1
|
Corsetti M, Forestier S, Jiménez M. Hyoscine butylbromide mode of action on bowel motility: From pharmacology to clinical practice. Neurogastroenterol Motil 2023; 35:e14451. [PMID: 35972266 DOI: 10.1111/nmo.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hyoscine butylbromide (HBB) has been available for use as an antispasmodic since 1951 and is indicated for the treatment of abdominal pain associated with cramps. A previous review in 2007 summarized the evidence on the mode of action of HBB in vitro and in vivo in both animal and human studies. However, since then, novel publications have appeared within the literature and also our knowledge of what represents normal motility in humans has evolved. PURPOSE This review is the result of the collaboration between a basic scientist and clinicians with the aim of providing an updated overview of the mechanisms of action of HBB and its clinical efficacy to guide not only use in clinical practice, but also future research.
Collapse
Affiliation(s)
- Maura Corsetti
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham Digestive Diseases Biomedical Research Centre, Nottingham, UK
| | | | - Marcel Jiménez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Schneider S, Wright CM, Heuckeroth RO. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu Rev Physiol 2019; 81:235-259. [DOI: 10.1146/annurev-physiol-021317-121515] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.
Collapse
Affiliation(s)
- Sabine Schneider
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christina M. Wright
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert O. Heuckeroth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Research Center, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
3
|
Tang B, Wu J, Zhu MX, Sun X, Liu J, Xie R, Dong TX, Xiao Y, Carethers JM, Yang S, Dong H. VPAC1 couples with TRPV4 channel to promote calcium-dependent gastric cancer progression via a novel autocrine mechanism. Oncogene 2019; 38:3946-3961. [PMID: 30692637 DOI: 10.1038/s41388-019-0709-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023]
Abstract
Although VPAC1 and its ligand vasoactive intestinal peptide (VIP) are important in gastrointestinal physiology, their involvements in progression of gastrointestinal tumor have not been explored. Here, we found that higher expression of VIP/VPAC1 was observed in gastric cancer compared to the adjacent normal tissues. The increased expression of VIP/VPAC1 in gastric cancer correlated positively with invasion, tumor stage, lymph node, distant metastases, and poor survival. Moreover, high expression of VIP and VPAC1, advanced tumor stage and distant metastasis were independent prognostic factors. VPAC1 activation by VIP markedly induced TRPV4-mediated Ca2+ entry, and eventually promoted gastric cancer progression in a Ca2+ signaling-dependent manner. Inhibition of VPAC1 and its signaling pathway could block the progressive responses. VPAC1/TRPV4/Ca2+ signaling in turn enhanced the expression and secretion of VIP in gastric cancer cells, enforcing a positive feedback regulation mechanism. Taken together, our study demonstrate that VPAC1 is significantly overexpressed in gastric cancer and VPAC1/TRPV4/Ca2+ signaling axis could enforce a positive feedback regulation in gastric cancer progression. VIP/VPAC1 may serve as potential prognostic markers and therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Jilin Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Michael X Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi, China
| | - Tobias Xiao Dong
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - John M Carethers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
4
|
Min YW, Ko EJ, Lee JY, Min BH, Lee JH, Kim JJ, Rhee PL. Nitrergic Pathway Is the Major Mechanism for the Effect of DA-9701 on the Rat Gastric Fundus Relaxation. J Neurogastroenterol Motil 2014; 20:318-25. [PMID: 24920748 PMCID: PMC4102157 DOI: 10.5056/jnm13098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/28/2014] [Accepted: 03/12/2014] [Indexed: 01/22/2023] Open
Abstract
Background/Aims DA-9701 significantly improved gastric accommodation by increasing the postprandial gastric volume. In this study, we investigated how DA-9701 affects the rat gastric fundus relaxation. Methods Gastric fundus muscle strips (9 longitudinal and 7 circular muscles) were obtained from rats. Electrical field stimulation (EFS) was performed at various frequencies (1, 5, 10 and 20 Hz) and train durations (1, 5, 10 and 20 seconds) to select optimal condition for experiments. Isometric force measurements were performed in response to EFS. Peak and nadir were observed during the first 1 minute after initiation of EFS in control state and after sequential addition of atropine (1 μM), DA-9701 (0.5, 5, 25 and 50 μg), N-nitro-L-arginine (L-NNA, 100 μM), MRS2500 (1 μM) and tetrodotoxin (TTX, 1 μM) to the organ bath. Results The optimal frequency and duration of EFS to evoke nerve-mediated relaxation was determined as 5 Hz for 10 seconds. Addition of L-NNA in the presence of atropine and DA-9701 (50 μg) decreased nadir by inhibiting relaxation from −0.054 ± 0.021 g to −0.022 ± 0.015 g (P = 0.026) in longitudinal muscles. However, subsequent application of MRS2500 in the presence of atropine, DA-9701 (50 μg) and L-NNA did not affect nadir. In circular muscles, subsequent addition of L-NNA and MRS2500 in the presence of atropine and DA-9701 (50 μg) did not show significant change of nadir. Conclusions Our data suggest that the effect of DA-9701 on the rat gastric fundus relaxation is mainly mediated by nitrergic rather than purinergic pathway.
Collapse
Affiliation(s)
- Yang Won Min
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Ju Ko
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Yeon Lee
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Hoon Min
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jun Haeng Lee
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae J Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Poong-Lyul Rhee
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Liu LL, Wang XY. Severe acute pancreatitis complicated with gastrointestinal dysfunction: Pathogenesis, diagnosis and treatment. Shijie Huaren Xiaohua Zazhi 2013; 21:3828-3834. [DOI: 10.11569/wcjd.v21.i34.3828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Severe acute pancreatitis (SAP) is often associated with gastrointestinal dysfunction, leading to gastrointestinal motility disorders and even gastrointestinal failure, which has an important effect on SAP progression and prognosis, directly influences the outcome of treatment, is an important cause of death in patients with SAP, and moreover, has been one of the important prognostic factors for SAP. This review aims to discuss the pathophysiology, pathogenesis, diagnosis and treatment of SAP with gastrointestinal dysfunction.
Collapse
|
6
|
Zakhem E, Raghavan S, Bitar KN. Neo-innervation of a bioengineered intestinal smooth muscle construct around chitosan scaffold. Biomaterials 2013; 35:1882-9. [PMID: 24315576 DOI: 10.1016/j.biomaterials.2013.11.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/17/2013] [Indexed: 12/17/2022]
Abstract
Neuromuscular disorders of the gut result in disturbances in gastrointestinal transit. The objective of this study was to evaluate the neo-innervation of smooth muscle in an attempt to restore lost innervation. We have previously shown the potential use of composite chitosan scaffolds as support for intestinal smooth muscle constructs. However, the constructs lacked neuronal component. Here, we bioengineered innervated colonic smooth muscle constructs using rabbit colon smooth muscle and enteric neural progenitor cells. We also bioengineered smooth muscle only tissue constructs using colonic smooth muscle cells. The constructs were placed next to each other around tubular chitosan scaffolds and left in culture. Real time force generation conducted on the intrinsically innervated smooth muscle constructs showed differentiated functional neurons. The bioengineered smooth muscle only constructs became neo-innervated. The neo-innervation results were confirmed by immunostaining assays. Chitosan supported (1) the differentiation of neural progenitor cells in the constructs and (2) the neo-innervation of non-innervated smooth muscle around the same scaffold.
Collapse
Affiliation(s)
- Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, United States
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, United States
| | - Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, United States.
| |
Collapse
|
7
|
Keef KD, Saxton SN, McDowall RA, Kaminski RE, Duffy AM, Cobine CA. Functional role of vasoactive intestinal polypeptide in inhibitory motor innervation in the mouse internal anal sphincter. J Physiol 2013; 591:1489-506. [PMID: 23339175 DOI: 10.1113/jphysiol.2012.247684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is evidence that vasoactive intestinal polypeptide (VIP) participates in inhibitory neuromuscular transmission (NMT) in the internal anal sphincter (IAS). However, specific details concerning VIP-ergic NMT are limited, largely because of difficulties in selectively blocking other inhibitory neural pathways. The present study used the selective P2Y1 receptor antagonist MRS2500 (1 μm) and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine (l-NNA; 100 μm) to block purinergic and nitrergic NMT to characterize non-purinergic, non-nitrergic (NNNP) inhibitory NMT and the role of VIP in this response. Nerves were stimulated with electrical field stimulation (0.1-20 Hz, 4-60 s) and the associated changes in contractile and electrical activity measured in non-adrenergic, non-cholinergic conditions in the IAS of wild-type and VIP(-/-) mice. Electrical field stimulation gave rise to frequency-dependent relaxation and hyperpolarization that was blocked by tetrodotoxin. Responses during brief trains of stimuli (4 s) were mediated by purinergic and nitrergic NMT. During longer stimulus trains, an NNNP relaxation and hyperpolarization developed slowly and persisted for several minutes beyond the end of the stimulus train. The NNNP NMT was abolished by VIP6-28 (30 μm), absent in the VIP(-/-) mouse and mimicked by exogenous VIP (1-100 nm). Immunoreactivity for VIP was co-localized with neuronal nitric oxide synthase in varicose intramuscular fibres but was not detected in the VIP(-/-) mouse IAS. In conclusion, this study identified an ultraslow component of inhibitory NMT in the IAS mediated by VIP. In vivo, this pathway may be activated with larger rectal distensions, leading to a more prolonged period of anal relaxation.
Collapse
Affiliation(s)
- K D Keef
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9:633-45. [PMID: 22965426 PMCID: PMC4793911 DOI: 10.1038/nrgastro.2012.168] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
Collapse
|
9
|
Hill J, Chan SA, Kuri B, Smith C. Pituitary adenylate cyclase-activating peptide (PACAP) recruits low voltage-activated T-type calcium influx under acute sympathetic stimulation in mouse adrenal chromaffin cells. J Biol Chem 2011; 286:42459-42469. [PMID: 22009744 PMCID: PMC3234986 DOI: 10.1074/jbc.m111.289389] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/17/2011] [Indexed: 02/02/2023] Open
Abstract
Low voltage-activated T-type Ca(v)3.2 calcium channels are expressed in neurosecretory chromaffin cells of the adrenal medulla. Previous studies have shown that naïve adrenal chromaffin cells express a nominal Ca(v)3.2-dependent conductance. However, Ca(v)3.2 conductance is up-regulated following chronic hypoxia or long term exposure to cAMP analogs. Thus, although a link between chronic stressors and up-regulation of Ca(v)3.2 exists, there are no reports testing the specific role of Ca(v)3.2 channels in the acute sympathoadrenal stress response. In this study, we examined the effects of acute sympathetic stress on T-type Ca(v)3.2 calcium influx in mouse chromaffin cells in situ. Pituitary adenylate cyclase-activating peptide (PACAP) is an excitatory neuroactive peptide transmitter released by the splanchnic nerve under elevated sympathetic activity to stimulate the adrenal medulla. PACAP stimulation did not evoke action potential firing in chromaffin cells but did cause a persistent subthreshold membrane depolarization that resulted in an immediate and robust Ca(2+)-dependent catecholamine secretion. Moreover, PACAP-evoked secretion was sensitive to block by nickel chloride and was acutely inhibited by protein kinase C blockers. We utilized perforated patch electrophysiological recordings conducted in adrenal tissue slices to investigate the mechanism of PACAP-evoked calcium entry. We provide evidence that stimulation with exogenous PACAP and native neuronal stress stimulation both lead to a protein kinase C-mediated phosphodependent recruitment of a T-type Ca(v)3.2 Ca(2+) influx. This in turn evokes catecholamine release during the acute sympathetic stress response.
Collapse
Affiliation(s)
- Jacqueline Hill
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shyue-An Chan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Barbara Kuri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Corey Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
10
|
Habre W, Albu G, Janosi TZ, Fontao F, von Ungern-Sternberg BS, Beghetti M, Petak F. Prevention of bronchial hyperreactivity in a rat model of precapillary pulmonary hypertension. Respir Res 2011; 12:58. [PMID: 21524300 PMCID: PMC3096918 DOI: 10.1186/1465-9921-12-58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/27/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The development of bronchial hyperreactivity (BHR) subsequent to precapillary pulmonary hypertension (PHT) was prevented by acting on the major signalling pathways (endothelin, nitric oxide, vasoactive intestine peptide (VIP) and prostacyclin) involved in the control of the pulmonary vascular and bronchial tones. METHODS Five groups of rats underwent surgery to prepare an aorta-caval shunt (ACS) to induce sustained precapillary PHT for 4 weeks. During this period, no treatment was applied in one group (ACS controls), while the other groups were pretreated with VIP, iloprost, tezosentan via an intraperitoneally implemented osmotic pump, or by orally administered sildenafil. An additional group underwent sham surgery. Four weeks later, the lung responsiveness to increasing doses of an intravenous infusion of methacholine (2, 4, 8 12 and 24 μg/kg/min) was determined by using the forced oscillation technique to assess the airway resistance (Raw). RESULTS BHR developed in the untreated rats, as reflected by a significant decrease in ED50, the equivalent dose of methacholine required to cause a 50% increase in Raw. All drugs tested prevented the development of BHR, iloprost being the most effective in reducing both the systolic pulmonary arterial pressure (Ppa; 28%, p = 0.035) and BHR (ED50 = 9.9 ± 1.7 vs. 43 ± 11 μg/kg in ACS control and iloprost-treated rats, respectively, p = 0.008). Significant correlations were found between the levels of Ppa and ED50 (R = -0.59, p = 0.016), indicating that mechanical interdependence is primarily responsible for the development of BHR. CONCLUSIONS The efficiency of such treatment demonstrates that re-establishment of the balance of constrictor/dilator mediators via various signalling pathways involved in PHT is of potential benefit for the avoidance of the development of BHR.
Collapse
Affiliation(s)
- Walid Habre
- Pediatric Anesthesia Unit, Geneva Children's Hospital, University Hospitals of Geneva, 6, Rue Willy Donze, CH-1205, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Coupling governs entrainment range of circadian clocks. Mol Syst Biol 2011; 6:438. [PMID: 21119632 PMCID: PMC3010105 DOI: 10.1038/msb.2010.92] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/07/2010] [Indexed: 11/08/2022] Open
Abstract
Circadian clock oscillator properties that are crucial for synchronization with the environment (entrainment) are studied in experiment and theory. The ratio between stimulus (zeitgeber) strength and oscillator amplitude, and the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. Uncoupled lung clocks entrain to extreme zeitgeber cycles, whereas the coupled oscillator system in the suprachiasmatic nucleus (SCN) does not; however, when coupling in the SCN is inhibited, larger ranges of entrainment can be achieved.
Daily rhythms in physiology, metabolism and behavior are controlled by an endogenous circadian timing system, which has evolved to synchronize an organism to periodically recurring environmental conditions, such as light–dark or temperature cycles. In mammals, the circadian system relies on cell-autonomous oscillators residing in almost every cell of the body. Cells of the SCN in the anterior hypothalamus are able to generate precise, long-lasting self-sustained circadian oscillations, which drive most rhythmic behavioral and physiological outputs, and which are believed to originate from the fact that the SCN tissue consists of tightly coupled cells (Aton and Herzog, 2005). In contrast, peripheral oscillators, such as lung tissue, exhibit seemingly damped and usually less precise oscillations, which are thought to be brought about by the lack of intercellular coupling. Precise synchronization of these rhythms within the organism, but also with the environment (so-called entrainment), is an essential part of circadian organization. Entrainment is one of the cornerstones of circadian biology (Roenneberg et al, 2003). In evolution, the phase of a rhythmic variable is selective rather than its endogenous period. Thus, the synchronization of endogenous rhythms to zeitgeber cycles of the environment (resulting in a specific phase of entrainment) is fundamental for the adaptive value of circadian clocks. In this study, we systematically investigated the properties of circadian oscillators that are essential for entrainment behavior and describe coupling as a primary determinant. As an experimental starting point of this study, we found that the circadian oscillators of lung tissue have a larger range of entrainment than SCN tissue—they readily entrained to extreme experimental temperature cycle of 20 or 28 h, whereas SCN tissue did not (Figure 4). For this purpose, we cultured SCN and lung slices derived from mice that express luciferase as fusion protein together with the clock protein PERIOD2 (Yoo et al, 2004). The detection of luciferase-driven bioluminescence allowed us to follow molecular clock gene activity in real-time over the course of several days. In theoretical analyses, we show that both the ratio of amplitude and zeitgeber strength and, importantly, inter-oscillator coupling are major determinants for entrainment. The reason for coupling being critical is twofold: (i) Coupling makes an oscillatory system more rigid, i.e., it relaxes faster in response to a perturbation, and (ii) coupling increases the amplitude of the oscillatory system. Both of these consequences of coupling lead to a smaller entrainment range, because zeitgeber stimuli affect the oscillatory system less if the relaxation is fast and the amplitude is high (Figure 1). From these theoretical considerations, we conclude that the lung clock probably constitutes a weak oscillatory system, likely because a lack in coupling leads to a slow amplitude relaxation. (Circadian amplitude is not particularly low in lung (Figure 4).) In contrast, the SCN constitutes a rigid oscillator, whereby coupling and its described consequences probably are the primary causes for this rigidity. We then tested these theoretical predictions by experimentally perturbing coupling in the SCN (with MDL and TTX; O'Neill et al, 2008; Yamaguchi et al, 2003) and find that, indeed, reducing the coupling weakens the circadian oscillatory system in the SCN, which results in an enlargement of the entrainment range (Figure 6). Why is the SCN designed to be a stronger circadian oscillator than peripheral organs? We speculate that the position of the SCN—as the tissue that conveys environmental timing information (i.e., light) to the rest of the body—makes it necessary to create a circadian clock that is robust against noisy environmental stimuli. The SCN oscillator needs to be robust enough to be protected from environmental noise, but flexible enough to fulfill its function as an entrainable clock even in extreme photoperiods (i.e., seasons). By the same token, peripheral clocks are more protected from the environmental zeitgebers due to intrinsic homeostatic mechanisms. Thus, they do not necessarily need to develop a strong oscillatory system (e.g., by strengthening the coupling), rather they need to stay flexible enough to respond to direct or indirect signals from the SCN, such as hormonal, neural, temperature or metabolic signals. Such a design ensures that only robust and persistent environmental signals trigger an SCN resetting response, while SCN signals can relatively easily be conveyed to the rest of the body. Thus, the robustness in the SCN clock likely serves as a filter for environmental noise. In summary, using a combination of simulation studies, analytical calculations and experiments, we uncovered critical features for entrainment, such as zeitgeber-to-amplitude ratio and amplitude relaxation rate. Coupling is a primary factor that governs these features explaining important differences in the design of SCN and peripheral oscillators that ensure a robust, but also flexible circadian system. Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system.
Collapse
|
12
|
Lee RJ, Foskett JK. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 2010; 120:3137-48. [PMID: 20739756 DOI: 10.1172/jci42992] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), which is caused by mutations in CFTR, affects many tissues, including the lung. Submucosal gland serous acinar cells are primary sites of fluid secretion and CFTR expression in the lung. Absence of CFTR in these cells may contribute to CF lung pathogenesis by disrupting fluid secretion. Here, we have isolated primary serous acinar cells from wild-type and CFTR-/- pigs and humans without CF to investigate the cellular mechanisms and regulation of fluid secretion by optical imaging. Porcine and human serous cells secrete fluid in response to vasoactive intestinal polypeptide (VIP) and other agents that raise intracellular cAMP levels; here, we have demonstrated that this requires CFTR and a cAMP-dependent rise in intracellular Ca2+ concentration ([Ca2+]i). Importantly, cAMP induced the release of Ca2+ from InsP3-sensitive Ca2+ stores also responsive to cAMP-independent agonists such as cholinergic, histaminergic, and purinergic agonists that stimulate CFTR-independent fluid secretion. This provides two types of synergism that strongly potentiated cAMP-mediated fluid secretion but differed in their CFTR dependencies. First, CFTR-dependent secretion was strongly potentiated by low VIP and carbachol concentrations that individually were unable to stimulate secretion. Second, higher VIP concentrations more strongly potentiated the [Ca2+]i responses, enabling ineffectual levels of cholinergic stimulation to strongly activate CFTR-independent fluid secretion. These results identify important molecular mechanisms of cAMP-dependent secretion, including a requirement for Ca2+ signaling, and suggest new therapeutic approaches to correct defective submucosal gland secretion in CF.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | |
Collapse
|
13
|
Yang K, Trepanier CH, Li H, Beazely MA, Lerner EA, Jackson MF, MacDonald JF. Vasoactive intestinal peptide acts via multiple signal pathways to regulate hippocampal NMDA receptors and synaptic transmission. Hippocampus 2009; 19:779-89. [PMID: 19173226 DOI: 10.1002/hipo.20559] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vasoactive intestinal peptide (VIP) is a 28-amino acid peptide, which belongs to a superfamily of structurally related peptide hormones including pituitary adenylate cyclase-activating polypeptide (PACAP). Although several studies have identified the involvement of PACAP in learning and memory, little work has been done to investigate such a role for VIP. At least three receptors for VIP have been identified including the PACAP receptor (PAC1-R) and the two VIP receptors (VPAC receptors). VIP can activate the PAC1-R only if it is used at relatively high concentrations (e.g., 100 nM); however, at lower concentrations (e.g., 1 nM) it is selective for the VPAC receptors. Our lab has showed that PAC1-R activation signals through PKC/CAKbeta/Src pathway to regulate NMDA receptors; however, there is little known about the potential regulation of NMDA receptors by VPAC receptors. Our studies demonstrated that application of 1 nM VIP enhanced NMDA currents by stimulating the VPAC receptors as the effect was blocked by VPAC receptor antagonist [Ac-Tyr(1), D-Phe(2)]GRF (1-29). This enhancement of NMDA currents was blocked by both Rp-cAMPS and PKI(14-22) (they are highly specific PKA inhibitors), but not by the specific PKC inhibitor, bisindolylmaleimide I. In addition, the VIP-induced enhancement of NMDA currents was accentuated by inhibition of phosphodiesterase 4, which inhibits the degradation of cAMP. This regulation of NMDA receptors also required the scaffolding protein AKAP. In contrast, the potentiation induced by high concentration of VIP (e.g., 100 nM) was mediated by PAC1-R as well as by Src kinase. Overall, these results show that VIP can regulate NMDA receptors through different receptors and signaling pathways.
Collapse
Affiliation(s)
- Kai Yang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Kuri BA, Chan SA, Smith CB. PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway. J Neurochem 2009; 110:1214-25. [PMID: 19508428 DOI: 10.1111/j.1471-4159.2009.06206.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adrenal medullary chromaffin cells are a major peripheral output of the sympathetic nervous system. Catecholamine release from these cells is driven by synaptic excitation from the innervating splanchnic nerve. Acetylcholine has long been shown to be the primary transmitter at the splanchnic-chromaffin synapse, acting through ionotropic nicotinic acetylcholine receptors to elicit action potential-dependent secretion from the chromaffin cells. This cholinergic stimulation has been shown to desensitize under sustained stimulation, yet catecholamine release persists under this same condition. Recent evidence supports synaptic chromaffin cell stimulation through alternate transmitters. One candidate is pituitary adenylate cyclase activating peptide (PACAP), a peptide transmitter present in the adrenal medulla shown to have an excitatory effect on chromaffin cell secretion. In this study we utilize native neuronal stimulation of adrenal chromaffin cells in situ and amperometric catecholamine detection to demonstrate that PACAP specifically elicits catecholamine release under elevated splanchnic firing. Further data reveal that the immediate PACAP-evoked stimulation involves a phospholipase C and protein kinase C-dependent pathway to facilitate calcium influx through a Ni2+ and mibefradil-sensitive calcium conductance that results in catecholamine release. These data demonstrate that PACAP acts as a primary secretagogue at the sympatho-adrenal synapse under the stress response.
Collapse
Affiliation(s)
- Barbara A Kuri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
16
|
Shao W, Seth DM, Navar LG. Augmentation of endogenous intrarenal angiotensin II levels in Val5-ANG II-infused rats. Am J Physiol Renal Physiol 2009; 296:F1067-71. [PMID: 19244403 DOI: 10.1152/ajprenal.90596.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In angiotensin II (ANG II)-induced hypertension, intrarenal ANG II levels are increased by AT(1) receptor-mediated ANG II internalization and endogenous ANG II generation. The objective of the present study was to determine the relative contribution of de novo formation of endogenous ANG II. Male Sprague-Dawley rats were divided into three groups: sham operated (n = 6), Val(5)-ANG II infused (n = 16), and Ile(5)-ANG II infused (n = 6). Val(5)-ANG II and Ile(5)-ANG II were infused at 80 ng/min via subcutaneous osmotic minipump for 13 days, followed by harvesting of blood and kidney samples. In six Val(5)-ANG II-infused rats, urine was collected on the day before infusion and on day 12 of infusion. Extracted samples were subjected to HPLC to separate Val(5)-ANG II from Ile(5)-ANG II followed by RIA. Systolic blood pressure increased significantly from 121 +/- 2 to 206 +/- 4 mmHg in the Val(5)-ANG II-infused rats and from 124 +/- 3 to 215 +/- 5 mmHg in the Ile(5)-ANG II-infused rats. In the Val(5)-ANG II-infused rats, the plasma Ile(5)-ANG II levels increased 196.2 +/- 70.1% compared with sham plasma Ile(5)-ANG II concentration. Val(5)-ANG II levels were 150.0 +/- 28.2 fmol/ml which accounted for 53.5 +/- 10.1% of the total ANG II in plasma. The kidney Ile(5)-ANG II levels in the Val(5)-ANG II-infused rats increased 69.9 +/- 30.7% compared with sham kidney Ile(5)-ANG II concentrations. Intrarenal accumulation of Val(5)-ANG II accounted for 52.5 +/- 5.3% of the total kidney ANG II during Val(5)-ANG II infusion while endogenous Ile(5)-ANG II accounted for 47.5 +/- 8.6%. The urinary Ile(5)-ANG II excretion rate on day 12 increased 93.2 +/- 32.1% compared with preinfusion level indicating increased formation of endogenous ANG II. Thus, the increases in intrarenal ANG II levels during chronic ANG II infusions involve substantial stimulation of endogenous ANG II formation which contributes to overall augmentation of intrarenal ANG II.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, SL39, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
17
|
Dhaese I, Lefebvre RA. Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus. Eur J Pharmacol 2009; 606:180-6. [PMID: 19374871 DOI: 10.1016/j.ejphar.2009.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/24/2008] [Accepted: 01/09/2009] [Indexed: 01/09/2023]
Abstract
The relaxant effect of hydrogen sulfide (H(2)S) in the vascular tree is well established but its influence and mechanism of action in gastrointestinal smooth muscle was hardly investigated. The influence of H(2)S on contractility in mouse gastric fundus was therefore examined. Sodium hydrogen sulfide (NaHS; H(2)S donor) was administered to prostaglandin F(2alpha) (PGF(2alpha))-contracted circular muscle strips of mouse gastric fundus, before and after incubation with interfering drugs. NaHS caused a concentration-dependent relaxation of the pre-contracted mouse gastric fundus strips. The K(+) channels blockers glibenclamide, apamin, charybdotoxin, 4-aminopyridin and barium chloride had no influence on the NaHS-induced relaxation. The relaxation by NaHS was also not influenced by L-NAME, ODQ and SQ 22536, inhibitors of the cGMP and cAMP pathway, by nerve blockers capsazepine, omega-conotoxin and tetrodotoxin or by several channel and receptor blockers (ouabain, nifedipine, 2-aminoethyl diphenylborinate, ryanodine and thapsigargin). The myosin light chain phosphatase (MLCP) inhibitor calyculin-A reduced the NaHS-induced relaxation, but the Rho-kinase inhibitor Y-27632 had no influence. We show that NaHS is able to relax PGF(2alpha)-contracted mouse gastric fundus strips. The results suggest that in the mouse gastric fundus, H(2)S causes relaxation at least partially via activation of MLCP.
Collapse
Affiliation(s)
- Ingeborg Dhaese
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
18
|
Janosi T, Peták F, Fontao F, Morel DR, Beghetti M, Habre W. Differential roles of endothelin-1 ETA and ETB receptors and vasoactive intestinal polypeptide in regulation of the airways and the pulmonary vasculature in isolated rat lung. Exp Physiol 2008; 93:1210-9. [PMID: 18567602 DOI: 10.1113/expphysiol.2008.042481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The available treatment strategies against pulmonary hypertension include the administration of endothelin-1 (ET-1) receptor subtype blockers (ET(A) and ET(B) antagonists); vasoactive intestinal polypeptide (VIP) has recently been suggested as a potential new therapeutic agent. We set out to investigate the ability of these agents to protect against the vasoconstriction and impairment of lung function commonly observed in patients with pulmonary hypertension. An ET(A) blocker (BQ123), ET(B) blocker (BQ788), a combination of these selective blockers (ET(A) + ET(B) blockers) or VIP (V6130) was administered into the pulmonary circulation in four groups of perfused normal rat lungs. Pulmonary vascular resistance (PVR) and forced oscillatory lung input impedance (Z(L)) were measured in all groups under baseline conditions and at 1 min intervals following ET-1 administrations. The airway resistance, inertance, tissue damping and elastance were extracted from the Z(L) spectra. While VIP, ET(A) blocker and combined ET(A) and ET(B) blockers significantly prevented the pulmonary vasoconstriction induced by ET-1, ET(B) blockade enhanced the ET-1-induced increases in PVR. In contrast, the ET(A) and ET(B) blockers markedly elevated the ET-1-induced increases in airway resistance, while VIP blunted this constrictor response. Our results suggest that VIP potently acts against the airway and pulmonary vascular constriction mediated by endothelin-1, while the ET(A) and ET(B) blockers exert a differential effect between airway resistance and PVR.
Collapse
Affiliation(s)
- Tibor Janosi
- Paediatric Anaesthesia Unit, Geneva Children's Hospital, Rue Willy Donze 6, CH-1205 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
CRF facilitates calcium release from intracellular stores in midbrain dopamine neurons. Neuron 2008; 57:559-70. [PMID: 18304485 DOI: 10.1016/j.neuron.2007.12.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/20/2007] [Accepted: 12/21/2007] [Indexed: 11/22/2022]
Abstract
Changes in cytosolic calcium are crucial for numerous processes including neuronal plasticity. This study investigates the regulation of cytosolic calcium by corticotropin-releasing factor (CRF) in midbrain dopamine neurons. The results demonstrate that CRF stimulates the release of intracellular calcium from stores through activation of adenylyl cyclase and PKA. Imaging and photolysis experiments showed that the calcium originated from dendrites and required both functional IP3 and ryanodine receptor channels. The elevation in cytosolic calcium potentiated calcium-sensitive potassium channels (sK) activated by action potentials and metabotropic Gq-coupled receptors for glutamate and acetylcholine. This increase in cytosolic calcium activated by postsynaptic Gs-coupled CRF receptors may represent a fundamental mechanism by which stress peptides and hormones can shape Gq-coupled receptor-mediated regulation of neuronal excitability and synaptic plasticity in dopamine neurons.
Collapse
|
20
|
El Zein N, Badran B, Sariban E. The neuropeptide pituitary adenylate cyclase activating polypeptide modulates Ca2+ and pro-inflammatory functions in human monocytes through the G protein-coupled receptors VPAC-1 and formyl peptide receptor-like 1. Cell Calcium 2008; 43:270-84. [PMID: 17651798 DOI: 10.1016/j.ceca.2007.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/18/2007] [Accepted: 05/30/2007] [Indexed: 12/01/2022]
Abstract
In human neutrophils, the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) acting via the G protein-coupled receptors vasoactive intestinal peptide/PACAP receptor 1 (VPAC-1) and formyl peptide receptor-like 1 (FPRL1) modulates Ca2+ and pro-inflammatory activities. We evaluated in human monocytes the importance of the Ca2+ signal and the participation of FPRL1 in PACAP-associated signaling pathways and pro-inflammatory activities. PACAP-evoked Ca2+ transient involved both Ca2+ influx and intracytoplasmic Ca2+ mobilisation. This was pertussis toxin, protein kinase A and adenylate cyclase dependent indicating the participation of Galphai and Galphas with mobilisation of both InsP3 sensitive and insensitive stores. Intra- or extracellular Ca2+ depletion resulted in the inhibition of PACAP-induced, Akt, ERK, p38 and NF-kappaB activations as well as a decrease in PACAP-associated reactive oxygen species (ROS) production and integrin CD11b membrane upregulation. The FPRL1 antagonist, Trp-Arg-Trp-Trp-Trp (WRW4), decreased PACAP-evoked Ca2+ signal, Akt, ERK phosphorylation, ROS and CD11b upregulation without affecting p38 phosphorylation. NF-kappaB inhibitors prevented PACAP-induced Ca2+ mobilisation. Monocytes pre-treatment with fMLP but not with LPS desensitised cells to the pro-inflammatory effects of PACAP. Thus, both intra- and extracellular Ca2+ play a role in controlling pro-inflammatory functions stimulated by PACAP which acts through a VPAC-1, FPRL1/Galphai/PI3K/ERK pathway and a VPAC-1/Galphas/PKA/p38 pathway to fully activate monocytes.
Collapse
Affiliation(s)
- Nabil El Zein
- Hemato-Oncology Unit and Laboratory of Pediatric Oncology, Hôpital Universitaire des Enfants, 1020 Brussels, Belgium
| | | | | |
Collapse
|
21
|
Li XC, Zhuo JL. Intracellular ANG II directly induces in vitro transcription of TGF-beta1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors. Am J Physiol Cell Physiol 2008; 294:C1034-45. [PMID: 18256274 DOI: 10.1152/ajpcell.00432.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study tested the hypothesis that intracellular ANG II directly induces transcriptional effects by stimulating AT(1a) receptors in the nucleus of rat renal cortical cells. Intact nuclei were freshly isolated from the rat renal cortex, and transcriptional responses to ANG II were studied using in vitro RNA transcription assays and semiquantitative RT-PCR. High-power phase-contrast micrographs showed that isolated nuclei were encircled by an intact nuclear envelope and stained strongly by the DNA marker 4',6-diamidino-2-phenylindole, but not by the membrane or endosomal markers. Fluorescein isothiocyanate-labeled ANG II and [(125)I]Val(5)-ANG II binding confirmed the presence of ANG II receptors in the nuclei with a predominance of AT(1) receptors. RT-PCR showed that AT(1a) mRNA expression was threefold greater than AT(1b) receptor mRNAs in these nuclei. In freshly isolated nuclei, ANG II increased in vitro [alpha-(32)P]CTP incorporation in a concentration-dependent manner, and the effect was confirmed by autoradiography and RNA electrophoresis. ANG II markedly increased in vitro transcription of mRNAs for transforming growth factor-beta1 by 143% (P < 0.01), macrophage chemoattractant protein-1 by 89% (P < 0.01), and the sodium and hydrogen exchanger-3 by 110% (P < 0.01). These transcriptional effects of ANG II on the nuclei were completely blocked by the AT(1) receptor antagonist losartan (P < 0.01). By contrast, ANG II had no effects on transcription of angiotensinogen and glyceraldehyde-3-phosphate dehydrogenase mRNAs. Because these transcriptional effects of ANG II in isolated nuclei were induced by ANG II in the absence of cell surface receptor-mediated signaling and completely blocked by losartan, we concluded that ANG II may directly stimulate nuclear AT(1a) receptors to induce transcriptional responses that are associated with tubular epithelial sodium transport, cellular growth and hypertrophy, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Xiao C Li
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | |
Collapse
|
22
|
Li XC, Zhuo JL. In vivo regulation of AT1a receptor-mediated intracellular uptake of [125I]Val5-ANG II in the kidneys and adrenals of AT1a receptor-deficient mice. Am J Physiol Renal Physiol 2007; 294:F293-302. [PMID: 18045833 DOI: 10.1152/ajprenal.00398.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Using type 1a angiotensin receptor (AT1a) receptor-deficient (Agtr1a-/-) mice and in vivo autoradiography, we tested the hypothesis that intracellular uptake of ANG II in the kidney and adrenal glands is primarily mediated by AT1a receptors and that the response is regulated by prevailing endogenous ANG II. After pretreatment of wild-type (Agtr1a+/+) and Agtr1a-/- mice (n = 6-9 each group) with or without captopril (25 mg.kg(-1).day(-1)) or losartan (10 mg.kg(-1).day(-1)) for 2 wk, [125I]Val5-ANG II was infused for 60 min. Intracellular uptake of [125I]Val5-ANG II was determined by quantitative in vivo autoradiography after washout of circulating [125I]Val5-ANG II. Basal intracellular ANG II levels were 65% lower in the kidney (P < 0.001), but plasma ANG II levels were threefold higher, in Agtr1a-/- than wild-type mice (P < 0.01). Although plasma [125I]Val5-ANG II levels were similar, urinary excretion of [125I]Val5-ANG II was fourfold higher in Agtr1a-/- mice (P < 0.001). By contrast, intracellular [125I]Val5-ANG II levels were approximately 80% lower in the kidney and adrenal glands of Agtr1a-/- mice (P < 0.01). Captopril decreased endogenous plasma and renal ANG II levels (P < 0.01) but increased intracellular uptake of [125I]Val5-ANG II in the kidney and adrenal glands of wild-type and Agtr1a-/- mice (P < 0.01). Losartan largely blocked renal and adrenal uptake of [125I]Val5-ANG II in wild-type and Agtr1a-/- mice. Thus 80% of intracellular ANG II uptake in the kidney and adrenal glands is mediated by AT1a receptors, whereas AT1b receptor- and other non-receptor-mediated mechanisms account for 20% of the response. Our results suggest that AT1a receptor-mediated uptake of extracellular ANG II may play a physiological role in the kidney and adrenal glands.
Collapse
|
23
|
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251-87. [PMID: 17878513 DOI: 10.1124/pr.59.3.3] [Citation(s) in RCA: 867] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Director of the Molecular Core in Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|
24
|
Li XC, Navar LG, Shao Y, Zhuo JL. Genetic deletion of AT1a receptors attenuates intracellular accumulation of ANG II in the kidney of AT1a receptor-deficient mice. Am J Physiol Renal Physiol 2007; 293:F586-93. [PMID: 17537986 PMCID: PMC2277521 DOI: 10.1152/ajprenal.00489.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We and others have previously shown that high levels of ANG II are accumulated in the rat kidney via a type 1 (AT(1)) receptor-mediated mechanism, but it is not known which AT(1) receptor is involved in this process in rodents. We tested the hypothesis that AT(1a) receptor-deficient mice (Agtr1a-/-) are unable to accumulate ANG II intracellularly in the kidney because of the absence of AT(1a) receptor-mediated endocytosis. Adult male wild-type (Agtr1a+/+), heterozygous (Agtr1a+/-), and Agtr1a-/- were treated with vehicle, ANG II (40 ng/min ip via osmotic minipump), or ANG II plus the AT(1) antagonist losartan (10 mg.kg(-1).day(-1) po) for 2 wk. In wild-type mice, ANG II induced hypertension (168 +/- 4 vs. 113 +/- 3 mmHg, P < 0.001), increased kidney-to-body weight ratio (P < 0.01), caused pressure natriuresis (P < 0.05), and elevated plasma and whole kidney ANG II levels (P < 0.001). Concurrent administration of ANG II with losartan attenuated these responses to ANG II. In contrast, Agtr1a-/- mice had lower basal systolic pressures (P < 0.001), smaller kidneys with much fewer AT(1b) receptors (P < 0.001), higher basal 24-h urinary sodium excretion (P < 0.01), as well as basal plasma and whole kidney ANG II levels (P < 0.01). However, intracellular ANG II levels in the kidney were lower in Agtr1a-/- mice. In Agtr1a-/- mice, ANG II slightly increased systolic pressure (P < 0.05) but had no effect on the kidney weight, urinary sodium excretion, and whole kidney ANG II levels. Losartan restored systolic pressure to basal levels and decreased whole kidney ANG II levels by approximately 20% (P < 0.05). These results demonstrate a predominant role of AT(1a) receptors in blood pressure regulation and in the renal responses to long-term ANG II administration, that AT(1b) receptors may play a limited role in blood pressure control and mediating intrarenal ANG II accumulation in the absence of AT(1a) receptors.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
25
|
Li XC, Zhuo JL. Selective knockdown of AT1 receptors by RNA interference inhibits Val5-ANG II endocytosis and NHE-3 expression in immortalized rabbit proximal tubule cells. Am J Physiol Cell Physiol 2007; 293:C367-78. [PMID: 17428839 PMCID: PMC2277517 DOI: 10.1152/ajpcell.00463.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor-mediated endocytosis of extracellular ANG II has been suggested to play an important role in the regulation of proximal tubule cell (PTC) function. Using immortalized rabbit PTCs as an in vitro cell culture model, we tested the hypothesis that extracellular ANG II is taken up by PTCs through angiotensin type 1 receptor (AT(1); or AT(1a)) receptor-mediated endocytosis and that inhibition of ANG II endocytosis using a selective AT(1) receptor small-interfering RNA (siRNA; AT(1)R siRNA) or endocytotic inhibitors exerts a physiological effect on total and apical sodium and hydrogen exchanger isoform 3 (NHE-3) protein abundance. Western blots and live cell imaging with FITC-labeled ANG II confirmed that transfection of PTCs with a human specific AT(1)R siRNA for 48 h selectively knocked down AT(1) receptor protein by 76 +/- 5% (P < 0.01), whereas transfection with a scrambled siRNA had little effect. In nontransfected PTCs, exposure to extracellular ANG II (1 nM) for 60 min at 37 degrees C increased intracellular ANG II accumulation by 67% (control: 566 +/- 55 vs. ANG II: 943 +/- 160 pg/mg protein, P < 0.05) and induced mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) 1/2 phosphorylation (163 +/- 15% of control, P < 0.01). AT(1)R siRNA reduced ANG II endocytosis to a level similar to losartan, which blocks cell surface AT(1) receptors (557 +/- 37 pg/mg protein, P < 0.05 vs. ANG II), or to colchicine, which disrupts cytoskeleton microtubules (613 +/- 12 pg/mg protein, P < 0.05 vs. ANG II). AT(1)R siRNA, losartan, and colchicine all attenuated ANG II-induced ERK1/2 activation and total cell lysate and apical membrane NHE-3 abundance. The scrambled siRNA had no effect on ANG II endocytosis, ERK1/2 activation, or NHE-3 expression. These results suggest that AT(1) receptor-mediated endocytosis of extracellular ANG II may regulate proximal tubule sodium transport by increasing total and apical NHE-3 proteins.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cell Line
- Colchicine/pharmacology
- Cold Temperature
- Down-Regulation
- Endocytosis/drug effects
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Losartan/pharmacology
- Microtubules/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphorylation
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rabbits
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Sodium/metabolism
- Sodium-Hydrogen Exchanger 3
- Sodium-Hydrogen Exchangers/metabolism
- Time Factors
- Transfection
- Tubulin Modulators/pharmacology
Collapse
Affiliation(s)
- Xiao C Li
- Div. of Hypertension and Vascular Research, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | |
Collapse
|
26
|
Maywood ES, O'Neill JS, Reddy AB, Chesham JE, Prosser HM, Kyriacou CP, Godinho SIH, Nolan PM, Hastings MH. Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:85-94. [PMID: 18419265 DOI: 10.1101/sqb.2007.72.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A hierarchy of interacting, tissue-based clocks controls circadian physiology and behavior in mammals. Preeminent are the suprachiasmatic nuclei (SCN): central hypothalamic pacemakers synchronized to solar time via retinal afferents and in turn responsible for internal synchronization of other clocks present in major organ systems. The SCN and peripheral clocks share essentially the same cellular timing mechanism. This consists of autoregulatory transcriptional/posttranslational feedback loops in which the Period (Per) and Cryptochrome (Cry) "clock" genes are negatively regulated by their protein products. Here, we review recent studies directed at understanding the molecular and cellular bases to the mammalian clock. At the cellular level, we demonstrate the role of F-box protein Fbxl3 (characterized by the afterhours mutation) in directing the proteasomal degradation of Cry and thereby controlling negative feedback and circadian period of the molecular loops. Within SCN neural circuitry, we describe how neuropeptidergic signaling by VIP synchronizes and sustains the cellular clocks. At the hypothalamic level, signaling via a different SCN neuropeptide, prokineticin, is not required for pacemaking but is necessary for control of circadian behavior. Finally, we consider how metabolic pathways are coordinated in time, focusing on liver function and the role of glucocorticoid signals in driving the circadian transcriptome and proteome.
Collapse
Affiliation(s)
- E S Maywood
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hayden MR, Chowdhury NA, Cooper SA, Whaley-Connell A, Habibi J, Witte L, Wiedmeyer C, Manrique CM, Lastra G, Ferrario C, Stump C, Sowers JR. Proximal tubule microvilli remodeling and albuminuria in the Ren2 transgenic rat. Am J Physiol Renal Physiol 2006; 292:F861-7. [PMID: 17032939 DOI: 10.1152/ajprenal.00252.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TG(mRen2)27 (Ren2) transgenic rats overexpress the mouse renin gene, with subsequent elevated tissue ANG II, hypertension, and nephropathy. The proximal tubule cell (PTC) is responsible for the reabsorption of 5-8 g of glomerular filtered albumin each day. Excess filtered albumin may contribute to PTC damage and tubulointerstitial disease. This investigation examined the role of ANG II-induced oxidative stress in PTC structural remodeling: whether such changes could be modified with in vivo treatment with ANG type 1 receptor (AT(1)R) blockade (valsartan) or SOD/catalase mimetic (tempol). Male Ren2 (6-7 wk old) and age-matched Sprague-Dawley rats were treated with valsartan (30 mg/kg), tempol (1 mmol/l), or placebo for 3 wk. Systolic blood pressure, albuminuria, N-acetyl-beta-D-glucosaminidase, and kidney tissue malondialdehyde (MDA) were measured, and x60,000 transmission electron microscopy images were used to assess PTC microvilli structure. There were significant differences in systolic blood pressure, albuminuria, lipid peroxidation (MDA and nitrotyrosine staining), and PTC structure in Ren2 vs. Sprague-Dawley rats (each P < 0.05). Increased mean diameter of PTC microvilli in the placebo-treated Ren2 rats (P < 0.05) correlated strongly with albuminuria (r(2) = 0.83) and moderately with MDA (r(2) = 0.49), and there was an increase in the ratio of abnormal forms of microvilli in placebo-treated Ren2 rats compared with Sprague-Dawley control rats (P < 0.05). AT(1)R blockade, but not tempol treatment, abrogated albuminuria and N-acetyl-beta-d-glucosaminidase; both therapies corrected abnormalities in oxidative stress and PTC microvilli remodeling. These data indicate that PTC structural damage in the Ren2 rat is related to the oxidative stress response to ANG II and/or albuminuria.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, University of Missouri, Columbia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|