation(s)
- Hourieh Tousian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
21
|
Liu D, Song G, Ma Z, Geng X, Dai Y, Yang T, Meng H, Gong J, Zhou B, Song Z. Resveratrol improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells in rats with severe acute pancreatitis. Int Immunopharmacol 2020; 80:106128. [PMID: 31978799 DOI: 10.1016/j.intimp.2019.106128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Bone marrow-derived mesenchymal stem cells (BMSCs) are effective in the treatment of severe acute pancreatitis (SAP), but their therapeutic effects could still be improved. In order to optimize the clinical application of BMSCs, we adopted the strategy of resveratrol (Res) pretreatment of BMSCs (Res-BMSCs) and applied it to a rat model of sodium taurocholate (NaT)-induced acute pancreatitis. METHODS SAP was induced by injection of 3% NaT into the pancreatic duct and successful induction of SAP occurred after 12 h. Rats were treated with BMSCs, Res or BMSCs primed with Res at 40 mmol/L, Vandetanib (ZD6474) daily oral dosages of 50 mg/kg vandetanib. RESULTS Res stimulated BMSCs to secrete vascular endothelial growth factor A (VEGFA), activated the downstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, and inhibited pancreatic cell apoptosis. In addition, conditioned medium (CM) from Res-BMSCs enhanced the proliferation of human umbilical vein endothelial cells (HUVECs) in vitro, increased resistance to apoptosis and promoted the expression of angiogenesis-related proteins CD31, VEGF and VEGFR2 in pancreatic tissue, but Vandetanib partly abolished these effects by blocking the VEGFA- mediated pathway. CONCLUSION Resveratrol-preprocessed BMSCs can activate the PI3K/AKT signaling pathway in pancreatic cells and HUVECs through paracrine release of VEGFA; thus, achieving the therapeutic effect of resisting apoptosis of pancreatic cells and promoting regeneration of damaged blood vessels. Res pretreatment may be a new strategy to improve the therapeutic effect of BMSCs on SAP.
Collapse
Affiliation(s)
- Dalu Liu
- Shanghai Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200072, China
| | - Xiang Geng
- The Affiliated Changzhou NO. 2 People's Hospital of Najing Medical University, Changzhou 213000, China
| | - Yuxiang Dai
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China.
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China
| | - Zhenshun Song
- Shanghai Clinical Medical College of Anhui Medical University, Hefei 230032, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, China.
| |
Collapse
|
22
|
Role of Erythromycin-Regulated Histone Deacetylase-2 in Benign Tracheal Stenosis. Can Respir J 2020; 2020:4213807. [PMID: 32051729 PMCID: PMC6995498 DOI: 10.1155/2020/4213807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022] Open
Abstract
Objective This study aims to explore the role of erythromycin-regulated histone deacetylase-2 in benign tracheal stenosis. Methods The rabbit model of tracheal stenosis was established. The rabbits were randomly divided into 8 groups. Histone deacetylase-2 (HDAC2) expression was detected by immunofluorescence. The expression of type I collagen and type III collagen was detected by immunohistochemical method. The expression of TGF-β1, VEGF and IL-8 in serum and alveolar lavage fluid was detected by ELISA. The expression of HDAC2, TGF-β1, VEGF and IL-8 in serum and alveolar lavage fluid was detected by ELISA. The expression of HDAC2, TGF- Results In Erythromycin (ERY) group, ERY + Budesonide group, ERY + Vorinostat group and ERY + Budesonide + Vorinostat group, the degree of bronchial stenosis was alleviated, and the mucosal epithelium was still slightly proliferated. The effect of ERY combined with other drugs was more obvious. The HDAC2 protein expression increased significantly in ERY group, ERY + Budesonide group and ERY + Budesonide + Vorinostat group and decreased significantly in Vorinostat group, the expression of collagen I and III decreased significantly in ERY group, ERY + Budesonide group and ERY + Budesonide + Vorinostat group (P < 0.05). The TGF-β1, VEGF and IL-8 in serum and alveolar lavage fluid was detected by ELISA. The expression of HDAC2, TGF-P < 0.05). The TGF- Conclusions Erythromycin inhibited inflammation and excessive proliferation of granulation tissue after tracheobronchial mucosal injury by up-regulating the expression of HDAC2, it promoted wound healing and alleviated tracheobronchial stenosis. When combined with budesonide, penicillin and other glucocorticoids and antibiotics, it had a good synergistic effect. However, vorinostat could attenuate erythromycin's effect by down-regulating the expression of HDAC2. It may have good clinical application prospects in the treatment of tracheal stenosis.
Collapse
|
23
|
Heidari Barchi Nezhad R, Asadi F, Abtahi Froushani SM, Hassanshahi G, Kaeidi A, Khanamani Falahati-Pour S, Hashemi Z, Mirzaei MR. The effects of transplanted mesenchymal stem cells treated with 17-b estradiol on experimental autoimmune encephalomyelitis. Mol Biol Rep 2019; 46:6135-6146. [PMID: 31555971 DOI: 10.1007/s11033-019-05048-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
The present study was conducted aimed at exploring the modulatory effects of 17-b estradiol (17-bED) on mesenchymal stem cells (MSCs) in the EAE (experimental autoimmune encephalomyelitis) animal model of multiple sclerosis (MS). Following the isolation of bone marrow-derived MSCs from the bilateral femurs and tibias of the male Wistar rats, the cells were harvested and cultured in the presence of 100 nM 17-bED for 24 h. EAE was induced in male Wistar rats (8-12 weeks old) using guinea pig spinal cord homogenate, in combination with the complete Freund's adjuvant. The MSC therapy was triggered when all of the animals obtained a disability score. The symptoms were monitored on a daily basis throughout the study until the rats were euthanized. The mRNA expression of cytokines, including IL-17, IFN-γ, TNF-α, IL-10, IL-4, and TGF-β together with MMP8 and MMP9 as the family members of matrix metalloproteinases (MMPs) in the brain and spinal cord tissues were examined using real-time PCR. The levels of splenocytes-originated IL-10 and IFN-γ cytokines were also measured by ELISA. The MTT-based research findings showed that the infiltration of lymphocytes into the spleen decreased considerably. It was also observed that the mRNA expression of proinflammatory cytokines decreased significantly, while the mRNA levels of anti-inflammatory cytokines increased remarkably. It was also found that the mRNA levels of the examined matrix metalloproteinases (MMP8 and MMP9) were downregulated significantly. The findings of the present study indicated that the administration of 17-bED enhanced the efficacy of MSCs transplantation and modulated immune responses relatively in the EAE model, via the regulation of either pro- or anti-inflammatory cytokines and matrix metalloproteinases.
Collapse
Affiliation(s)
- Rahim Heidari Barchi Nezhad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Fateme Asadi
- Department of Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Zahra Hashemi
- Department of General Subjects, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| |
Collapse
|
24
|
Irani YD, Pulford E, Mortimer L, Irani S, Butler L, Klebe S, Williams KA. Sex differences in corneal neovascularization in response to superficial corneal cautery in the rat. PLoS One 2019; 14:e0221566. [PMID: 31479468 PMCID: PMC6719872 DOI: 10.1371/journal.pone.0221566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/10/2019] [Indexed: 12/23/2022] Open
Abstract
Sex-based differences in susceptibility have been reported for a number of neovascular ocular diseases. We quantified corneal neovascularization, induced by superficial silver nitrate cautery, in male and female inbred albino Sprague-Dawley, inbred albino Fischer 344, outbred pigmented Hooded Wistar and inbred pigmented Dark Agouti rats of a range of ages. Corneal neovascular area was quantified on haematoxylin-stained corneal flatmounts by image analysis. Pro-and anti-angiogenic gene expression was measured early in the neovascular response by quantitative real-time polymerase chain reaction. Androgen and estrogen receptor expression was assessed by immunohistochemistry. Male rats from all strains, with or without ocular pigmentation, exhibited significantly greater corneal neovascular area than females: Sprague-Dawley males 43±12% (n = 8), females 25±5% (n = 12), p = 0.001; Fischer 344 males 38±10% (n = 12) females 27±8% (n = 8) p = 0.043; Hooded Wistar males 32±6% (n = 8) females 22±5% (n = 12) p = 0.002; Dark Agouti males 37±11% (n = 9) females 26±7% (n = 9) p = 0.015. Corneal vascular endothelial cells expressed neither androgen nor estrogen receptor. The expression in cornea post-cautery of Cox-2, Vegf-a and Vegf-r2 was significantly higher in males compared with females and Vegf-r1 was significantly lower in the cornea of males compared to females, p<0.001 for each comparison. These data suggest that male corneas are primed for angiogenesis through a signalling nexus involving Cox-2, Vegf-a, and Vegf receptors 1 and 2. Our findings re-enforce that pre-clinical animal models of human diseases should account for sex-based differences in their design and highlight the need for well characterized and reproducible pre-clinical studies that include both male and female animals.
Collapse
Affiliation(s)
- Yazad D. Irani
- Discipline of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Emily Pulford
- Discipline of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Lauren Mortimer
- Discipline of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Discipline of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Swati Irani
- Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lisa Butler
- Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sonja Klebe
- Discipline of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Keryn A. Williams
- Discipline of Ophthalmology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
25
|
Han KH, Kim MH, Jeong GJ, Kim AK, Chang JW, Kim DI. FGF-17 from Hypoxic Human Wharton's Jelly-Derived Mesenchymal Stem Cells Is Responsible for Maintenance of Cell Proliferation at Late Passages. Int J Stem Cells 2019; 12:279-290. [PMID: 31022995 PMCID: PMC6657939 DOI: 10.15283/ijsc18042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Although it is well known that hypoxic culture conditions enhance proliferation of human mesenchymal stem cells, the exact mechanism is not fully understood. In this study, we investigated the effect of fibroblast growth factor (FGF)-17 from hypoxic human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on cell proliferation at late passages. Methods and Results hWJ-MSCs were cultured in α-MEM medium supplemented with 10% fetal bovine serum (FBS) in normoxic (21% O2) and hypoxic (1% O2) conditions. Protein antibody array was performed to analyze secretory proteins in conditioned medium from normoxic and hypoxic hWJ-MSCs at passage 10. Cell proliferation of hypoxic hWJ-MSCs was increased compared with normoxic hWJ-MSCs from passage 7 to 10, and expression of secretory FGF-17 was highly increased in conditioned medium from hypoxic hWJ-MSCs at passage 10. Knockdown of FGF-17 in hypoxic and normoxic hWJ-MSCs decreased cell proliferation, whereas treatment of hypoxic and normoxic hWJ-MSCs with recombinant protein FGF-17 increased their proliferation. Signal transduction of FGF-17 in hypoxic and normoxic hWJ-MSCs involved the ERK1/2 pathway. Cell phenotypes were not changed under either condition. Differentiation-related genes adiponectin, Runx2, and chondroadherin were downregulated in normoxic hWJ-MSCs treated with rFGF-17, and upregulated by siFGF-17. Expression of alkaline phosphatase (ALP), Runx2, and chondroadherin was upregulated in hypoxic hWJ-MSCs, and this effect was rescued by transfection with siFGF-17. Only chondroadherin was upregulated in hypoxic hWJ-MSCs with rFGF-17. Conclusions In hypoxic culture conditions, FGF-17 from hypoxic hWJ-MSCs contributes to the maintenance of high proliferation at late passages through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Hee Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gun-Jae Jeong
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Han HJ. Role of HIF1 α Regulatory Factors in Stem Cells. Int J Stem Cells 2019; 12:8-20. [PMID: 30836734 PMCID: PMC6457711 DOI: 10.15283/ijsc18109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF1) is a master transcription factor that induces the transcription of genes involved in the metabolism and behavior of stem cells. HIF1-mediated adaptation to hypoxia is required to maintain the pluripotency and survival of stem cells under hypoxic conditions. HIF1 activity is well known to be tightly controlled by the alpha subunit of HIF1 (HIF1α). Understanding the regulatory mechanisms that control HIF1 activity in stem cells will provide novel insights into stem cell biology under hypoxia. Recent research has unraveled the mechanistic details of HIF1α regulating processes, suggesting new strategies for regulating stem cells. This review summarizes recent experimental studies on the role of several regulatory factors (including calcium, 2-oxoglutarate-dependent dioxygenase, microtubule network, importin, and coactivators) in regulating HIF1α activity in stem cells.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| |
Collapse
|
27
|
Wiegering A, Rüther U, Gerhardt C. The Role of Primary Cilia in the Crosstalk between the Ubiquitin⁻Proteasome System and Autophagy. Cells 2019; 8:cells8030241. [PMID: 30875746 PMCID: PMC6468794 DOI: 10.3390/cells8030241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Protein degradation is a pivotal process for eukaryotic development and homeostasis. The majority of proteins are degraded by the ubiquitin⁻proteasome system and by autophagy. Recent studies describe a crosstalk between these two main eukaryotic degradation systems which allows for establishing a kind of safety mechanism. If one of these degradation systems is hampered, the other compensates for this defect. The mechanism behind this crosstalk is poorly understood. Novel studies suggest that primary cilia, little cellular protrusions, are involved in the regulation of the crosstalk between the two degradation systems. In this review article, we summarise the current knowledge about the association between cilia, the ubiquitin⁻proteasome system and autophagy.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
28
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
29
|
Wu CH, Chuang HY, Wang CL, Hsu CY, Long CY, Hsieh TH, Tsai EM. Estradiol induces cell proliferation in MCF‑7 mammospheres through HER2/COX‑2. Mol Med Rep 2019; 19:2341-2349. [PMID: 30664162 DOI: 10.3892/mmr.2019.9879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)44+/CD24- breast cancer cells have stem cell‑like characteristics and are potent initiators of tumorigenesis. Mammosphere cells can partially initiate breast tumorigenesis by inducing estradiol (E2)‑dependent breast cancer cells. However, the mechanisms by which E2 mediates cancer formation in MCF‑7 mammosphere (MS) cells have remained elusive. In the present study, MS cells were isolated by sphere culture. It was possible to maintain these MS cells in culture for long periods of time, while retaining the CD44+/CD24- stem cell marker status. The CD44+/CD24- status was confirmed by flow cytometry. Furthermore, the stem‑cell markers Musashi‑1, cytokeratin (CK)7 and CK19 were identified by immunofluorescence microscopy. It was revealed that treatment of MS cells with E2 increased the expression of CD44, whereas decreased the expression of CD24 on MS cells. In addition, treatment with E2 increased colony formation by MS cells. E2 also induced cyclooxygenase‑2 (COX‑2) expression in MS cells, which promoted their proliferation through the estrogen receptor/human epidermal growth factor receptor 2 (HER2)/mitogen‑activated protein kinase/phosphoinositide‑3 kinase signaling pathway. The results suggested a tumorigenic mechanism by which E2 promotes tumor cell proliferation via HER2/COX‑2 signaling. The present study provided evidence for the molecular impact of E2 on breast tumorigenesis, and suggested possible strategies for preventing and treating human breast cancer.
Collapse
Affiliation(s)
- Chin-Hu Wu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chiu-Lin Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Tsung-Hua Hsieh
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Sanmin, Kaohsiung 807, Taiwan R.O.C
| |
Collapse
|
30
|
The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. J Vasc Surg 2018; 68:127S-135S. [PMID: 30064832 DOI: 10.1016/j.jvs.2018.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) are the key cells of postnatal neovascularization, and mesenchymal stem cells (MSCs) possess pluripotent differentiation capacity and contribute to tissue regeneration and wound healing. Both EPCs and MSCs are critical to the wound repair process, which is hindered in diabetes mellitus. Diabetes has been shown to decrease the function of these progenitor cells, whereas estrogen has beneficial wound healing effects. However, the role of estrogen in modulating EPC and MSC biology in diabetes is unknown. We investigated the effect of estrogen on improving bone marrow (BM)-derived EPC and MSC function using a murine diabetic wound healing model. METHODS Female diabetic db+/db+ and nondiabetic control mice were wounded cutaneously and treated with topical estrogen or placebo cream. On day 5 after wounding, BM cells were harvested to quantify EPC number and colony-forming units of EPCs and MSCs. Wound healing rate was concurrently studied. Vessel density and scar density were then quantified using whole body perfusion and laser confocal microscopy. EPC recruitment was documented by immunohistochemistry to identify CD34- and vascular endothelial growth factor receptor 2-positive cells in the vessel wall. Data were analyzed by analysis of variance. RESULTS Topical estrogen significantly increased colony-forming units of both EPCs and MSCs compared with placebo treatment, indicating improved viability and proliferative ability of these cells. Consistently, increased recruitment of EPCs to diabetic wounds and higher vessel density were observed in estrogen-treated compared with placebo-treated mice. Consequently, topical estrogen significantly accelerated wound healing as early as day 6 after wounding. In addition, scar density resulting from collagen deposition was increased in the estrogen-treated group, reflecting increased MSC activity and differentiation. CONCLUSIONS Estrogen treatment increases wound healing and wound neovascularization in diabetic mice. Our data implicate that these beneficial effects may be mediated through improving the function of BM-derived EPCs and MSCs.
Collapse
|
31
|
Yun SP, Han YS, Lee JH, Kim SM, Lee SH. Melatonin Rescues Mesenchymal Stem Cells from Senescence Induced by the Uremic Toxin p-Cresol via Inhibiting mTOR-Dependent Autophagy. Biomol Ther (Seoul) 2018; 26:389-398. [PMID: 28655071 PMCID: PMC6029684 DOI: 10.4062/biomolther.2017.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
p-Cresol, found at high concentrations in the serum of chronic kidney failure patients, is known to cause cell senescence and other complications in different parts of the body. p-Cresol is thought to mediate cytotoxic effects through the induction of autophagy response. However, toxic effects of p-cresol on mesenchymal stem cells have not been elucidated. Thus, we aimed to investigate whether p-cresol induces senescence of mesenchymal stem cells, and whether melatonin can ameliorate abnormal autophagy response caused by p-cresol. We found that p-cresol concentration-dependently reduced proliferation of mesenchymal stem cells. Pretreatment with melatonin prevented pro-senescence effects of p-cresol on mesenchymal stem cells. We found that by inducing phosphorylation of Akt and activating the Akt signaling pathway, melatonin enhanced catalase activity and thereby inhibited the accumulation of reactive oxygen species induced by p-cresol in mesenchymal stem cells, ultimately preventing abnormal activation of autophagy. Furthermore, preincubation with melatonin counteracted other pro-senescence changes caused by p-cresol, such as the increase in total 5′-AMP-activated protein kinase expression and decrease in the level of phosphorylated mechanistic target of rapamycin. Ultimately, we discovered that melatonin restored the expression of senescence marker protein 30, which is normally suppressed because of the induction of the autophagy pathway in chronic kidney failure patients by p-cresol. Our findings suggest that stem cell senescence in patients with chronic kidney failure could be potentially rescued by the administration of melatonin, which grants this hormone a novel therapeutic role.
Collapse
Affiliation(s)
- Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Sang Min Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| |
Collapse
|
32
|
Yuan H, Xiao L, Min W, Yuan W, Lu S, Huang G. Bu-Shen-Tong-Luo decoction prevents bone loss via inhibition of bone resorption and enhancement of angiogenesis in ovariectomy-induced osteoporosis of rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:228-238. [PMID: 29317302 DOI: 10.1016/j.jep.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gathering three ancient formulas, traditional Chinese medicine Bu-Shen-Tong-Luo decoction (BSTLD) has been used to treat postmenopausal osteoporosis (PMO) at the Jiangsu Province Hospital of Chinese Medicine for decades. However, the effect of BSTLD on angiogenesis and bone resorption as well as its possible mechanism are still unknown. AIM OF THE STUDY This study was aimed to evaluate the preventive effect of BSTLD on ovariectomy-induced bone loss and vasculature disorder, and to investigate the possible bone protection mechanism of BSTLD in inhibiting bone resorption by enhancing angiogenesis signaling in ovariectomy-induced osteoporosis of rats. MATERIALS AND METHODS The animal experiment was divided into five groups. Rats underwent either sham surgery with intact ovaries (SHAM, n = 10) or bilateral ovariectomy (OVX, n = 40). OVX rats were randomly divided into four groups and gavaged by water (vehicle, 12 mL/kg, n = 10), BSTLD (6 g/kg, n = 10), BSTLD (12 g/kg, n = 10) and 17β-estradiol (E2, 100 μg/kg, n = 10) daily for 12 weeks, respectively. The bone loss and microstructure of the distal femur were observed using micro-computed tomography (μCT). The biomechanical parameters of the femur were detected using three-point bending tests. The distribution of osteoclasts and endothelial cells were analyzed by immunohistochemistry. The mRNA and protein levels of angiogenesis-related hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), as well as osteoclast activation-related signaling calcitonin receptor (CALCR), cathepsin K (CTSK), receptor activator of NF-κB ligand (RANKL), osteoprotegerin (OPG), and β-catenin were assayed by RT-PCR or Western blot. RESULTS BSTLD protected trabecular bone mass density and trabecular bone microstructure from ovariectomy-induced osteoporosis in rats. BSTLD significantly reduced mRNA and protein levels of calcitonin receptor and CTSK in femoral metaphysis and inhibited bone resorption in ovariectomized rats. Furthermore, BSTLD stabilized HIF-1α activity and subsequently increased VEGF expression to enhance angiogenesis and modulated RANKL/OPG signaling in this animal model. CONCLUSIONS These results demonstrated that BSTLD reduced osteoclasts activation and bone resorption in ovariectomy-induced osteoporosis. Bone protection by BSTLD may be associated with its stimulation of HIF-1α/VEGF angiogenesis signaling and suppression of RANKL/OPG ratio. This study may provide evidence that BSTLD treats postmenopausal osteoporosis, especially with micro-circulation complication.
Collapse
Affiliation(s)
- Han Yuan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Linyan Xiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wen Min
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wenchao Yuan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Guicheng Huang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
33
|
Rink BE, Kuhl J, Esteves CL, French HM, Watson E, Aurich C, Donadeu FX. Reproductive stage and sex steroid hormone levels influence the expression of mesenchymal stromal cell (MSC) markers in the equine endometrium. Theriogenology 2018; 116:34-40. [PMID: 29775846 DOI: 10.1016/j.theriogenology.2018.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/25/2023]
Abstract
Mesenchymal stem or stromal cells (MSCs) play key roles in tissue homeostasis. In the cyclic equine endometrium, this may be regulated by changes in serum concentrations of sex steroid hormones. This study was designed to investigate the changes in endometrial expression of MSC markers during reproductive cycles in mares and the influence of sex steroid hormones on endometrial MSC proliferation in vitro. Endometrial biopsies were collected from pony mares at different reproductive stages (estrus; day 5 and 13 after ovulation; seasonal anestrus; 20 h and 7days post-partum; n = 5 per stage) and were analyzed by RT-qPCR. MSC (CD29, CD44, CD73, CD90, CD105) and perivascular (CD146, NG2) markers were present in all samples irrespective of reproductive stage. Transcript levels of most markers were present at lowest levels on day 5 after ovulation and at 20 h post-partum. MSCs isolated from endometrial tissue (n = 6 mares) were cultured in the presence of progesterone (0.01-100 μM) and estradiol 17β (0.1-1 μM), and cell proliferation was analyzed using alamarBlue® assay. Relative to cells incubated in steroid-depleted media, both progesterone and estradiol 17β moderately increased cell proliferation (1.1- and 1.2-fold, respectively) independently of the concentration used. In conclusion, our results suggest that levels of MSC markers in equine endometrium dynamically change across reproductive cycles and that MSC populations are in part regulated by sex steroids.
Collapse
Affiliation(s)
- B Elisabeth Rink
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies; Artificial Inseminaton and Embryo Transfer, Department for Companion Animals and Horses, Vetmeduni Vienna, Vienna, Austria; The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Juliane Kuhl
- Artificial Inseminaton and Embryo Transfer, Department for Companion Animals and Horses, Vetmeduni Vienna, Vienna, Austria
| | | | - Hilari M French
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Elaine Watson
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Christine Aurich
- Artificial Inseminaton and Embryo Transfer, Department for Companion Animals and Horses, Vetmeduni Vienna, Vienna, Austria.
| | | |
Collapse
|
34
|
Effects of estradiol on HIF-1α expression and trophoblast differentiation in first trimester villous explant cultures. Obstet Gynecol Sci 2017; 61:71-78. [PMID: 29372152 PMCID: PMC5780324 DOI: 10.5468/ogs.2018.61.1.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 01/27/2023] Open
Abstract
Objective The purpose of this study was to investigate the effects of estradiol on the expression of hypoxia-inducible factor (HIF)-1α and the differentiation of trophoblasts in human first trimester villous explant cultures. Methods Villous explant cultures were established from first trimester human placentas (6-8 weeks of gestation, n=3). Normal villous tissues were explanted on Matrigel and incubated under 3% O2 tension for 5 days. To evaluate the effects of estradiol on the villous explant cultures, 1 ng/mL of estradiol was added to the culture medium. The morphological integrities and viabilities of the villous explants were monitored. Immunohistochemistry for α5 and α1 integrin was performed to assess differentiation of extravillous trophoblasts (EVTs). Expression of HIF-1α in villous explant cultures was evaluated by western blotting and densitometry. Results EVTs emerging from first trimester villous explant cultures formed outgrowths of cells from the distal ends and invaded the surrounding Matrigel. Exposure of villous explants to estradiol resulted in the decreased outgrowth of cells from the distal end and decreased expression of α5 integrin. However, estradiol treatment increased the invasion of villous explants into the surrounding Matrigel, concomitant with the increased expression of α1 integrin, indicating differentiation of EVTs into more invasive EVTs. On western blots, the expression of HIF-1α decreased significantly after treatment with estradiol under 3% O2 tension. Conclusion Our findings suggest that estradiol may downregulate expression of HIF-1α in placenta, which in turn promote trophoblast differentiation into invasive phenotype.
Collapse
|
35
|
Li Y, Liu Y, Lu Y, Zhao B. Inhibitory effects of 17β-estradiol or a resveratrol dimer on hypoxia-inducible factor-1α in genioglossus myoblasts: Involvement of ERα and its downstream p38 MAPK pathways. Int J Mol Med 2017; 40:1347-1356. [PMID: 28901388 PMCID: PMC5627877 DOI: 10.3892/ijmm.2017.3123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/23/2017] [Indexed: 11/05/2022] Open
Abstract
Deficiency in the functioning of the genioglossus, which is one of the upper airway dilator muscles, is an important cause of obstructive sleep apnea/hypopnea syndrome (OSAHS). Estrogens have been reported to inhibit hypoxia-inducible factor-1α (HIF-1α) expression in hypoxia, regulating its target genes and exerting protective effects on the genioglossus in chronic intermittent hypoxia (CIH). This study aimed to investigate the role of 17β-estradiol (E2) and a resveratrol dimer (RD) on HIF-1α and the underlying mechanism. Mouse genioglossus myoblasts were isolated and cultured, and the estrogen receptor α (ERα) shRNA lentivirus was used for gene knockdown. Then MTT assay was used to determine the effects of E2 and RD on the viability of the cells. Cells in different groups were treated with different agents (E2, or RD, or E2 and SB203580), incubated under normoxia or hypoxia for 24 h, and then expression levels of HIF-1α, ERα, ERβ, total-p38 MAPK and phospho-p38 MAPK were detected. We observed that both E2 and RD inhibited the overexpression of HIF-1α induced by hypoxia at the mRNA and protein levels, and these effects were eliminated by genetic silencing of ERα by RNAi. In addition, we found that E2 activated p38 MAPK pathways to inhibit HIF-1α expression. On the whole, ERα may be responsible for downregulation of HIF-1α by E2 or RD via activation of downstream p38 MAPK pathways.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Yuehua Liu
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai 200001, P.R. China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai 200001, P.R. China
| |
Collapse
|
36
|
Moslehi A, Hashemi-Beni B, Moslehi A, Akbari MA, Adib M. The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:341-6. [PMID: 27382350 PMCID: PMC4930902 DOI: 10.4196/kjpp.2016.20.4.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/22/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
Abstract
Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p value<0.05). High P4 concentration increased mHLA-G but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs.
Collapse
Affiliation(s)
- Akram Moslehi
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Batool Hashemi-Beni
- Department of Anatomical Science and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Azam Moslehi
- Department of Physiology & Pharmacology, Medical School, Qom University of Medical Sciences, Qom 3713649373, Iran
| | - Maryam Ali Akbari
- Department of Anatomical Science and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Minoo Adib
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
37
|
Gerhardt C, Leu T, Lier JM, Rüther U. The cilia-regulated proteasome and its role in the development of ciliopathies and cancer. Cilia 2016; 5:14. [PMID: 27293550 PMCID: PMC4901515 DOI: 10.1186/s13630-016-0035-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
The primary cilium is an essential structure for the mediation of numerous signaling pathways involved in the coordination and regulation of cellular processes essential for the development and maintenance of health. Consequently, ciliary dysfunction results in severe human diseases called ciliopathies. Since many of the cilia-mediated signaling pathways are oncogenic pathways, cilia are linked to cancer. Recent studies demonstrate the existence of a cilia-regulated proteasome and that this proteasome is involved in cancer development via the progression of oncogenic, cilia-mediated signaling. This review article investigates the association between primary cilia and cancer with particular emphasis on the role of the cilia-regulated proteasome.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
38
|
Bracanovic D, Djonic D, Nikolic S, Milovanovic P, Rakocevic Z, Zivkovic V, Djuric M. 3D-Microarchitectural patterns of Hyperostosis frontalis interna: a micro-computed tomography study in aged women. J Anat 2016; 229:673-680. [PMID: 27279170 DOI: 10.1111/joa.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/27/2022] Open
Abstract
Although seen frequently during dissections and autopsies, Hyperostosis frontalis interna (HFI) - a morphological pattern of the frontal bone thickening - is often ignored and its nature and development are not yet understood sufficiently. Current macroscopic classification defines four grades/stages of HFI based on the morphological appearance and size of the affected area; however, it is unclear if these stages also depict the successive phases in the HFI development. Here we assessed 3D-microarchitecture of the frontal bone in women with various degrees of HFI expression and in an age- and sex-matched control group, hypothesizing that the bone microarchitecture bears imprints of the pathogenesis of HFI and may clarify the phases of its development. Frontal bone samples were collected during routine autopsies from 20 women with HFI (age: 69.9 ± 11.1 years) and 14 women without HFI (age: 74.1 ± 9.7 years). We classified the HFI samples into four groups, each group demonstrating different macroscopic type or stage of HFI. All samples were scanned by micro-computed tomography to evaluate 3D bone microarchitecture in the following regions of interest: total sample, outer table, diploe and inner table. Our results revealed that, compared to the control group, the women with HFI showed a significantly increased bone volume fraction in the region of diploe, along with significantly thicker and more plate-like shaped trabeculae and reduced trabecular separation and connectivity density. Moreover, the inner table of the frontal bone in women with HFI displayed significantly increased total porosity and mean pore diameter compared to controls. Microstructural reorganization of the frontal bone in women with HFI was also reflected in significantly higher porosity and lower bone volume fraction in the inner vs. outer table due to an increased number of pores larger than 100 μm. The individual comparisons between the control group and different macroscopic stages of HFI revealed significant differences only between the control group and the morphologically most pronounced type of HFI. Our microarchitectural findings demonstrated clear differences between the HFI and the control group in the region of diploe and the inner table. Macroscopic grades of HFI could not be distinguished at the level of bone microarchitecture and their consecutive nature cannot be supported. Rather, our study suggests that only two different types of HFI (moderate and severe HFI) have microstructural justification and should be considered further. It is essential to record HFI systematically in human postmortem subjects to provide more data on the mechanisms of its development.
Collapse
Affiliation(s)
- Djurdja Bracanovic
- Laboratory for Anthropology, Department of Anatomy, School of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Radiology, School of Dentistry, University of Belgrade, Belgrade, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology, Department of Anatomy, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Petar Milovanovic
- Laboratory for Anthropology, Department of Anatomy, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Rakocevic
- Department of Radiology, School of Dentistry, University of Belgrade, Belgrade, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Djuric
- Laboratory for Anthropology, Department of Anatomy, School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
39
|
Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016; 21:252-68. [PMID: 26687129 PMCID: PMC5200890 DOI: 10.1007/s10495-015-1203-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL, 60611, USA.
| | - Audrone Kalvelyte
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Aurimas Stulpinas
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Paraná, 80250-200, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Paraná, 80215-901, Brazil
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
40
|
Heo HR, Chen L, An B, Kim KS, Ji J, Hong SH. Hormonal regulation of hematopoietic stem cells and their niche: a focus on estrogen. Int J Stem Cells 2015; 8:18-23. [PMID: 26019751 PMCID: PMC4445706 DOI: 10.15283/ijsc.2015.8.1.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
Self-renewal and differentiation are hallmarks of stem cells and controlled by various intrinsic and extrinsic factors. Increasing evidence indicates that estrogen (E2), the primary female sex hormone, is involved in regulating the proliferation and lineage commitment of adult and pluripotent stem cells as well as modulating the stem cell niche. Thus, a detailed understanding of the role of E2 in behavior of stem cells may help to improve their therapeutic potential. Recently, it has been reported that E2 promotes cell cycle activity of hematopoietic stem and progenitor cells and induces them to megakaryocyte-erythroid progenitors during pregnancy. This study paves the way towards a previously unexplored endocrine mechanism that controls stem cell behavior. In this review, we will focus on the scientific findings regarding the regulatory effects of E2 on the hematopoietic system including its microenvironment.
Collapse
Affiliation(s)
- Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Li Chen
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Borim An
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul, Korea
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea ; Stem Cell Institute, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
41
|
Yun SP, Lee SJ, Oh SY, Jung YH, Ryu JM, Suh HN, Kim MO, Oh KB, Han HJ. Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells. Br J Pharmacol 2015; 171:3283-97. [PMID: 24627968 DOI: 10.1111/bph.12681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) are potent regulators of stem cell behaviour; however, their physiological significance as regards MMP-mediated regulation of the motility of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) has not been characterized. In the present study, we investigated the role of hydrogen peroxide (H2O2 ) and associated signalling pathways in promoting UCB-MSCs motility. EXPERIMENTAL APPROACH The regulatory effects of H2O2 on the activation of PKC, MAPKs, NF-κB and β-catenin were determined. The expressions of MMP and extracellular matrix proteins were examined. Pharmacological inhibitors and gene-specific siRNA were used to identify the signalling pathways of H2O2 that affect UCB-MSCs motility. An experimental skin wound-healing model was used to confirm the functional role of UCB-MSCs treated with H2O2 in ICR mice. KEY RESULTS H2O2 increased the motility of UCB-MSCs by activating PKCα via a calcium influx mechanism. H2O2 activated ERK and p38 MAPK, which are responsible for the distinct activation of transcription factors NF-κB and β-catenin. UCB-MSCs expressed eight MMP genes, but only MMP12 expression was uniquely regulated by NF-κB and β-catenin activation. H2O2 increased the MMP12-dependent degradation of collagen 5 (COL-5) and fibronectin (FN) associated with UCB-MSCs motility. Finally, topical transplantation of UCB-MSCs treated with H2O2 enhanced skin wound healing in mice. CONCLUSIONS AND IMPLICATIONS H2O2 stimulated UCB-MSCs motility by increasing MMP12-dependent degradation of COL-5 and FN through the activation of NF-κB and glycogen synthase kinase-3β/β-catenin, which is critical for providing a suitable microenvironment for MSCs transplantation and re-epithelialization of skin wounds in mice.
Collapse
Affiliation(s)
- Seung Pil Yun
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, Sharifi AM. Effect of 17β-estradiol on mediators involved in mesenchymal stromal cell trafficking in cell therapy of diabetes. Cytotherapy 2014; 17:46-57. [PMID: 25457279 DOI: 10.1016/j.jcyt.2014.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have shown great promise for cell therapy of a wide range of diseases such as diabetes. However, insufficient viability of transplanted cells reaching to damaged tissues has limited their potential therapeutic effects. Expression of estrogen receptors on stem cells may suggest a role for 17β-estradiol (E2) in regulating some functions in these cells. There is evidence that E2 enhances homing of stem cells. Induction of hypoxia-inducible factor-1α (HIF-1α) by E2 and the profound effect of HIF-1α on migration of cells have previously been demonstrated. We investigated the effect of E2 on major mediators involved in trafficking and subsequent homing of MSCs both in vitro and in vivo in diabetic rats. METHODS E2 has been selected to improve the poor migration capacity of MSCs toward sites of injury. MSCs were incubated with different concentrations of E2 for varying periods of time to investigate whether estradiol treatment could be effective to enhance the efficiency of MSC transplantation. RESULTS E2 significantly enhanced the viability of the cells that were blocked by ICI 182,780 (estrogen receptor antagonist). E2 also increased HIF-1α, CXC chemokine receptor 4 and C-C chemokine receptor 2 protein and messenger RNA levels measured by Western blot and reverse transcription-polymerase chain reaction. The enzymatic activity of matrix metalloproteinase 2 and metalloproteinase 9 was elevated in E2-treated cells through the use of gelatin zymography. Finally, the improved migration capacity of E2-treated MSCs was evaluated with the use of a Boyden chamber and in vivo migration assays. CONCLUSIONS Our data support that conditioning of MSCs with E2 promotes migration of cells in cultured MSCs in vitro and in a diabetic rat model in vivo through regulation of major mediators of cell trafficking.
Collapse
Affiliation(s)
- Solmaz Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Aali
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Tunku Kamarul
- Tissue Engineering Group (TEG) and Research, National Orthopedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehrnaz Mehrabani
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aminzadeh
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Gomes-Filho JE, Wayama MT, Dornelles RCM, Ervolino E, Yamanari GH, Lodi CS, Sivieri-Araújo G, Dezan-Júnior E, Cintra LTA. Raloxifene modulates regulators of osteoclastogenesis and angiogenesis in an oestrogen deficiency periapical lesion model. Int Endod J 2014; 48:1059-68. [PMID: 25354165 DOI: 10.1111/iej.12403] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/24/2014] [Indexed: 01/14/2023]
Abstract
AIM To analyse the local regulatory mechanisms of osteoclastogenesis and angiogenesis during the progression of periapical lesions in female rats with oestrogen deficiency and treatment with raloxifene (RLX). METHODOLOGY Female Wistar rats were distributed into groups: SHAM-veh, subjected to sham surgery and treated with a vehicle; OVX-veh, subjected to ovary removal and treated with a vehicle; and OVX-RLX, subjected to ovary removal and treated with RLX. Vehicle or RLX was administered orally for 90 days. During treatment, the dental pulp of mandibular first molars was exposed to the oral environment for induction of periapical lesions, which were analysed after 7 and 30 days. After the experimental periods, blood samples were collected for measurement of oestradiol, calcium, phosphorus and alkaline phosphatase. The rats were euthanized and the mandibles removed and processed for immunohistochemical detection of receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), hypoxia-inducible factor-1 alpha (HIF-1α) and bone-specific alkaline phosphatase (BALP). Data were compared using Kruskal-Wallis followed by Dunn test (nonparametric values) and anova followed by the Tukey's test (parametric values). RESULTS The plasma concentration of oestradiol showed hypo-oestrogenism in the rats subjected to ovary removal. On day 7, alkaline phosphatase activity, calcium and phosphorus were higher in the OVX-RLX group than in the OVX-veh group (P < 0.001), but immunolabelling for RANKL and HIF-1α was lower in OVX-RLX group (P < 0.001). On day 30, the OVX-veh group had higher immunolabelling for RANKL than the OVX-RLX group (P < 0.05). There were no significant differences in the immunoreactivity of OPG and BALP between any groups at either time-point (P > 0.05). CONCLUSION RLX therapy reversed the increased levels of the local regulators of both osteoclastogenesis and angiogenesis induced by oestrogen deficiency.
Collapse
Affiliation(s)
- J E Gomes-Filho
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - M T Wayama
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - R C M Dornelles
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - E Ervolino
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - G H Yamanari
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - C S Lodi
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - G Sivieri-Araújo
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - E Dezan-Júnior
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| | - L T A Cintra
- Department of Endodontics, Araçatuba School of Dentistry, Univ. Estadual Paulista, Araçatuba, Brazil
| |
Collapse
|
44
|
Peng J, Lai ZG, Fang ZL, Xing S, Hui K, Hao C, Jin Q, Qi Z, Shen WJ, Dong QN, Bing ZH, Fu DL. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One 2014; 9:e112744. [PMID: 25394221 PMCID: PMC4231053 DOI: 10.1371/journal.pone.0112744] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/12/2014] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible factor 1-α (HIF-1α) plays a critical role in angiogenesis-osteogenesis coupling during bone development and bone regeneration. Previous studies have shown that 17β-estradiol activates the HIF-1α signaling pathway and that mice with conditional activation of the HIF-1α signaling pathway in osteoblasts are protected from ovariectomy (OVX)-induced bone loss. In addition, it has been shown that hypoxia facilitates the osteogenic differentiation of mesenchymal stem cells (MSCs) and modulates Wnt/β-catenin signaling. Therefore, we hypothesized that activation of the HIF-1α signaling pathway by hypoxia-mimicking agents would prevent bone loss due to estrogen deficiency. In this study, we confirmed the effect of dimethyloxalylglycine (DMOG), a hypoxia-mimicking agent, on the HIF-1α signaling pathway and investigated the effect of DMOG on MSC osteogenic differentiation and the Wnt/β-catenin signaling pathway. We then investigated the effect of DMOG treatment on OVX-induced bone loss. Female C57BL/6J mice were divided into sham, OVX, OVX+L-DMOG (5 mg/kg/day), and OVX+H-DMOG (20 mg/kg/day) groups. At sacrifice, static and dynamic bone histomorphometry were performed with micro computed tomography (micro-CT) and undecalcified sections, respectively. Bone strength was assessed with the three-point bending test, and femur vessels were reconstructed and analyzed by micro-CT. Serum vascular endothelial growth factor (VEGF), osteocalcin, and C-terminal telopeptides of collagen type(CTX) were measured by ELISA. Tartrate-resistant acid phosphatase staining was used to assess osteoclast formation. Alterations in the HIF-1α and Wnt/β-catenin signaling pathways in the bone were detected by western blot. Our results showed that DMOG activated the HIF-1α signaling pathway, which further activated the Wnt/β-catenin signaling pathway and enhanced MSC osteogenic differentiation. The micro-CT results showed that DMOG treatment improved trabecular bone density and restored the bone microarchitecture and blood vessels in OVX mice. Bone strength was also partly restored in DMOG-treated OVX mice. Dynamic bone histomorphometric analysis of the femur metaphysic revealed that DMOG increased the mineralizing surface, mineral apposition rate, and bone formation rate. The serum levels of VEGF and osteocalcin were higher in DMOG-treated OVX mice. However, there were no significant differences in serum CTX or in the number of tartrate-resistant acid phosphatase-stained cells between DMOG-treated OVX mice and OVX mice. Western blot results showed that DMOG administration partly rescued the decrease in HIF-1α and β-catenin expression following ovariectomy. Collectively, these results indicate that DMOG prevents bone loss due to ovariectomy in C57BL/6J mice by enhancing angiogenesis and osteogenesis, which are associated with activated HIF-1α and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jia Peng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo Gui Lai
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Qian Fo Shan Hospital, Shang Dong University, Ji Nan, China
| | - Zhang Lian Fang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Xing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Hui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Hao
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Qi
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Jin Shen
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Nian Dong
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Han Bing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Lian Fu
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
Hawkins KE, Sharp TV, McKay TR. The role of hypoxia in stem cell potency and differentiation. Regen Med 2014; 8:771-82. [PMID: 24147532 DOI: 10.2217/rme.13.71] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine relies on harnessing the capacity of stem cells to grow, divide and differentiate safely and predictably. This may be in the context of expanding stem cells in vitro or encouraging their expansion, mobilization and capacity to regenerate tissues either locally or remotely in vivo. In either case, understanding the stem cell niche is fundamental to recapitulating or manipulating conditions to enable therapy. It has become obvious that hypoxia plays a fundamental role in the maintenance of the stem cell niche. Low O2 benefits the self-renewal of human embryonic, hematopoietic, mesenchymal and neural stem cells, as well as improving the efficiency of genetic reprogramming to induced pluripotency. There is emerging evidence that harnessing or manipulating the hypoxic response can result in safer, more efficacious methodologies for regenerative medicine.
Collapse
Affiliation(s)
- Kate E Hawkins
- Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | | | | |
Collapse
|
46
|
Zhao H, Iwasaki M, Yang J, Savage S, Ma D. Hypoxia-inducible factor-1: A possible link between inhalational anesthetics and tumor progression? ACTA ACUST UNITED AC 2014; 52:70-6. [DOI: 10.1016/j.aat.2014.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/07/2014] [Indexed: 01/10/2023]
|
47
|
Sinha D, Dutta K, Ganguly KK, Biswas J, Bishayee A. A novel synthetic oleanane triterpenoid suppresses adhesion, migration, and invasion of highly metastatic melanoma cells by modulating gelatinase signaling axis. Mol Carcinog 2014; 54:654-67. [PMID: 24510625 DOI: 10.1002/mc.22136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
A methyl derivative natural triterpenoid amooranin (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me) has been found to possess antiproliferative, proapoptotic, and antiinflammatory effects against established tumor cells. Large-scale synthesis of pure AMR-Me has eliminated the need of the natural phytochemical for further development of AMR-Me as an anticancer drug. Metastatic melanoma is a fatal form of cutaneous malignancy with poor prognosis and limited therapeutic options. It was hypothesized that antitumor pharmacological effect of AMR-Me could be linked to AMR-Me-mediated suppression of the metastatic potential of B16F10 murine melanoma. AMR-Me was assessed for its antimetastatic efficacy by cell adhesion, migration, and invasion assays in B16F10 cells. The signaling crosstalk was explored by gelatin zymography, Western blot, ELISA, and immunocytochemistry. The results elicited that AMR-Me was successful in restricting the adhesion, migration, and invasion of highly metastatic cells. The antimetastatic potential of this compound may be attributed to the reduced expression of membrane type 1 metalloproteinase (MT1-MMP) and matrix metalloproteinases (MMP-2 and MMP-9). AMR-Me was found to downregulate vascular endothelial growth factor (VEGF)/phosphorylated forms of focal adhesion kinase (pFAK397 )/Jun N-terminus kinase (pJNK)/extracellular signal-regulated kinase (pERK). This, in turn, inhibited transcription factor nuclear factor-κB (NF-κB) and transactivation of MMPs. Moreover, the activation of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) might have influenced the downmodulation of MT1-MMP, MMP-2, and MMP-9. AMR-Me suppresses the activity of MT1-MMP, MMP-2, and MMP-9 by downregulation of VEGF/pFAK397 /pJNK/pERK/NF-κB and activation of TIMP-1 and TIMP-2 in metastatic melanoma cell line, B16F10. AMR-Me has the potential as an effective anticancer drug for metastatic melanoma which is a dismal disease.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Kaustav Dutta
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Kirat K Ganguly
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Translational and Clinical Research, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, California
| |
Collapse
|
48
|
Wang J, Liao L, Wang S, Tan J. Cell therapy with autologous mesenchymal stem cells-how the disease process impacts clinical considerations. Cytotherapy 2013; 15:893-904. [PMID: 23751203 DOI: 10.1016/j.jcyt.2013.01.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/07/2013] [Accepted: 01/23/2013] [Indexed: 12/13/2022]
Abstract
The prospective clinical use of multipotent mesenchymal stromal cells (MSCs) holds enormous promise for the treatment of a large number of degenerative and age-related diseases. In particular, autologous MSCs isolated from bone marrow (BM) are considered safe and have been extensively evaluated in clinical trials. Nevertheless, different efficacies have been reported, depending on the health status and age of the donor. In addition, the biological functions of BM-MSCs from patients with various diseases may be impaired. Furthermore, medical treatments such as long-term chemotherapy and immunomodulatory therapy may damage the BM microenvironment and affect the therapeutic potential of MSCs. Therefore, a number of practical problems must be addressed before autologous BM-MSCs can be widely applied with higher efficiency in patients. As such, this review focuses on various factors that directly influence the biological properties of BM-MSCs, and we discuss the possible mechanisms of these alterations.
Collapse
Affiliation(s)
- Jin Wang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | | | | | | |
Collapse
|
49
|
Kleinstreuer N, Dix D, Rountree M, Baker N, Sipes N, Reif D, Spencer R, Knudsen T. A computational model predicting disruption of blood vessel development. PLoS Comput Biol 2013; 9:e1002996. [PMID: 23592958 PMCID: PMC3616981 DOI: 10.1371/journal.pcbi.1002996] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/) modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic series of events and for the first time demonstrate the applicability of these models for predictive toxicology.
Collapse
Affiliation(s)
- Nicole Kleinstreuer
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - David Dix
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Michael Rountree
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Nancy Baker
- Lockheed-Martin, Research Triangle Park, North Carolina, United States of America
| | - Nisha Sipes
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - David Reif
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Richard Spencer
- Lockheed-Martin, Research Triangle Park, North Carolina, United States of America
| | - Thomas Knudsen
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
50
|
Son TW, Yun SP, Yong MS, Seo BN, Ryu JM, Youn HY, Oh YM, Han HJ. Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin α6β4-dependent Akt, GSK-3β, and HSF-1 in mesenchymal stem cells. Cell Death Dis 2013; 4:e563. [PMID: 23538444 PMCID: PMC3615739 DOI: 10.1038/cddis.2013.94] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Netrin (Ntn) has the potential to be successfully applied as an anti-apoptotic agent with a high affinity for tissue, for therapeutic strategies of umbilical cord blood-derived mesenchymal stem cells (UCB-MSC), although the mechanism by which Ntn-1 protects hypoxic injury has yet to be identified. Therefore, the present study examined the effect of Ntn-1 on hypoxia-induced UCB-MSC apoptosis, as well as the potential underlying mechanisms of its protective effect. Hypoxia (72 h) reduced cell viability (MTT reduction, and [3H]-thymidine incorporation) and cell number, and induced apoptosis (annexin and/or PI positive), which were reversed by Ntn-1 (10 ng/ml). Moreover, Ntn-1 decreased the increase of hypoxia-induced Bax, cleaved caspase-9, and -3, but blocked the decrease of hypoxia-reduced Bcl-2. Next, in order to examine the Ntn-1-related signaling cascade in the protection of hypoxic injury, we analyzed six Ntn receptors in UCB-MSC. We identified deleted in colorectal cancer (DCC) and integrin (IN) α6β4, except uncoordinated family member (UNC) 5A–C, and neogenin. Among them, IN α6β4 only was detected in lipid raft fractions. In addition, Ntn-1 induced the dissociation of DCC and APPL-1 complex, thereby stimulating the formation of APPL-1 and Akt2 complex. Ntn-1 also reversed the hypoxia-induced decrease of Akt and glycogen synthase kinase 3β (GSK-3β) phosphorylation, which is involved in heat shock factor-1 (HSF-1) expression. Ntn-1-induced phospho-Akt and -GSK-3β were inhibited by DCC function-blocking antibody, IN a6b4 function-blocking antibody, and the Akt inhibitor. Hypoxia and/or Ntn-1 stimulated heat shock protein (HSP)27 expression, which was blocked by HSF-1-specific small interfering RNA (siRNA). Furthermore, HSP27-specific siRNA reversed the Ntn-1-induced increase of phospho-Akt. Additionally, HSP27-specific siRNA attenuated the Ntn-1-reduced loss of mitochondrial membrane injury via the inhibition of cytochrome c (cyt c) release and formation of cyt c and HSP27 complex. Moreover, the inhibition of each signaling protein attenuated Ntn-1-induced blockage of apoptosis. In conclusion, Ntn-1-induced HSP27 protected hypoxic injury-related UCB-MSC apoptosis through DCC- and IN α6β4-dependent Akt, GSK-3β, and HSF-1 signaling pathways.
Collapse
Affiliation(s)
- T W Son
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|