1
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
2
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Godbole S, Solomon JL, Johnson M, Srivastava A, Carsons SE, Belilos E, De Leon J, Reiss AB. Treating Cardiovascular Disease in the Inflammatory Setting of Rheumatoid Arthritis: An Ongoing Challenge. Biomedicines 2024; 12:1608. [PMID: 39062180 PMCID: PMC11275112 DOI: 10.3390/biomedicines12071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite progress in treating rheumatoid arthritis, this autoimmune disorder confers an increased risk of developing cardiovascular disease (CVD). Widely used screening protocols and current clinical guidelines are inadequate for the early detection of CVD in persons with rheumatoid arthritis. Traditional CVD risk factors alone cannot be applied because they underestimate CVD risk in rheumatoid arthritis, missing the window of opportunity for prompt intervention to decrease morbidity and mortality. The lipid profile is insufficient to assess CVD risk. This review delves into the connection between systemic inflammation in rheumatoid arthritis and the premature onset of CVD. The shared inflammatory and immunologic pathways between the two diseases that result in subclinical atherosclerosis and disrupted cholesterol homeostasis are examined. The treatment armamentarium for rheumatoid arthritis is summarized, with a particular focus on each medication's cardiovascular effect, as well as the mechanism of action, risk-benefit profile, safety, and cost. A clinical approach to CVD screening and treatment for rheumatoid arthritis patients is proposed based on the available evidence. The mortality gap between rheumatoid arthritis and non-rheumatoid arthritis populations due to premature CVD represents an urgent research need in the fields of cardiology and rheumatology. Future research areas, including risk assessment tools and novel immunotherapeutic targets, are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (J.L.S.); (M.J.); (A.S.); (S.E.C.); (E.B.); (J.D.L.)
| |
Collapse
|
4
|
Smeir M, Chumala P, Katselis GS, Liu L. Lymphocyte-Specific Protein 1 Regulates Expression and Stability of Endothelial Nitric Oxide Synthase. Biomolecules 2024; 14:111. [PMID: 38254711 PMCID: PMC10813790 DOI: 10.3390/biom14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), plays a critical role in blood pressure regulation. Genome-wide association studies have identified genetic susceptibility loci for hypertension in human lymphocyte-specific protein 1 (LSP1) gene. LSP1 is recognized as modulator of leukocyte extravasation, and endothelial permeability, however, the role of LSP1 in regulation of NO signaling within endothelial cells (ECs) remains unknown. The present study investigated the role of LSP1 in the regulation of eNOS expression and activity utilizing human macrovascular ECs in vitro and LSP1 knockout (KO) mice. In ECs, specific CRISPR-Cas9 genomic editing deleted LSP1 and caused downregulation of eNOS expression. LSP1 gain-of-function through adenovirus-mediated gene transfer was associated with enhanced expression of eNOS. Co-immunoprecipitation and confocal fluorescence microscopy revealed that eNOS and LSP1 formed a protein complex under basal conditions in ECs. Furthermore, LSP1 deficiency in mice promoted significant upregulation and instability of eNOS. Utilizing a mass-spectrometry-based bottom-up proteomics approach, we identified novel truncated forms of eNOS in immunoprecipitates from LSP1 KO aortae. Our experimental data suggest an important role of endothelial LSP1 in regulation of eNOS expression and activity within human ECs and murine vascular tissues.
Collapse
Affiliation(s)
- Musstafa Smeir
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Paulos Chumala
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - George S. Katselis
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
5
|
Roy R, Wilcox J, Webb AJ, O’Gallagher K. Dysfunctional and Dysregulated Nitric Oxide Synthases in Cardiovascular Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2023; 24:15200. [PMID: 37894881 PMCID: PMC10607291 DOI: 10.3390/ijms242015200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Nitric oxide (NO) plays an important and diverse signalling role in the cardiovascular system, contributing to the regulation of vascular tone, endothelial function, myocardial function, haemostasis, and thrombosis, amongst many other roles. NO is synthesised through the nitric oxide synthase (NOS)-dependent L-arginine-NO pathway, as well as the nitrate-nitrite-NO pathway. The three isoforms of NOS, namely neuronal (NOS1), inducible (NOS2), and endothelial (NOS3), have different localisation and functions in the human body, and are consequently thought to have differing pathophysiological roles. Furthermore, as we continue to develop a deepened understanding of the different roles of NOS isoforms in disease, the possibility of therapeutically modulating NOS activity has emerged. Indeed, impaired (or dysfunctional), as well as overactive (or dysregulated) NOS activity are attractive therapeutic targets in cardiovascular disease. This review aims to describe recent advances in elucidating the physiological role of NOS isoforms within the cardiovascular system, as well as mechanisms of dysfunctional and dysregulated NOS in cardiovascular disease. We then discuss the modulation of NO and NOS activity as a target in the development of novel cardiovascular therapeutics.
Collapse
Affiliation(s)
- Roman Roy
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
| | - Joshua Wilcox
- Cardiovascular Department, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
| | - Andrew J. Webb
- Department of Clinical Pharmacology, British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London SE1 7EH, UK;
| | - Kevin O’Gallagher
- Cardiovascular Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK;
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 9NU, UK
| |
Collapse
|
6
|
Aslan M, Basralı F, Ülker P, Barut Z, Yılmaz Ç, Çeker T, Özen N, Öztüzün A, Elpek Ö. Effects of aurantiamide on a rat model of renovascular arterial hypertension. Pflugers Arch 2023; 475:1177-1192. [PMID: 37582694 PMCID: PMC10499692 DOI: 10.1007/s00424-023-02850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Asperglaucide (ASP) is an aurantiamide, an effective constituent of purslane (Portulaca oleracea L.), a safe to eat greenery. Effects of ASP on endothelial function, endothelial nitric oxide synthase (eNOS) expression, vascular fluidity, renal and vascular reactive oxygen, and nitrogen species (ROS/RNS) production was examined in the two-kidney one-clip (2 K-1C) rat model of renovascular arterial hypertension. ASP toxicity, dose dependent eNOS gene expression and protein levels were also analyzed in human umbilical vein endothelial cells (HUVEC). The 2 K-1C model of hypertension was created via surgery and mean blood pressure (MBP) was measured by tail-cuff method during four weeks of ASP treatment. Erythrocyte deformability was monitored by rotational ektacytometry, while vascular constrictor and dilator responses were determined in organ baths. eNOS gene expression and protein levels were assessed in thoracic aorta and HUVEC. MBP was significantly decreased in hypertensive rats treated with ASP. Endothelium dependent vascular dilator and constrictor responses were also considerably improved following ASP treatment. There was a notable increase in red blood cell deformability in hypertensive rats treated with ASP as compared to hypertensive rats alone. A significant increase was observed in eNOS gene expression and protein levels in both normotensive and hypertensive rats treated with ASP. Treatment of HUVEC with 3 µM ASP notably increased eNOS mRNA and protein levels. In conclusion, ASP lowered blood pressure, improved endothelium-mediated relaxation, decreased renovascular ROS/RNS production in hypertensive rats. ASP also increased eNOS protein expression in aorta and HUVEC at nontoxic doses. ASP may have future potential as an anti-hypertensive agent.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Filiz Basralı
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Pınar Ülker
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Zerrin Barut
- Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Nur Özen
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Aleyna Öztüzün
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Özlem Elpek
- Department of Pathology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
7
|
Mace EH, Kimlinger MJ, Billings FT, Lopez MG. Targeting Soluble Guanylyl Cyclase during Ischemia and Reperfusion. Cells 2023; 12:1903. [PMID: 37508567 PMCID: PMC10378692 DOI: 10.3390/cells12141903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemia and reperfusion (IR) damage organs and contribute to many disease states. Few effective treatments exist that attenuate IR injury. The augmentation of nitric oxide (NO) signaling remains a promising therapeutic target for IR injury. NO binds to soluble guanylyl cyclase (sGC) to regulate vasodilation, maintain endothelial barrier integrity, and modulate inflammation through the production of cyclic-GMP in vascular smooth muscle. Pharmacologic sGC stimulators and activators have recently been developed. In preclinical studies, sGC stimulators, which augment the reduced form of sGC, and activators, which activate the oxidized non-NO binding form of sGC, increase vasodilation and decrease cardiac, cerebral, renal, pulmonary, and hepatic injury following IR. These effects may be a result of the improved regulation of perfusion and decreased oxidative injury during IR. sGC stimulators are now used clinically to treat some chronic conditions such as heart failure and pulmonary hypertension. Clinical trials of sGC activators have been terminated secondary to adverse side effects including hypotension. Additional clinical studies to investigate the effects of sGC stimulation and activation during acute conditions, such as IR, are warranted.
Collapse
Affiliation(s)
- Eric H Mace
- Department of Surgery, Vanderbilt University Medical Center, Medical Center North, Suite CCC-4312, 1161 21st Avenue South, Nashville, TN 37232-2730, USA
| | - Melissa J Kimlinger
- Vanderbilt University School of Medicine, 428 Eskind Family Biomedical Library and Learning Center, Nashville, TN 37240-0002, USA
| | - Frederic T Billings
- Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University Medical Center, Medical Arts Building, Suite 422, 1211 21st Avenue South, Nashville, TN 37212-1750, USA
| | - Marcos G Lopez
- Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University Medical Center, Medical Arts Building, Suite 422, 1211 21st Avenue South, Nashville, TN 37212-1750, USA
| |
Collapse
|
8
|
Huang S, Taylor CG, Zahradka P. Growth State-Dependent Activation of eNOS in Response to DHA: Involvement of p38 MAPK. Int J Mol Sci 2023; 24:ijms24098346. [PMID: 37176054 PMCID: PMC10179717 DOI: 10.3390/ijms24098346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Our laboratory previously reported that docosahexaenoic acid (DHA) differentially activates p38 mitogen-activated protein kinase (MAPK) in growing and quiescent human endothelial cells, which represent the dysfunctional and healthy states in vivo, respectively. Since endothelial nitric oxide synthase (eNOS) activity differs between healthy and dysfunctional endothelial cells, and p38 MAPK reportedly regulates both the activity and expression of eNOS, we hypothesized that the beneficial actions of DHA on endothelial cells are due to eNOS activation by p38 MAPK. The contribution of mitogen- and stress-activated protein kinase (MSK), a p38 MAPK substrate, was also investigated. Growing and quiescent EA.hy926 cells, prepared on Matrigel®-coated plates, were incubated with inhibitors of p38MAPK or MSK before adding DHA. eNOS phosphorylation and levels were quantified by Western blotting. Treatment with 20 µM DHA activated eNOS in both growth states whereas 125 µM DHA suppressed eNOS activation in growing cells. Quiescent cells had higher basal levels of eNOS than growing cells, while 125 µM DHA decreased eNOS levels in both growth states. p38 MAPK inhibition enhanced eNOS activation in quiescent cells but suppressed it in growing cells. Interestingly, 125 µM DHA counteracted these effects of p38 MAPK inhibition in both growth states. MSK was required for eNOS activation in both growth states, but it only mediated eNOS activation by DHA in quiescent cells. MSK thus affects eNOS via a pathway independent of p38MAPK. Quiescent cells were also more resistant to the apoptosis-inducing effect of 125 µM DHA compared to growing cells. The growth state-dependent regulation of p38MAPK and eNOS by DHA provides novel insight into the molecular mechanisms by which DHA influences endothelial cell function.
Collapse
Affiliation(s)
- Shiqi Huang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
9
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
10
|
Wang J, Liu Z, Lu J, Zou J, Ye W, Li H, Gao S, Liu P. SIRT6 regulates endothelium-dependent relaxation by modulating nitric oxide synthase 3 (NOS3). Biochem Pharmacol 2023; 209:115439. [PMID: 36720357 DOI: 10.1016/j.bcp.2023.115439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE SIRT6, an NAD+-dependent protein deacetylase, is a key modulator of various biological functions. However, the precise role of SIRT6 in the regulation of endothelial function is still not fully understood. The current study sought to determine whether SIRT6 modulates NOS3 activity to regulate endothelium-dependent relaxations in the arterial wall and, if so, to investigate the potential underlying mechanism (s). METHODS ApoE-/- mice and Sprague-Dawley rats had their aortic rings isolated for a vascular reactivity assay. Endothelial cells were cultured before qRT-PCR, western blot, immunoprecipitation, NO bioavailability, and acetylation/deacetylation assays were performed. RESULTS SIRT6 expression was significantly reduced in the aorta of ApoE-/- mice fed a high-cholesterol diet, as was endothelium-dependent relaxation. Endothelial dysfunction could be corrected by delivering a SIRT6 overexpression construct via an adenovirus. In cultured endothelial cells, siRNA knockdown of SIRT6 decreased NOS3 catalytic activity, whereas adenoviral overexpression of SIRT6 increased NOS3-derived nitric oxide (NO) generation. SIRT6 interacted with and deacetylated human NOS3 at lysines 494, 497, and 504 of the calmodulin-binding domain, allowing calmodulin to bind to NOS3 and stimulate NOS3 activity. SIRT6 knockdown also reduced NOS3 expression by inhibiting Kruppel-Like Factor 2 (KLF2). CONCLUSIONS We identified SIRT6 as a new regulator of the activity of NOS3, with functional implications for endothelial-dependent relaxation.
Collapse
Affiliation(s)
- Jiaojiao Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China; National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiami Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Weile Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Hong Li
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Si Gao
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Medicine, Guangxi University of Science and Technology, No. 257 Liu-shi Road, Yufeng District, Liuzhou 545005, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Xiao L, Xiong H, Deng Z, Peng X, Cheng K, Zhang H, Jiang L, Sun Y. Tetrastigma hemsleyanum leaf extracts ameliorate NAFLD in mice with low-grade colitis via the gut-liver axis. Food Funct 2023; 14:500-515. [PMID: 36519687 DOI: 10.1039/d2fo03028d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex metabolic disorder, manifested as oxidative stress, lipid accumulation, and inflammation of the liver. Tetrastigma hemsleyanum leaves (THL), which are rich in flavonoids and phenolic acids, have good anti-inflammatory, antioxidant, and hepatoprotective effects. However, it is unknown whether THL extracts can improve NAFLD and the underlying mechanisms are unknown. Hence, this study was designed to investigate the effects of THL extracts on NAFLD and perform a preliminary inquiry into the underlying mechanism based on the gut-liver axis. The results showed that THL extracts could reverse NAFLD-related oxidative stress, lipid accumulation, and inflammation. Additionally, the protective effect of THL extracts on the gut includes the maintenance of the intestinal barrier and the regulation of gut microbiota, which may be one of the mechanisms by which THL improves NAFLD. To be specific, in our study, THL extracts alleviated hepatic lipid accumulation and oxidative stress by regulating the expression of lipid synthesis/catabolism and the oxidative stress genes (SREBP-1c/ACC-1/PPAR-α/PPAR-γ/Keap1/Nrf2). In addition, THL extracts reduced damage to the intestinal barrier (ZO-1/Mucin2/occludin) and increased the relative abundance of Lactobacillales, Ruminococcaceae, and Bifidobacteriales in NAFLD mice. In short, THL extracts alleviated NAFLD-related oxidative stress, lipid accumulation, and inflammation in NAFLD mice which may be via the gut-liver axis (gut barrier integrity and gut microbiota).
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315010, China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
12
|
2'-5' oligoadenylate synthetase‑like 1 (OASL1) protects against atherosclerosis by maintaining endothelial nitric oxide synthase mRNA stability. Nat Commun 2022; 13:6647. [PMID: 36333342 PMCID: PMC9636244 DOI: 10.1038/s41467-022-34433-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS) decreases following inflammatory stimulation. As a master regulator of endothelial homeostasis, maintaining optimal eNOS levels is important during cardiovascular events. However, little is known regarding the mechanism of eNOS protection. In this study, we demonstrate a regulatory role for endothelial expression of 2'-5' oligoadenylate synthetase-like 1 (OASL1) in maintaining eNOS mRNA stability during athero-prone conditions and consider its clinical implications. A lack of endothelial Oasl1 accelerated plaque progression, which was preceded by endothelial dysfunction, elevated vascular inflammation, and decreased NO bioavailability following impaired eNOS expression. Mechanistically, knockdown of PI3K/Akt signaling-dependent OASL expression increased Erk1/2 and NF-κB activation and decreased NOS3 (gene name for eNOS) mRNA expression through upregulation of the negative regulatory, miR-584, whereas a miR-584 inhibitor rescued the effects of OASL knockdown. These results suggest that OASL1/OASL regulates endothelial biology by protecting NOS3 mRNA and targeting miR-584 represents a rational therapeutic strategy for eNOS maintenance in vascular disease.
Collapse
|
13
|
Ji L, Su S, Xin M, Zhang Z, Nan X, Li Z, Lu D. Luteolin ameliorates hypoxia-induced pulmonary hypertension via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154329. [PMID: 35843187 DOI: 10.1016/j.phymed.2022.154329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disease with poor prognosis and high mortality. Hypoxia induced pulmonary hypertension (HPH) is a persistent threat to human health, especially to people who live on high altitude plateau. Pulmonary vascular endothelial cell is involved in numerous pathophysiological processes, including in vasoconstriction, oxidative stress, cell growth and differentiation. Endothelial cells (ECs) are the first layer to be exposed to changed oxygen levels and hypoxia could lead to ECs dysfunction. Endothelial-derived nitric oxide (NO) is the most important bioactive molecule, which could regulate endothelial homeostasis. PH pathophysiology has been linked to the disruption of NO pathways. PURPOSE Luteolin is a kind of plant active ingredient with multiple pharmacological activities. The purpose of this study is to detect the effect of luteolin on HPH with in vivo, ex vivo and in vitro analyses and to further elucidate luteolin's pharmaceutical mechanism with NO related signaling pathway regulation. METHODS Hypobaric chamber was used to establish HPH animal model. Rats were intragastrically administrated luteolin for 28 days. Then hemodynamic indexes, histopathological changes, pulmonary artery endothelial function, NO content and arginase activity in lung tissue, NO related pathway proteins expression were measured to evaluate the effect of luteolin on HPH. PAECs were treated with 1% O2 and incubated with or without luteolin. PAECs vitality, NO content in cells supernatant, and NO related pathway proteins expression were tested to reveal the protective mechanism of luteolin. RESULTS Luteolin decreased mean pulmonary hypertension of HPH rats, alleviated right ventricular and pulmonary vascular remodeling. Immunofluorescence staining (vWF), isolated perfused/ventilated rat lung experiment indicated that luteolin protected pulmonary vascular endothelial function of HPH rats. Luteolin increased NO content in PAECs supernatant while decreased NO level in lung tissues of HPH rats. Further, it was demonstrated that luteolin inhibited HIF-2α-Arg axis in PAECs and HPH rats. PI3K-AKT-eNOS signaling pathway was upregulated in PAECs, but which was downregulated in lung tissues of HPH rats. Pharmacological effect of luteolin was equivalent or better than sildenafil. CONCLUSION Luteolin ameliorated HPH in rats by protecting pulmonary vascular endothelial function via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. This study may provide a novel perspective and approach to alleviate the devastating disease of HPH.
Collapse
Affiliation(s)
- Lei Ji
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China; Qinghai Provincial People's Hospital, Xining, China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, China
| | - Mingyuan Xin
- Medical College, Qinghai University, Xining, China
| | - Zhaoxia Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xingmei Nan
- Medical College, Qinghai University, Xining, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.
| |
Collapse
|
14
|
Placental angiogenesis, IUGR & CMV awareness in Iraqi women. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The placenta is considered the first interface between mother and fetus, and a normal placenta is essential for pregnancy without complications. IUGR is considered the most common condition recognized in complicated pregnancy and accounts for 26% or more of stillbirth. The current study aims to explore the presence of IUGR and placental angiogenesis by investigating the expression of VEGF and eNOS in both placenta of IUGR of CMV-infected mother and placenta of normal mother in relation to awareness of CMV in Iraqi women.
The expressions of VEGF and e NOS was studied using the avidin-biotin-peroxidase technique, while awareness was studied using 10-minute surveys in Al-Karkh directorate (Baghdad) to investigate their knowledge of CMV infection in relation to the level of education and economic status.
The expression of angiogenic factors (VEGF, eNOS) was significant in syncitiotrophoblasts, smooth muscle cells and corionic villous stromal cells, and was significant in unaware, low-educated women with low income. Increased expression of angiogenic factors of IUGR babies may be a result of unawareness of CMV infection, which leads to dysregulation of angiogenic factors, and, subsequently, to inadequate placental vascularization.
Collapse
|
15
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Desideri E, Ciccarone F, Ciriolo MR, Fratantonio D. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic Biol Med 2021; 172:508-520. [PMID: 34214634 DOI: 10.1016/j.freeradbiomed.2021.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released from most cell types that play a key role in cell-to-cell communication by carrying DNA, non-coding RNAs, proteins and lipids out of cells. The composition of EVs depends on the cell or tissue of origin and changes according to their pathophysiological conditions, making EVs a potential circulating biomarker of disease. Additionally, the natural tropism of EVs for specific organs and cells has raised the interest in their use as delivery vehicles. In this review, we provide an overview of EV biogenesis, isolation and characterization. We also discuss EVs in the context of endothelial pathophysiology, summarizing the current knowledge about their role in cell communication in quiescent and activated endothelial cells. In the last part, we describe the potential use of EVs as delivery vehicles of bioactive compounds and the current strategies to load exogenous cargo and to functionalize EVs to drive them to a specific tissue.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome; IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| | - Deborah Fratantonio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
17
|
Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules 2021; 11:biom11070982. [PMID: 34356605 PMCID: PMC8301841 DOI: 10.3390/biom11070982] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability, including regulation of eNOS expression and activity. What is particularly important is the fact that hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus elicits eNOS uncoupling-a state in which the enzyme produces superoxide instead of NO. eNOS uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute to the development of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
- Correspondence:
| |
Collapse
|
18
|
Milewski K, Czarnecka AM, Albrecht J, Zielińska M. Decreased Expression and Uncoupling of Endothelial Nitric Oxide Synthase in the Cerebral Cortex of Rats with Thioacetamide-Induced Acute Liver Failure. Int J Mol Sci 2021; 22:6662. [PMID: 34206365 PMCID: PMC8268495 DOI: 10.3390/ijms22136662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model.
Collapse
Affiliation(s)
| | | | | | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106 Warsaw, Poland; (K.M.); (A.M.C.); (J.A.)
| |
Collapse
|
19
|
Angolano C, Kaczmarek E, Essayagh S, Daniel S, Choi LY, Tung B, Sauvage G, Lee A, Kipper FC, Arvelo MB, Moll HP, Ferran C. A20/TNFAIP3 Increases ENOS Expression in an ERK5/KLF2-Dependent Manner to Support Endothelial Cell Health in the Face of Inflammation. Front Cardiovasc Med 2021; 8:651230. [PMID: 34026871 PMCID: PMC8138474 DOI: 10.3389/fcvm.2021.651230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Decreased expression and activity of endothelial nitric oxide synthase (eNOS) in response to inflammatory and metabolic insults is the hallmark of endothelial cell (EC) dysfunction that preludes the development of atherosclerosis and hypertension. We previously reported the atheroprotective properties of the ubiquitin-editing and anti-inflammatory protein A20, also known as TNFAIP3, in part through interrupting nuclear factor-kappa B (NF-κB) and interferon signaling in EC and protecting these cells from apoptosis. However, A20's effect on eNOS expression and function remains unknown. In this study, we evaluated the impact of A20 overexpression or knockdown on eNOS expression in EC, at baseline and after tumor necrosis factor (TNF) treatment, used to mimic inflammation. Methods and Results: A20 overexpression in human coronary artery EC (HCAEC) significantly increased basal eNOS mRNA (qPCR) and protein (western blot) levels and prevented their downregulation by TNF. Conversely, siRNA-induced A20 knockdown decreased eNOS mRNA levels, identifying A20 as a physiologic regulator of eNOS expression. By reporter assays, using deletion and point mutants of the human eNOS promoter, and knockdown of eNOS transcriptional regulators, we demonstrated that A20-mediated increase of eNOS was transcriptional and relied on increased expression of the transcription factor Krüppel-like factor (KLF2), and upstream of KLF2, on activation of extracellular signal-regulated kinase 5 (ERK5). Accordingly, ERK5 knockdown or inhibition significantly abrogated A20's ability to increase KLF2 and eNOS expression. In addition, A20 overexpression in HCAEC increased eNOS phosphorylation at Ser-1177, which is key for the function of this enzyme. Conclusions: This is the first report demonstrating that overexpression of A20 in EC increases eNOS transcription in an ERK5/KLF2-dependent manner and promotes eNOS activating phosphorylation. This effect withstands eNOS downregulation by TNF, preventing EC dysfunction in the face of inflammation. This novel function of A20 further qualifies its therapeutic promise to prevent/treat atherosclerosis.
Collapse
Affiliation(s)
- Cleide Angolano
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Elzbieta Kaczmarek
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sanah Essayagh
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Soizic Daniel
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Lynn Y. Choi
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Brian Tung
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gabriel Sauvage
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Andy Lee
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Franciele C. Kipper
- The Division of Neurosurgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Maria B. Arvelo
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Herwig P. Moll
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Christiane Ferran
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- The Transplant Institute and the Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Dao VTV, Elbatreek MH, Fuchß T, Grädler U, Schmidt HHHW, Shah AM, Wallace A, Knowles R. Nitric Oxide Synthase Inhibitors into the Clinic at Last. Handb Exp Pharmacol 2021; 264:169-204. [PMID: 32797331 DOI: 10.1007/164_2020_382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1998 Nobel Prize in Medicine and Physiology for the discovery of nitric oxide, a nitrogen containing reactive oxygen species (also termed reactive nitrogen or reactive nitrogen/oxygen species) stirred great hopes. Clinical applications, however, have so far pertained exclusively to the downstream signaling of cGMP enhancing drugs such as phosphodiesterase inhibitors and soluble guanylate cyclase stimulators. All clinical attempts, so far, to inhibit NOS have failed even though preclinical models were strikingly positive and clinical biomarkers correlated perfectly. This rather casts doubt on our current way of target identification in drug discovery in general and our way of patient stratification based on correlating but not causal biomarkers or symptoms. The opposite, NO donors, nitrite and enhancing NO synthesis by eNOS/NOS3 recoupling in situations of NO deficiency, are rapidly declining in clinical relevance or hold promise but need yet to enter formal therapeutic guidelines, respectively. Nevertheless, NOS inhibition in situations of NO overproduction often jointly with enhanced superoxide (or hydrogen peroxide production) still holds promise, but most likely only in acute conditions such as neurotrauma (Stover et al., J Neurotrauma 31(19):1599-1606, 2014) and stroke (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019). Conversely, in chronic conditions, long-term inhibition of NOS might be too risky because of off-target effects on eNOS/NOS3 in particular for patients with cardiovascular risks or metabolic and renal diseases. Nitric oxide synthases (NOS) and their role in health (green) and disease (red). Only neuronal/type 1 NOS (NOS1) has a high degree of clinical validation and is in late stage development for traumatic brain injury, followed by a phase II safety/efficacy trial in ischemic stroke. The pathophysiology of NOS1 (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016) is likely to be related to parallel superoxide or hydrogen peroxide formation (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 114(46):12315-12320, 2017; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019) leading to peroxynitrite and protein nitration, etc. Endothelial/type 3 NOS (NOS3) is considered protective only and its inhibition should be avoided. The preclinical evidence for a role of high-output inducible/type 2 NOS (NOS2) isoform in sepsis, asthma, rheumatic arthritis, etc. was high, but all clinical development trials in these indications were neutral despite target engagement being validated. This casts doubt on the role of NOS2 in humans in health and disease (hence the neutral, black coloring).
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Thomas Fuchß
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Ulrich Grädler
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Alan Wallace
- Health and Life Sciences, Coventry University, Coventry, UK
| | - Richard Knowles
- Knowles Consulting Ltd., The Stevenage Bioscience Catalyst, Stevenage, UK.
| |
Collapse
|
21
|
Ruan Z, Wang H, Zhang K, Xu Z, Zang Z, Fu Q. Probucol improves erectile function by regulating endoplasmic reticulum stress in rats with streptozotocin-induced diabetes. Andrologia 2021; 53:e13999. [PMID: 33565104 DOI: 10.1111/and.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
This study was to explore the effect and mechanism of Probucol on STZ-induced erectile dysfunction in diabetic rats. Thirty SD male rats aged 12 weeks were given intraperitoneal injection of STZ after fasting for 12 hr. Diabetic rats were haphazardly partitioned under two assemblies and administered 0 or 500 mg/kg probucol by oral gavage to 12 weeks. Control group was intraperitoneally injected with physiological saline, and saline was administered by oral gavage daily. Intracorporeal pressure was used to evaluate erectile function. Levels of proteins were detected using immunohistochemistry and Western blotting. α-SMA and vWF were detected using immunofluorescence staining. After treatment, erectile function in probucol group was significantly improved. Endoplasmic reticulum stress-related proteins were expressed higher in DM group than in sham group, while expression of these proteins decreased significantly in probucol group. However, α-SMA and vWF were expressed at lower levels in DM group than in sham group, and probucol treatment reversed this phenomenon. Finally, Bax and Caspase3 were expressed at higher levels and Bcl-2 was expressed at lower levels in DM group, while the opposite result was obtained in probucol group. In conclusions, probucol improves erectile function by reducing endothelial dysfunction and inhibiting PERK/ATF4/CHOP pathway in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Tai'an City Central Hospital, Tai'an, P.R. China
| | - Haoran Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhen Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhenjie Zang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
22
|
Park JH, Cho DH, Hwang YJ, Lee JY, Lee HJ, Jo I. Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas. Biomol Ther (Seoul) 2020; 28:549-560. [PMID: 32394671 PMCID: PMC7585642 DOI: 10.4062/biomolther.2020.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022] Open
Abstract
Although DNA damage responses (DDRs) are reported to be involved in nitric oxide (NO) production in response to genotoxic stresses, the precise mechanism of DDR-mediated NO production has not been fully understood. Using a genotoxic agent aphidicolin, we investigated how DDRs regulate NO production in bovine aortic endothelial cells. Prolonged (over 24 h) treatment with aphidicolin increased NO production and endothelial NO synthase (eNOS) protein expression, which was accompanied by increased eNOS dimer/monomer ratio, tetrahydrobiopterin levels, and eNOS mRNA expression. A promoter assay using 5'-serially deleted eNOS promoters revealed that Tax-responsive element site, located at -962 to -873 of the eNOS promoter, was responsible for aphidicolin-stimulated eNOS gene expression. Aphidicolin increased CREB activity and ectopic expression of dominantnegative inhibitor of CREB, A-CREB, repressed the stimulatory effects of aphidicolin on eNOS gene expression and its promoter activity. Co-treatment with LY294002 decreased the aphidicolin-stimulated increase in p-CREB-Ser133 level, eNOS expression, and NO production. Furthermore, ectopic expression of dominant-negative Akt construct attenuated aphidicolin-stimulated NO production. Aphidicolin increased p-ATM-Ser1981 and the knockdown of ATM using siRNA attenuated all stimulatory effects of aphidicolin on p-Akt-Ser473, p-CREB-Ser133, eNOS expression, and NO production. Additionally, these stimulatory effects of aphidicolin were similarly observed in human umbilical vein endothelial cells. Lastly, aphidicolin increased acetylcholine-induced vessel relaxation in rat aortas, which was accompanied by increased p-ATM-Ser1981, p-Akt-Ser473, p-CREB-Ser133, and eNOS expression. In conclusion, our results demonstrate that in response to aphidicolin, activation of ATM/Akt/CREB/eNOS signaling cascade mediates increase of NO production and vessel relaxation in endothelial cells and rat aortas.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Du-Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Yun-Jin Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Jee Young Lee
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
23
|
Ding J, Yu M, Jiang J, Luo Y, Zhang Q, Wang S, Yang F, Wang A, Wang L, Zhuang M, Wu S, Zhang Q, Xia Y, Lu D. Angiotensin II Decreases Endothelial Nitric Oxide Synthase Phosphorylation via AT 1R Nox/ROS/PP2A Pathway. Front Physiol 2020; 11:566410. [PMID: 33162896 PMCID: PMC7580705 DOI: 10.3389/fphys.2020.566410] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidences suggest that angiotensin (Ang) II participates in the pathogenesis of endothelial dysfunction (ED) through multiple signaling pathways, including angiotensin type 1 receptor (AT1R) mediated NADPH oxidase (Nox)/reactive oxygen species (ROS) signal transduction. However, the detailed mechanism is not completely understood. In this study, we reported that AngII/AT1R-mediated activated protein phosphatase 2A (PP2A) downregulated endothelial nitric oxide synthase (eNOS) phosphorylation via Nox/ROS pathway. AngII treatment reduced the levels of phosphorylation of eNOS Ser1177 and nitric oxide (NO) content along with phosphorylation of PP2Ac (PP2A catalytic subunit) Tyr307, meanwhile increased the PP2A activity and ROS production in human umbilical vein endothelial cells (HUVECs). These changes could be impeded by AT1R antagonist candesartan (CAN). The pretreatment of 10−8 M PP2A inhibitor okadaic acid (OA) reversed the levels of eNOS Ser1177 and NO content. Similar effects of AngII on PP2A and eNOS were also observed in the mesenteric arteries of Sprague-Dawley rats subjected to AngII infusion via osmotic minipumps for 2 weeks. We found that the PP2A activity was increased, but the levels of PP2Ac Tyr307 and eNOS Ser1177 as well as NO content were decreased in the mesenteric arteries. The pretreatments of antioxidant N-acetylcysteine (NAC) and apocynin (APO) abolished the drop of the levels of PP2Ac Tyr307 and eNOS Ser1177 induced by AngII in HUVECs. The knockdown of p22phox by small interfering RNA (siRNA) gave rise to decrement of ROS production and increment of the levels of PP2Ac Tyr307 and eNOS Ser1177. These results indicated that AngII/AT1R pathway activated PP2A by downregulating its catalytic subunit Tyr307 phosphorylation, which relies on the Nox activation and ROS production. In summary, our findings indicate that AngII downregulates PP2A catalytic subunit Tyr307 phosphorylation to activate PP2A via AT1R-mediated Nox/ROS signaling pathway. The activated PP2A further decreases levels of eNOS Ser1177 phosphorylation and NO content leading to endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Ding
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Min Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Juncai Jiang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yanbei Luo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Qian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Shengnan Wang
- Department of Pathology, The Second Clinical Medical School of Inner Mongolia University for the Nationalities, Yakeshi, China
| | - Fei Yang
- Department of Cardiology, The Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Alei Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lingxiao Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Mei Zhuang
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yong Xia
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Deqin Lu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| |
Collapse
|
24
|
Transphyletic conservation of nitric oxide synthase regulation in cephalochordates and tunicates. Dev Genes Evol 2020; 230:329-338. [PMID: 32839880 DOI: 10.1007/s00427-020-00668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide synthase is ubiquitously present in metazoans and is involved in a wide range of biological processes. Three distinct Nos genes have been so far identified in vertebrates exhibiting a complex expression pattern and transcriptional regulation. Nevertheless, although independent events of Nos duplication have been observed in several taxa, only few studies described the regulatory mechanisms responsible for their activation in non-vertebrate animals. To shed light on the mechanisms underlying neuronal-type Nos expression, we focused on two non-vertebrate chordates: the cephalochordate Branchiostoma lanceolatum and the tunicate Ciona robusta. Here, throughout transphyletic and transgenic approaches, we identified genomic regions in both species acting as Nos functional enhancers during development. In vivo analyses of Nos genomic fragments revealed their ability to recapitulate the endogenous expression territories. Therefore, our results suggest the existence of evolutionary conserved mechanisms responsible for neuronal-type Nos regulation in non-vertebrate chordates. In conclusion, this study paves the way for future characterization of conserved transcriptional logic underlying the expression of neuronal-type Nos genes in chordates.
Collapse
|
25
|
Nakamura-Utsunomiya A, Tsumura M, Okada S, Kawaguchi H, Kobayashi M. Downregulation of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) in a co-culture system with human stimulated X-linked CGD neutrophils. PLoS One 2020; 15:e0230665. [PMID: 32251485 PMCID: PMC7135077 DOI: 10.1371/journal.pone.0230665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phagocytes in patients with chronic granulomatous disease (CGD) do not generate reactive oxidative species (ROS), whereas nitric oxide (NO) production is increased in response to the calcium ionophore A23187 in CGD phagocytes compared with healthy phagocytes. Recently, patients with X-linked CGD (X-CGD) have been reported to show higher flow-mediated dilation, suggesting that endothelial cell function is affected by NO production from phagocytes. We studied NOS3 and EDN1 mRNA and protein expression in human umbilical vein endothelial cells (HUVECs) in a co-culture system with neutrophils from X-CGD patients. HUVECs were co-cultured for 30 minutes with human neutrophils from X-CGD or healthy participants in response to A23187 without cell-to-cell contact. The expression of NOS3 and EDN1 mRNA in HUVECs was quantified by real-time polymerase chain reaction. Moreover, we demonstrated the protein expression of eNOS, ET-1, and NFκB p65, including phosphorylation at Ser1177 of eNOS and Ser536 of NFκB p65. Neutrophils from X-CGD patients showed significantly higher NO and lower H2O2 production in response to A23187 than healthy neutrophils in vitro. Compared with healthy neutrophils, X-CGD neutrophils under A23187 stimulation exhibited significantly increased NO and decreased H2O2, and promoted downregulated NOS3 and EDN1 expression in HUVECs. The total expression and phosphorylation at Ser1177 of eNOS and ET-1 expression were significantly decreased in HUVECs co-cultures with stimulated X-CGD neutrophils. Also, phosphorylation at Ser536 of NFκB p65 were significantly decreased. In conclusions, eNOS and ET-1 significantly down-regulated in co-culture with stimulated X-CGD neutrophils through their excessive NO and the lack of ROS production. These findings suggest that ROS generated from neutrophils may mediate arterial tone affecting eNOS and ET-1 expression via their NO and ROS production.
Collapse
Affiliation(s)
- Akari Nakamura-Utsunomiya
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroshi Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
26
|
Zaichko K, Stanislavchuk M, Zaichko N. Circadian fluctuations of endothelial nitric oxide synthase activity in females with rheumatoid arthritis: a pilot study. Rheumatol Int 2020; 40:549-554. [PMID: 32025851 DOI: 10.1007/s00296-020-04525-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/25/2020] [Indexed: 01/31/2023]
Abstract
Rheumatoid arthritis (RA) is a disease associated with circadian disorders of steroid hormones or cytokine secretion which induce inflammatory, destructive and proliferative processes in the synovial joints. Angiogenesis plays an important role in RA, but circadian rhythms of the angiogenic mediator production, especially endothelial nitric oxide synthase (NOS3), are still unclear. NOS3 takes part in regulation of endothelial functions, inflammation, and bone remodeling process. Studying circadian rhythms of NOS3 production in RA patients will make an improvement in understanding the angiogenic-inflammatory pathways relevant to rheumatic diseases. The aim of the study was to test the hypothesis of a diurnal variation in circulating levels of NOS3 in RA patients. A cross-sectional monocentric pilot study of circadian variability of endothelial nitric oxide synthase in a Ukrainian population was conducted between March and July 2017. We examined 36 RA patients (100% women) and 34 age-matched healthy women without joint diseases and autoimmune diseases (control). Blood samples were collected four times per day (at 08:00; 14:00; 20:00 and 02:00) for two consecutive days. Serum NOS3 concentration was measured by ELISA (Cloud-Clone Corp kit). The study was conducted in compliance with bioethical standards. The SPSS22 software package was used for statistical processing of the results. A diurnal variation in circulating levels of NOS3 in healthy women was established, with peak values appearing in the evening and acrophase at 20:00, and low values in the morning, with batiphase at 08:00. In patients with RA serum, NOS3 levels were substantially decreased throughout the day compared to the control. In RA patients, a diurnal variation in circulating levels of NOS3 was also established. However, the variability of NOS3 production was higher in RA patients than in the control group. For example, in RA patients the difference between morning/evening values of NOS3 was 1.3 times higher (p < 0.05) than in the control. Negative correlations were found between the morning NOS3 levels and RA activity markers such as DAS28 and the number of tender and swollen joints. The diurnal variation in circulating levels of NOS3 in women with RA as well as in healthy women was found. However, in RA patients, a decrease in NOS3 production was observed, especially in the morning, which was associated with an increase in the disease activity. Thus, the circadian rhythm of circulating NOS3 can be opposite to the circadian rhythm of secretion of main inflammatory regulators in RA.
Collapse
Affiliation(s)
- Kateryna Zaichko
- Department of Internal Medicine No.1, National Pirogov Memorial Medical University, Vinnytsya, Ukraine.
| | - Mykola Stanislavchuk
- Department of Internal Medicine No.1, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Nataliia Zaichko
- Department of Chemistry and Biochemistry, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| |
Collapse
|
27
|
Adu-Gyamfi EA, Fondjo LA, Owiredu WKBA, Czika A, Nelson W, Lamptey J, Wang YX, Ding YB. The role of adiponectin in placentation and preeclampsia. Cell Biochem Funct 2019; 38:106-117. [PMID: 31746004 DOI: 10.1002/cbf.3458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Preeclampsia is not fully understood; and few biomarkers, therapeutic targets, and therapeutic agents for its management have been identified. Original investigative findings suggest that abnormal placentation triggers preeclampsia and leads to hypertension, proteinuria, endothelial dysfunction, and inflammation, which are characteristics of the disease. Because of the regulatory roles that it plays in several metabolic processes, adiponectin has become a cytokine of interest in metabolic medicine. In this review, we have discussed the role of adiponectin in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis, which are the major phases of placentation. Also, we have highlighted the physiological profile of adiponectin in the course of normal pregnancy. Moreover, we have discussed the involvement of adiponectin in hypertension, endothelial dysfunction, inflammation, and proteinuria. Furthermore, we have summarized the reported relationship between the maternal serum adiponectin level and preeclampsia. The available evidence indicates that adiponectin level physiologically falls as pregnancy advances, regulates placentation, and exhibits protective effects against the symptoms of preeclampsia and that while hyperadiponectinemia is evident in normal-weight preeclamptic women, hypoadiponectinemia is evident in overweight and obese preeclamptic women. Therefore, the clinical use of adiponectin as a biomarker, therapeutic target, or therapeutic agent against the disease looks promising and should be considered.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - William K B A Owiredu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Armin Czika
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - William Nelson
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jones Lamptey
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Chen J, Zhang J, Shaik NF, Yi B, Wei X, Yang XF, Naik UP, Summer R, Yan G, Xu X, Sun J. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J Biol Chem 2019; 294:19565-19576. [PMID: 31719145 DOI: 10.1074/jbc.ra119.011317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/06/2019] [Indexed: 01/03/2023] Open
Abstract
Endothelial nitric oxide (NO) synthase (eNOS) plays a critical role in the maintenance of blood vessel homeostasis. Recent findings suggest that cytoskeletal dynamics play an essential role in regulating eNOS expression and activation. Here, we sought to test whether modulation of cytoskeletal dynamics through pharmacological regulation of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation affects eNOS expression and endothelial function in vitro and in vivo We found that tubulin acetylation inducer (tubacin), a compound that appears to selectively inhibit HDAC6 activity, dramatically increased eNOS expression in several different endothelial cell lines, as determined by both immunoblotting and NO production assays. Mechanistically, we found that these effects were not mediated by tubacin's inhibitory effect on HDAC6 activity, but rather were due to its ability to stabilize eNOS mRNA transcripts. Consistent with these findings, tubacin also inhibited proinflammatory cytokine-induced degradation of eNOS transcripts and impairment of endothelium-dependent relaxation in the mouse aorta. Furthermore, we found that tubacin-induced up-regulation in eNOS expression in vivo is associated with improved endothelial function in diabetic db/db mice and with a marked attenuation of ischemic brain injury in a murine stroke model. Our findings indicate that tubacin exhibits potent eNOS-inducing effects and suggest that this compound might be useful for the prevention or management of endothelial dysfunction-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jihui Chen
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Noor F Shaik
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Xin Wei
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19107
| | - Ulhas P Naik
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ross Summer
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Guijun Yan
- Reproductive Medicine Center, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210023, China
| | - Xinyun Xu
- Department of General Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
29
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
30
|
Heinrich UR, Schmidtmann I, Meuser R, Ernst BP, Wünsch D, Siemer S, Gribko A, Stauber RH, Strieth S. Early Alterations of Endothelial Nitric Oxide Synthase Expression Patterns in the Guinea Pig Cochlea After Noise Exposure. J Histochem Cytochem 2019; 67:845-855. [PMID: 31510846 DOI: 10.1369/0022155419876644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Constitutively expressed endothelial nitric oxide synthase (eNOS) is supposed to play a role in noise-induced nitric oxide (NO)-production. It is commonly known that intense noise exposure results in inducible NOS (iNOS) expression and increased NO-production, but knowledge about a contribution of the eNOS isoform is still lacking. Effects of noise exposure on eNOS immunolabeling were determined in male guinea pigs (n=24). For light microscopic analysis, 11 animals were exposed to 90 dB for 1 hr and 6 animals were used as controls. After exposure, eNOS immunostaining was performed on paraffin sections, and the staining intensities were quantified for 4 cochlear regions. For electron microscopic analysis, 2 animals were exposed for 2 hr to 90 dB and 5 animals were used as controls. The intensity of eNOS immunolabeling was found to be already comprehensively increased 1 hr after noise exposure to 90 dB. At the ultrastructural level, a clear increase in eNOS immunolabeling was found in microtubules-rich areas of cochlear cuticular structures. Hence, our findings indicate that the reticular lamina forming the endolymph-perilymph barrier at the apical side of the organ of Corti is involved in a fast intrinsic otoprotective mechanism of the cochlea.
Collapse
Affiliation(s)
- Ulf R Heinrich
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Regina Meuser
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Benjamin P Ernst
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Desiree Wünsch
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Svenja Siemer
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Alena Gribko
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Roland H Stauber
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
31
|
Cozma A, Fodor A, Orasan OH, Vulturar R, Samplelean D, Negrean V, Muresan C, Suharoschi R, Sitar-Taut A. Pharmacogenetic Implications of eNOS Polymorphisms ( Glu298Asp, T786C, 4b/4a) in Cardiovascular Drug Therapy. In Vivo 2019; 33:1051-1058. [PMID: 31280192 PMCID: PMC6689342 DOI: 10.21873/invivo.11573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Endothelial nitric oxide synthase (NOS3 or eNOS) is the enzyme responsible for the highest production of nitric oxide, with the greatest impact on the cardiovascular system, encoded by the eNOS gene, which presents various polymorphisms. ENOS gene polymorphisms play an important role in the response to drugs affecting nitric oxide (NO) signaling. This review discusses the pharmacogenetic impact of eNOS polymorphisms on the response to drugs affecting NO activity: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium blockers, beta-blockers, diuretics, phosphodiesterase inhibitors, and statins. The identification of biomarkers that accurately predict particular phenotypes is a challenge that needs additional large studies, in different populations. Efforts should be oriented towards a more accurate evaluation of the effects of eNOS genetic variants on biochemical parameters reflecting eNOS gene expression and enzymatic activity, in different diseases, as well as following drug treatment. This approach will allow for a better understanding of the role of eNOS genetic variants in cardiovascular disease progression and for cardiovascular drug therapy optimization.
Collapse
Affiliation(s)
- Angela Cozma
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Adriana Fodor
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Disease, Cluj-Napoca, Romania
| | - Olga Hilda Orasan
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Romana Vulturar
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Cell Biology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Dorel Samplelean
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Vasile Negrean
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Crina Muresan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Faculty of Food Science &Technology, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Faculty of Food Science &Technology, Cluj-Napoca, Romania
| | - Adela Sitar-Taut
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
32
|
Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. Crosstalk Between Oxidative Stress and Endoplasmic Reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1. Front Physiol 2019; 10:70. [PMID: 30804804 PMCID: PMC6378556 DOI: 10.3389/fphys.2019.00070] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Type-2 diabetes prevalence is continuing to rise worldwide due to physical inactivity and obesity epidemic. Diabetes and fluctuations of blood sugar are related to multiple micro- and macrovascular complications, that are attributed to oxidative stress, endoplasmic reticulum (ER) activation and inflammatory processes, which lead to endothelial dysfunction characterized, among other features, by reduced availability of nitric oxide (NO) and aberrant angiogenic capacity. Several enzymatic anti-oxidant and anti-inflammatory agents have been found to play protective roles against oxidative stress and its downstream signaling pathways. Of particular interest, heme oxygenase (HO) isoforms, specifically HO-1, have attracted much attention as major cytoprotective players in conditions associated with inflammation and oxidative stress. HO operates as a key rate-limiting enzyme in the process of degradation of the iron-containing molecule, heme, yielding the following byproducts: carbon monoxide (CO), iron, and biliverdin. Because HO-1 induction was linked to pro-oxidant states, it has been regarded as a marker of oxidative stress; however, accumulating evidence has established multiple cytoprotective roles of the enzyme in metabolic and cardiovascular disorders. The cytoprotective effects of HO-1 depend on several cellular mechanisms including the generation of bilirubin, an anti-oxidant molecule, from the degradation of heme; the induction of ferritin, a strong chelator of free iron; and the release of CO, that displays multiple anti-inflammatory and anti-apoptotic actions. The current review article describes the major molecular mechanisms contributing to endothelial dysfunction and altered angiogenesis in diabetes with a special focus on the interplay between oxidative stress and ER stress response. The review summarizes the key cytoprotective roles of HO-1 against hyperglycemia-induced endothelial dysfunction and aberrant angiogenesis and discusses the major underlying cellular mechanisms associated with its protective effects.
Collapse
Affiliation(s)
- Hatem Maamoun
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tarek Benameur
- College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, United States
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
33
|
Garcia V, Sessa WC. Endothelial NOS: perspective and recent developments. Br J Pharmacol 2019; 176:189-196. [PMID: 30341769 PMCID: PMC6295413 DOI: 10.1111/bph.14522] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Endothelial NOS (eNOS), and its product NO, are vital components of the control of vasomotor function and cardiovascular homeostasis. In the present review, we will take a deep dive into eNOS enzymology, function and mechanisms regulating endothelial NO. The mechanisms regulating eNOS and NO synthesis discussed here include alterations to transcriptional, post-translational modifications and protein-protein regulations. Also, we will discuss the phenotypes associated with various eNOS mutants and the consequences of a disrupted eNOS/NO cascade, highlighting the importance of eNOS function and vascular homeostasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Victor Garcia
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
34
|
eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 2018; 21:711-724. [PMID: 29737439 PMCID: PMC6208887 DOI: 10.1007/s10456-018-9620-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3′UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.
Collapse
|
35
|
Nagane M, Kuppusamy ML, An J, Mast JM, Gogna R, Yasui H, Yamamori T, Inanami O, Kuppusamy P. Ataxia-Telangiectasia Mutated (ATM) Kinase Regulates eNOS Expression and Modulates Radiosensitivity in Endothelial Cells Exposed to Ionizing Radiation. Radiat Res 2018; 189:519-528. [PMID: 29474156 DOI: 10.1667/rr14781.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endothelial nitric oxide synthase (eNOS), a constitutive enzyme expressed in vascular endothelial cells, is the main source of nitric oxide (NO), which plays key roles in diverse biological functions, including regulation of vascular tone. Exposure to radiation has been known to generate nitric oxide from eNOS; however, the precise mechanism of its generation and function is not known. The goal of this study was to determine the involvement of radiation-induced DNA damage response (DDR) on eNOS transcription and its effect on cell survival after irradiation. Irradiated bovine aortic endothelial cells showed increased eNOS transcription and NO generation through upregulation of ataxia-telangiectasia mutated (ATM) kinase. Radiation exposure induced NO inhibited cell death, as well as induced cellular senescence postirradiation. This study established that radiation-induced DDR uses ATM kinase to upregulate eNOS transcription and NO generation, leading to cellular senescence, which may play a critical role in radiation-mediated cardiovascular injury.
Collapse
Affiliation(s)
- Masaki Nagane
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756.,b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,c Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - M Lakshmi Kuppusamy
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Jennifer An
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Jesse M Mast
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Rajan Gogna
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756.,d Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Hironobu Yasui
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tohru Yamamori
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Osamu Inanami
- b Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Periannan Kuppusamy
- a Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
36
|
Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature. Int J Mol Sci 2017; 18:ijms18122563. [PMID: 29186034 PMCID: PMC5751166 DOI: 10.3390/ijms18122563] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species, particularly superoxide, promote endothelial dysfunction and alterations in vascular structure. It is increasingly recognized that inflammatory cytokines, such as interleukin-6 (IL-6), contribute to endothelial dysfunction and vascular hypertrophy and fibrosis. IL-6 is increased in a number of cardiovascular diseases, including hypertension. IL-6 is also associated with a higher incidence of future cardiovascular events and all-cause mortality. Both immune and vascular cells produce IL-6 in response to a number of stimuli, such as angiotensin II. The vasculature is responsive to IL-6 produced from vascular and non-vascular sources via classical IL-6 signaling involving a membrane-bound IL-6 receptor (IL-6R) and membrane-bound gp130 via Jak/STAT as well as SHP2-dependent signaling pathways. IL-6 signaling is unique because it can also occur via a soluble IL-6 receptor (sIL-6R) which allows for IL-6 signaling in tissues that do not normally express IL-6R through a process referred to as IL-6 trans-signaling. IL-6 signaling mediates a vast array of effects in the vascular wall, including endothelial activation, vascular permeability, immune cell recruitment, endothelial dysfunction, as well as vascular hypertrophy and fibrosis. Many of the effects of IL-6 on vascular function and structure are representative of loss or reductions in nitric oxide (NO) bioavailability. IL-6 has direct effects on endothelial nitric oxide synthase activity and expression as well as increasing vascular superoxide, which rapidly inactivates NO thereby limiting NO bioavailability. The goal of this review is to highlight both the cellular and oxidative mechanisms associated with IL-6-signaling in the vascular wall in general, in hypertension, and in response to angiotensin II.
Collapse
|
37
|
Pasarín M, Abraldes JG, Liguori E, Kok B, La Mura V. Intrahepatic vascular changes in non-alcoholic fatty liver disease: Potential role of insulin-resistance and endothelial dysfunction. World J Gastroenterol 2017; 23:6777-6787. [PMID: 29085222 PMCID: PMC5645612 DOI: 10.3748/wjg.v23.i37.6777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is a cluster of several clinical conditions characterized by insulin-resistance and high cardiovascular risk. Non-alcoholic fatty liver disease is the liver expression of the metabolic syndrome, and insulin resistance can be a frequent comorbidity in several chronic liver diseases, in particular hepatitis C virus infection and/or cirrhosis. Several studies have demonstrated that insulin action is not only relevant for glucose control, but also for vascular homeostasis. Insulin regulates nitric oxide production, which mediates to a large degree the vasodilating, anti-inflammatory and antithrombotic properties of a healthy endothelium, guaranteeing organ perfusion. The effects of insulin on the liver microvasculature and the effects of IR on sinusoidal endothelial cells have been studied in animal models of non-alcoholic fatty liver disease. The hypotheses derived from these studies and the potential translation of these results into humans are critically discussed in this review.
Collapse
Affiliation(s)
- Marcos Pasarín
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, IDIBAPS (Institut d’Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, 08036 Barcelona, Spain
| | - Juan G Abraldes
- Cirrhosis Care Clinic, Division of Gastroenterology (Liver Unit), CEGIIR, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Eleonora Liguori
- Internal Medicine, IRCCS San Donato, Department of Biomedical Sciences for Health, University of Milan, 20097 San Donato Milanese, Italy
| | - Beverley Kok
- Cirrhosis Care Clinic, Division of Gastroenterology (Liver Unit), CEGIIR, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Vincenzo La Mura
- Internal Medicine, IRCCS San Donato, Department of Biomedical Sciences for Health, University of Milan, 20097 San Donato Milanese, Italy
| |
Collapse
|
38
|
Boopathy GTK, Kulkarni M, Ho SY, Boey A, Chua EWM, Barathi VA, Carney TJ, Wang X, Hong W. Cavin-2 regulates the activity and stability of endothelial nitric-oxide synthase (eNOS) in angiogenesis. J Biol Chem 2017; 292:17760-17776. [PMID: 28912276 PMCID: PMC5663877 DOI: 10.1074/jbc.m117.794743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/04/2017] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is a highly regulated process for formation of new blood vessels from pre-existing ones. Angiogenesis is dysregulated in various pathologies, including age-related macular degeneration, arthritis, and cancer. Inhibiting pathological angiogenesis therefore represents a promising therapeutic strategy for treating these disorders, highlighting the need to study angiogenesis in more detail. To this end, identifying the genes essential for blood vessel formation and elucidating their function are crucial for a complete understanding of angiogenesis. Here, focusing on potential candidate genes for angiogenesis, we performed a morpholino-based genetic screen in zebrafish and identified Cavin-2, a membrane-bound phosphatidylserine-binding protein and critical organizer of caveolae (small microdomains in the plasma membrane), as a regulator of angiogenesis. Using endothelial cells, we show that Cavin-2 is required for in vitro angiogenesis and also for endothelial cell proliferation, migration, and invasion. We noted a high level of Cavin-2 expression in the neovascular tufts in the mouse model of oxygen-induced retinopathy, suggesting a role for Cavin-2 in pathogenic angiogenesis. Interestingly, we also found that Cavin-2 regulates the production of nitric oxide (NO) in endothelial cells by controlling the stability and activity of the endothelial nitric-oxide synthase (eNOS) and that Cavin-2 knockdown cells produce much less NO than WT cells. Also, mass spectrometry, flow cytometry, and electron microscopy analyses indicated that Cavin-2 is secreted in endothelial microparticles (EMPs) and is required for EMP biogenesis. Taken together, our results indicate that in addition to its function in caveolae biogenesis, Cavin-2 plays a critical role in endothelial cell maintenance and function by regulating eNOS activity.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| | - Madhura Kulkarni
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sze Yuan Ho
- the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Adrian Boey
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Edmond Wei Min Chua
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore
| | - Veluchamy A Barathi
- the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore.,the Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Rd., 169857 Singapore.,the Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, and
| | - Tom J Carney
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaomeng Wang
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore.,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore.,the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,the Singapore Eye Research Institute (SERI), 20 College Road, 169856 Singapore
| | - Wanjin Hong
- From the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, .,the SERI-IMCB Programme in Retinal Angiogenic Diseases (SIPRAD), SERI-IMCB, Singapore
| |
Collapse
|
39
|
Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. J Dev Orig Health Dis 2017; 8:448-464. [PMID: 28460648 DOI: 10.1017/s2040174417000265] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals born after intrauterine growth restriction (IUGR) have an increased risk of perinatal morbidity/mortality, and those who survive face long-term consequences such as cardiovascular-related diseases, including systemic hypertension, atherosclerosis, coronary heart disease and chronic kidney disease. In addition to the demonstrated long-term effects of decreased nephron endowment and hyperactivity of the hypothalamic-pituitary-adrenal axis, individuals born after IUGR also exhibit early alterations in vascular structure and function, which have been identified as key factors of the development of cardiovascular-related diseases. The endothelium plays a major role in maintaining vascular function and homeostasis. Therefore, it is not surprising that impaired endothelial function can lead to the long-term development of vascular-related diseases. Endothelial dysfunction, particularly impaired endothelium-dependent vasodilation and vascular remodeling, involves decreased nitric oxide (NO) bioavailability, impaired endothelial NO synthase functionality, increased oxidative stress, endothelial progenitor cells dysfunction and accelerated vascular senescence. Preventive approaches such as breastfeeding, supplementation with folate, vitamins, antioxidants, L-citrulline, L-arginine and treatment with NO modulators represent promising strategies for improving endothelial function, mitigating long-term outcomes and possibly preventing IUGR of vascular origin. Moreover, the identification of early biomarkers of endothelial dysfunction, especially epigenetic biomarkers, could allow early screening and follow-up of individuals at risk of developing cardiovascular and renal diseases, thus contributing to the development of preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction in infants born after IUGR.
Collapse
|
40
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide 2017; 63:39-51. [DOI: 10.1016/j.niox.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
|
41
|
Del Pino-García R, Rivero-Pérez MD, González-SanJosé ML, Croft KD, Muñiz P. Antihypertensive and antioxidant effects of supplementation with red wine pomace in spontaneously hypertensive rats. Food Funct 2017; 8:2444-2454. [DOI: 10.1039/c7fo00390k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
4-Week supplementation with a new red wine pomace seasoning (RWPS) decreased blood pressure, ameliorated vascular oxidative stress, and improved NO bioavailability in Spontaneously Hypertensive Rats (SHR).
Collapse
Affiliation(s)
- Raquel Del Pino-García
- Department of Food Biotechnology and Science
- Faculty of Sciences
- University of Burgos
- Burgos
- Spain
| | - María D. Rivero-Pérez
- Department of Food Biotechnology and Science
- Faculty of Sciences
- University of Burgos
- Burgos
- Spain
| | | | - Kevin D. Croft
- School of Medicine and Pharmacology
- University of Western Australia
- Perth 6000
- Australia
| | - Pilar Muñiz
- Department of Food Biotechnology and Science
- Faculty of Sciences
- University of Burgos
- Burgos
- Spain
| |
Collapse
|
42
|
Kalinowski L, Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Woźniak M, Lejnowski D, Collawn JF, Bartoszewski R. Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs. Cell Mol Biol Lett 2016; 21:16. [PMID: 28536619 PMCID: PMC5415778 DOI: 10.1186/s11658-016-0017-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Understanding the cellular pathways that regulate endothelial nitric oxide (eNOS, NOS3) expression and consequently nitric oxide (NO) bioavailability during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. eNOS expression and eNOS-dependent NO cellular signaling during hypoxia promote an equilibrium of transcriptional and posttranscriptional molecular mechanisms that belong to both proapoptotic and survival pathways. Furthermore, NO bioavailability results not only from eNOS levels, but also relies on the presence of eNOS substrate and cofactors, the phosphorylation status of eNOS, and the presence of reactive oxygen species (ROS) that can inactivate eNOS. Since both NOS3 levels and these signaling pathways can also be a subject of posttranscriptional modulation by microRNAs (miRNAs), this class of short noncoding RNAs contribute another level of regulation for NO bioavailability. As miRNA antagomirs or specific target protectors could be used in therapeutic approaches to regulate NO levels, either by changing NOS3 mRNA stability or through factors governing eNOS activity, it is critical to understand their role in governing eNOS activity during hypoxa. In contrast to a large number of miRNAs reported to the change eNOS expression during hypoxia, only a few miRNAs modulate eNOS activity. Furthermore, impaired miRNA biogenesis leads to NOS3 mRNA stabilization under hypoxia. Here we discuss the recent studies that define miRNAs’ role in maintaining endothelial NO bioavailability emphasizing those miRNAs that directly modulate NOS3 expression or eNOS activity.
Collapse
Affiliation(s)
- Leszek Kalinowski
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Woźniak
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Dawid Lejnowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - James F Collawn
- Department of Cell Biology, Developmental, and Integrative, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
43
|
Datar SA, Gong W, He Y, Johengen M, Kameny RJ, Raff GW, Maltepe E, Oishi PE, Fineman JR. Disrupted NOS signaling in lymphatic endothelial cells exposed to chronically increased pulmonary lymph flow. Am J Physiol Heart Circ Physiol 2016; 311:H137-45. [PMID: 27199125 PMCID: PMC4967199 DOI: 10.1152/ajpheart.00649.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/08/2016] [Indexed: 01/06/2023]
Abstract
Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO.
Collapse
Affiliation(s)
- Sanjeev A Datar
- Department of Pediatrics, University of California, San Francisco, San Francisco, California;
| | - Wenhui Gong
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Youping He
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Michael Johengen
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Rebecca J Kameny
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Gary W Raff
- Department of Surgery, University of California, Davis, Davis, California
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Peter E Oishi
- Department of Pediatrics, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; and
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; and
| |
Collapse
|
44
|
Abstract
Hypercholesterolemia is present in many patients with hypertension and adds a significant component of cardiovascular risk. The 3-hydroxy-3 methyl-glutarylcoenzyme A reductase inhibitors (statins) lower low-density lipoprotein cholesterol but also inhibit many of the structural and functional components of the arteriosclerotic process. Structural effects include reductions in vascular smooth muscle hypertrophy and proliferation, fibrin deposition, and collagen cross-linking. Among the functional effects are improvements in endothelial function, reduction in inflammatory cytokines and reactive oxygen species, and down-regulation of angiotensin II and endothelin receptors. These would be expected to reduce blood pressure in patients with hypertension; 14 studies have shown statin-induced decrease in blood pressure, but 11 studies showed no effect. Many of the studies had no placebo controls, were of short duration, or had small sample sizes, or combinations of these. Despite predictions made on the basis of the vasoprotective actions of statins, the blood-pressure-lowering effects of statins are at best modest.
Collapse
Affiliation(s)
- Simardeep Mangat
- Department of Medicine, Mount Sinai School of Medicine, New York, and the James J. Peters VA Medical Center, Bronx, New York 10468, USA
| | | | | |
Collapse
|
45
|
Lee HY, Kim J, Quan W, Lee JC, Kim MS, Kim SH, Bae JW, Hur KY, Lee MS. Autophagy deficiency in myeloid cells increases susceptibility to obesity-induced diabetes and experimental colitis. Autophagy 2016; 12:1390-403. [PMID: 27337687 DOI: 10.1080/15548627.2016.1184799] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy, which is critical for the proper turnover of organelles such as endoplasmic reticulum and mitochondria, affects diverse aspects of metabolism, and its dysregulation has been incriminated in various metabolic disorders. However, the role of autophagy of myeloid cells in adipose tissue inflammation and type 2 diabetes has not been addressed. We produced mice with myeloid cell-specific deletion of Atg7 (autophagy-related 7), an essential autophagy gene (Atg7 conditional knockout [cKO] mice). While Atg7 cKO mice were metabolically indistinguishable from control mice, they developed diabetes when bred to ob/w mice (Atg7 cKO-ob/ob mice), accompanied by increases in the crown-like structure, inflammatory cytokine expression and inflammasome activation in adipose tissue. Mφs (macrophages) from Atg7 cKO mice showed significantly higher interleukin 1 β release and inflammasome activation in response to a palmitic acid plus lipopolysaccharide combination. Moreover, a decrease in the NAD(+):NADH ratio and increase in intracellular ROS content after treatment with palmitic acid in combination with lipopolysaccharide were more pronounced in Mφs from Atg7 cKO mice, suggesting that mitochondrial dysfunction in autophagy-deficient Mφs leads to an increase in lipid-induced inflammasome and metabolic deterioration in Atg7 cKO-ob/ob mice. Atg7 cKO mice were more susceptible to experimental colitis, accompanied by increased colonic cytokine expression, T helper 1 skewing and systemic bacterial invasion. These results suggest that autophagy of Mφs is important for the control of inflammasome activation in response to metabolic or extrinsic stress, and autophagy deficiency in Mφs may contribute to the progression of metabolic syndrome associated with lipid injury and colitis.
Collapse
Affiliation(s)
- Hae-Youn Lee
- a Departments of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Jinyoung Kim
- b Severance Biomedical Science Institute and Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Department of Health Sciences and Technology , SAIHST, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Wenying Quan
- a Departments of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - June-Chul Lee
- a Departments of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Min-Soo Kim
- d Department of Life & Nanopharmaceutical Sciences and Department of Biology , Kyung Hee University , Seoul , Korea
| | - Seok-Hyung Kim
- e Department of Pathology, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Jin-Woo Bae
- d Department of Life & Nanopharmaceutical Sciences and Department of Biology , Kyung Hee University , Seoul , Korea
| | - Kyu Yeon Hur
- a Departments of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Myung-Shik Lee
- b Severance Biomedical Science Institute and Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
46
|
Grape seed flavanols decrease blood pressure via Sirt-1 and confer a vasoprotective pattern in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Zhang HH, Lechuga TJ, Chen Y, Yang Y, Huang L, Chen DB. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS. Biol Reprod 2016; 94:114. [PMID: 27075618 PMCID: PMC4939742 DOI: 10.1095/biolreprod.116.139337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis.
Collapse
Affiliation(s)
- Hong-Hai Zhang
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Thomas J Lechuga
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Yuezhou Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| | - Yingying Yang
- Department of Biophysics and Physiology, University of California, Irvine, California
| | - Lan Huang
- Department of Biophysics and Physiology, University of California, Irvine, California
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, California
| |
Collapse
|
48
|
Baptista PM, Moran EC, Vyas D, Ribeiro MH, Atala A, Sparks JL, Soker S. Fluid Flow Regulation of Revascularization and Cellular Organization in a Bioengineered Liver Platform. Tissue Eng Part C Methods 2016; 22:199-207. [PMID: 26772270 DOI: 10.1089/ten.tec.2015.0334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Modeling of human liver development, especially cellular organization and the mechanisms underlying it, is fundamental for studying liver organogenesis and congenital diseases, yet there are no reliable models that mimic these processes ex vivo. DESIGN Using an organ engineering approach and relevant cell lines, we designed a perfusion system that delivers discrete mechanical forces inside an acellular liver extracellular matrix scaffold to study the effects of mechanical stimulation in hepatic tissue organization. RESULTS We observed a fluid flow rate-dependent response in cell distribution within the liver scaffold. Next, we determined the role of nitric oxide (NO) as a mediator of fluid flow effects on endothelial cells. We observed impairment of both neovascularization and liver tissue organization in the presence of selective inhibition of endothelial NO synthase. Similar results were observed in bioengineered livers grown under static conditions. CONCLUSION Overall, we were able to unveil the potential central role of discrete mechanical stimulation through the NO pathway in the revascularization and cellular organization of a bioengineered liver. Last, we propose that this organ bioengineering platform can contribute significantly to the identification of physiological mechanisms of liver organogenesis and regeneration and improve our ability to bioengineer livers for transplantation.
Collapse
Affiliation(s)
- Pedro M Baptista
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences , Winston-Salem, North Carolina.,2 University of Zaragoza , Zaragoza, Spain .,3 IIS Aragón , CIBERehd, Zaragoza, Spain .,4 Aragon Health Sciences Institute (IACS) , Zaragoza, Spain
| | - Emma C Moran
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences , Winston-Salem, North Carolina
| | - Dipen Vyas
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences , Winston-Salem, North Carolina
| | - Maria H Ribeiro
- 5 Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), University of Lisbon , Lisbon, Portugal
| | - Anthony Atala
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences , Winston-Salem, North Carolina
| | - Jessica L Sparks
- 6 Department of Chemical, Paper and Biomedical Engineering, Miami University , Oxford, Ohio
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences , Winston-Salem, North Carolina
| |
Collapse
|
49
|
Ali MI, Chen X, Didion SP. Heterozygous eNOS deficiency is associated with oxidative stress and endothelial dysfunction in diet-induced obesity. Physiol Rep 2015; 3:e12630. [PMID: 26660551 PMCID: PMC4760452 DOI: 10.14814/phy2.12630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
Heterozygous endothelial nitric oxide synthase (eNOS) deficiency is associated with normal endothelium-dependent responses, however, little is known regarding the mechanisms that maintain or impair endothelial function with heterozygous eNOS deficiency. The goals of this study were to (1) determine mechanism(s) which serve to maintain normal endothelial function in the absence of a single eNOS gene; and (2) to determine whether heterozygous eNOS deficiency predisposes blood vessels to endothelial dysfunction in response to a high-fat diet (HFD). Responses of carotid arteries were examined in wild-type (eNOS(+/+)) and heterozygous eNOS-deficient (eNOS(+/-)) treated with either vehicle (saline), N(G)-nitro-L-arginine (L-NNA, 100 μmol/L), an inhibitor of nitric oxide synthase, or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 μmol/L), an inhibitor of soluble guanylyl cyclase (sGC), and in eNOS(+/+) and eNOS(+/-) mice fed a control (10%) or a 45% HFD (kcal from fat). Responses to acetylcholine (ACh) were similar in vehicle-treated arteries from eNOS(+/+) and eNOS(+/-) mice, and were equally inhibited by L-NNA and ODQ. Phosphorylation of eNOS Ser1176, a site associated with increased eNOS activity, was significantly greater in eNOS(+/-) mice most likely as a compensatory response for the loss of a single eNOS gene. In contrast, responses to ACh were markedly impaired in carotid arteries from eNOS(+/-), but not eNOS(+/+), mice fed a HFD. Vascular superoxide levels as well as plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) were selectively increased in HFD-fed eNOS(+/-) mice. In reconstitution experiments, IL-6 produced concentration-dependent impairment of endothelial responses as well as greater increases in NADPH-stimulated superoxide levels in arteries from eNOS(+/-) mice fed a control diet compared to eNOS(+/+) mice. Our findings of increased Ser1176-phosphorylation reveal a mechanism by which NOS- and sGC-dependent endothelial function can be maintained with heterozygous eNOS deficiency. In addition, heterozygous eNOS deficiency predisposes blood vessels to developing endothelial dysfunction in response to a HFD. The impairment produced by a HFD in eNOS(+/-) mice appears to be mediated by IL-6-induced increases in vascular superoxide. These findings serve as an important example of eNOS haploinsufficiency, one that may contribute to the development of carotid artery disease in obese humans.
Collapse
Affiliation(s)
- M Irfan Ali
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Xunsheng Chen
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia
| | - Sean P Didion
- Department of Pharmacology and Department of Neurology, The University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
50
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2015; 575:584-99. [PMID: 26428312 DOI: 10.1016/j.gene.2015.09.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|