1
|
Papp FR, Katko M, Csiki R, Galgoczi E, Molnar Z, Erdei A, Bodor M, Steiber Z, Ujhelyi B, Nagy EV. Characteristics of Hyaluronan Metabolism During Myofibroblast Differentiation in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39504052 PMCID: PMC11549924 DOI: 10.1167/iovs.65.13.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/12/2024] [Indexed: 11/11/2024] Open
Abstract
Purpose To study the impact of myofibroblast differentiation (MD) on hyaluronan (HA) turnover in orbital fibroblasts (OFs) focusing on the expression of its key enzymes and their potential implications in the pathogenesis of thyroid eye disease (TED). Methods Primary cultures of OFs were established from tissue samples (TED OFs, n = 4; non-TED OFs, n = 5). MD was induced by TGF-β1 (5 ng/mL). Measurements were performed after 24- and 72-hour treatments. The proliferation rate was determined by 5-bromo-2'-deoxyuridine (BrdU) incorporation. HA level and size were measured using an aggrecan-based ELISA-like method and agarose gel electrophoresis, respectively. mRNA expressions of myofibroblast markers and enzymes with a role in HA metabolism were determined using real-time PCR. Results Upregulation of type I collagen alpha1 chain, alpha-smooth muscle actin, and fibronectin indicated that OFs underwent MD after stimulation by TGF-β. After 72 hours, proliferation of untreated cultures declined, but it remained higher in myofibroblasts. Pericellular HA content, but not HA in the supernatant of myofibroblasts, increased compared to untreated cells. TGF-β was a potent stimulator of hyaluronan synthase 1 (HAS1) expression. The expression of hyaluronidase-1 and cell migration-inducing protein (CEMIP) diminished following MD, whereas the expression of transmembrane protein 2, the regulator of HA catabolism through CEMIP, was elevated. The size distribution of HA shifted toward a high-molecular-weight form following treatment with TGF-β. Conclusions OFs undergoing MD are characterized by decreased HA turnover as a consequence of the inhibition of hyaluronidases and HAS1 induction. Our results suggest that hyaluronidases could be potential targets in the treatment of TED.
Collapse
Affiliation(s)
- Fruzsina R. Papp
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Monika Katko
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Robert Csiki
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Erika Galgoczi
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsanett Molnar
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Erdei
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklos Bodor
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zita Steiber
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Shahraki K, Pak VI, Najafi A, Shahraki K, Boroumand PG, Sheervalilou R. Non-coding RNA-mediated epigenetic alterations in Grave's ophthalmopathy: A scoping systematic review. Noncoding RNA Res 2023; 8:426-450. [PMID: 37324526 PMCID: PMC10265490 DOI: 10.1016/j.ncrna.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Background It is becoming more and more apparent that Grave's Ophthalmopathy (GO) pathogenesis may be aided by epigenetic processes such as DNA methylation modifications, histone tail covalent modifications, and non-coding RNA (ncRNA)-based epigenetic processes. In the present study, we aimed to focus more on the miRNAs rather than lncRNAs due to lack of investigations on these non-coding RNAs and their role in GO's pathogenesis. Methods A six-stage methodology framework and the PRISMA recommendation were used to conduct this scoping review. A comprehensive search was conducted across seven databases to discover relevant papers published until February 2022. The data extraction separately, and quantitative and qualitative analyses were conducted. Results A total of 20 articles were found to meet inclusion criteria. According to the results, ncRNA were involved in the regulation of inflammation (miR-146a, LPAL2/miR-1287-5p axis, LINC01820:13/hsa miR-27b-3p axis, and ENST00000499452/hsa-miR-27a-3p axis), regulation of T cell functions (miR-146a/miR-183/miR-96), regulation of glycosaminoglycan aggregation and fibrosis (miR-146a/miR-21), glucocorticoid sensitivity (miR-224-5p), lipid accumulation and adipogenesis (miR-27a/miR-27b/miR-130a), oxidative stress and angiogenesis (miR-199a), and orbital fibroblast proliferation (miR-21/miR-146a/miR-155). Eleven miRNAs (miR-146a/miR-224-5p/miR-Let7d-5p/miR-96-5p/miR-301a-3p/miR-21-5p) were also indicated to have the capacity to be used as biomarkers. Conclusions Regardless of the fact that there is significant documentation of ncRNA-mediated epigenetic dysfunction in GO, additional study is needed to thoroughly comprehend the epigenetic connections concerned in disease pathogenesis, paving the way for novel diagnostic and prognostic tools for epigenetic therapies among the patients.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
- Cornea Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
3
|
Spadaro JZ, Kohli AA. Pathogenesis of Thyroid Eye Disease. Int Ophthalmol Clin 2023; 63:65-80. [PMID: 36963828 DOI: 10.1097/iio.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
4
|
Gupta V, Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. Thinking inside the box: Current insights into targeting orbital tissue remodeling and inflammation in thyroid eye disease. Surv Ophthalmol 2022; 67:858-874. [PMID: 34487739 PMCID: PMC8891393 DOI: 10.1016/j.survophthal.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Thyroid eye disease (TED) is an autoimmune disorder that manifests in the orbit. In TED, the connective tissue behind the eye becomes inflamed and remodels with increased fat accumulation and/or increased muscle and scar tissue. As orbital tissue expands, patients develop edema, exophthalmos, diplopia, and optic neuropathy. In severe cases vision loss may occur secondary to corneal scarring from exposure or optic nerve compression. Currently there is no cure for TED, and treatments are limited. A major breakthrough in TED therapy occurred with the FDA approval of teprotumumab, a monoclonal insulin-like growth factor 1 receptor (IGF1R) blocking antibody. Yet, teprotumumab therapy has limitations, including cost, infusion method of drug delivery, variable response, and relapse. We describe approaches to target orbital fibroblasts and the complex pathophysiology that underlies tissue remodeling and inflammation driving TED. Further advances in the elucidation of the mechanisms of TED may lead to prophylaxis based upon early biomarkers as well as lead to more convenient, less expensive therapies.
Collapse
Affiliation(s)
- Vardaan Gupta
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Christine L Hammond
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA.
| |
Collapse
|
5
|
Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. MicroRNA-130a Is Elevated in Thyroid Eye Disease and Increases Lipid Accumulation in Fibroblasts Through the Suppression of AMPK. Invest Ophthalmol Vis Sci 2021; 62:29. [PMID: 33507228 PMCID: PMC7846950 DOI: 10.1167/iovs.62.1.29] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Thyroid eye disease (TED) is a condition that causes the tissue behind the eye to become inflamed and can result in excessive fatty tissue accumulation in the orbit. Two subpopulations of fibroblasts reside in the orbit: those that highly express Thy1 (Thy1+) and those with little or no Thy1 (Thy1–). Thy1– orbital fibroblasts (OFs) are more prone to lipid accumulation than Thy1+ OFs. The purpose of this study was to investigate the mechanisms whereby Thy1– OFs more readily accumulate lipid. Methods We screened Thy1+ and Thy1– OFs for differences in microRNA (miRNA) expression. The effects of increasing miR-130a levels in OFs was investigated by measuring lipid accumulation and visualizing lipid deposits. To determine if adenosine monophosphate-activated protein kinase (AMPK) is important for lipid accumulation, we performed small interfering RNA (siRNA)-mediated knockdown of AMPKβ1. We measured AMPK expression and activity using immunoblotting for AMPK and AMPK target proteins. Results We determined that miR-130a was upregulated in Thy1– OFs and that miR-130a targets two subunits of AMPK. Increasing miR-130a levels enhanced lipid accumulation and reduced expression of AMPKα and AMPKβ in OFs. Depletion of AMPK also increased lipid accumulation. Activation of AMPK using AICAR attenuated lipid accumulation and increased phosphorylation of acetyl-CoA carboxylase (ACC) in OFs. Conclusions These data suggest that when Thy1– OFs accumulate in TED, miR-130a levels increase, leading to a decrease in AMPK activity. Decreased AMPK activity promotes lipid accumulation in TED OFs, leading to excessive fatty tissue accumulation in the orbit.
Collapse
Affiliation(s)
- Christine L Hammond
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
6
|
Dahlhaus M, Roos J, Engel D, Tews D, Halbgebauer D, Funcke JB, Kiener S, Schuler PJ, Döscher J, Hoffmann TK, Zinngrebe J, Rojewski M, Schrezenmeier H, Debatin KM, Wabitsch M, Fischer-Posovszky P. CD90 Is Dispensable for White and Beige/Brown Adipocyte Differentiation. Int J Mol Sci 2020; 21:E7907. [PMID: 33114405 PMCID: PMC7663553 DOI: 10.3390/ijms21217907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question.
Collapse
MESH Headings
- Adipose Tissue, Beige/cytology
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/metabolism
- Adult
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- CRISPR-Cas Systems
- Cell Differentiation
- Cells, Cultured
- Female
- Flow Cytometry
- Gene Knockout Techniques
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Gigantism/genetics
- Gigantism/metabolism
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Male
- Middle Aged
- Stromal Cells/metabolism
- Thermogenesis
- Thy-1 Antigens/genetics
- Thy-1 Antigens/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Meike Dahlhaus
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Julian Roos
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Daniel Engel
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Daniel Halbgebauer
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Jan-Bernd Funcke
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Sophie Kiener
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centre, 89075 Ulm, Germany; (P.J.S.); (J.D.); (T.K.H.)
| | - Johannes Döscher
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centre, 89075 Ulm, Germany; (P.J.S.); (J.D.); (T.K.H.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Centre, 89075 Ulm, Germany; (P.J.S.); (J.D.); (T.K.H.)
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Markus Rojewski
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, 89081 Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, 89075 Ulm, Germany; (M.D.); (J.R.); (D.E.); (D.T.); (D.H.); (J.-B.F.); (S.K.); (M.W.)
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (J.Z.); (K.-M.D.)
| |
Collapse
|
7
|
Woeller CF, Roztocil E, Hammond C, Feldon SE. TSHR Signaling Stimulates Proliferation Through PI3K/Akt and Induction of miR-146a and miR-155 in Thyroid Eye Disease Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2020; 60:4336-4345. [PMID: 31622470 PMCID: PMC6798326 DOI: 10.1167/iovs.19-27865] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose To investigate the molecular pathways that drive thyroid stimulating hormone receptor (TSHR)–induced cellular proliferation in orbital fibroblasts (OFs) from thyroid eye disease (TED) patients. Methods Orbital fibroblasts from TED and non-TED patients were treated with TSH and changes in gene expression and proliferation were measured. To determine the role of TSHR, TSHR-specific siRNA was used to deplete TSHR levels. Proliferation was measured by bromodeoxyuridine (BrdU) incorporation. PI3K/Akt activation was analyzed by Western blot. The PI3K inhibitor LY294002 was used to investigate PI3K/Akt signaling in OF proliferation. Expression of TSHR, inflammatory cytokines, proliferation related genes and miR-146a and miR-155 were measured by qPCR. Results Orbital fibroblasts from TED patients proliferate significantly more than non-TED OFs in response to TSH. TSH-induced proliferation was dependent upon TSHR expression and required the PI3K/Akt signaling cascade. TSHR activation stimulated miR-146a and miR-155 expression. TED OFs produced significantly more miR-146a and miR-155 than non-TED OFs. MiR-146a and miR-155 targets, ZNRF3 and PTEN, which both limit cell proliferation, were decreased in TSH treated OFs. Conclusions These data reveal that TSHR signaling in TED OFs stimulates proliferation directly through PI3K/Akt signaling and indirectly through induction of miR-146a and miR-155. MiR-146a and miR-155 enhance TED OF proliferation by reducing expression of target genes that normally block cell proliferation. TSHR-dependent expression of miR-146a and miR-155 may explain part of the fibroproliferative pathology observed in TED.
Collapse
Affiliation(s)
- Collynn F Woeller
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Christine Hammond
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| |
Collapse
|
8
|
Immunological Aspects of Graves' Ophthalmopathy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7453260. [PMID: 31781640 PMCID: PMC6875285 DOI: 10.1155/2019/7453260] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
The body's autoimmune process is involved in the development of Graves' disease (GD), which is manifested by an overactive thyroid gland. In some patients, autoreactive inflammatory reactions contribute to the development of symptoms such as thyroid ophthalmopathy, and the subsequent signs and symptoms are derived from the expansion of orbital adipose tissue and edema of extraocular muscles within the orbit. The autoimmune process, production of antibodies against self-antigens such as TSH receptor (TSHR) and IGF-1 receptor (IGF-1R), inflammatory infiltration, and accumulation of glycosaminoglycans (GAG) lead to edematous-infiltrative changes in periocular tissues. As a consequence, edema exophthalmos develops. Orbital fibroblasts seem to play a crucial role in orbital inflammation, tissue expansion, remodeling, and fibrosis because of their proliferative activity as well as their capacity to differentiate into adipocytes and myofibroblasts and production of GAG. In this paper, based on the available medical literature, the immunological mechanism of GO pathogenesis has been summarized. Particular attention was paid to the role of orbital fibroblasts and putative autoantigens. A deeper understanding of the pathomechanism of the disease and the involvement of immunological processes may give rise to the introduction of new, effective, and safe methods of treatment or monitoring of the disease activity.
Collapse
|
9
|
Flores EM, Woeller CF, Falsetta ML, Susiarjo M, Phipps RP. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis. FASEB J 2019; 33:3353-3363. [PMID: 30376360 PMCID: PMC6404567 DOI: 10.1096/fj.201801481r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
The obesity epidemic is developing into the most costly health problem facing the world. Obesity, characterized by excessive adipogenesis and enlarged adipocytes, promotes morbidities, such as diabetes, cardiovascular disease, and cancer. Regulation of adipogenesis is critical to our understanding of how fat cell formation causes obesity and associated health problems. Thy1 (also called CD90), a widely used stem cell marker, blocks adipogenesis and reduces lipid accumulation. Thy1-knockout mice are prone to diet-induced obesity. Although the importance of Thy1 in adipogenesis and obesity is now evident, how its expression is regulated is not. We hypothesized that DNA methylation has a role in promoting adipogenesis and affects Thy1 expression. Using the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we investigated whether DNA methylation alters Thy1 expression during adipogenesis in both mouse 3T3-L1 preadipocytes and mouse mesenchymal stem cells. Thy1 protein and mRNA levels were decreased dramatically during adipogenesis. However, 5-aza-dC treatment prevented that phenomenon. Methylation-sensitive pyrosequencing analysis showed that CpG sites at the Thy1 locus have increased methylation during adipogenesis, as well as increased methylation in adipose tissue from diet-induced obese mice. These new findings highlight the potential role of Thy1 and DNA methylation in adipogenesis and obesity.-Flores, E. M., Woeller, C. F., Falsetta, M. L., Susiarjo, M., Phipps, R. P. Thy1 (CD90) expression is regulated by DNA methylation during adipogenesis.
Collapse
Affiliation(s)
- E’Lissa M. Flores
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Megan L. Falsetta
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
| | - Richard P. Phipps
- Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; and
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
10
|
Liu S, Yang R, Yin N, Wang YL, Faiola F. Environmental and human relevant PFOS and PFOA doses alter human mesenchymal stem cell self-renewal, adipogenesis and osteogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:564-572. [PMID: 30476818 DOI: 10.1016/j.ecoenv.2018.11.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 05/21/2023]
Abstract
PFOS and PFOA are two of the most abundant perfluorinated compounds (PFCs) in the environment. Previous studies have reported they have a long half-life (up to five years) once they enter into the human body. Moreover, they can potentially promote the adipogenic process by activating PPARγ. However, little is known about PFOS and PFOA chronic health impacts on humans. In this study, we employed primary human mesenchymal stem cells (hMSCs) and demonstrated that PFOS and PFOA exerted acute cytotoxicity and affected adipogenesis and osteogenesis at environmental and human relevant doses. In fact, PFOS and PFOA impaired the proper expression of CD90 (a surface antigen highly enriched in undifferentiated hMSCs) and promoted adipogenesis, presumably via their interaction with PPARγ. Moreover, PFOA partly disturbed osteogenesis. Thus, our findings not only validated the health risks of PFOS and PFOA, but also revealed new potential long-term PFOS/PFOA impacts on humans.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; Section of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Toll-Like Receptor Signaling Contributes to Proinflammatory Mediator Production in Localized Provoked Vulvodynia. J Low Genit Tract Dis 2018; 22:52-57. [PMID: 29271858 DOI: 10.1097/lgt.0000000000000364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Localized provoked vulvodynia (LPV) afflicts approximately 8% of women in the United States and represents a huge financial, physical, and psychological burden. Women with LPV experience intense pain localized to the vulvar vestibule (area immediately surrounding vaginal opening). We have identified mechanisms involved in the development of LPV whereby vulvar fibroblasts respond to proinflammatory stimuli to perpetuate an inflammatory response that causes pain. However, these mechanisms are not fully elucidated. Therefore, we explored the role of toll-like receptors (TLRs), a class of innate immune receptors that rapidly respond to microbial assaults. MATERIALS AND METHODS To determine whether TLRs are expressed by vulvar fibroblasts and whether these contribute to proinflammatory mediator production and pain in LPV, we examined TLR expression and innate immune responses in fibroblasts derived from painful vestibular regions compared with nonpainful external vulvar regions. RESULTS Human vulvar fibroblasts express functional TLRs that trigger production of inflammatory mediators associated with chronic pain. We focused on the TLR-7-imiquimod proinflammatory interaction, because imiquimod, a ligand of TLR-7, may exacerbate pain in women during treatment of human papillomavirus-associated disease. CONCLUSIONS Human vulvar fibroblasts express a broad spectrum of TLRs (a new finding). A significantly higher TLR-mediated proinflammatory response was observed in LPV case vestibular fibroblasts, and with respect to the imiquimod-TLR 7 interaction, development of chronic vestibular pain and inflammation may be a possible sequelae of treatment of vulvar human papillomavirus-associated disease. Suppressing enhanced TLR-associated innate immune responses to a spectrum of pathogen-associated molecular patterns may represent a new/effective therapeutic approach for vulvodynia.
Collapse
|
12
|
Woeller C, Woodroof A, Cottler P, Pollock S, Haidaris C, Phipps R. In Vitro Characterization of Variable Porosity Wound Dressing With Anti-Scar Properties. EPLASTY 2018; 18:e21. [PMID: 29896321 PMCID: PMC5981800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: New options are needed to improve wound healing while preventing excessive scar formation. Temporary primary dressings are important options in topical wound management that allow the natural healing process. Methods: We evaluated a novel primary dressing consisting of a biosynthetic, variable porosity, matrix-containing gelatin and Aloe Vera extract and a derivative dressing coated with the anti-scarring agent salinomycin for their ability to promote cell growth, reduce myofibroblast formation, and regulate cytokine production. In addition, salinomycin-coated primary dressings were tested for antimicrobial activity. Results: Both primary wound dressings permitted cell growth and attenuated TGFβ-induced scar-forming myofibroblast formation. The primary wound dressings also reduced IL-6 production by 50%, IL-8 by 20%, MCP-1 by 75%, and GRO by 60% in human mesenchymal stem cells treated with TGFβ. Salinomycin coating of the dressing showed antimicrobial activity by preventing Staphylococcus aureus growth. Conclusions: Both primary wound dressings support the growth of human fibroblasts and stem cells, as well as reduce inflammatory cytokine production, demonstrating their potential to serve as temporary wound dressings.
Collapse
Affiliation(s)
- Collynn F. Woeller
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY,Correspondence:
| | | | | | - Stephen J. Pollock
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Constantine G. Haidaris
- dDepartment of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Richard P. Phipps
- aDepartment of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY,dDepartment of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
13
|
Woeller CF, Flores E, Pollock SJ, Phipps RP. Editor's Highlight: Thy1 (CD90) Expression is Reduced by the Environmental Chemical Tetrabromobisphenol-A to Promote Adipogenesis Through Induction of microRNA-103. Toxicol Sci 2018; 157:305-319. [PMID: 28329833 DOI: 10.1093/toxsci/kfx046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Environmental chemicals termed "obesogens" disrupt the endocrine system to promote adipogenesis and obesity. Tetrabromobisphenol-A (TBBPA) has been reported to increase adipogenesis; however, the mechanism(s) of action are unclear. Thy1 (CD90) is a glycophosphatidylinositol-anchored membrane protein that serves as a marker for stem cells and also plays an important role in regulating adipogenesis and obesity. We investigated whether or not TBBPA promotes adipogenesis in human and mouse cells by reducing Thy1 levels. We further sought to identify the molecular mechanism(s) whereby TBBPA targets Thy1 expression. Mouse and human cells were exposed to TBBPA, and Thy1 expression was analyzed using flow cytometry, Western blotting, and qPCR. We tested whether microRNAs predicted to target Thy1 (miR-103 and miR-107) were upregulated by TBBPA using quantitative PCR assays. We also determined if Thy1 mRNA was a bona fide miR-103/107 target. Our results show that Thy1 expression was reduced in both human and mouse cells after exposure to TBBPA. Both Thy1 mRNA and protein levels were decreased by low-dose TBBPA exposure. TBBPA reduced Thy1 levels and further increased adipogenesis when an adipogenic medium was used. Mechanistically, we show that miR-103 and miR-107 are induced by TBBPA and that miR-103 targets Thy1 to reduce its expression. Our results reveal for the first time that Thy1 is a target of TBBPA. Furthermore, our data support the concept that Thy1 is a key marker targeted by environmental chemicals that promote adipogenesis and obesity.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - E'Lissa Flores
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Stephen J Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
14
|
Paine A, Woeller CF, Zhang H, de la Luz Garcia-Hernandez M, Huertas N, Xing L, Phipps RP, Ritchlin CT. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. FASEB J 2018; 32:3174-3183. [PMID: 29401595 DOI: 10.1096/fj.201701379r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thy1 (CD90), a glycosylated, glycophosphatidylinositol-anchored membrane protein highly expressed by subsets of mesenchymal stem cells and fibroblasts, inhibits adipogenesis. The role of Thy1 on bone structure and function has been poorly studied and represents a major knowledge gap. Therefore, we analyzed the long bones of wild-type (WT) and Thy1 knockout (KO) mice with micro-computed tomography (micro-CT) and histomorphometry to compare changes in bone architecture and overall bone structure. micro-CT analysis of long bones revealed Thy1 KO and WT mice fed a high-fat diet demonstrated bone structural parameters at 4 mo that differed significantly between WT and KO mice. A significant reduction in trabecular bone volume was noted in Thy1 KO mice. The most prominent differences were observed in trabecular bone volume ratio and trabecular bone connectivity density. Consistent with micro-CT measurements, histomorphometric analysis also showed decreased bone volume in the obese Thy1 KO mice compared to obese WT mice. In vitro assays revealed that osteogenic conditions increased Thy1 expression during OB differentiation and absence of Thy1 attenuated osteoblastogenesis. Together, these findings support the concept that Thy1 serves as a major mechanistic link to regulate bone formation and negatively regulate adipogenesis.-Paine, A., Woeller, C. F., Zhang, H., Garcia-Hernandez, M. L., Huertas, N., Xing, L., Phipps, R. P., Ritchlin, C. T. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice.
Collapse
Affiliation(s)
- Ananta Paine
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester, Rochester, New York, USA; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Maria de la Luz Garcia-Hernandez
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Nelson Huertas
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester, Rochester, New York, USA; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Christopher T Ritchlin
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
15
|
Thy1 (CD90) Expression Is Elevated in Radiation-Induced Periprosthetic Capsular Contracture: Implication for Novel Therapeutics. Plast Reconstr Surg 2017; 140:316-326. [PMID: 28746279 DOI: 10.1097/prs.0000000000003542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Capsular contracture is a devastating complication of postmastectomy implant-based breast reconstruction. Unfortunately, capsular contracture rates are drastically increased by targeted radiotherapy, a standard postmastectomy treatment. Thy1 (also called CD90) is important in myofibroblast differentiation and scar tissue formation. However, the impact of radiotherapy on Thy1 expression and the role of Thy1 in capsular contracture are unknown. METHODS The authors analyzed Thy1 expression in primary human capsular tissue and primary fibroblast explants by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemistry. Thy1 was depleted using RNA interference to determine whether Thy1 expression was essential for the myofibroblast phenotype in capsular fibroblasts. Furthermore, human capsular fibroblasts were treated with a new antiscarring compound, salinomycin, to determine whether Thy1 expression and myofibroblast formation were blocked by salinomycin. RESULTS In this article, the authors show that radiation therapy significantly increased Thy1 mRNA and protein expression in periimplant scar tissue. Capsular fibroblasts explanted from scar tissue retained the ability to make the myofibroblast-produced scar-forming components collagen I and α-smooth muscle actin. Depletion of Thy1 decreased the fibrotic morphology of capsular fibroblasts and significantly decreased α-smooth muscle actin and collagen levels. Furthermore, the authors show for the first time that salinomycin decreased Thy1 expression and prevented myofibroblast formation in capsular fibroblasts. CONCLUSIONS These data reveal that ionizing radiation-induced Thy1 overexpression may contribute to increased capsular contracture severity, and fibroblast scar production can be ameliorated through targeting Thy1 expression. Importantly, the authors' new results show promise for the antiscarring ability of salinomycin in radiation-induced capsular contracture. CLINCAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
16
|
Woeller CF, Roztocil E, Hammond CL, Feldon SE, Phipps RP. The Aryl Hydrocarbon Receptor and Its Ligands Inhibit Myofibroblast Formation and Activation: Implications for Thyroid Eye Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3189-3202. [PMID: 27842700 DOI: 10.1016/j.ajpath.2016.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
Abstract
Thyroid eye disease (TED) is a degenerative disease that manifests with detrimental tissue remodeling, myofibroblast accumulation, and scarring in the orbit of affected individuals. Currently, there are no effective therapies for TED that target or prevent the excessive tissue remodeling caused by myofibroblast formation and activation. The canonical cytokine that induces myofibroblast formation is transforming growth factor (TGF)-β. The TGF-β signaling pathway is influenced by aryl hydrocarbon receptor (AHR) signaling pathways. We hypothesized that AHR agonists can prevent myofibroblast formation in fibroblasts from patients with TED, and thus AHR ligands are potential therapeutics for the disease. Orbital fibroblasts explanted from patients with TED were treated with TGF-β to induce myofibroblast formation, contraction, and proliferation. We found that AHR ligands prevent TGF-β-dependent myofibroblast formation, and this ability is dependent on AHR expression. The AHR and AHR ligands block profibrotic Wnt signaling by inhibiting the phosphorylation of GSK3β to prevent myofibroblast formation. These results provide new insight into the molecular pathways underlying orbital scarring in TED. These novel studies highlight the potential of the AHR and AHR ligands as future therapeutic options for eye diseases and possibly also for other scarring conditions.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Christine L Hammond
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Steven E Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York; Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York.
| |
Collapse
|
17
|
Falsetta ML, Foster DC, Woeller CF, Pollock SJ, Bonham AD, Haidaris CG, Phipps RP. A Role for Bradykinin Signaling in Chronic Vulvar Pain. THE JOURNAL OF PAIN 2016; 17:1183-1197. [PMID: 27544818 DOI: 10.1016/j.jpain.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/27/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Chronic vulvar pain is alarmingly common in women of reproductive age and is often accompanied by psychological distress, sexual dysfunction, and a significant reduction in quality of life. Localized provoked vulvodynia (LPV) is associated with intense vulvar pain concentrated in the vulvar vestibule (area surrounding vaginal opening). To date, the origins of vulvodynia are poorly understood, and treatment for LPV manages pain symptoms, but does not resolve the root causes of disease. Until recently, no definitive disease mechanisms had been identified; our work indicates LPV has inflammatory origins, although additional studies are needed to understand LPV pain. Bradykinin signaling is one of the most potent inducers of inflammatory pain and is a candidate contributor to LPV. We report that bradykinin receptors are expressed at elevated levels in LPV patient versus healthy control vestibular fibroblasts, and patient vestibular fibroblasts produce elevated levels of proinflammatory mediators with bradykinin stimulation. Inhibiting expression of one or both bradykinin receptors significantly reduces proinflammatory mediator production. Finally, we determined that bradykinin activates nuclear factor (NF)κB signaling (a major inflammatory pathway), whereas inhibition of NFκB successfully ablates this response. These data suggest that therapeutic agents targeting bradykinin sensing and/or NFκB may represent new, more specific options for LPV therapy. PERSPECTIVE There is an unmet need for the development of more effective vulvodynia therapies. As we explore the mechanisms by which human vulvar fibroblasts respond to proinflammatory/propain stimuli, we move closer to understanding the origins of chronic vulvar pain and identifying new therapeutic targets, knowledge that could significantly improve patient care.
Collapse
Affiliation(s)
- Megan L Falsetta
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - David C Foster
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Stephen J Pollock
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Adrienne D Bonham
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | | | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, New York; Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York; Department of Microbiology and Immunology, University of Rochester, Rochester, New York.
| |
Collapse
|
18
|
Pei X, Zhu J, Yang R, Tan Z, An M, Shi J, Lubman DM. CD90 and CD24 Co-Expression Is Associated with Pancreatic Intraepithelial Neoplasias. PLoS One 2016; 11:e0158021. [PMID: 27332878 PMCID: PMC4917090 DOI: 10.1371/journal.pone.0158021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
Thy-1 (CD90) has been shown to be a potential marker for several different types of cancer. However, reports on CD90 expression in pancreatic intraepithelial neoplasia (PanIN) lesions are still limited where PanINs are the most important precursor lesion of pancreatic ductal adenocarcinoma (PDAC). Herein, we investigate candidate markers for PanIN lesions by examining the distribution and trend of CD90 and CD24 expression as well as their co-expression in various stages of PanINs. Thirty cases of PanINs, which were confirmed histopathologically and clinically, were used to evaluate protein expression of CD90 and CD24 by immunofluoresence double staining. CD90 was found to be mainly expressed in stroma around lesion ducts while not observed in acini and islets in PanINs. CD90 also showed increased expression in PanIN III compared to PanIN III. CD24 was mainly present in the cytoplasm and membrane of pancreatic ductal epithelia, especially in the apical epithelium of the duct. CD24 had higher expression in PanIN III compared with PanIN IIIIII or PanIN III. CD90 was expressed around CD24 sites, but there was little overlap between cells that expressed each of these proteins. A correlation analysis showed that these two proteins have a moderate relationship with PanIN stages respectively. These results suggest that co-expression of CD90 and CD24 may have an important role in the development and progression of PanINs, which is also conducive to early detection and treatment of PDAC.
Collapse
Affiliation(s)
- Xiucong Pei
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States of America
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, 110034, China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States of America
| | - Rui Yang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States of America
| | - Zhijing Tan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States of America
| | - Mingrui An
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States of America
| | - Jiaqi Shi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, 48109, United States of America
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, 48109, United States of America
| |
Collapse
|
19
|
Dik WA, Virakul S, van Steensel L. Current perspectives on the role of orbital fibroblasts in the pathogenesis of Graves' ophthalmopathy. Exp Eye Res 2016; 142:83-91. [PMID: 26675405 DOI: 10.1016/j.exer.2015.02.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023]
Abstract
Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease (GD; Graves' hyperthyroidism) characterized by orbital tissue inflammation, expansion, remodeling and fibrosis. Although the initiating trigger of GO is still indistinct, excessive orbital fibroblast activity is at the heart of its pathogenesis. Orbital fibroblasts are activated by cellular interactions with immune cells and the soluble factors they secrete. Orbital fibroblasts, especially from GO patients, express the thyrotropin receptor (TSH-receptor; TSHR), and activation of the orbital fibroblast population by stimulatory autoantibodies directed against the TSHR may provide an important link between GD and GO. Furthermore, stimulatory autoantibodies directed against the insulin-like growth factor-1 receptor have been proposed to contribute to orbital fibroblast activation in GO. Activated orbital fibroblasts produce inflammatory mediators thereby contributing to the orbital inflammatory process in GO. Moreover, orbital fibroblasts exhibit robust proliferative activity and extracellular matrix (especially hyaluronan) synthesizing capacity and can differentiate into adipocytes and myofibroblasts with disease progression, thereby contributing to tissue expansion/remodeling and fibrosis in GO. Orbital fibroblasts, especially those from GO patients, exhibit a hyper-responsive phenotype when compared to fibroblasts from other anatomical regions, which may further contribute to GO pathogenesis. Fibrocytes have been identified as additional source of orbital fibroblasts in GO, where they may contribute to orbital tissue inflammation, adipogenesis and remodeling/fibrosis. This review addresses our current view on the role that orbital fibroblasts fulfill in GO pathogenesis and both established as well as less established not fully crystallized concepts that need future studies will be discussed.
Collapse
Affiliation(s)
- Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Sita Virakul
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Leendert van Steensel
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
20
|
Cardiac pathology in Irish wolfhounds with heart disease. J Vet Cardiol 2016; 18:57-70. [DOI: 10.1016/j.jvc.2015.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/04/2015] [Accepted: 10/07/2015] [Indexed: 11/15/2022]
|
21
|
Identification of novel mechanisms involved in generating localized vulvodynia pain. Am J Obstet Gynecol 2015; 213:38.e1-38.e12. [PMID: 25683963 DOI: 10.1016/j.ajog.2015.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/12/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Our goal was to gain a better understanding of the inflammatory pathways affected during localized vulvodynia, a poorly understood, common, and debilitating condition characterized by chronic pain of the vulvar vestibule. STUDY DESIGN In a control matched study, primary human fibroblast strains were generated from biopsies collected from localized provoked vulvodynia (LPV) cases and from age- and race-matched controls. We then examined intracellular mechanisms by which these fibroblasts recognize pathogenic Candida albicans; >70% of vulvodynia patients report the occurrence of prior chronic Candida infections, which is accompanied by localized inflammation and elevated production of proinflammatory/pain-associated interleukin (IL)-6 and prostaglandin E2 (PGE2). We focused on examining the signaling pathways involved in recognition of yeast components that are present and abundant during chronic infection. RESULTS Dectin-1, a surface receptor that binds C albicans cell wall glucan, was significantly elevated in vestibular vs external vulvar cells (from areas without pain) in both cases and controls, while its abundance was highest in LPV cases. Blocking Dectin-1 signaling significantly reduced pain-associated IL-6 and PGE2 production during the response to C albicans. Furthermore, LPV patient vestibular cells produced inflammatory mediators in response to low numbers of C albicans cells, while external vulvar fibroblasts were nonresponsive. Inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (proinflammatory transcription factor) nearly abrogated IL-6 and PGE2 production induced by C albicans, in keeping with observations that Dectin-1 signals through the nuclear factor kappa-light-chain-enhancer of activated B cells pathway. CONCLUSION These findings implicate that a fibroblast-mediated proinflammatory response to C albicans contributes to the induction of pain in LPV cases. Targeting this response may be an ideal strategy for the development of new vulvodynia therapies.
Collapse
|
22
|
Ali H, Al-Yatama MK, Abu-Farha M, Behbehani K, Al Madhoun A. Multi-lineage differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS One 2015; 10:e0122465. [PMID: 25848763 PMCID: PMC4388513 DOI: 10.1371/journal.pone.0122465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/11/2015] [Indexed: 12/22/2022] Open
Abstract
Wharton's Jelly- derived Mesenchymal stem cells (WJ-MSCs) have gained interest as an alternative source of stem cells for regenerative medicine because of their potential for self-renewal, differentiation and unique immunomodulatory properties. Although many studies have characterized various WJ-MSCs biologically, the expression profiles of the commonly used stemness markers have not yet been addressed. In this study, WJ-MSCs were isolated and characterized for stemness and surface markers expression. Flow cytometry, immunofluorescence and qRT-PCR analysis revealed predominant expression of CD29, CD44, CD73, CD90, CD105 and CD166 in WJ-MSCs, while the hematopoietic and endothelial markers were absent. Differential expression of CD 29, CD90, CD105 and CD166 following adipogenic, osteogenic and chondrogenic induction was observed. Furthermore, our results demonstrated a reduction in CD44 and CD73 expressions in response to the tri-lineage differentiation induction, suggesting that they can be used as reliable stemness markers, since their expression was associated with undifferentiated WJ-MSCs only.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Basic Science Research, Dasman Diabetes Institute, 1180 Dasman, Kuwait
- Department of Medical Laboratory Sciences (MLS), Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait City, Kuwait
| | | | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | - Kazem Behbehani
- Department of Basic Science Research, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | - Ashraf Al Madhoun
- Department of Basic Science Research, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| |
Collapse
|
23
|
Abstract
Thyroid-associated ophthalmopathy (TAO) is a vexing and undertreated ocular component of Graves disease in which orbital tissues undergo extensive remodelling. My colleagues and I have introduced the concept that fibrocytes expressing the haematopoietic cell antigen CD34 (CD34(+) fibrocytes), which are precursor cells of bone-marrow-derived monocyte lineage, express the TSH receptor (TSHR). These cells also produce several other proteins whose expression was traditionally thought to be restricted to the thyroid gland. TSHR-expressing fibrocytes in which the receptor is activated by its ligand generate extremely high levels of several inflammatory cytokines. Acting in concert with TSHR, the insulin-like growth factor 1 receptor (IGF-1R) expressed by orbital fibroblasts and fibrocytes seems to be necessary for TSHR-dependent cytokine production, as anti-IGF-1R blocking antibodies attenuate these proinflammatory actions of TSH. Furthermore, circulating fibrocytes are highly abundant in patients with TAO and seem to infiltrate orbital connective tissues, where they might transition to CD34(+) fibroblasts. My research group has postulated that the infiltration of fibrocytes into the orbit, their unique biosynthetic repertoire and their proinflammatory and profibrotic phenotype account for the characteristic properties exhibited by orbital connective tissues that underlie susceptibility to TAO. These insights, which have emerged in the past few years, might be of use in therapeutically targeting pathogenic orbit-infiltrating fibrocytes selectively by utilizing novel biologic agents that interfere with TSHR and IGF-1R signalling.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Room 7112, Brehm Tower, Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Woeller CF, O'Loughlin CW, Roztocil E, Feldon SE, Phipps RP. Salinomycin and other polyether ionophores are a new class of antiscarring agent. J Biol Chem 2015; 290:3563-75. [PMID: 25538236 PMCID: PMC4319023 DOI: 10.1074/jbc.m114.601872] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/22/2014] [Indexed: 12/27/2022] Open
Abstract
Although scarring is a component of wound healing, excessive scar formation is a debilitating condition that results in pain, loss of tissue function, and even death. Many tissues, including the lungs, heart, skin, and eyes, can develop excessive scar tissue as a result of tissue injury, chronic inflammation, or autoimmune disease. Unfortunately, there are few, if any, effective treatments to prevent excess scarring, and new treatment strategies are needed. Using HEK293FT cells stably transfected with a TGFβ-dependent luciferase reporter, we performed a small molecule screen to identify novel compounds with antiscarring activity. We discovered that the polyether ionophore salinomycin potently inhibited the formation of scar-forming myofibroblasts. Salinomycin (250 nm) blocked TGFβ-dependent expression of the cardinal myofibroblast products α smooth muscle actin, calponin, and collagen in primary human fibroblasts without causing cell death. Salinomycin blocked phosphorylation and activation of TAK1 and p38, two proteins fundamentally involved in signaling myofibroblast and scar formation. Expression of constitutively active mitogen activated kinase kinase 6, which activates p38 MAPK, attenuated the ability of salinomycin to block myofibroblast formation, demonstrating that salinomycin targets the p38 kinase pathway to disrupt TGFβ signaling. These data identify salinomycin and other polyether ionophores as novel potential antiscarring therapeutics.
Collapse
Affiliation(s)
| | - Charles W O'Loughlin
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Steven E Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Richard P Phipps
- From the Department of Environmental Medicine and Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| |
Collapse
|
25
|
Woeller CF, O'Loughlin CW, Pollock SJ, Thatcher TH, Feldon SE, Phipps RP. Thy1 (CD90) controls adipogenesis by regulating activity of the Src family kinase, Fyn. FASEB J 2014; 29:920-31. [PMID: 25416548 DOI: 10.1096/fj.14-257121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Worldwide obesity rates are at epidemic levels, and new insight into the regulation of obesity and adipogenesis are required. Thy1 (CD90), a cell surface protein with an enigmatic function, is expressed on subsets of fibroblasts and stem cells. We used a diet-induced obesity model to show that Thy1-null mice gain weight at a faster rate and gain 30% more weight than control C57BL/6 mice. During adipogenesis, Thy1 expression is lost in mouse 3T3-L1 cells. Overexpression of Thy1 blocked adipocyte formation and reduced mRNA and protein expression of an adipocyte marker, fatty acid-binding protein 4, by 5-fold. Although preadipocyte fibroblasts expressed Thy1 mRNA and protein, adipocytes from mouse and human fat tissue had almost undetectable Thy1 levels. Thy1 decreases the activity of the adipogenic transcription factor PPARγ by more than 60% as shown by PPARγ-dependent reporter assays. Using both genetic and pharmacologic approaches, we show Thy1 expression dampens PPARγ by inhibiting the activity of the Src-family kinase, Fyn. Thus, these studies reveal Thy1 blocks adipogenesis and PPARγ by inhibiting Fyn and support the idea that Thy1 is a novel therapeutic target in obesity.
Collapse
Affiliation(s)
- Collynn F Woeller
- *Department of Environmental Medicine and Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Charles W O'Loughlin
- *Department of Environmental Medicine and Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Stephen J Pollock
- *Department of Environmental Medicine and Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Thomas H Thatcher
- *Department of Environmental Medicine and Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Steven E Feldon
- *Department of Environmental Medicine and Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- *Department of Environmental Medicine and Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
26
|
Leyton L, Hagood JS. Thy-1 Modulates Neurological Cell–Cell and Cell–Matrix Interactions Through Multiple Molecular Interactions. ADVANCES IN NEUROBIOLOGY 2014; 8:3-20. [DOI: 10.1007/978-1-4614-8090-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Kuriyan AE, Woeller CF, O'Loughlin CW, Phipps RP, Feldon SE. Orbital fibroblasts from thyroid eye disease patients differ in proliferative and adipogenic responses depending on disease subtype. Invest Ophthalmol Vis Sci 2013; 54:7370-7. [PMID: 24135759 DOI: 10.1167/iovs.13-12741] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Thyroid eye disease (TED) patients are classified as type I (predominantly fat compartment enlargement) or type II (predominantly extraocular muscle enlargement) based on orbital imaging. Orbital fibroblasts (OFs) can be driven to proliferate or differentiate into adipocytes in vitro. We tested the hypothesis that type I OFs undergo more adipogenesis than type II OFs, whereas type II OFs proliferate more than type I OFs. We also examined the effect of cyclooxygenase (COX) inhibitors on OF adipogenesis and proliferation. METHODS Type I, type II, and non-TED OFs were treated with transforming growth factor-beta (TGFβ) to induce proliferation and with 15-deoxy-Δ(-12,14)-prostaglandin J2 (15d-PGJ2) to induce adipogenesis. Proliferation was measured using the [(3)H]thymidine assay, and adipogenesis was measured using the AdipoRed assay, Oil Red O staining, and flow cytometry. The effect of COX inhibition on adipogenesis and proliferation was also studied. RESULTS Type II OFs incorporated 1.7-fold more [(3)H]thymidine than type I OFs (P < 0.05). Type I OFs accumulated 4.8-fold more lipid than type II OFs (P < 0.05) and 12.6-fold more lipid than non-TED OFs (P < 0.05). Oil Red O staining and flow cytometry also demonstrated increased adipogenesis in type I OFs compared to type II and non-TED OFs. Cyclooxygenase inhibition significantly decreased proliferation and adipogenesis in type II OFs, but not type I OFs. CONCLUSIONS We have demonstrated that OFs from TED patients have heterogeneous responses to proproliferative and proadipogenic stimulators in vitro in a manner that corresponds to their different clinical manifestations. Furthermore, we demonstrated a differential effect of COX inhibitors on type I and type II OF proliferation and adipogenesis.
Collapse
Affiliation(s)
- Ajay E Kuriyan
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | | | | | | |
Collapse
|
28
|
Agley CC, Rowlerson AM, Velloso CP, Lazarus NR, Harridge SDR. Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation. J Cell Sci 2013; 126:5610-25. [PMID: 24101731 DOI: 10.1242/jcs.132563] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We characterised the adherent cell types isolated from human skeletal muscle by enzymatic digestion, and demonstrated that even at 72 hours after isolation these cultures consisted predominantly of myogenic cells (CD56(+), desmin(+)) and fibroblasts (TE-7(+), collagen VI(+), PDGFRα(+), vimentin(+), fibronectin(+)). To evaluate the behaviour of the cell types obtained, we optimised a double immuno-magnetic cell-sorting method for the separation of myogenic cells from fibroblasts. This procedure gave purities of >96% for myogenic (CD56(+), desmin(+)) cells. The CD56(-) fraction obtained from the first sort was highly enriched in TE-7(+) fibroblasts. Using quantitative analysis of immunofluorescent staining for lipid content, lineage markers and transcription factors, we tested if the purified cell populations could differentiate into adipocytes in response to treatment with either fatty acids or adipocyte-inducing medium. Both treatments caused the fibroblasts to differentiate into adipocytes, as shown by loss of intracellular TE-7, upregulation of the adipogenic transcription factors PPARγ and C/EBPα, and adoption of a lipid-laden adipocyte morphology. By contrast, myogenic cells did not undergo adipogenesis and showed differential regulation of PPARγ and C/EBPα in response to these adipogenic treatments. Our results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.
Collapse
Affiliation(s)
- Chibeza C Agley
- Centre of Human and Aerospace Physiological Sciences, School of Biomedical Sciences, King's College London, Shepherd's House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
29
|
Feng Y, Chen F, Xie Y, Wang H, Cona MM, Yu J, Li J, Bogaert J, Janssens S, Oyen R, Ni Y. Lipomatous metaplasia identified in rabbits with reperfused myocardial infarction by 3.0 T magnetic resonance imaging and histopathology. BMC Med Imaging 2013; 13:18. [PMID: 23815556 PMCID: PMC3707856 DOI: 10.1186/1471-2342-13-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 05/21/2013] [Indexed: 12/15/2022] Open
Abstract
Background Cardiac lipomatous metaplasia (LM) occurs in patients with chronic ischemic heart disease and heart failure with unclear mechanisms. We studied coronary occlusion/reperfusion-induced myocardial infarction (MI) in rabbits during a 9-months follow-up using 3.0 T magnetic resonance scanner, and confirmed the presence of MI in acute phase and LM in chronic phase using histopathology. Methods MI was surgically induced in 10 rabbits by 90-min coronary artery occlusion and reperfusion. Forty-eight hours later, multiparametric cardiac magnetic resonance imaging (cMRI) was performed at a 3.0 T clinical scanner for MI diagnosis and cardiac function analysis. Afterwards, seven rabbits were scarified for histochemical staining with triphenyltetrazolium chloride (TTC), and hematoxylin-eosin (HE), and 3 were scanned with cMRI at 2 days, 2 weeks, 2 months and 9 months for longitudinal observations of morphological and functional changes, and the fate of the animals. Post-mortem TTC, HE and Masson's trichrome (MTC) were studied for chronic stage of MI. Results The size of acute MI correlated well between cMRI and TTC staining (r2=0.83). Global cardiac morphology-function analysis showed significant correlation between increasing acute MI size and decreasing ejection fraction (p<0.001). During 9 months, cMRI documented evolving morphological and functional changes from acute MI to chronic scar transformation and fat deposition with a definite diagnosis of LM established by histopathology. Conclusions Acute MI and chronic LM were induced in rabbits and monitored with 3.0 T MRI. Studies on this platform may help investigate the mechanisms and therapeutic interventions for LM.
Collapse
|
30
|
Thy-1-Interacting Molecules and Cellular Signaling in Cis and Trans. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:163-216. [DOI: 10.1016/b978-0-12-407695-2.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Varisco BM, Ambalavanan N, Whitsett JA, Hagood JS. Thy-1 signals through PPARγ to promote lipofibroblast differentiation in the developing lung. Am J Respir Cell Mol Biol 2012; 46:765-72. [PMID: 22268140 DOI: 10.1165/rcmb.2011-0316oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thy-1 is a glycosylphosphytidylinositol-linked cell-surface glycoprotein present on a subset of lung fibroblasts, which plays an important role in postnatal alveolarization. In the present study, we define the role of Thy-1 in pulmonary lipofibroblast differentiation and in the regulation of lipid homeostasis via peroxisome proliferator-activated receptor-γ (PPARγ). Thy-1 was associated with interstitial cells containing lipid droplets in vivo. The transfection of Thy-1 into Thy-1 (-) fibroblasts increased triglyceride content, fatty-acid uptake, and the expression of the lipofibroblast marker adipocyte differentiation-related protein. Thy-1 (+) fibroblasts exhibited 2.4-fold higher PPARγ activity, and the inhibition or activation of PPARγ reduced and increased triglyceride content, respectively. Thy-1 (-) fibroblasts were not responsive to either of the PPARγ agonists ciglitazone or prostaglandin J(2), supporting the importance of Thy-1 in signaling via PPARγ. Thy-1 (+) fibroblasts expressed significantly higher concentrations of fatty-acid transporter protein-3 mRNA, and demonstrated higher rates of fatty-acid uptake and increased triglyceride content. The inhibition of fatty-acid transporter protein function reduced Thy-1 (+) fibroblast lipid content. The expression of Thy-1 in C57BL/6 lung fibroblasts increased during the neonatal period, coinciding with the onset of alveolarization. Thy-1 promoted lipofibroblast differentiation via the expression of PPARγ, stimulated lipid accumulation via fatty-acid esterification, and enhanced the fatty-acid uptake mediated by fatty-acid transporter proteins. Thy-1 is important in the regulation of lipofibroblast differentiation in the developing lung.
Collapse
Affiliation(s)
- Brian M Varisco
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
During wound healing, contractile fibroblasts called myofibroblasts regulate the formation and contraction of granulation tissue; however, pathological and persistent myofibroblast activation, which occurs in hypertrophic scars or tissue fibrosis, results in a loss of function. Many reviews outline the cellular and molecular features of myofibroblasts and their roles in a variety of diseases. This review focuses on the origins of myofibroblasts and the factors that control their differentiation and prolonged survival in fibrotic tissues. Pulmonary fibrosis is used to illustrate many key points, but examples from other tissues and models are also included. Myofibroblasts originate mostly from tissue-resident fibroblasts, and also from epithelial and endothelial cells or other mesenchymal precursors. Their differentiation is influenced by cytokines, growth factors, extracellular matrix composition and stiffness, and cell surface molecules such as proteoglycans and THY1, among other factors. Many of these effects are modulated by cell contraction. Myofibroblasts resist programmed cell death, which promotes their accumulation in fibrotic tissues. The cause of resistance to apoptosis in myofibroblasts is under ongoing investigation, but many of the same stimuli that regulate their differentiation are involved. The contributions of oxidative stress, the WNT-β-catenin pathway and PPARγ to myofibroblast differentiation and survival are increasingly appreciated.
Collapse
|