1
|
Eaton AF, Danielson EC, Capen D, Merkulova M, Brown D. Dmxl1 Is an Essential Mammalian Gene that Is Required for V-ATPase Assembly and Function In Vivo. FUNCTION 2024; 5:zqae025. [PMID: 38984989 PMCID: PMC11237898 DOI: 10.1093/function/zqae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
The proton pumping V-ATPase drives essential biological processes, such as acidification of intracellular organelles. Critically, the V-ATPase domains, V1 and VO, must assemble to produce a functional holoenzyme. V-ATPase dysfunction results in cancer, neurodegeneration, and diabetes, as well as systemic acidosis caused by reduced activity of proton-secreting kidney intercalated cells (ICs). However, little is known about the molecular regulation of V-ATPase in mammals. We identified a novel interactor of the mammalian V-ATPase, Drosophila melanogaster X chromosomal gene-like 1 (Dmxl1), aka Rabconnectin-3A. The yeast homologue of Dmxl1, Rav1p, is part of a complex that catalyzes the reversible assembly of the domains. We, therefore,hypothesized that Dmxl1 is a mammalian V-ATPase assembly factor. Here, we generated kidney IC-specific Dmxl1 knockout (KO) mice, which had high urine pH, like B1 V-ATPase KO mice, suggesting impaired V-ATPase function. Western blotting showed decreased B1 expression and B1 (V1) and a4 (VO) subunits were more intracellular and less colocalized in Dmxl1 KO ICs. In parallel, subcellular fractionation revealed less V1 associated B1 in the membrane fraction of KO cells relative to the cytosol. Furthermore, a proximity ligation assay performed using probes against B1 and a4 V-ATPase subunits also revealed decreased association. We propose that loss of Dmxl1 reduces V-ATPase holoenzyme assembly, thereby inhibiting proton pumping function. Dmxl1 may recruit the V1 domain to the membrane and facilitate assembly with the VO domain and in its absence V1 may be targeted for degradation. We conclude that Dmxl1 is a bona fide mammalian V-ATPase assembly factor.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth C Danielson
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Capen
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Ali W, Chen Y, Hassan MF, Wang T, Khatyan U, Sun J, Liu Z, Zou H. Osmoregulatory and immunological role of new canceled cells: Mitochondrial rich cells and its future perspective: A concise review. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:99-106. [PMID: 37905465 DOI: 10.1002/jez.2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Mitochondrial-rich cells (MRCs) are one of the most significant canceled type of epithelial cells. Morphologically these cells are totally different from other epithelial cells. These cells primarily implicated in sea-water and fresh-water adaptation, and acid-base regulation. However, in this review paper, we explored some of the most intriguing biological and immune-related functional developmental networks of MRCs. The main pinpoint, MRCs perform a dynamic osmoregulatory and immunological functional role in the gut and male reproductive system. The Na+/K+_ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are key acidifying proteins of MRCs for the ion-transporting function for intestinal homeostasis and maintenance of acidifying the luminal microenvironment in the male reproductive system. Further more importantly, MRCs play a novel immunological role through the exocrine secretion of nano-scale exosomes and multivesicular bodies (MVBs) pathway, which is very essential for sperm maturation, motility, acrosome reaction, and male sex hormones, and these an essential events to produce male gametes with optimal fertilizing ability. This effort is expected to promote the novel immunological role of MRCs, which might be essential for nano-scale exosome secretion.
Collapse
Affiliation(s)
- Waseem Ali
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Chen
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Mohammad Farooque Hassan
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Tao Wang
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Uzma Khatyan
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Sun
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Zongping Liu
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Hui Zou
- Department of Veterinary Internal medicine & Clinical Diagnosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Tsuchiya H, Fujinoki M, Azuma M, Koshimizu TA. Vasopressin V1a receptor and oxytocin receptor regulate murine sperm motility differently. Life Sci Alliance 2023; 6:e202201488. [PMID: 36650057 PMCID: PMC9846835 DOI: 10.26508/lsa.202201488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Specific receptors for the neurohypophyseal hormones, arginine vasopressin (AVP) and oxytocin, are present in the male reproductive organs. However, their exact roles remain unknown. To elucidate the physiological functions of pituitary hormones in male reproduction, this study first focused on the distribution and function of one of the AVP receptors, V1a. In situ hybridization analysis revealed high expression of the Avpr1a in Leydig cells of the testes and narrow/clear cells in the epididymis, with the expression pattern differing from that of the oxytocin receptor (OTR). Notably, persistent motility and highly proportional hyperactivation were observed in spermatozoa from V1a receptor-deficient mice. In contrast, OTR blocking by antagonist atosiban decreased hyperactivation rate. Furthermore, AVP stimulation could alter the extracellular pH mediated by the V1a receptor. The results highlight the crucial role of neurohypophyseal hormones in male reproductive physiology, with potential contradicting roles of V1a and OTR in sperm maturation. Our findings suggest that V1a receptor antagonists are potential therapeutic drugs for male infertility.
Collapse
Affiliation(s)
- Hiroyoshi Tsuchiya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| | - Masakatsu Fujinoki
- Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
4
|
The a subunit isoforms of vacuolar-type proton ATPase exhibit differential distribution in mouse perigastrulation embryos. Sci Rep 2022; 12:13590. [PMID: 35948619 PMCID: PMC9365772 DOI: 10.1038/s41598-022-18002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Vacuolar-type H+-ATPases (V-ATPases) are large multi-subunit complexes that play critical roles in the acidification of a variety of intracellular or extracellular compartments. Mammalian cells contain four isoforms of the membrane integral subunit a (a1–a4); these isoforms contain the information necessary to target the enzyme to different cellular destinations. They are also involved in regulating the efficiency of ATP hydrolysis and proton transport. Previously, we showed that early embryogenesis requires V-ATPase function, and the luminal acidic endocytic and lysosomal compartments in the visceral endoderm of mouse embryos at the pre-gastrulation stage (E6.5) are essential for both nutrition and signal transduction during early embryogenesis. In this study, we examined the expression and distribution of a subunit isoforms in mouse embryos at E6.5. We found that all four isoforms expressed and exhibited differential distribution in the E6.5 embryo. At this developmental stage, the embryos establish highly elaborate endocytic compartments called apical vacuoles, on which the a3 isoform specifically accumulated.
Collapse
|
5
|
Shum W, Zhang BL, Cao AS, Zhou X, Shi SM, Zhang ZY, Gu LY, Shi S. Calcium Homeostasis in the Epididymal Microenvironment: Is Extracellular Calcium a Cofactor for Matrix Gla Protein-Dependent Scavenging Regulated by Vitamins. Front Cell Dev Biol 2022; 10:827940. [PMID: 35252193 PMCID: PMC8893953 DOI: 10.3389/fcell.2022.827940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
In the male reproductive tract, the epididymis is an essential organ for sperm maturation, in which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a protective microenvironment. Epididymal function involves a specialized luminal microenvironment established by the epithelial cells of epididymal mucosa. Low-calcium concentration is a unique feature of this epididymal luminal microenvironment, its relevance and regulation are, however, incompletely understood. In the rat epididymis, the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein (MGP) plays an essential role in promoting calcium-dependent protein aggregation. An SNP in the human GGCX gene has been associated with asthenozoospermia. In addition, bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-dependent MGP-mediated protein aggregation. These findings suggest that vitamins interact with calcium homeostasis in the epididymis to ensure proper sperm maturation and male fertility. This review article discusses the regulation mechanisms of calcium homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a cofactor for the carboxylated MGP-mediated scavenging function.
Collapse
Affiliation(s)
- Winnie Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Reproduction and Development Institution, Fudan University, Shanghai, China
| | - Albert Shang Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Su Meng Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ze Yang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lou Yi Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Liu BY, Zhang BL, Gao DY, Li Q, Xu XY, Shum W. Epididymal epithelial degeneration and lipid metabolism impairment account for male infertility in occludin knockout mice. Front Endocrinol (Lausanne) 2022; 13:1069319. [PMID: 36518247 PMCID: PMC9742356 DOI: 10.3389/fendo.2022.1069319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Occludin (OCLN) is a tight junction protein and Ocln deletion mutation causes male infertility in mice. However, the role of OCLN in male reproductive system remains unknown. In this study, we used an interdisciplinary approach to elucidate the underlying mechanism of male infertility in related to OCLN function, including Ocln knockout mice as well as a combined omics analysis and immunofluorescent labelling. Our results showed that the epididymis of Ocln-null mice displayed a phenomenon resembling epididymal sperm granuloma, which occurred especially in the junctional region between caput and corpus epididymidis. Sperm motility and fertilisation capacity were also impaired in these Ocln-null mice, accompanied by enlarged tubules in the proximal regions and degeneration in the distal regions of epididymis. Cellular localization analysis showed that OCLN immunofluorescence was enriched only in the apical junction of epithelial principal cells in the proximal regions of epididymis. Integrative omics analysis revealed the downregulation of gene clusters enriched in acid secretion and fatty acid metabolism in the Ocln-null epididymis, especially the enzymes related to the unsaturated arachidonic acid pathway. The number of proton-pump V-ATPase-expression clear cells, a key player of luminal acidification in the epididymis, declined drastically from prepubertal age before sperm arrival but not in the early postnatal age. This was accompanied by programmed cell death of clear cells and increased pH in the epididymal fluid of OCLN-deficient mice. The lipidomics results showed significantly increased levels of specific DAGs conjugated to unsaturated fatty acids in the Ocln-mutant. Immunofluorescent labelling showed that the arachidonic acid converting enzyme PTGDS and phospholipase PLA2g12a were prominently altered in the principal cells and luminal contents of the Ocln-mutant epididymis. Whereas the carboxylate ester lipase CES1, originally enriched in the WT basal cells, was found upregulated in the Ocln-mutant principal cells. Overall, this study demonstrates that OCLN is essential for maintaining caput-to-corpus epithelial integrity, survival of acid-secreting clear cells, and unsaturated fatty acid catabolism in the mouse epididymis, thereby ensuring sperm maturation and male fertility.
Collapse
Affiliation(s)
- Bao Ying Liu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Li Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Da Yuan Gao
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Yu Xu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Winnie Shum
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| |
Collapse
|
7
|
Eaton AF, Merkulova M, Brown D. The H +-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am J Physiol Cell Physiol 2020; 320:C392-C414. [PMID: 33326313 PMCID: PMC8294626 DOI: 10.1152/ajpcell.00442.2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary function of the H+-ATPase (or V-ATPase) is to create an electrochemical proton gradient across eukaryotic cell membranes, which energizes fundamental cellular processes. Its activity allows for the acidification of intracellular vesicles and organelles, which is necessary for many essential cell biological events to occur. In addition, many specialized cell types in various organ systems such as the kidney, bone, male reproductive tract, inner ear, olfactory mucosa, and more, use plasma membrane V-ATPases to perform specific activities that depend on extracellular acidification. It is, however, increasingly apparent that V-ATPases are central players in many normal and pathophysiological processes that directly influence human health in many different and sometimes unexpected ways. These include cancer, neurodegenerative diseases, diabetes, and sensory perception, as well as energy and nutrient-sensing functions within cells. This review first covers the well-established role of the V-ATPase as a transmembrane proton pump in the plasma membrane and intracellular vesicles and outlines factors contributing to its physiological regulation in different cell types. This is followed by a discussion of the more recently emerging unconventional roles for the V-ATPase, such as its role as a protein interaction hub involved in cell signaling, and the (patho)physiological implications of these interactions. Finally, the central importance of endosomal acidification and V-ATPase activity on viral infection will be discussed in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Chang YC, Yu JF, Wang TE, Chin SC, Wei YS, Chen TY, Tsai PS. Investigation of epididymal proteins and general sperm membrane characteristics of Formosan pangolin (Manis pentadactyla pentadactyla). BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Formosan Pangolin (Manis pentadactyla pentadactyla) is one of the three subspecies of Chinese pangolins, it is also an isolated sub-species naturally habitat in Taiwan. Despite earlier report on successful breeding of Sunda (Manis javanica) pangolin, breeding of Formosan pangolins in zoo captive populations is still challenging due to unknown reproductive characterizations of this species in both male and female populations.
Results
We characterized for the first time, reproductive tract of male Formosan pangolin. We showed pangolin epididymis was a collagen-enriched organ with apparent segmented sub-regions similar to other mammals. However, unlike most mammals exhibited two V-ATPase subunits, Formosan pangolin exhibited only V-ATPase subunit 2. This specific V-ATPase subunit extended its cellular localization throughout the cytoplasm of epididymal clear cells, suggesting pH regulation of luminal microenvironment might be different from other mammals. Electron micrographs showed rod-shaped pangolin sperm cells with multi-lamellar membrane structure at the sperm head. Similar to well-defined capacitation and acrosome reaction membrane changes in other mammals, we reported three distinct patterns (homogenous, punctuated and faded) of pangolin sperm head membrane changes. The concurrent increase in phosphotyrosine protein expression detected at the sperm mid-piece/tail and the emergence of punctuated membrane aggregates likely representing three sperm activation stages, namely inactivated, capacitated and acrosome reacted status of pangolin sperm.
Conclusion
By revealing unique epididymal V-ATPase distribution and sperm membrane dynamics in Formosan pangolin, we would understand better the fundamental aspects of reproduction parameters of Formosan pangolin.
Collapse
|
9
|
Carvajal G, Brukman NG, Weigel Muñoz M, Battistone MA, Guazzone VA, Ikawa M, Haruhiko M, Lustig L, Breton S, Cuasnicu PS. Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4. Sci Rep 2018; 8:17531. [PMID: 30510210 PMCID: PMC6277452 DOI: 10.1038/s41598-018-35719-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023] Open
Abstract
Epididymal Cysteine Rich Secretory Proteins 1 and 4 (CRISP1 and CRISP4) associate with sperm during maturation and play different roles in fertilization. However, males lacking each of these molecules individually are fertile, suggesting compensatory mechanisms between these homologous proteins. Based on this, in the present work, we generated double CRISP1/CRISP4 knockout (DKO) mice and examined their reproductive phenotype. Our data showed that the simultaneous lack of the two epididymal proteins results in clear fertility defects. Interestingly, whereas most of the animals exhibited specific sperm fertilizing ability defects supportive of the role of CRISP proteins in fertilization, one third of the males showed an unexpected epididymo-orchitis phenotype with altered levels of inflammatory molecules and non-viable sperm in the epididymis. Further analysis showed that DKO mice exhibited an immature epididymal epithelium and abnormal luminal pH, supporting these defects as likely responsible for the different phenotypes observed. These observations reveal that CRISP proteins are relevant for epididymal epithelium differentiation and male fertility, contributing to a better understanding of the fine-tuning mechanisms underlying sperm maturation and immunotolerance in the epididymis with clear implications for human epididymal physiology and pathology.
Collapse
Affiliation(s)
- Guillermo Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina
| | - Nicolás Gastón Brukman
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina
| | - Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina
| | - María A Battistone
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vanesa A Guazzone
- Instituto de Investigaciones Biomédicas (INBIOMED-UBA-CONICET), Buenos Aires, C1121ABG, Argentina
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Miyata Haruhiko
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED-UBA-CONICET), Buenos Aires, C1121ABG, Argentina
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, C1428ADN, Argentina.
| |
Collapse
|
10
|
Gao DY, Zhang BL, Leung MCT, Au SCL, Wong PYD, Shum WWC. Coupling of TRPV6 and TMEM16A in epithelial principal cells of the rat epididymis. J Gen Physiol 2017; 148:161-82. [PMID: 27481714 PMCID: PMC4969799 DOI: 10.1085/jgp.201611626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/13/2016] [Indexed: 01/31/2023] Open
Abstract
Principal cells regulate the ionic environment of the epididymal lumen via unknown mechanisms. Gao et al. use electrophysiological and pharmacological tools to characterize rat principal cells and reveal a TRPV6-mediated calcium conductance and TMEM16A-mediated calcium-activated chloride conductance. The epididymis establishes a congenial environment for sperm maturation and protection. Its fluid is acidic, and the calcium concentration is low and declines along the length of the epididymal tubule. However, our knowledge of ionic currents and mechanisms of calcium homeostasis in rat epididymal epithelial cells remains enigmatic. In this study, to better understand calcium regulation in the epididymis, we use the patch-clamp method to record from single rat cauda epididymal principal cells. We detect a constitutively active Ca2+ current with characteristics that match the epithelial calcium channel TRPV6. Electrophysiological and pharmacological data also reveal a constitutively active calcium-activated chloride conductance (CaCC). Removal of extracellular calcium attenuates not only the TRPV6-like conductance, but also the CaCC. Lanthanide block is time dependent such that the TRPV6-like component is inhibited first, followed by the CaCC. The putative CaCC blocker niflumic acid partially inhibits whole-cell currents, whereas La3+ almost abolishes whole-cell currents in principal cells. Membrane potential measurements reveal an interplay between La3+-sensitive ion channels and those that are sensitive to the specific TMEM16A inhibitor tannic acid. In vivo perfusion of the cauda epididymal tubule shows a substantial rate of Ca2+ reabsorption from the luminal side, which is dose-dependently suppressed by ruthenium red, a putative blocker of epithelial Ca2+ channels and CaCC. Finally, we discover messenger RNA for both TRPV6 and TMEM16A in the rat epididymis and show that their proteins colocalize in the apical membrane of principal cells. Collectively, these data provide evidence for a coupling mechanism between TRPV6 and TMEM16A in principal cells that may play an important role in the regulation of calcium homeostasis in the epididymis.
Collapse
Affiliation(s)
- Da Yuan Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Matthew C T Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon C L Au
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Patrick Y D Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Winnie W C Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Castro MMD, Gonçalves WG, Teixeira SAMV, Fialho MDCQ, Santos FC, Oliveira JM, Serrão JE, Machado-Neves M. Ultrastructure and morphometric features of epididymal epithelium in Desmodus rotundus. Micron 2017; 102:35-43. [PMID: 28869875 DOI: 10.1016/j.micron.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022]
Abstract
The blood-feeding behavior of Desmodus rotundus made this bat a potential vector of rabies virus and a public health issue. Consequently, the better understanding of its reproductive biology becomes valuable for the development of methods to control its population. In this study, we described morphological aspects of epithelial cells in D. rotundus' epididymis using light and transmission electron microscopy methods. The duct compartment was the main component of initial segment (83%), caput (90%), corpus (88%) and cauda (80%) regions. The epithelium lining the duct presented a progressive decrease in its height from initial segment to cauda regions. Moreover, the morphology of each cell type was the same along the entire duct. Similarly to rodents, columnar-shaped principal cells were the most abundant cell type throughout the epididymis, followed by basal and clear cells. Differently in rat and mice, the frequency of clear cells did not increase in the epididymis cauda, whereas the proportion of principal and basal cells was greater in this region. Furthermore, D. rotundus presented goblet-shaped clear cells with the nucleus located in the apical portion of the epididymal epithelium. This cellular portion also presented electron-lucid vesicles of different sizes that may correspond to vesicles enriched with proteins related to proton secretion. In addition to the findings regarding clear cells' structural organization, basal cells presented scarce cytoplasm and no axiopodia. Taken these findings together, we suggest that the mechanism of luminal acidification may have other pathways in D. rotundus than those described in rodents.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Couto Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Jerusa Maria Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
12
|
Tsuji K, Păunescu TG, Suleiman H, Xie D, Mamuya FA, Miner JH, Lu HAJ. Re-characterization of the Glomerulopathy in CD2AP Deficient Mice by High-Resolution Helium Ion Scanning Microscopy. Sci Rep 2017; 7:8321. [PMID: 28814739 PMCID: PMC5559584 DOI: 10.1038/s41598-017-08304-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/06/2017] [Indexed: 01/22/2023] Open
Abstract
Helium ion scanning microscopy (HIM) is a novel technology that directly visualizes the cell surface ultrastructure without surface coating. Despite its very high resolution, it has not been applied extensively to study biological or pathology samples. Here we report the application of this powerful technology to examine the three-dimensional ultrastructural characteristics of proteinuric glomerulopathy in mice with CD2-associated protein (CD2AP) deficiency. HIM revealed the serial alteration of glomerular features including effacement and disorganization of the slit diaphragm, followed by foot process disappearance, flattening and fusion of major processes, and eventual transformation into a podocyte sheet as the disease progressed. The number and size of the filtration slit pores decreased. Strikingly, numerous “bleb” shaped microprojections were observed extending from podocyte processes and cell body, indicating significant membrane dynamics accompanying CD2AP deficiency. Visualizing the glomerular endothelium and podocyte-endothelium interface revealed the presence of endothelial damage, and disrupted podocyte and endothelial integrity in 6 week-old Cd2ap-KO mice. We used the HIM technology to investigate at nanometer scale resolution the ultrastructural alterations of the glomerular filtration apparatus in mice lacking the critical slit diaphragm-associated protein CD2AP, highlighting the great potential of HIM to provide new insights into the biology and (patho)physiology of glomerular diseases.
Collapse
Affiliation(s)
- Kenji Tsuji
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Hani Suleiman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dongping Xie
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Fahmy A Mamuya
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Schimming BC, Baumam CAE, Pinheiro PFF, de Matteis R, Domeniconi RF. Aquaporin 9 is expressed in the epididymis of immature and mature pigs. Reprod Domest Anim 2017; 52:617-624. [DOI: 10.1111/rda.12957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/09/2017] [Indexed: 01/17/2023]
Affiliation(s)
- BC Schimming
- Department of Anatomy; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - CAE Baumam
- School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP); Botucatu SP Brazil
| | - PFF Pinheiro
- Department of Anatomy; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| | - R de Matteis
- School of Veterinary Medicine and Animal Science; São Paulo State University (UNESP); Botucatu SP Brazil
| | - RF Domeniconi
- Department of Anatomy; Institute of Biosciences; São Paulo State University (UNESP); Botucatu SP Brazil
| |
Collapse
|
14
|
Breton S, Ruan YC, Park YJ, Kim B. Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J Androl 2016; 18:3-9. [PMID: 26585699 PMCID: PMC4736353 DOI: 10.4103/1008-682x.165946] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epididymis is a single convoluted tubule lined by a pseudostratified epithelium. Specialized epididymal epithelial cells, the so-called principal, basal, narrow, and clear cells, establish a unique luminal environment for the maturation and storage of spermatozoa. The epididymis is functionally and structurally divided into several segments and sub-segments that create regionally distinct luminal environments. This organ is immature at birth, and epithelial cells acquire their fully differentiated phenotype during an extended postnatal period, but the factors involved in this complex process remain incompletely characterized. In the adult epididymis, the establishment of an acidic luminal pH and low bicarbonate concentration in the epididymis contributes to preventing premature activation of spermatozoa during their maturation and storage. Clear cells are proton-secreting cells throughout the epididymis, but principal cells have distinct acid/base transport properties, depending on their localization within the epididymis. Basal cells are located in all epididymal segments, but they have a distinct morphology depending on the segment and species examined. How this structural plasticity of basal cells is regulated is discussed here. Also, the role of luminal factors and androgens in the regulation of epithelial cells is reviewed in relation to their respective localization in the proximal versus distal regions of the epididymis. Finally, we describe a novel role for CFTR in tubulogenesis and epithelial cell differentiation.
Collapse
Affiliation(s)
- Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114 and Harvard Medical School, Boston, MA 02115, USA,
| | | | | | | |
Collapse
|
15
|
Castro MM, Kim B, Hill E, Fialho MCQ, Puga LCHP, Freitas MB, Breton S, Machado-Neves M. The expression patterns of aquaporin 9, vacuolar H+-ATPase, and cytokeratin 5 in the epididymis of the common vampire bat. Histochem Cell Biol 2016; 147:39-48. [DOI: 10.1007/s00418-016-1477-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 01/01/2023]
|
16
|
Golder ZJ, Karet Frankl FE. Extra-renal locations of the a4 subunit of H(+)ATPase. BMC Cell Biol 2016; 17:27. [PMID: 27368196 PMCID: PMC4930620 DOI: 10.1186/s12860-016-0106-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Vacuolar-type proton pumps help maintain acid-base homeostasis either within intracellular compartments or at specialised plasma membranes. In mammals they are made up of 13 subunits, which form two functional domains. A number of the subunits have variants that display tissue restricted expression patterns such that in specialised cell types they replace the generic subunits at some sub-cellular locations. The tissue restricted a4 subunit has previously been reported at the plasma membrane in the kidney, inner ear, olfactory epithelium and male reproductive tract. RESULTS In this study novel locations of the a4 subunit were investigated using an Atp6v0a4 knockout mouse line in which a LacZ reporter cassette replaced part of the gene. The presence of a4 in the olfactory epithelium was further investigated and the additional presence of C2 and d2 subunits identified. The a4 subunit was found in the uterus of pregnant animals and a4 was identified along with d2 and C2 in the embryonic visceral yolk sac. In the male reproductive tract a4 was seen in the novel locations of the prostatic alveoli and the ampullary glands as well as the previously reported epididymis and vas deferens. CONCLUSIONS The identification of novel locations for the a4 subunit and other tissue-restricted subunits increases the range of unique subunit combinations making up the proton pump. These studies suggest additional roles of the proton pump, indicating a further range of homologue-specific functions for tissue-restricted subunits.
Collapse
Affiliation(s)
- Zoe J Golder
- Department of Medical Genetics, University of Cambridge, Cambridge, UK.,Cambridge Institute for Medical Research, Cambridge Biomedical Campus Box 139, Hills Road, Cambridge, CB2 OXY, UK
| | - Fiona E Karet Frankl
- Department of Medical Genetics, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, Cambridge Biomedical Campus Box 139, Hills Road, Cambridge, CB2 OXY, UK.
| |
Collapse
|
17
|
Hughes J, Berger T. Development of apical blebbing in the boar epididymis. PLoS One 2015; 10:e0126848. [PMID: 25996942 PMCID: PMC4440725 DOI: 10.1371/journal.pone.0126848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Microvesicles are of increasing interest in biology as part of normal function of numerous systems; from the immune system (T cell activation) to implantation of the embryo (invasion of the trophoblasts) and sperm maturation (protein transfer in the epididymis). Yet, the mechanisms involved in the appearance of apical blebbing from healthy cells as part of their normal function remain understudied. Microvesicles are produced via one of two pathways: exocytosis or apical blebbing also termed ectocytosis. This work quantifies the histological appearance of apical blebbing in the porcine epididymis during development and examines the role of endogenous estrogens in regulating this blebbing. Apical blebbing appears at puberty and increases in a linear manner into sexual maturity suggesting that this blebbing is a mature phenotype. Endogenous estrogen levels were reduced with an aromatase inhibitor but such a reduction did not affect apical blebbing in treated animals compared with their vehicle-treated littermates. Epididymal production of apical blebs is a secretion mechanism of functionally mature principal cells regulated by factors other than estradiol.
Collapse
Affiliation(s)
- Jennifer Hughes
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Trish Berger
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Shum WW, Smith TB, Cortez-Retamozo V, Grigoryeva LS, Roy JW, Hill E, Pittet MJ, Breton S, Da Silva N. Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol Reprod 2014; 90:90. [PMID: 24648397 DOI: 10.1095/biolreprod.113.116681] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The epithelium that lines the epididymal duct establishes the optimal milieu in which spermatozoa mature, acquire motility, and are stored. This finely tuned environment also protects antigenic sperm against pathogens and autoimmunity, which are potential causes of transient or permanent infertility. The epididymal epithelium is pseudostratified and contains basal cells (BCs) that are located beneath other epithelial cells. Previous studies showed that in the mouse epididymis, BCs possess macrophage-like characteristics. However, we previously identified a dense population of cells belonging to the mononuclear phagocyte (MP) system (comprised of macrophages and dendritic cells) in the basal compartment of the mouse epididymis and showed that a subset of MPs express the macrophage marker F4/80. In the present study, we evaluate the distribution of BCs and MPs in the epididymis of transgenic CD11c-EYFP mice, in which EYFP is expressed exclusively in MPs, using antibodies against the BC marker keratin 5 (KRT5) and the macrophage marker F4/80. Immunofluorescence labeling for laminin, a basement membrane marker, showed that BCs and most MPs are located in the basal region of the epithelium. Confocal microscopy showed that in the initial segment, both BCs and MPs project intraepithelial extensions and establish a very intricate network. Flow cytometry experiments demonstrated that epididymal MPs and BCs are phenotypically distinct. BCs do not express F4/80, and MPs do not express KRT5. Therefore, despite their proximity and some morphological similarities with peritubular macrophages and dendritic cells, BCs do not belong to the MP system.
Collapse
Affiliation(s)
- Winnie W Shum
- Division of Nephrology/Program in Membrane Biology, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Al-bataineh MM, Gong F, Marciszyn AL, Myerburg MM, Pastor-Soler NM. Regulation of proximal tubule vacuolar H(+)-ATPase by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 2014; 306:F981-95. [PMID: 24553431 PMCID: PMC4010682 DOI: 10.1152/ajprenal.00362.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/13/2014] [Indexed: 11/22/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) mediates ATP-driven H(+) transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPase in the proximal tubule as these two kinases coregulate the V-ATPase in the collecting duct. As the proximal tubule V-ATPases have different subunit compositions from other nephron segments, we postulated that V-ATPase regulation in the proximal tubule could differ from other kidney tubule segments. Immunofluorescence labeling of rat ex vivo kidney slices revealed that the V-ATPase was present in the proximal tubule both at the apical pole, colocalizing with the brush-border marker wheat germ agglutinin, and in the cytosol when slices were incubated in buffer alone. When slices were incubated with a cAMP analog and a phosphodiesterase inhibitor, the V-ATPase accumulated at the apical pole of S3 segment cells. These PKA activators also increased V-ATPase apical membrane expression as well as the rate of V-ATPase-dependent extracellular acidification in S3 cell monolayers relative to untreated cells. However, the AMPK activator AICAR decreased PKA-induced V-ATPase apical accumulation in proximal tubules of kidney slices and decreased V-ATPase activity in S3 cell monolayers. Our results suggest that in proximal tubule the V-ATPase subcellular localization and activity are acutely coregulated via PKA downstream of hormonal signals and via AMPK downstream of metabolic stress.
Collapse
Affiliation(s)
- Mohammad M Al-bataineh
- Renal-Electrolyte Div., Dept. of Medicine, Scaife Hall A915, 3550 Terrace St., Pittsburgh, PA 15263.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Specialized cells in the body express high levels of V-ATPase in their plasma membrane and respond to hormonal and nonhormonal cues to regulate extracellular acidification. Mutations in or loss of some V-ATPase subunits cause several disorders, including renal distal tubular acidosis and male infertility. This review focuses on the regulation of V-ATPase-dependent luminal acidification in renal intercalated cells and epididymal clear cells, which are key players in these physiological processes.
Collapse
Affiliation(s)
- Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
21
|
Păunescu TG, Lu HAJ, Russo LM, Pastor-Soler NM, McKee M, McLaughlin MM, Bartlett BE, Breton S, Brown D. Vasopressin induces apical expression of caveolin in rat kidney collecting duct principal cells. Am J Physiol Renal Physiol 2013; 305:F1783-95. [PMID: 24133120 DOI: 10.1152/ajprenal.00622.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin (Cav)1 is expressed in the basolateral membrane domain of renal collecting duct (CD) principal cells (PCs), where it is associated with caveolae. To reveal any potential involvement of Cav1 in vasopressin signaling, we used specific monoclonal and polyclonal antibodies to examine its localization in CD PCs of Brattleboro (BB) rats treated with vasopressin (DDAVP). Compared with controls, immunofluorescence revealed a time-dependent increase in Cav1 expression in the apical membrane domain of PCs, where it overlapped with aquaporin-2 (AQP2). After 24 h of DDAVP treatment, Cav1 was visible as an increased number of small apical spots. The staining gradually became more extensive, and, after 2 wk of DDAVP, it occupied the majority of the apical membrane domain of many PCs. Cav1 also assumed an apical localization in PCs of DDAVP-treated Sprague-Dawley and Long-Evans rats. Similarly, Cav2 appeared at the apical pole of PCs after DDAVP treatment of BB, Sprague-Dawley, and Long-Evans rats. Immunogold electron microscopy confirmed bipolar Cav1 membrane expression in DDAVP-treated BB rats, whereas caveolae were only detected on the basolateral membrane. Immunoblot analysis of BB rat whole kidney homogenates revealed no significant increase in Cav1 levels in DDAVP-treated rats, suggesting that DDAVP induces Cav1 relocalization or modifies its targeting. We conclude that Cav1 and Cav2 trafficking and membrane localization are dramatically altered by the action of DDAVP. Importantly, the absence of apical caveolae indicates that while Cavs may have an as yet undetermined role in vasopressin-regulated signaling processes, this is probably unrelated to AQP2 internalization by caveolae.
Collapse
Affiliation(s)
- Teodor G Păunescu
- Program in Membrane Biology/Division of Nephrology, Massachusetts General Hospital, Simches Research Center, 185 Cambridge St., CPZN8150, Boston, MA 02114.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Roy JW, Hill E, Ruan YC, Vedovelli L, Păunescu TG, Brown D, Breton S. Circulating aldosterone induces the apical accumulation of the proton pumping V-ATPase and increases proton secretion in clear cells in the caput epididymis. Am J Physiol Cell Physiol 2013; 305:C436-46. [PMID: 23761626 DOI: 10.1152/ajpcell.00410.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clear cells express the vacuolar proton-pumping H(+)-ATPase (V-ATPase) and acidify the lumen of the epididymis, a process that is essential for male fertility. The renin-angiotensin-aldosterone system (RAAS) regulates fluid and electrolyte balance in the epididymis, and a previous study showed binding of aldosterone exclusively to epididymal clear cells (Hinton BT, Keefer DA. Steroid Biochem 23: 231-233, 1985). We examined here the role of aldosterone in the regulation of V-ATPase in the epididymis. RT-PCR showed expression of the mineralocorticoid receptor [MR; nuclear receptor subfamily 3, group C member 2 (NR3C2)] and 11-β-dehydrogenase isozyme 2 (HSD11β2) mRNAs specifically in clear cells, isolated by fluorescence-activated cell sorting from B1-enhanced green fluorescent protein (EGFP) mice. Tail vein injection of adult rats with aldosterone, 1,2-dioctanoyl-sn-glycerol (DOG), or 8-(4-chlorophenylthio)-cAMP (cpt-cAMP) induced V-ATPase apical membrane accumulation and extension of V-ATPase-labeled microvilli in clear cells in the caput epididymis but not in the cauda. V-ATPase activity was measured in EGFP-expressing clear cells using the intracellular pH (pHi)-sensing dye seminaphthorhodafluor-5F-5-(and 6)-carboxylic acid, acetoxymethyl ester acetate (SNARF-5F). Aldosterone induced a rapid increase in the rate of Na(+)- and bicarbonate-independent pHi recovery following an NH4Cl-induced acid load in clear cells isolated from the caput but not the cauda. This effect was abolished by concanamycin A, spironolactone, and chelerythrine but not myristoylated-protein kinase inhibitor (mPKI) or mifepristone. Thus aldosterone increases V-ATPase-dependent proton secretion in clear cells in the caput epididymis via MR/NR3C2 and PKC activation. This study, therefore, identifies aldosterone as an active member of the RAAS for the regulation of luminal acidification in the proximal epididymis.
Collapse
Affiliation(s)
- Jeremy W Roy
- Center for Systems Biology/Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts; and
| | | | | | | | | | | | | |
Collapse
|
23
|
Vedovelli L, Rothermel JT, Finberg KE, Wagner CA, Azroyan A, Hill E, Breton S, Brown D, Paunescu TG. Altered V-ATPase expression in renal intercalated cells isolated from B1 subunit-deficient mice by fluorescence-activated cell sorting. Am J Physiol Renal Physiol 2012; 304:F522-32. [PMID: 23269648 DOI: 10.1152/ajprenal.00394.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1(-/-)) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1(-/-) and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915-F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1(-/-) mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1(+/+) mice) with Atp6v1b1(-/-) mice to generate novel EGFP-B1(-/-) mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1(+/+) and EGFP-B1(-/-) mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1(-/-) mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.
Collapse
Affiliation(s)
- Luca Vedovelli
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospitaland Harvard Medical School, Boston, Massachusetts, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ruan YC, Shum WWC, Belleannée C, Da Silva N, Breton S. ATP secretion in the male reproductive tract: essential role of CFTR. J Physiol 2012; 590:4209-22. [PMID: 22711960 DOI: 10.1113/jphysiol.2012.230581] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular ATP is essential for the function of the epididymis and spermatozoa, but ATP release in the epididymis remains uncharacterized. We investigated here whether epithelial cells release ATP into the lumen of the epididymis, and we examined the role of the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) and HCO(3)(-) conducting ion channel known to be associated with male fertility, in this process. Immunofluorescence labelling of mouse cauda epididymidis showed expression of CFTR in principal cells but not in other epithelial cells. CFTR mRNA was not detectable in clear cells isolated by fluorescence-activated cell sorting (FACS) from B1-EGFP mice, which express enhanced green fluorescent protein (EGFP) exclusively in these cells in the epididymis. ATP release was detected from the mouse epididymal principal cell line (DC2) and increased by adrenaline and forskolin. Inhibition of CFTR with CFTR(inh172) and transfection with CFTR-specific siRNAs in DC2 cells reduced basal and forskolin-activated ATP release. CFTR-dependent ATP release was also observed in primary cultures of mouse epididymal epithelial cells. In addition, steady-state ATP release was detected in vivo in mice, by measuring ATP concentration in a solution perfused through the lumen of the cauda epididymidis tubule and collected by cannulation of the vas deferens. Luminal CFTR(inh172) reduced the ATP concentration detected in the perfusate. This study shows that CFTR is involved in the regulation of ATP release from principal cells in the cauda epididymidis. Given that mutations in CFTR are a leading cause of male infertility, we propose that defective ATP signalling in the epididymis might contribute to dysfunction of the male reproductive tract associated with these mutations.
Collapse
Affiliation(s)
- Ye Chun Ruan
- Center for Systems Biology/Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
25
|
Staropoli JF, Haliw L, Biswas S, Garrett L, Hölter SM, Becker L, Skosyrski S, Da Silva-Buttkus P, Calzada-Wack J, Neff F, Rathkolb B, Rozman J, Schrewe A, Adler T, Puk O, Sun M, Favor J, Racz I, Bekeredjian R, Busch DH, Graw J, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Lopez E, Harati H, Hill E, Krause DS, Guide J, Dragileva E, Gale E, Wheeler VC, Boustany RM, Brown DE, Breton S, Ruether K, Gailus-Durner V, Fuchs H, de Angelis MH, Cotman SL. Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. PLoS One 2012; 7:e38310. [PMID: 22701626 PMCID: PMC3368842 DOI: 10.1371/journal.pone.0038310] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/08/2012] [Indexed: 12/29/2022] Open
Abstract
Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development.
Collapse
Affiliation(s)
- John F. Staropoli
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Larissa Haliw
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sunita Biswas
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Lore Becker
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | | | | | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Anja Schrewe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Oliver Puk
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Minxuan Sun
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Jack Favor
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Ildikó Racz
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Raffi Bekeredjian
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Otto-Meyerhof-Zentrum, Heidelberg, Germany
| | - Dirk H. Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, TUM, München, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Entwicklungsgenetik, TUM, Freising-Weihenstephan, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. Site Munich, Munich, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Edith Lopez
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hayat Harati
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Eric Hill
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniela S. Krause
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jolene Guide
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ella Dragileva
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Evan Gale
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rose-Mary Boustany
- Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Biochemistry, American University of Beirut, Beirut, Lebanon
| | - Diane E. Brown
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Klaus Ruether
- Augenabteilung Sankt Gertrauden Krankenhaus, Berlin, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg/Munich, Germany
- Lehrstuhl für Experimentelle Genetik, TUM, Freising-Weihenstephan, Germany
| | - Susan L. Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Brown D, Bouley R, Păunescu TG, Breton S, Lu HAJ. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am J Physiol Cell Physiol 2012; 302:C1421-33. [PMID: 22460710 DOI: 10.1152/ajpcell.00085.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
27
|
Shum WW, Da Silva N, Belleannée C, McKee M, Brown D, Breton S. Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol 2011; 301:C31-43. [PMID: 21411727 DOI: 10.1152/ajpcell.00198.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminal acidification in the epididymis is critical for sperm maturation and storage. Clear cells express the vacuolar H(+)-ATPase (V-ATPase) in their apical membrane and are major contributors to proton secretion. We showed that this process is regulated via recycling of V-ATPase-containing vesicles. We now report that RhoA and its effector ROCKII are enriched in rat epididymal clear cells. In addition, cortical F-actin was detected beneath the apical membrane and along the lateral membrane of "resting" clear cells using a pan-actin antibody or phalloidin-TRITC. In vivo luminal perfusion of the cauda epididymal tubule with the ROCK inhibitors Y27632 (10-30 μM) and HA1077 (30 μM) or with the cell-permeable Rho inhibitor Clostridium botulinum C3 transferase (3.75 μg/ml) induced the apical membrane accumulation of V-ATPase and extension of V-ATPase-labeled microvilli in clear cells. However, these newly formed microvilli were devoid of ROCKII. In addition, Y27632 (30 μM) or HA1077 (30 μM) decreased the ratio of F-actin to G-actin detected by Western blot analysis in epididymal epithelial cells, and Y27632 also decreased the ratio of F-actin to G-actin in clear cells isolated by fluorescence activated cell sorting from B1-enhanced green fluorescence protein (EGFP) transgenic mice. These results provide evidence that depolymerization of the cortical actin cytoskeleton via inhibition of RhoA or its effector ROCKII favors the recruitment of V-ATPase from the cytosolic compartment into the apical membrane in clear cells. In addition, our data suggest that the RhoA-ROCKII pathway is not locally involved in the elongation of apical microvilli. We propose that inhibition of RhoA-ROCKII might be part of the intracellular signaling cascade that is triggered upon agonist-induced apical membrane V-ATPase accumulation.
Collapse
Affiliation(s)
- Winnie Waichi Shum
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
28
|
Zimman A, Chen SS, Komisopoulou E, Titz B, Martínez-Pinna R, Kafi A, Berliner JA, Graeber TG. Activation of aortic endothelial cells by oxidized phospholipids: a phosphoproteomic analysis. J Proteome Res 2010; 9:2812-24. [PMID: 20307106 DOI: 10.1021/pr901194x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies have shown that oxidized products of the phospholipid PAPC (Ox-PAPC) are strong activators of aortic endothelial cells and play an important role in atherosclerosis and other inflammatory diseases. We and others have demonstrated that Ox-PAPC activates specific signaling pathways and regulates a large number of genes. Using a phosphoproteomic approach based on phosphopeptide enrichment and mass spectrometry analysis, we identified candidate changes in Ox-PAPC-induced protein phosphorylation of 228 proteins. Functional annotation of these proteins showed an enrichment of the regulation of cytoskeleton, junctional components, and tyrosine kinases, all of which may contribute to the phenotypic and molecular changes observed in endothelial cells treated with Ox-PAPC. Many changes in protein phosphorylation induced by Ox-PAPC are reported here for the first time and provide new insights into the mechanism of activation by oxidized lipids, including phosphorylation-based signal transduction.
Collapse
Affiliation(s)
- Alejandro Zimman
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1770, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Estrogen's presence in the male reproductive system has been known for over 60 years, but its potential function in the epididymis remains an important area of investigation. Estrogen is synthesized by germ cells, producing a relatively high concentration in rete testis fluid. There are two estrogen receptors (ESR), the presence of which in the head of the epididymis is well documented and consistent between species; however, in other regions of the epididymis, their expression appears to be isotype, species, and cell specific. ESR1 is expressed constitutively in the epididymis; however, its presence is downregulated by high doses of estrogen, making the design of experiments complicated, as the phenotype of the Cyp19a1(-/-) mouse does not resemble that of the Esr1(-/-) mouse. Ligand-independent and DNA-binding Esr1 mutant models further demonstrate the complexity and importance of both signaling pathways in maintenance of efferent ductules and epididymis. Data now reveal the presence of not only classical nuclear receptors, but also cytoplasmic ESR and rapid responding membrane receptors; however, their importance in the epididymis remains undetermined. ESR1 regulates ion transport and water reabsorption in the efferent ducts and epididymis, and its regulation of other associated genes is continually being uncovered. In the male, some genes, such as Aqp9 and Slc9a3, contain both androgen and estrogen response elements and are dually regulated by these hormones. While estrogen pathways are a necessity for fertility in the male, future studies are needed to understand the interplay between androgens and estrogens in epididymal tissues, particularly in cell types that contain both receptors and their cofactors.
Collapse
Affiliation(s)
- Avenel Joseph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
30
|
Toei M, Saum R, Forgac M. Regulation and isoform function of the V-ATPases. Biochemistry 2010; 49:4715-23. [PMID: 20450191 DOI: 10.1021/bi100397s] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vacuolar (H(+))-ATPases are ATP-dependent proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane of eukaryotic cells. Intracellular V-ATPases play an important role in normal physiological processes such as receptor-mediated endocytosis, intracellular membrane trafficking, pro-hormone processing, protein degradation, and the coupled uptake of small molecules, such as neurotransmitters. They also function in the entry of various pathogenic agents, including many envelope viruses, like influenza virus, and toxins, like anthrax toxin. Plasma membrane V-ATPases function in renal pH homeostasis, bone resorption and sperm maturation, and various disease processes, including renal tubular acidosis, osteopetrosis, and tumor metastasis. V-ATPases are composed of a peripheral V(1) domain containing eight different subunits that is responsible for ATP hydrolysis and an integral V(0) domain containing six different subunits that translocates protons. In mammalian cells, most of the V-ATPase subunits exist in multiple isoforms which are often expressed in a tissue specific manner. Isoforms of one of the V(0) subunits (subunit a) have been shown to possess information that targets the V-ATPase to distinct cellular destinations. Mutations in isoforms of subunit a lead to the human diseases osteopetrosis and renal tubular acidosis. A number of mechanisms are employed to regulate V-ATPase activity in vivo, including reversible dissociation of the V(1) and V(0) domains, control of the tightness of coupling of proton transport and ATP hydrolysis, and selective targeting of V-ATPases to distinct cellular membranes. Isoforms of subunit a are involved in regulation both via the control of coupling and via selective targeting. This review will begin with a brief introduction to the function, structure, and mechanism of the V-ATPases followed by a discussion of the role of V-ATPase subunit isoforms and the mechanisms involved in regulation of V-ATPase activity.
Collapse
Affiliation(s)
- Masashi Toei
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
31
|
The vacuolar ATPase in bone cells: a potential therapeutic target in osteoporosis. Mol Biol Rep 2010; 37:3561-6. [DOI: 10.1007/s11033-010-0004-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
|
32
|
Da Silva N, Pisitkun T, Belleannée C, Miller LR, Nelson R, Knepper MA, Brown D, Breton S. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting. Am J Physiol Cell Physiol 2010; 298:C1326-42. [PMID: 20181927 DOI: 10.1152/ajpcell.00552.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proton-transporting cells are located in several tissues where they acidify the extracellular environment. These cells express the vacuolar H(+)-ATPase (V-ATPase) B1 subunit (ATP6V1B1) in their plasma membrane. We provide here a comprehensive catalog of the proteins that are expressed in these cells, after their isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-enhanced green fluorescent protein (EGFP) mice. In these mice, type A and B intercalated cells and connecting segment cells of the kidney, and narrow and clear cells of the epididymis, which all express ATP6V1B1, also express EGFP, while all other cell types are negative. The proteome of renal and epididymal EGFP-positive (EGFP(+)) cells was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared with their respective EGFP-negative (EGFP(-)) cell populations. A total of 2,297 and 1,564 proteins were detected in EGFP(+) cells from the kidney and epididymis, respectively. Out of these proteins, 202 and 178 were enriched by a factor greater than 1.5 in EGFP(+) cells compared with EGFP(-) cells, in the kidney and epididymis respectively, and included subunits of the V-ATPase (B1, a4, and A). In addition, several proteins involved in intracellular trafficking, signaling, and cytoskeletal dynamics were identified. A novel common protein that was enriched in renal and epididymal EGFP(+) cells is the progesterone receptor, which might be a potential candidate for the regulation of V-ATPase-dependent proton transport. These proteomic databases provide a framework for comprehensive future analysis of the common and distinct functions of V-ATPase-B1-expressing cells in the kidney and epididymis.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Vacuolar-type H+ATPases are multisubunit macromolecules that play an essential role in renal acid-base homeostasis. Other cellular processes also rely on the proton pumping ability of H+ATPases to acidify organellar or lumenal spaces. Several diseases, including distal renal tubular acidosis, osteoporosis and wrinkly skin syndrome, are due to mutations in genes encoding alternate subunits that make up the H+ATPase. This review highlights recent key articles in this research area. RECENT FINDINGS Further insights into the structure, expression and regulation of H+ATPases have been elucidated, within the kidney and elsewhere. This knowledge may enhance the potential for future drug targeting. SUMMARY Novel findings concerning tissue-specific subunits of the H+ATPase that are important in the kidney and more general lessons of H+ATPase function and regulation are slowly emerging, though the paucity of cellular tools available has to date limited progress.
Collapse
|
34
|
Shum WWC, Da Silva N, Brown D, Breton S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. ACTA ACUST UNITED AC 2009; 212:1753-61. [PMID: 19448084 DOI: 10.1242/jeb.027284] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the epididymis, spermatozoa acquire their ability to become motile and to fertilize an egg. A luminal acidic pH and a low bicarbonate concentration help keep spermatozoa in a quiescent state during their maturation and storage in this organ. Net proton secretion is crucial to maintain the acidity of the luminal fluid in the epididymis. A sub-population of epithelial cells, the clear cells, express high levels of the proton-pumping V-ATPase in their apical membrane and are important contributors to luminal acidification. This review describes selected aspects of V-ATPase regulation in clear cells. The assembly of a particular set of V-ATPase subunit isoforms governs the targeting of the pump to the apical plasma membrane. Regulation of V-ATPase-dependent proton secretion occurs via recycling mechanisms. The bicarbonate-activated adenylyl cyclase is involved in the non-hormonal regulation of V-ATPase recycling, following activation of bicarbonate secretion by principal cells. The V-ATPase is also regulated in a paracrine manner by luminal angiotensin II by activation of the angiotensin II type 2 receptor (AGTR2), which is located in basal cells. Basal cells have the remarkable property of extending long and slender cytoplasmic projections that cross the tight junction barrier to monitor the luminal environment. Clear cells are activated by a nitric oxide signal that originates from basal cells. Thus, a complex interplay between the different cell types present in the epithelium leads to activation of the luminal acidifying capacity of the epididymis, a process that is crucial for sperm maturation and storage.
Collapse
Affiliation(s)
- Winnie W C Shum
- Center for Systems Biology, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
35
|
Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. ACTA ACUST UNITED AC 2009; 212:1762-72. [PMID: 19448085 DOI: 10.1242/jeb.028803] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton-pumping V-ATPase is a complex, multi-subunit enzyme that is highly expressed in the plasma membranes of some epithelial cells in the kidney, including collecting duct intercalated cells. It is also located on the limiting membranes of intracellular organelles in the degradative and secretory pathways of all cells. Different isoforms of some V-ATPase subunits are involved in the targeting of the proton pump to its various intracellular locations, where it functions in transporting protons out of the cell across the plasma membrane or acidifying intracellular compartments. The former process plays a critical role in proton secretion by the kidney and regulates systemic acid-base status whereas the latter process is central to intracellular vesicle trafficking, membrane recycling and the degradative pathway in cells. We will focus our discussion on two cell types in the kidney: (1) intercalated cells, in which proton secretion is controlled by shuttling V-ATPase complexes back and forth between the plasma membrane and highly-specialized intracellular vesicles, and (2) proximal tubule cells, in which the endocytotic pathway that retrieves proteins from the glomerular ultrafiltrate requires V-ATPase-dependent acidification of post-endocytotic vesicles. The regulation of both of these activities depends upon the ability of cells to monitor the pH and/or bicarbonate content of their extracellular environment and intracellular compartments. Recent information about these pH-sensing mechanisms, which include the role of the V-ATPase itself as a pH sensor and the soluble adenylyl cyclase as a bicarbonate sensor, will be addressed in this review.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
36
|
Shum WWC, Da Silva N, McKee M, Smith PJS, Brown D, Breton S. Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 2008; 135:1108-17. [PMID: 19070580 DOI: 10.1016/j.cell.2008.10.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/23/2008] [Accepted: 10/08/2008] [Indexed: 12/24/2022]
Abstract
Basal cells are by definition located on the basolateral side of several epithelia, and they have never been observed reaching the lumen. Using high-resolution 3D confocal imaging, we report that basal cells extend long and slender cytoplasmic projections that not only reach toward the lumen but can cross the tight junction barrier in some epithelia of the male reproductive and respiratory tracts. In this way, the basal cell plasma membrane is exposed to the luminal environment. In the epididymis, in which luminal acidification is crucial for sperm maturation and storage, these projections contain the angiotensin II type 2 receptor (AGTR2). Activation of AGTR2 by luminal angiotensin II, increases proton secretion by adjacent clear cells, which are devoid of AGTR2. We propose a paradigm in which basal cells scan and sense the luminal environment of pseudostratified epithelia and modulate epithelial function by a mechanism involving crosstalk with other epithelial cells.
Collapse
Affiliation(s)
- Winnie Wai Chi Shum
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
37
|
Belleannée C, Da Silva N, Shum WWC, Marsolais M, Laprade R, Brown D, Breton S. Segmental expression of the bradykinin type 2 receptor in rat efferent ducts and epididymis and its role in the regulation of aquaporin 9. Biol Reprod 2008; 80:134-43. [PMID: 18829705 DOI: 10.1095/biolreprod.108.070797] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Water and solute transport in the efferent ducts and epididymis are important for the establishment of the appropriate luminal environment for sperm maturation and storage. Aquaporin 9 (AQP9) is the main water channel in the epididymis, but its regulation is still poorly understood. Components of the kinin-kallikrein system (KKS), leading to the production of bradykinin (BK), are highly expressed in the lumen of the male reproductive tract. We report here that the epididymal luminal fluid contains a significant amount of BK (2 nM). RT-PCR performed on epididymal epithelial cells isolated by laser capture microdissection (LCM) showed abundant BK type 2 receptor (Bdkrb2) mRNA expression but no type 1 receptor (Bdkrb1). Double-immunofluorescence staining for BDKRB2 and the anion exchanger AE2 (a marker of efferent duct ciliated cells) or the V-ATPase E subunit, official symbol ATP6V1E1 (a marker of epididymal clear cells), showed that BDKRB2 is expressed in the apical pole of nonciliated cells (efferent ducts) and principal cells (epididymis). Triple labeling for BDKRB2, AQP9, and ATP6V1E1 showed that BDKRB2 and AQP9 colocalize in the apical stereocilia of principal cells in the cauda epididymidis. While uniform Bdkrb2 mRNA expression was detected in the efferent ducts and along the epididymal tubule, marked variations were detected at the protein level. BDKRB2 was highest in the efferent ducts and cauda epididymidis, intermediate in the distal initial segment, moderate in the corpus, and undetectable in the proximal initial segment and the caput. Functional assays on tubules isolated from the distal initial segments showed that BK significantly increased AQP9-dependent glycerol apical membrane permeability. This effect was inhibited by BAPTA-AM, demonstrating the participation of calcium in this process. This study, therefore, identifies BK as an important regulator of AQP9.
Collapse
Affiliation(s)
- C Belleannée
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
The yeast lysosome-like vacuole: endpoint and crossroads. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:650-63. [PMID: 18786576 DOI: 10.1016/j.bbamcr.2008.08.003] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 12/21/2022]
Abstract
Fungal vacuoles are acidic organelles with degradative and storage capabilities that have many similarities to mammalian lysosomes and plant vacuoles. In the past several years, well-developed genetic, genomic, biochemical and cell biological tools in S. cerevisiae have provided fresh insights into vacuolar protein sorting, organelle acidification, ion homeostasis, autophagy, and stress-related functions of the vacuole, and these insights have often found parallels in mammalian lysosomes. This review provides a broad overview of the defining features and functions of S. cerevisiae vacuoles and compares these features to mammalian lysosomes. Recent research challenges the traditional view of vacuoles and lysosomes as simply the terminal compartment of biosynthetic and endocytic pathways (i.e. the "garbage dump" of the cell), and suggests instead that these compartments are unexpectedly dynamic and highly regulated.
Collapse
|
39
|
Paunescu TG, Jones AC, Tyszkowski R, Brown D. V-ATPase expression in the mouse olfactory epithelium. Am J Physiol Cell Physiol 2008; 295:C923-30. [PMID: 18667600 DOI: 10.1152/ajpcell.00237.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vacuolar proton-pumping ATPase (V-ATPase) is responsible for the acidification of intracellular organelles and for the pH regulation of extracellular compartments. Because of the potential role of the latter process in olfaction, we examined the expression of V-ATPase in mouse olfactory epithelial (OE) cells. We report that V-ATPase is present in this epithelium, where we detected subunits ATP6V1A (the 70-kDa "A" subunit) and ATP6V1E1 (the ubiquitous 31-kDa "E" subunit isoform) in epithelial cells, nerve fiber cells, and Bowman's glands by immunocytochemistry. We also located both isoforms of the 56-kDa B subunit, ATP6V1B1 ("B1," typically expressed in epithelia specialized in regulated transepithelial proton transport) and ATP6V1B2 ("B2") in the OE. B1 localizes to the microvilli of the apical plasma membrane of sustentacular cells and to the lateral membrane in a subset of olfactory sensory cells, which also express carbonic anhydrase type IV, whereas B2 expression is stronger in the subapical domain of sustentacular cells. V-ATPase expression in mouse OE was further confirmed by immunoblotting. These findings suggest that V-ATPase may be involved in proton secretion in the OE and, as such, may be important for the pH homeostasis of the neuroepithelial mucous layer and/or for signal transduction in CO(2) detection.
Collapse
Affiliation(s)
- Teodor G Paunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
40
|
Callies C, Cooper TG, Yeung CH. Channels for water efflux and influx involved in volume regulation of murine spermatozoa. Reproduction 2008; 136:401-10. [PMID: 18614623 DOI: 10.1530/rep-08-0149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nature of the membrane channels mediating water transport in murine spermatozoa adjusting to anisotonic conditions was investigated. The volume of spermatozoa subjected to physiologically relevant hypotonic conditions either simultaneously, or after isotonic pre-incubation, with putative water transport inhibitors was monitored. Experiments in which quinine prevented osmolyte efflux, and thus regulatory volume decrease (RVD), revealed whether water influx or efflux was being inhibited. There was no evidence that sodium-dependent solute transporters or facilitative glucose transporters were involved in water transport during RVD of murine spermatozoa since phloretin, cytochalasin B and phloridzin had no effect on volume regulation. However, there was evidence that Hg(2+)- and Ag(+)-sensitive channels were involved in water transport and the possibility that they include aquaporin 8 is discussed. Toxic effects of these heavy metals were ruled out by evidence that mitochondrial poisons had no such effect on volume regulation.
Collapse
Affiliation(s)
- C Callies
- Centre of Reproductive Medicine and Andrology of the University, Domagkstrasse 11, D-48129 Münster, Germany
| | | | | |
Collapse
|
41
|
Fuster D, Zhang J, Xie XS, Moe O. The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. Kidney Int 2008; 73:1151-8. [DOI: 10.1038/ki.2008.96] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Xiao YT, Xiang LX, Shao JZ. Vacuolar H+-ATPase. Int J Biochem Cell Biol 2008; 40:2002-6. [PMID: 17897871 DOI: 10.1016/j.biocel.2007.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/09/2007] [Accepted: 08/09/2007] [Indexed: 12/09/2022]
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a universal component of eukaryotic organisms, which is present in both intracellular compartments and the plasma membrane. In the latter, its proton-pumping action creates the low intravacuolar pH, benefiting many processes such as, membrane trafficking, protein degradation, renal acidification, bone resorption, and tumor metastasis. In this article, we briefly summarize recent studies on the essential and diverse roles of mammalian V-ATPase and their medical applications, with a special emphasis on identification and use of V-ATPase inhibitors.
Collapse
Affiliation(s)
- Yong-Tao Xiao
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Postal code: 310058, China.
| | | | | |
Collapse
|
43
|
Abstract
The acidity of intracellular compartments and the extracellular environment is crucial to various cellular processes, including membrane trafficking, protein degradation, bone resorption and sperm maturation. At the heart of regulating acidity are the vacuolar (V-)ATPases--large, multisubunit complexes that function as ATP-driven proton pumps. Their activity is controlled by regulating the assembly of the V-ATPase complex or by the dynamic regulation of V-ATPase expression on membrane surfaces. The V-ATPases have been implicated in a number of diseases and, coupled with their complex isoform composition, represent attractive and potentially highly specific drug targets.
Collapse
Affiliation(s)
- Michael Forgac
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, Massachusetts 02111, USA.
| |
Collapse
|
44
|
Paunescu TG, Da Silva N, Russo LM, McKee M, Lu HAJ, Breton S, Brown D. Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol Renal Physiol 2007; 294:F130-8. [PMID: 17959750 DOI: 10.1152/ajprenal.00406.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of soluble adenylyl cyclase (sAC) by bicarbonate causes local cAMP generation, indicating that sAC might act as a pH and/or bicarbonate sensor in kidney cells involved in acid-base homeostasis. Therefore, we examined the expression of sAC in renal acid-base transporting intercalated cells (IC) and compared its distribution to that of the vacuolar proton pumping ATPase (V-ATPase) under different conditions. In all IC, sAC and V-ATPase showed considerable overlap under basal conditions, but sAC staining was also found in other cellular locations in the absence of V-ATPase. In type A-IC, both sAC and V-ATPase were apically and subapically located, whereas in type B-IC, significant basolateral colocalization of sAC and the V-ATPase was seen. When apical membrane insertion of the V-ATPase was stimulated by treatment of rats with acetazolamide, sAC was also concentrated in the apical membrane of A-IC. In mice that lack a functional B1 subunit of the V-ATPase, sAC was colocalized apically in A-IC along with V-ATPase containing the alternative B2 subunit isoform. The close association between these two enzymes was confirmed by coimmunoprecipitation of sAC from kidney homogenates using anti-V-ATPase antibodies. Our data show that sAC and the V-ATPase colocalize in IC, that they are concentrated in the IC plasma membrane under conditions that "activate" these proton secretory cells, and that they are both present in an immunoprecipitated complex. This suggests that these enzymes have a close association and could be part of a protein complex that is involved in regulating renal distal proton secretion.
Collapse
Affiliation(s)
- Teodor G Paunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Paunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice. Am J Physiol Renal Physiol 2007; 293:F1915-26. [PMID: 17898041 DOI: 10.1152/ajprenal.00160.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice deficient in the ATP6V1B1 ("B1") subunit of the vacuolar proton-pumping ATPase (V-ATPase) maintain body acid-base homeostasis under normal conditions, but not when exposed to an acid load. Here, compensatory mechanisms involving the alternate ATP6V1B2 ("B2") isoform were examined to explain the persistence of baseline pH regulation in these animals. By immunocytochemistry, the mean pixel intensity of apical B2 immunostaining in medullary A intercalated cells (A-ICs) was twofold greater in B1-/- mice than in B1+/+ animals, and B2 was colocalized with other V-ATPase subunits. No significant upregulation of B2 mRNA or protein expression was detected in B1-/- mice compared with wild-type controls. We conclude that increased apical B2 staining is due to relocalization of B2-containing V-ATPase complexes from the cytosol to the plasma membrane. Recycling of B2-containing holoenzymes between these domains was confirmed by the intracellular accumulation of B1-deficient V-ATPases in response to the microtubule-disrupting drug colchicine. V-ATPase membrane expression is further supported by the presence of "rod-shaped" intramembranous particles seen by freeze fracture microscopy in apical membranes of normal and B1-deficient A-ICs. Intracellular pH recovery assays show that significant (28-40% of normal) V-ATPase function is preserved in medullary ICs from B1-/- mice. We conclude that the activity of apical B2-containing V-ATPase holoenzymes in A-ICs is sufficient to maintain baseline acid-base homeostasis in B1-deficient mice. However, our results show no increase in cell surface V-ATPase activity in response to metabolic acidosis in ICs from these animals, consistent with their inability to appropriately acidify their urine under these conditions.
Collapse
Affiliation(s)
- Teodor G Paunescu
- Div. of Nephrology, Massachusetts General Hospital, 185 Cambridge St., CPZN 8150, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Da Silva N, Shum WWC, Breton S. Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis. Asian J Androl 2007; 9:476-82. [PMID: 17589784 DOI: 10.1111/j.1745-7262.2007.00299.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Luminal acidification in the epididymis is an important process for the regulation of male fertility. Low pH and low bicarbonate concentration are among key factors that keep spermatozoa in a dormant state while they mature and are stored in this organ. Although significant bicarbonate reabsorption is achieved by principal cells in the proximal regions of the epididymis, clear and narrow cells are specialized for net proton secretion. Clear cells express very high levels of the vacuolar proton pumping ATPase (V-ATPase) in their apical membrane and are responsible for the bulk of proton secretion. In the present paper, selected aspects of V-ATPase regulation in clear cells are described and potential pathologies associated with mutations of some of the V-ATPase subunits are discussed.
Collapse
Affiliation(s)
- Nicolas Da Silva
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|