1
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
2
|
Subash-Babu P, Mohammed Alowaidh H, Al-Harbi LN, Shamlan G, Aloud AA, AlSedairy SA, Alshatwi AA. Ocimum basilicum L. Methanol Extract Enhances Mitochondrial Efficiency and Decreases Adipokine Levels in Maturing Adipocytes Which Regulate Macrophage Systemic Inflammation. Molecules 2022; 27:molecules27041388. [PMID: 35209178 PMCID: PMC8876186 DOI: 10.3390/molecules27041388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive storage of lipids in visceral or ectopic sites stimulates adipokine production, which attracts macrophages. This process determines the pro- and anti-inflammatory response regulation in adipose tissue during obesity-associated systemic inflammation. The present study aimed to identify the composition of Ocimum basilicum L. (basil) seed extract and to determine its bio-efficacy on adipocyte thermogenesis or fatty acid oxidation and inhibition of lipid accumulation and adipokine secretion. Ocimum basilicum L. seed methanol extract (BSME) was utilized to analyze the cytotoxicity vs. control; lipid accumulation assay (oil red O and Nile red staining), adipogenesis and mitochondrial-thermogenesis-related gene expression vs. vehicle control were analyzed by PCR assay. In addition, vehicle control and BSME-treated adipocytes condition media were collected and treated with lipopolysaccharide (LPS)-induced macrophage to identify the macrophage polarization. The results shown that the active components present in BSME did not produce significant cytotoxicity in preadipocytes or macrophages in the MTT assay. Furthermore, oil red O and Nile red staining assay confirmed that 80 and 160 μg/dL concentrations of BSME effectively arrested lipid accumulation and inhibited adipocyte maturation, when compared with tea polyphenols. Gene expression level of adipocyte hyperplasia (CEBPα, PPARγ) and lipogenesis (LPL)-related genes have been significantly (p ≤ 0.05) downregulated, and mitochondrial-thermogenesis-associated genes (PPARγc1α, UCP-1, prdm16) have been significantly (p ≤ 0.001) upregulated. The BSME-treated, maturing, adipocyte-secreted proteins were detected with a decreased protein level of leptin, TNF-α, IL-6 and STAT-6, which are associated with insulin resistance and macrophage recruitment. The “LPS-stimulated macrophage” treated with “BSME-treated adipocytes condition media”, shown with significant (p ≤ 0.001) decrease in metabolic-inflammation-related proteins—such as PGE-2, MCP-1, TNF-α and NF-κB—were majorly associated with the development of foam cell formation and progression of atherosclerotic lesion. The present findings concluded that the availability of active principles in basil seed effectively inhibit adipocyte hypertrophy, macrophage polarization, and the inflammation associated with insulin resistance and thrombosis development. Ocimum basilicum L. seed may be useful as a dietary supplement to enhance fatty acid oxidation, which aids in overcoming metabolic complications.
Collapse
|
3
|
Sonic Hedgehog acts as a macrophage chemoattractant during regeneration of the gastric epithelium. NPJ Regen Med 2022; 7:3. [PMID: 35022438 PMCID: PMC8755719 DOI: 10.1038/s41536-021-00196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Sonic Hedgehog (Shh), secreted from gastric parietal cells, contributes to the regeneration of the epithelium. The recruitment of macrophages plays a central role in the regenerative process. The mechanism that regulates macrophage recruitment in response to gastric injury is largely unknown. Here we tested the hypothesis that Shh stimulates macrophage chemotaxis to the injured epithelium and contributes to gastric regeneration. A mouse model expressing a myeloid cell-specific deletion of Smoothened (LysMcre/+;Smof/f) was generated using transgenic mice bearing loxP sites flanking the Smo gene (Smo loxP) and mice expressing a Cre recombinase transgene from the Lysozyme M locus (LysMCre). Acetic acid injury was induced in the stomachs of both control and LysMcre/+;Smof/f (SmoKO) mice and gastric epithelial regeneration and macrophage recruitment analyzed over a period of 7 days post-injury. Bone marrow-derived macrophages (BM-Mø) were collected from control and SmoKO mice. Human-derived gastric organoid/macrophage co-cultures were established, and macrophage chemotaxis measured. Compared to control mice, SmoKO animals exhibited inhibition of ulcer repair and normal epithelial regeneration, which correlated with decreased macrophage infiltration at the site of injury. Bone marrow chimera experiments using SmoKO donor cells showed that control chimera mice transplanted with SmoKO bone marrow donor cells exhibited a loss of ulcer repair, and transplantation of control bone marrow donor cells to SmoKO mice rescued epithelial cell regeneration. Histamine-stimulated Shh secretion in human organoid/macrophage co-cultures resulted in macrophage migration toward the gastric epithelium, a response that was blocked with Smo inhibitor Vismodegib. Shh-induced macrophage migration was mediated by AKT signaling. In conclusion, Shh signaling acts as a macrophage chemoattractant via a Smo-dependent mechanism during gastric epithelial regeneration in response to injury.
Collapse
|
4
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
5
|
Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid Receptors in Breast Cancer: Understanding of Molecular Function as a Basis for Effective Therapy Development. Cancers (Basel) 2021; 13:4779. [PMID: 34638264 PMCID: PMC8507808 DOI: 10.3390/cancers13194779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains one of the most important health problems worldwide. The family of steroid receptors (SRs), which comprise estrogen (ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors, along with a receptor for a secosteroid-vitamin D, play a crucial role in the pathogenesis of the disease. They function predominantly as nuclear receptors to regulate gene expression, however, their full spectrum of action reaches far beyond this basic mechanism. SRs are involved in a vast variety of interactions with other proteins, including extensive crosstalk with each other. How they affect the biology of a breast cell depends on such factors as post-translational modifications, expression of coregulators, or which SR isoform is predominantly synthesized in a given cellular context. Although ER has been successfully utilized as a breast cancer therapy target for years, research on therapeutic application of other SRs is still ongoing. Designing effective hormone therapies requires thorough understanding of the molecular function of the SRs. Over the past decades, huge amount of data was obtained in multiple studies exploring this field, therefore in this review we attempt to summarize the current knowledge in a comprehensive way.
Collapse
Affiliation(s)
- Wojciech Kowalczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Grzegorz Waliszczak
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 23 Kopernika St., 31-501 Kraków, Poland;
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (W.K.); (G.W.)
| |
Collapse
|
6
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
7
|
Guo X, Yuan Z, Xu Y, Wei M, Fang Z, Yuan WE. A fluorinated low-molecular-weight PEI/HIF-1α shRNA polyplex system for hemangioma therapy. Biomater Sci 2020; 8:2129-2142. [DOI: 10.1039/d0bm00171f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNAi technology targeting HIF-1α could benefit hemangioma therapy effectively and FPEI polyplexes which could inhibit the expression of HIF-1α at the translational level can provide a practicable strategy for clinical hemangioma treatment in the future.
Collapse
Affiliation(s)
- Xiaoshuang Guo
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zihan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yang Xu
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Minyan Wei
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zhiwei Fang
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
8
|
Sun B, Yang D, Yin YZ, Xiao J. Estrogenic and anti-inflammatory effects of pseudoprotodioscin in atherosclerosis-prone mice: Insights into endothelial cells and perivascular adipose tissues. Eur J Pharmacol 2019; 869:172887. [PMID: 31877277 DOI: 10.1016/j.ejphar.2019.172887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Pseudoprotodioscin (PPD), a phytoestrogen isolated from Dioscorea nipponica Makino, is recognized to possess anti-inflammatory and antiadipogenic capacities. However, little is known about the antiatherosclerotic effects of PPD and the underlying mechanisms. Here, the contribution of estrogen receptors (ERs) and inflammation to PPD-mediated amelioration of endothelial dysfunction has been fully assessed. PPD administration alleviated atherosclerotic lesions by lowering total cholesterol in ovariectomized apoE-/- mice fed a high-cholesterol diet. Molecular docking analysis suggested a selective interaction of PPD with ERα. Upon PPD treatment, ERα and endothelial nitric oxide synthase (eNOS) protein levels were increased, whereas cell adhesion molecule and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were suppressed in human umbilical vein endothelial cells (HUVECs) after injury caused by oxidized low-density lipoprotein (ox-LDL). These effects could be abolished by an ERα antagonist or a NOS inhibitor. Whereas, PPD can ERα-independently suppress TNFα expression in peritoneal macrophages upon LPS induction. Estrogen deficiency induced inflammatory phenotypes in perivascular adipose tissue (PAT), which could be partially attenuated by PPD. The increased release of adiponectin in PAT after PPD treatment is in accordance with previous reported data showing that adiponectin exerts anti-inflammatory effects in multiple cell types. ERα-dependent antiadipogenic effects of PPD were also detected in PAT-derived stromal cells. The present study reveals a novel mechanism through which PPD exerts estrogenic and anti-inflammatory properties in atherosclerosis-prone mice. Thus, PPD is a promising compound which has potential therapeutic effects on atherosclerotic cardiovascular diseases in postmenopausal women.
Collapse
Affiliation(s)
- Bing Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Dan Yang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Yue-Zhang Yin
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China; Shandong University of Traditional Chinese Medicine, Shandong, 250355, PR China
| | - Jing Xiao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
9
|
Bracht JR, Vieira‐Potter VJ, De Souza Santos R, Öz OK, Palmer BF, Clegg DJ. The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 2019; 1461:127-143. [DOI: 10.1111/nyas.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Orhan K. Öz
- Department of RadiologyUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Biff F. Palmer
- Department of MedicineUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Deborah J. Clegg
- College of Nursing and Health ProfessionsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
10
|
Canadas-Sousa A, Santos M, Leal B, Medeiros R, Dias-Pereira P. Estrogen receptors genotypes and canine mammary neoplasia. BMC Vet Res 2019; 15:325. [PMID: 31506083 PMCID: PMC6734279 DOI: 10.1186/s12917-019-2062-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Estrogens are essential for the development and proper function of several hormone-dependent organs. There are, however, several lines of evidence associating estrogens with mammary carcinogenesis. A marked individual genetic variability concerning estrogens biosynthesis, metabolism and mechanism of action was recognized and associated with human breast cancer susceptibility, clinical features and progression. Although some genetic variations in canine ESR1 gene were reported, their influence in clinicopathological features and progression of canine mammary tumors has not been fully evaluated. This study aims to assess the influence of SNPs in ESR1 gene (rs397512133, rs397510462, rs851327560, rs397510612, rs852887655, rs852684753 and rs852398698) in canine mammary tumors characteristics and progression. A group of 155 non-neutered bitches with mammary tumors was included in the study. Follow-up information was assessed 24 months after surgery. RESULTS Genetic profiles associated with a later onset of mammary tumors and less aggressive clinicopathological features, namely smaller tumor size (≤ 3 cm) with extensive tubular differentiation and low canine-adapted prognostic index (vet-NPI), were identified in this study. CONCLUSIONS Our data suggest that the ESR1 genetic profile may help on the decision regarding the selection of individual tailored preventive measures against canine mammary tumors development, such as early neutering.
Collapse
Affiliation(s)
- Ana Canadas-Sousa
- Department of Pathology and Molecular Immunology, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal.
| | - Marta Santos
- Department of Microscopy, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal
| | - Bárbara Leal
- Department of Pathology and Molecular Immunology, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, Instituto Ciências Biomédicas Abel Salazar, ICBAS - UPorto, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Khandy MT, Kochkin DV, Tomilova SV, Galishev BA, Sukhanova ES, Klyushin AG, Ivanov IM, Nosov AM. Obtaining and Study of Callus and Suspension Plant Cell Cultures of Tribulus terrestris L., a Producer of Steroidal Glycosides. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683817080038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Jenks MZ, Fairfield HE, Johnson EC, Morrison RF, Muday GK. Sex Steroid Hormones Regulate Leptin Transcript Accumulation and Protein Secretion in 3T3-L1 Cells. Sci Rep 2017; 7:8232. [PMID: 28811502 PMCID: PMC5558017 DOI: 10.1038/s41598-017-07473-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
Abstract
Leptin is an adipokine produced by fat cells that regulates food consumption and metabolic activity. Sexual dimorphism in leptin and fat stores have been observed in humans and rodents with females having more leptin and greater levels of subcutaneous fat than males. One potential mechanism leading to this dimorphism is steroid hormone regulated synthesis of transcripts encoding leptin. Identification of direct regulatory mechanisms is difficult in animals or primary adipocytes due to these intertwined dimorphisms. We used well-characterized 3T3-L1 murine adipocytes to demonstrate that dihydrotestosterone (DHT) reduced Leptin (Lep) transcript abundance and cytosolic and secreted leptin protein. The magnitude of this effect was greatest on secreted leptin, which was decreased by DHT to 30% of the control. In contrast, 17β-estradiol significantly increased the abundance of transcripts encoding leptin and increased secreted leptin to 230% of the control. Treatment with estrogen and androgen receptor antagonists had opposite effects on Lep transcript abundance to steroid treatments, indicating that these transcriptional effects are mediated through the canonical steroid hormone signaling pathways. These results indicate that short-term treatments with steroid hormones are sufficient to alter both Lep transcript accumulation and leptin protein secretion, and may play a role in the sexual dimorphism of this adipokine.
Collapse
Affiliation(s)
- Mónica Z Jenks
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA
| | - Heather E Fairfield
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA
| | - Erik C Johnson
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA
| | - Ron F Morrison
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA.
| |
Collapse
|
13
|
Dai L, Chu X, Lu F, Xu R. Detection of four polymorphisms in 5' upstream region of PNPLA2 gene and their associations with economic traits in pigs. Mol Biol Rep 2016; 43:1305-1313. [PMID: 27565982 DOI: 10.1007/s11033-016-4068-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022]
Abstract
As an important triglyceride hydrolase in mammalian cells, patatin-like phospholipase domain-containing 2 (PNPLA2) predominantly performs the first step in triglyceride hydrolysis. The objective of this study was to detect and evaluate the effects of mutations in the 5' upstream region of porcine PNPLA2 gene with fat deposition and carcass traits. Four single nuclear polymorphisms were identified, including g.161969 T>C, g.161962 A>G, g.161953 C>G and g.161904 G>T, and subsequently genotyped in five pure breeds. Three haplotypes were constructed, including H1(CGGT), H2(TACG) and H3(CACT), which were the most abundant haplotypes in Duroc (0.75), Landrace (0.78) and Chinese indigenous breeds (>0.73), respectively. Duroc individuals with the H1H1 diplotype always exhibited the lowest feed conversion ratio (FCR) (P < 0.05), while H2H2 had the thickest backfat thickness (P < 0.05). Landrace individuals with H2H3 had lower backfat thickness (P < 0.05), higher muscle thickness (P < 0.05) and estimated lean meat percentage (P < 0.05) than those with diplotype H2H2 and H3H3. Luciferase assay indicated pGL3-basic-H2 had the highest activity and pGL3-basic-H1 had the lowest activity in driving reporter gene transcription in HEK293 cells in vitro. In H1 haplotype, two GR binding sites and an ERα binding site were predicted to be introduced. While in H2 and H3, there were other transcriptional factor binding sites predicted in H2 and H3, such as Sp1, AP-2 and CAC-binding proteins, which were broadly expressed transcription factors and capable of contributing to basal promoter activity. The reduced basal promoter activity of H1 may be due to the lack of inducement for GR and ERα binding sites in HEK293 cells. The identified functional polymorphisms provide new evidence of PNPLA2 as an important candidate gene for fat deposition and carcass traits in pigs.
Collapse
Affiliation(s)
- Lihe Dai
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Xiaohong Chu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Fuzeng Lu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Ruhai Xu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
14
|
Liao M, Chen X, Chen J, Liu M, Wang J, Chen Z, Xie Z, Yao M. Determination of pseudoprotodioscin in rat plasma by UPLC-MS/MS: Assay development and application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:97-104. [PMID: 26012509 DOI: 10.1016/j.jchromb.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
An original and sensitive ultraperformance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method for the determination of pseudoprotodioscin (PPD) in rat plasma was developed and validated. Digitoxin was applied as an internal standard. Plasma samples were processed by acetonitrile-mediated plasma protein precipitation and chromatographed using a step gradient program on a C18 column (2.1×50mm i.d., 1.7μm). The mobile phase was comprised of acetonitrile and 0.1mmolL(-1) aqueous lithium acetate mixed with 0.03% formic acid at the flow rate of 0.2mLmin(-1). Multiple reaction monitoring (MRM) transitions were performed for detection and lithium adduct ions were employed with a significant improvement of the response of the analytes in electrospray positive ionization mode. The concentration range of calibration curve was linear over the range 2-5000ngmL(-1). The intra- and inter-day precisions were all less than 11.5% and accuracies were within the range of 94.1-103.5%, and the analytes exhibited no severe matrix effect. The validated method was successfully applied in the pharmacokinetics of PPD after intragastric (50mgkg(-1)) and intravenous (4mgkg(-1)) administration in rats. PPD showed rapid excretion and with bioavailability of simply about 5.7% in rats.
Collapse
Affiliation(s)
- Min Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jiefeng Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Mengping Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Junyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Zhang F, Wang J, Jiao Y, Zhang L, Zhang H, Sheng X, Han Y, Yuan Z, Weng Q. Seasonal changes of androgen receptor, estrogen receptors and aromatase expression in the medial preoptic area of the wild male ground squirrels (Citellus dauricus Brandt). Eur J Histochem 2016; 60:2621. [PMID: 27349316 PMCID: PMC4933827 DOI: 10.4081/ejh.2016.2621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
The wild ground squirrel is a typical seasonal breeder. In this study, using RT-PCR, western blot and immunohistochemistry, we investigated the mRNA and protein expressions of androgen receptor (AR), estrogen receptors a and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) in the medial preoptic area (MPOA) of hypothalamus of the wild male ground squirrel during the breeding season (April), the non-breeding season (June) and pre-hibernation (September). AR, ERα, ERβ and P450arom protein/mRNA were present in the MPOA of all seasons detected. The immunostaining of AR and ERα showed no significant changes in different periods, whereas ERβ and P450arom had higher immunoreactivities during the breeding season and pre-hibernation when compared to those of the non-breeding season. Consistently, both the protein and mRNA levels of P450arom and ERβ were higher in the MPOA of pre-hibernation and the breeding season than in the non-breeding season, whereas no significant difference amongst the three periods was observed for AR and ERα levels. These findings suggested that the MPOA of hypothalamus may be a direct target of androgen and estrogen. Androgen may play important regulatory roles through its receptor and/or the aromatized estrogen in the MPOA of hypothalamus of the wild male ground squirrels.
Collapse
Affiliation(s)
- F Zhang
- Beijing Forestry University.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
17
|
Bertuloso BD, Podratz PL, Merlo E, de Araújo JFP, Lima LCF, de Miguel EC, de Souza LN, Gava AL, de Oliveira M, Miranda-Alves L, Carneiro MTWD, Nogueira CR, Graceli JB. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas. Toxicol Lett 2015; 235:45-59. [PMID: 25819109 DOI: 10.1016/j.toxlet.2015.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/23/2015] [Accepted: 03/21/2015] [Indexed: 12/13/2022]
Abstract
Tributyltin chloride (TBT) is an environmental contaminant used in antifouling paints of boats. Endocrine disruptor effects of TBT are well established in animal models. However, the adverse effects on metabolism are less well understood. The toxicity of TBT in the white adipose tissue (WAT), liver and pancreas of female rats were assessed. Animals were divided into control and TBT (0.1 μg/kg/day) groups. TBT induced an increase in the body weight of the rats by the 15th day of oral exposure. The weight gain was associated with high parametrial (PR) and retroperitoneal (RP) WAT weights. TBT-treatment increased the adiposity, inflammation and expression of ERα and PPARγ proteins in both RP and PR WAT. In 3T3-L1 cells, estrogen treatment reduced lipid droplets accumulation, however increased the ERα protein expression. In contrast, TBT-treatment increased the lipid accumulation and reduced the ERα expression. WAT metabolic changes led to hepatic inflammation, lipid accumulation, increase of PPARγ and reduction of ERα protein expression. Accordingly, there were increases in the glucose tolerance and insulin sensitivity tests with increases in the number of pancreatic islets and insulin levels. These findings suggest that TBT leads to adiposity in WAT specifically, impairing the metabolic functions of the liver and pancreas.
Collapse
Affiliation(s)
- Bruno D Bertuloso
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | | | - Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | | | - Leandro C F Lima
- Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Emilio C de Miguel
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | | | - Agata L Gava
- Department of Physiology, Federal University of Espírito Santo, Brazil
| | - Miriane de Oliveira
- Department of Internal Medicine, Botucatu School of Medicine, University of São Paulo State, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, RJ, Brazil
| | | | - Celia R Nogueira
- Department of Internal Medicine, Botucatu School of Medicine, University of São Paulo State, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
18
|
Zhong L, Zhou XL, Liu YS, Wang YM, Ma F, Guo BL, Yan ZQ, Zhang QY. Estrogen receptor α mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes. Mol Med Rep 2015; 12:119-26. [PMID: 25738436 PMCID: PMC4438911 DOI: 10.3892/mmr.2015.3394] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 01/26/2015] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptors (ERs) are important for preventing endotoxin-induced myocardial dysfunction. Therefore, plant-derived phytoestrogens, which target ERs may also affect endotoxin-induced toxicity in cardiomyocytes. Our previous study revealed that notoginsenoside-R1 (NG-R1), a predominant phytoestrogen from Panax notoginseng, protects against cardiac dysfunction. However, the effects of NG-R1 on cardiomyocytes and the precise cellular/molecular mechanisms underlying its action remain to be elucidated. In the present study, pretreatment with NG-R1 suppressed the lipopolysaccharide (LPS)-induced degradation of inhibitor of nuclear factor-κB (NF-κB) α, the activation of NF-κB and caspase-3, and the subsequent myocardial inflammatory and apoptotic responses in H9c2 cardiomyocytes. An increase in the mRNA and protein expression of ERα was also observed in the NG-R1-treated cardiomyocytes. However, the expression pattern of ERβ remained unaltered. Furthermore, the cardioprotective properties of NG-R1 against LPS-induced apoptosis and the inflammatory response in cardiomyocytes were attenuated by ICI 182780, a non-selective ERα antagonist, and methyl-piperidino-pyrazole, a selective ERα antagonist. These findings suggested that NG-R1 reduced endotoxin-induced cardiomyocyte apoptosis and the inflammatory response via the activation of ERα. Therefore, NG-R1 exerted direct anti-inflammatory and anti-apoptotic effects on the cardiomyocytes, representing a potent agent for the treatment of myocardial inflammation during septic shock.
Collapse
Affiliation(s)
- Lei Zhong
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xing-Lu Zhou
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yan-Song Liu
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yi-Min Wang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fei Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bao-Liang Guo
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhao-Qi Yan
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qing-Yuan Zhang
- Department of Internal Medicine, Cancer Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
19
|
Kim SP, Nam SH, Friedman M. Mechanism of the antiadipogenic-antiobesity effects of a rice hull smoke extract in 3T3-L1 preadipocyte cells and in mice on a high-fat diet. Food Funct 2015; 6:2939-48. [DOI: 10.1039/c5fo00469a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photomicrographs and dose-dependent lipid reduction in adipocyte cells induced by the rice hull extract.
Collapse
Affiliation(s)
- Sung Phil Kim
- Department of Biological Science
- Ajou University
- Suwon
- Republic of Korea
| | - Seok Hyun Nam
- Department of Biological Science
- Ajou University
- Suwon
- Republic of Korea
| | - Mendel Friedman
- Western Regional Research Center
- Agricultural Research Service
- U.S Department of Agriculture
- Albany
- USA
| |
Collapse
|
20
|
Poudel B, Lim SW, Ki HH, Nepali S, Lee YM, Kim DK. Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice. Int J Mol Med 2014; 34:1401-8. [PMID: 25189808 DOI: 10.3892/ijmm.2014.1921] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Dioscin (DS) is a steroidal saponin present in a number of medicinal plants and has been shown to exert anticancer, antifungal and antiviral effects. The present study aimed to deternube the effects DS on the regulation of adipogenesis and to elucidate the underlying mechanisms. In vitro experiments were performed using differentiating 3T3-L1 cells treated with various concentrations (0-4 µM) of DS for 6 days. A cell viability assay was performed on differentiating cells following exposure to DS. Oil Red O staining and triglyceride content assay were performed to evaluate the lipid accumulation in the cells. We also carried out the following experiments: i) flow cytometry for cell cycle analysis, ii) quantitative reverse transcription polymerase chain reaction for measuring adipogenesis-related gene expression, and iii) western blot analysis to measure the expression of adipogenesis transcription factors and AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and mitogen-activated protein kinase (MAPK) phosphorylation. In vivo experiements were performed using mice with obesity induced by a high-fat diet (HFD) that were treated with or without DS for 7 weeks. DS suppressed lipid accumulation in the 3T3-L1 cells without affecting viability at a dose of up to 4 µM. It also delayed cell cycle progression 48 h after the initiation of adipogenesis. DS inhibited adipocyte differentiation by the downregulation of adipogenic transcription factors and attenuated the expression of adipogenesis-associated genes. In addition, it enhanced the phosphorylation of AMPK and its target molecule, ACC, during the differentiation of the cells. Moreover, the inhibition of adipogenesis by DS was mediated through the suppression of the phosphorylation of MAPKs, such as extracellular-regulated kinase 1/2 (ERK1/2) and p38, but not c-Jun-N-terminal kinase (JNK). DS significantly reduced weight gain in the mice with HFD-induced obesity; this was evident by the suppression of fat accumulation in the abdomen. the present study reveals an anti-adipogenic effect of DS in vitro and in vivo and highlights AMPK/MAPK signaling as targets for DS during adipogenesis.
Collapse
Affiliation(s)
- Barun Poudel
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Seong-Won Lim
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| |
Collapse
|
21
|
Ko BS, Lee HW, Kim DS, Kang S, Ryuk JA, Park S. Supplementing with Opuntia ficus-indica Mill and Dioscorea nipponica Makino extracts synergistically attenuates menopausal symptoms in estrogen-deficient rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:267-276. [PMID: 24875644 DOI: 10.1016/j.jep.2014.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/04/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prickly pear cactus grown in Korea (Opuntia ficus-indica Mill, KC) and Buchema (Dioscorea nipponica Makino, B) have been traditionally used in East Asia and South America to treat various metabolic diseases. The aim of the present study was to determine whether the extracts of KC, B, and KC+B can prevent the impairments of energy, glucose, lipid and bone homeostasis in estrogen-deficient ovariectomized (OVX) rats and to explore their mechanisms. MATERIALS AND METHODS OVX rats were divided into 4 groups and fed high fat diets supplemented with either 3% dextrin (control), 3% KC, 3% B or 1.5% KC+1.5% B. Sham rats were fed 3% dextrin. After 12 weeks of diet consumption, energy, lipid, glucose and bone metabolisms were analyzed and Wnt signaling in the femur and hepatic signaling were determined. RESULTS OVX impaired energy, glucose and lipid metabolism and decreased uterine and bone masses. B and KC+B prevented the decrease in energy expenditure, especially from fat oxidation, in OVX rats, but did not affect food intake. KC+B and B reduced body weight and visceral fat levels, as compared to the OVX-control, by decreasing fat synthesis and inhibiting FAS and SREBP-1c expression. KC+B and B prevented the increases in serum lipid levels and insulin resistance by improving hepatic insulin signaling (pIRS→pAkt→pGSK-3β). KC and KC+B also prevented decreases in bone mineral density (BMD) in the femur and lumbar spine in OVX rats. This was related to decreased expressions of bone turnover markers such as serum osteocalcin, alkaline phosphatase (ALP) and bone-specific ALP levels, and increased serum P levels. KC and KC+B upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, but suppressed the expression of dickkopf-related protein 1. B alone improved energy, lipid and glucose homeostasis, but not bone loss, whereas KC alone enhanced BMD, but not energy, lipid or glucose homeostasis. CONCLUSION KC+B synergistically attenuated impairments of bone, energy, lipid and glucose metabolism by OVX, suggesting potential efficacy of the combination for alleviating menopausal symptoms.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hye Won Lee
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Da Sol Kim
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Jin Ah Ryuk
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sunmin Park
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| |
Collapse
|
22
|
Rahman MA, Yang H, Kim NH, Huh SO. Induction of apoptosis byDioscorea nipponicaMakino extracts in human SH-SY5Y neuroblastoma cells via mitochondria-mediated pathway. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.880372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Wong CP, Kaneda T, Morita H. Plant natural products as an anti-lipid droplets accumulation agent. J Nat Med 2014; 68:253-66. [PMID: 24550097 PMCID: PMC3948524 DOI: 10.1007/s11418-014-0822-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022]
Abstract
Recently people often suffer from unhealthy energy metabolism balance as they tend to take more energy than required. Normally, excess energy taken in is converted into triglyceride and stored in adipocyte as lipid droplets. Recent studies have suggested that irregular accumulation of triglyceride in adipocyte might be a cause of many metabolic diseases. Thus, the awareness of the detrimental effects on health of excessive lipid droplets accumulation (LDA) has urged the development or finding of drugs to counter this effect, including those from botanical origins. This review summarized recent progress in this field from the viewpoint of crude drug studies with references to their anti-LDA activity. Possible mechanisms involved in their anti-LDA effect and isolations of the relevant bioactive compounds were also discussed.
Collapse
Affiliation(s)
- Chin Piow Wong
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Hiroshi Morita
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501 Japan
| |
Collapse
|
24
|
Velickovic K, Cvoro A, Srdic B, Stokic E, Markelic M, Golic I, Otasevic V, Stancic A, Jankovic A, Vucetic M, Buzadzic B, Korac B, Korac A. Expression and subcellular localization of estrogen receptors α and β in human fetal brown adipose tissue. J Clin Endocrinol Metab 2014; 99:151-9. [PMID: 24217905 DOI: 10.1210/jc.2013-2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Brown adipose tissue (BAT) has the unique ability of generating heat due to the expression of mitochondrial uncoupling protein 1 (UCP1). A recent discovery regarding functional BAT in adult humans has increased interest in the molecular pathways of BAT development and functionality. An important role for estrogen in white adipose tissue was shown, but the possible role of estrogen in human fetal BAT (fBAT) is unclear. OBJECTIVE The objective of this study was to determine whether human fBAT expresses estrogen receptor α (ERα) and ERβ. In addition, we examined their localization as well as their correlation with crucial proteins involved in BAT differentiation, proliferation, mitochondriogenesis and thermogenesis including peroxisome proliferator-activated receptor γ (PPARγ), proliferating cell nuclear antigen (PCNA), PPARγ-coactivator-1α (PGC-1α), and UCP1. DESIGN The fBAT was obtained from 4 human male fetuses aged 15, 17, 20, and 23 weeks gestation. ERα and ERβ expression was assessed using Western blotting, immunohistochemistry, and immunocytochemistry. Possible correlations with PPARγ, PCNA, PGC-1α, and UCP1 were examined by double immunofluorescence. RESULTS Both ERα and ERβ were expressed in human fBAT, with ERα being dominant. Unlike ERβ, which was present only in mature brown adipocytes, we detected ERα in mature adipocytes, preadipocytes, mesenchymal and endothelial cells. In addition, double immunofluorescence supported the notion that differentiation in fBAT probably involves ERα. Immunocytochemical analysis revealed mitochondrial localization of both receptors. CONCLUSION The expression of both ERα and ERβ in human fBAT suggests a role for estrogen in its development, primarily via ERα. In addition, our results indicate that fBAT mitochondria could be targeted by estrogens and pointed out the possible role of both ERs in mitochondriogenesis.
Collapse
Affiliation(s)
- Ksenija Velickovic
- University of Belgrade (K.V., M.M., I.G., A.K.), Faculty of Biology, Center for Electron Microscopy, and Department of Physiology (V.O., A.S., A.J., M.V., B.B., B.K.), Institute for Biological Research "Sinisa Stankovic," University of Belgrade, 11000 Belgrade, Serbia; Department of Genomic Medicine (A.C.), The Methodist Hospital Research Institute, Houston, Texas 77030; Department of Anatomy (B.S.), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; and Department of Endocrinology (E.S.), Institute of Internal Disease, Clinical Center Vojvodina, 21000 Novi Sad, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhu P, Yuen JML, Sham KWY, Cheng CHK. GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion. Gen Comp Endocrinol 2013; 193:19-26. [PMID: 23871778 DOI: 10.1016/j.ygcen.2013.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/21/2013] [Accepted: 07/04/2013] [Indexed: 11/27/2022]
Abstract
G-protein-coupled estrogen receptor 1 (GPER) mediates non-genomic signaling of estrogenic events. Here we showed for the first time that Gper/GPER is expressed in Swiss 3T3 mouse embryo preadipocytes 3T3-L1, and that Gper/GPER is up-regulated during differentiation of the cells induced by monocyte differentiation-inducing (MDI) cocktail. Activation of GPER by the natural ligand 17β-estradiol (E2), and the specific agonist G1, was shown to inhibit lipid accumulation in 3T3-L1 cells, while such inhibition was reversed upon knockdown of GPER using specific siRNA. GPER was also found to mediate perturbation of mitotic clonal expansion (MCE) in these cells by inhibiting cell cycle arrest during MDI cocktail-induced differentiation. Persistent activation of cell cycle regulating factors cyclin-dependant kinase (CDK) 4, CDK6 and cyclin D1, and phosphorylation of retinoblastoma (Rb) protein at serine 795 was observed in the G1-treated cells. Taken together, our results indicate that E2-GPER signaling leads to an inhibition of adipogenesis in 3T3-L1 cells via perturbation of MCE.
Collapse
Affiliation(s)
- Pei Zhu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
26
|
Liu T, Yu H, Liu C, Bao Y, Hu X, Wang Y, Liu B, Fu Y, Tang S, Jin F. Preparation of progenin III from total steroidal saponins of Dioscorea nipponica Makino using a crude enzyme from Aspergillus oryzae strain. J Ind Microbiol Biotechnol 2013; 40:427-36. [PMID: 23471779 DOI: 10.1007/s10295-013-1246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/18/2013] [Indexed: 12/21/2022]
Abstract
Progenin III, one of the most active spirostanol saponins, is a potential candidate for anti-cancer therapy due to its strong antitumor activity and low hemolytic activity. However, the concentration of progenin III is extremely low in natural Dioscorea plants. In this paper, the progenin III production from total steroidal saponins of Dioscorea nipponica Makino was studied using the crude enzyme from Aspergillus oryzae DLFCC-38. The crude enzyme converting total steroidal saponins into progenin III was obtained from the A. oryzae DLFCC-38 culture. For enzyme production, the strain was cultured for 72 h at 30 °C with shaking at 150 rpm in 5 % (w/v) malt extract medium containing 2 % (v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for 9 h at 50 °C and pH 5.0 with the 20 mg/ml of substrate. In the preparation of progenin III, 117 g of crude progenin III was obtained from 160 g of substrate, and the crude product was purified with silica gel column to obtain 60.3 g progenin III of 93.4 % purity.
Collapse
Affiliation(s)
- Tingqiang Liu
- College of Science, Yanbian University, Yanji 133002, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Protodioscin-glycosidase-1 hydrolyzing 26-O-β-d-glucoside and 3-O-(1 → 4)-α-l-rhamnoside of steroidal saponins from Aspergillus oryzae. Appl Microbiol Biotechnol 2013; 97:10035-43. [DOI: 10.1007/s00253-013-4791-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/27/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
|
28
|
Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res 2012; 28:71-6. [PMID: 22787479 PMCID: PMC3389841 DOI: 10.5625/lar.2012.28.2.71] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/23/2023] Open
Abstract
Estrogens, a class of steroid hormones, regulate the growth, development, and physiology of the human reproductive system. Estrogens also involve in the neuroendocrine, skeletal, adipogenesis, and cardiovascular systems. Estrogen signaling pathways are selectively stimulated or inhibited depending on a balance between the activities of estrogen receptor (ER) α or ERβ in target organs. ERs belong to the steroid hormone superfamily of nuclear receptors, which act as transcription factors after binding to estrogen. The gene expression regulation by ERs is to modulate biological activities, such as reproductive organ development, bone modeling, cardiovascular system functioning, metabolism, and behavior in both females and males. Understanding of the general physiological roles of ERs has been gained when estrogen levels were ablated by ovariectomy and then replenished by treatment with exogenous estrogen. This technique is not sufficient to fully determine the exact function of estrogen signaling in general processes in living tissues. However, a transgenic mouse model has been useful to study gene-specific functions. ERα and ERβ have different biological functions, and knockout and transgenic animal models have distinct phenotypes. Analysis of ERα and ERβ function using knockout mouse models has identified the roles of estrogen signaling in general physiologic processes. Although transgenic mouse models do not always produce consistent results, they are the useful for studying the functions of these genes under specific pathological conditions.
Collapse
|
29
|
Sun B, Sun GB, Xiao J, Chen RC, Wang X, Wu Y, Cao L, Yang ZH, Sun XB. Isorhamnetin inhibits H₂O₂-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem 2012; 113:473-85. [PMID: 21948481 DOI: 10.1002/jcb.23371] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.
Collapse
Affiliation(s)
- Bing Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chien MH, Ying TH, Hsieh YS, Chang YC, Yeh CM, Ko JL, Lee WS, Chang JH, Yang SF. Dioscorea nipponica Makino inhibits migration and invasion of human oral cancer HSC-3 cells by transcriptional inhibition of matrix metalloproteinase-2 through modulation of CREB and AP-1 activity. Food Chem Toxicol 2011; 50:558-66. [PMID: 22210353 DOI: 10.1016/j.fct.2011.12.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 11/29/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022]
Abstract
Oral cancer mortality has increased during the last decade due to the difficulties in treating related metastasis. Dioscorea nipponica Makino, a popular folk medicine, exerts anti-obesity and anti-inflammation properties. However, the effect of this folk medicine on metastasis of oral cancer has yet to be fully elucidated. The present study demonstrates that D. nipponica extracts (DNE), at a range of concentrations (0-50 μg/mL), concentration-dependently inhibited migration/invasion capacities of human oral cancer cells, HSC-3, without cytotoxic effects. The anti-migration effect of DNE was also observed in two other OSCC cell lines, Ca9-22 and Cal-27. Zymography, real time PCR, and Western blotting analyses revealed that DNE inhibited matrix metalloproteinase-2 (MMP-2) enzyme activity, and RNA and protein expression. The inhibitory effects of DNE on MMP-2 proceeded by up-regulating tissue inhibitor of metalloproteinase-2 (TIMP-2), as well as suppressing nuclear translocation and DNA binding activity of cAMP response element-binding (CREB) and activating protein-1 (AP-1) on the MMP-2 promoter in HSC-3 cells. In conclusion, DNE inhibited the invasion of oral cancer cells and may have potential use as a chemopreventive agent against oral cancer metastasis.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Wan Fang Hospital, Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev 2011; 20:1793-804. [PMID: 21526925 DOI: 10.1089/scd.2011.0040] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There has been a recent increase in our understanding in the isolation, culture, and differentiation of mesenchymal stem cells (MSCs). Concomitantly, the availability of MSCs has increased, with cells now commercially available, including human MSCs from adipose tissue and bone marrow. Despite an increased understanding of MSC biology and an increase in their availability, standardization of techniques for adipogenic differentiation of MSCs is lacking. The following review will explore the variability in adipogenic differentiation in vitro, specifically in 3T3-L1 and primary MSCs derived from both adipose tissue and bone marrow. A review of alternative methods of adipogenic induction is also presented, including the use of specific peroxisome proliferator-activated receptor-gamma agonists as well as bone morphogenetic proteins. Finally, we define a standard, commonly used adipogenic differentiation medium in the hopes that this will be adopted for the future standardization of laboratory techniques--however, we also highlight the essentially arbitrary nature of this decision. With the current, rapid pace of electronic publications, it becomes imperative for standardization of such basic techniques so that interlaboratory results may be easily compared and interpreted.
Collapse
Affiliation(s)
- Michelle A Scott
- Orthodontics and Dentofacial Orthopedics, College of Dental Medicine, University of Southern Nevada, Henderson, Nevada, USA
| | | | | | | |
Collapse
|
32
|
Karlsen TA, Mirtaheri P, Shahdadfar A, Fløisand Y, Brinchmann JE. Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells. J Cell Biochem 2011; 112:684-93. [PMID: 21268090 DOI: 10.1002/jcb.22978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To obtain sufficient numbers of cells for tissue engineering applications, human bone marrow-derived mesenchymal stem cells (hBM-MSC) are commonly cultured as monolayers in incubators containing room air. In this study, we investigated whether three-dimensional (3D) culture conditions and incubator gas concentrations more similar to those observed in vivo impacted on cell expansion, differentiation capability, or phenotype of hBM-MSC. We found that 3D culture alone increased the expression of some molecules involved in osteogenic and adipogenic differentiation. In contrast, 3D culture did not induce chondrogenic differentiation, but enhanced the response to the chondrogenic differentiation medium. Changing the oxygen concentration to 6% and the carbon dioxide concentration to 7.5% did not impact on the results of any of our assays, showing that the hyperoxia of room air is not detrimental to hBM-MSC proliferation, differentiation, or phenotype.
Collapse
Affiliation(s)
- Tommy A Karlsen
- Institute of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | |
Collapse
|
33
|
Vermaak I, Viljoen AM, Hamman JH. Natural products in anti-obesity therapy. Nat Prod Rep 2011; 28:1493-533. [DOI: 10.1039/c1np00035g] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|