1
|
Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Inhibition of RIPK1 or RIPK3 kinase activity post ischemia-reperfusion reduces the development of chronic kidney injury. Biochem J 2025; 482:73-86. [PMID: 39705008 DOI: 10.1042/bcj20240569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/21/2024]
Abstract
Ischemia-reperfusion injury (IRI) occurs when the blood supply to an organ is temporarily reduced and then restored. Kidney IRI is a form of acute kidney injury (AKI), which often progresses to kidney fibrosis. Necroptosis is a regulated necrosis pathway that has been implicated in kidney IRI. Necroptotic cell death involves the recruitment of the RIPK1 and RIPK3 kinases and the activation of the terminal effector, the mixed lineage kinase domain-like (MLKL) pseudokinase. Phosphorylated MLKL causes cell death by plasma membrane rupture, driving 'necroinflammation'. Owing to their apical role in the pathway, RIPK1 and RIPK3 have been implicated in the development of kidney fibrosis. Here, we used a mouse model of unilateral kidney IRI to assess whether the inhibition of RIPK1 or RIPK3 kinase activity reduces AKI and the progression to kidney fibrosis. Mice treated with the RIPK1 inhibitor Nec-1s, either before or after IR, showed reduced kidney injury at 24 hr compared with controls, whereas no protection was offered by the RIPK3 inhibitor GSK´872. In contrast, treatment with either inhibitor from days 3 to 9 post-IR reduced the degree of kidney fibrosis at day 28. These findings further support the role of necroptosis in IRI and provide important validation for the contribution of both RIPK1 and RIPK3 catalytic activities in the progression of kidney fibrosis. Targeting the necroptosis pathway could be a promising therapeutic strategy to mitigate kidney disease following IR.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Anjan K Bongoni
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Jennifer L McRae
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Evelyn J Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Francesco L Ierino
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M, Struga M. Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 2024; 54:107. [PMID: 39370783 PMCID: PMC11448562 DOI: 10.3892/ijmm.2024.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
To meet the demand for kidney transplants (KTx), organs are frequently retrieved not only from standard criteria donors (SCD; a donor who is aged <50 years and suffered brain death from any number of causes, such as traumatic injuries or a stroke) but also from expanded criteria donors (any donor aged >60 years or donors aged >50 years with two of the following: A history of high blood pressure, a creatinine serum level ≥1.5 mg/dl or death resulting from a stroke). This comes at the cost of a higher risk of primary non‑function (the permanent hyperkalemia, hyperuremia and fluid overload that result in the need for continuous dialysis after KTx), delayed graft function (the need for dialysis session at least once during the first week after KTx), earlier graft loss and urinary complications (vesico‑ureteral reflux, obstruction of the vesico‑ureteral anastomosis, urine leakage). At present, there are no commercially available diagnostic tools for assessing kidney quality prior to KTx. Currently available predictive models based on clinical data, such as the Kidney Donor Profile Index, are insufficient. One promising option is the application of perfusion solutions for protein biomarkers of kidney quality and predictors of short‑ and long‑term outcomes. However, to date, protein markers that can be detected with ELISA, western blotting and cytotoxic assays have not been identified to be a beneficial predictors of kidney quality. These include lactate dehydrogenases, glutathione S‑transferases, fatty acid binding proteins, extracellular histones, IL‑18, neutrophil gelatinase‑associated lipocalin, MMPs and kidney injury molecule‑1. However, novel methods, including liquid chromatography‑mass spectrometry (LC‑MS) and microarrays, allow the analysis of all renal proteins suspended/dissolved in the acellular preservation solution used for kidney storage before KTx (including hypothermic machine perfusion as one of kidney storage methods) e.g. Belzer University of Wisconsin. Recent proteomic studies utilizing LC‑MS have identified complement pathway elements (C3, C1QB, C4BPA, C1S, C1R and C1RL), desmoplakin, blood coagulation pathway elements and immunoglobulin heavy variable 2‑26 to be novel predictors of kidney quality before transplantation. This was because they were found to correlate with estimated glomerular filtration rate at 3 and 12 months after kidney transplantation. However, further proteomic studies focusing on distinct markers obtained from hypothermic and normothermic machine perfusion are needed to confirm their predictive value and to improve kidney storage methods. Therefore, the present literature review from PubMed, Scopus, Embase and Web of Science was performed with the aims of summarizing the current knowledge on the most frequently studied single protein biomarkers. In addition, novel analytical methods and insights into organ injury during preservation were documented, where future directions in assessing organ quality before kidney transplantation were also discussed.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Roman Danielewicz
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Marta Struga
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
3
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
4
|
Kumar N, Gismondi E, Reddy KS. Copper and nanocopper toxicity using integrated biomarker response in Pangasianodon hypophthalmus. ENVIRONMENTAL TOXICOLOGY 2024; 39:1581-1600. [PMID: 38009665 DOI: 10.1002/tox.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
The current study focused on assessing the toxicological effects of copper (Cu) and copper nanoparticles (Cu-NPs) in acute condition on Pangasianodon hypophthalmus. The median lethal concentration (LC50 ) for Cu and Cu-NPs were determined as 8.04 and 3.85 mg L-1 , respectively. For the subsequent definitive test, varying concentrations were selected: 7.0, 7.5, 8.0, 8.5, and 9.0 mg L-1 for Cu, and 3.0, 3.3, 3.6, 3.9, and 4.2 mg L-1 for Cu-NPs. To encompass these concentration levels and assess their toxic effects, biomarkers associated with toxicological studies like oxidative stress, neurotransmission, and cellular metabolism were measured in the liver, kidney, and gill tissues. Notably, during the acute test, the activities of catalase, superoxide dismutase, glutathione-s-transferase, glutathione peroxidase, and lipid peroxide in the liver, gill, and kidney tissues were significantly increased due to exposure to Cu and Cu-NPs. Similarly, acetylcholinesterase activity in the brain was notably inhibited in the presence of Cu and Cu-NPs when compared to the control group. Cellular metabolic stress was greatly influenced by the exposure to Cu and Cu-NPs, evident from the considerable elevation of cortisol, HSP 70, and blood glucose levels in the treated groups. Furthermore, integrated biomarker response, genotoxicity, DNA damage in gill tissue, karyotyping in kidney tissue, and histopathology in gill and liver were investigated, revealing tissue damage attributed to exposure to Cu and Cu-NPs. In conclusion, this study determined that elevated concentrations of essential trace elements, namely Cu and Cu-NPs, induce toxicity and disrupt cellular metabolic activities in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Pune, India
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and Oceanic Sciences Unit of Research (FOCUS), Chemistry Institute, University of Liege, Liège, Belgium
| | | |
Collapse
|
5
|
Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Dynamics of necroptosis in kidney ischemia-reperfusion injury. Front Immunol 2023; 14:1251452. [PMID: 38022500 PMCID: PMC10652410 DOI: 10.3389/fimmu.2023.1251452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Necroptosis, a pathway of regulated necrosis, involves recruitment and activation of RIPK1, RIPK3 and MLKL, leading to cell membrane rupture, cell death and release of intracellular contents causing further injury and inflammation. Necroptosis is believed to play an important role in the pathogenesis of kidney ischemia-reperfusion injury (IRI). However, the dynamics of necroptosis in kidney IRI is poorly understood, in part due to difficulties in detecting phosphorylated MLKL (pMLKL), the executioner of the necroptosis pathway. Here, we investigated the temporal and spatial activation of necroptosis in a mouse model of unilateral warm kidney IRI, using a robust method to stain pMLKL. We identified the period 3-12 hrs after reperfusion as a critical phase for the activation of necroptosis in proximal tubular cells. After 12 hrs, the predominant pattern of pMLKL staining shifted from cytoplasmic to membrane, indicating progression to the terminal phase of necroptotic cell death. Mlkl-ko mice exhibited reduced kidney inflammation at 12 hrs and lower serum creatinine and tubular injury at 24 hrs compared to wild-type littermates. Interestingly, we observed increased apoptosis in the injured kidneys of Mlkl-ko mice, suggesting a relationship between necroptosis and apoptosis in kidney IRI. Together, our findings confirm the role of necroptosis and necroinflammation in kidney IRI, and identify the first 3 hrs following reperfusion as a potential window for targeted treatments.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Anjan K. Bongoni
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jennifer L. McRae
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Evelyn J. Salvaris
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Francesco L. Ierino
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Peter J. Cowan
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Li Z, Ludwig N, Thomas K, Mersmann S, Lehmann M, Vestweber D, Pittet JF, Gomez H, Kellum JA, Rossaint J, Zarbock A. The Pathogenesis of Ischemia-Reperfusion Induced Acute Kidney Injury Depends on Renal Neutrophil Recruitment Whereas Sepsis-Induced AKI Does Not. Front Immunol 2022; 13:843782. [PMID: 35529856 PMCID: PMC9069608 DOI: 10.3389/fimmu.2022.843782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) may be induced by different causes, including renal ischemia-reperfusion injury and sepsis, which represent the most common reasons for AKI in hospitalized patients. AKI is defined by reduced urine production and/or increased plasma creatinine. However, this definition does not address the molecular mechanisms of different AKI entities, and uncertainties remain regarding distinct pathophysiological events causing kidney injury in the first place. In particular, sepsis-induced AKI is considered not to be associated with leukocyte infiltration into the kidney, but a direct investigation of this process is missing to this date. In this study, we used two murine AKI models induced by either renal ischemia-reperfusion injury (IRI) or cecal ligation and puncture (CLP) to investigate the contribution of neutrophils to tissue injury and kidney function. By using VEC-Y731F mice, in which neutrophil recruitment is impaired, we analyzed the specific contribution of neutrophil recruitment to the pathogenesis of IRI- and CLP-induced AKI. We observed that the degree of renal injury evaluated by plasma creatinine, urinary biomarkers and histological analyses, following IRI-induction was dependent on neutrophil migration into the kidney, whereas the pathogenesis of CLP-induced AKI was independent of neutrophil recruitment. Furthermore, plasma transfer experiments suggest that the pathogenesis of CLP-induced AKI relies on circulating inflammatory mediators. These results extend our knowledge of the AKI pathogenesis and may help in the development of prophylactic and therapeutic treatments for AKI patients.
Collapse
Affiliation(s)
- Zhenhan Li
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Martin Lehmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hernando Gomez
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John A. Kellum
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Alexander Zarbock,
| |
Collapse
|
7
|
Liu R, Krüger K, Pilat C, Fan W, Xiao Y, Seimetz M, Ringseis R, Baumgart-Vogt E, Eder K, Weissmann N, Mooren FC. Excessive Accumulation of Intracellular Ca 2+ After Acute Exercise Potentiated Impairment of T-cell Function. Front Physiol 2021; 12:728625. [PMID: 34899372 PMCID: PMC8662941 DOI: 10.3389/fphys.2021.728625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Ca2+ is an important intracellular second messenger known to regulate several cellular functions. This research aimed to investigate the mechanisms of exercise-induced immunosuppression by measuring intracellular calcium levels, Ca2+-regulating gene expression, and agonist-evoked proliferation of murine splenic T lymphocytes. Mice were randomly assigned to the control, sedentary group (C), and three experimental groups, which performed a single bout of intensive and exhaustive treadmill exercise. Murine splenic lymphocytes were separated by density-gradient centrifugation immediately (E0), 3h (E3), and 24h after exercise (E24). Fura-2/AM was used to monitor cytoplasmic free Ca2+ concentration in living cells. The combined method of carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling and flow cytometry was used for the detection of T cell proliferation. The transcriptional level of Ca2+-regulating genes was quantified by using qPCR. Both basal intracellular Ca2+ levels and agonist (ConA, OKT3, or thapsigargin)-induced Ca2+ transients were significantly elevated at E3 group (p<0.05 vs. control). However, mitogen-induced cell proliferation was significantly decreased at E3 group (p<0.05 vs. control). In parallel, the transcriptional level of plasma membrane Ca2+-ATPases (PMCA), sarco/endoplasmic reticulum Ca2+-ATPases (SERCA), TRPC1, and P2X7 was significantly downregulated, and the transcriptional level of IP3R2 and RyR2 was significantly upregulated in E3 (p<0.01 vs. control). In summary, this study demonstrated that acute exercise affected intracellular calcium homeostasis, most likely by enhancing transmembrane Ca2+ influx into cells and by reducing expression of Ca2+-ATPases such as PMCA and SERCA. However, altered Ca2+ signals were not transduced into an enhanced T cell proliferation suggesting other pathways to be responsible for the transient exercise-associated immunosuppression.
Collapse
Affiliation(s)
- Renyi Liu
- Department of Physical Education, China University of Geosciences (Wuhan), Wuhan, China.,Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christian Pilat
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wei Fan
- Institute for Anatomy and Cell Biology II, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yu Xiao
- Institute for Anatomy and Cell Biology II, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank Christoph Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
8
|
Liu Z, Lv J, Zhang Z, Wang B, Duan L, Li C, Xie H, Li T, Zhou X, Xu R, Chen N, Liu W, Ming H. The main mechanisms of trimethyltin chloride-induced neurotoxicity: Energy metabolism disorder and peroxidation damage. Toxicol Lett 2021; 345:67-76. [PMID: 33865920 DOI: 10.1016/j.toxlet.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Trimethyltin chloride (TMT) is a by-product in the synthesis of organotin, a plastic stabilizer. With the rapid development of industry, the occupational hazards caused by TMT cannot be ignored. TMT is a typical neurotoxicant, which mainly damages the limbic system and brainstem of the nervous system. Previous studies have demonstrated that the neurotoxicity induced by TMT is linked to the inhibition of energy metabolism, but the underlying mechanism remains elusive. In order to investigate the mechanism of TMT-induced inhibition of energy metabolism, C57BL/6 male mice were administered by IP injection in different TMT doses (0 mg/kg, 1.00 mg/kg, 2.15 mg/kg and 4.64 mg/kg) and times (1d, 3d and 6d), and then the changes of superoxide dismutase (SOD) activity, malondialdehyde (MDA) level and Na+-K+-ATPase activity in cerebral cortex, cerebellum, hippocampus, pons, medulla oblongata of mice, the expressions of Na+-K+-ATPase protein, AMP-activated protein kinase (AMPK), phosphorylated AMP-activated protein kinase(p-AMPK)and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) in hippocampus and medulla oblongata were measured; the effects of TMT on the viability, the activity of SOD, glutathione (GSH) and Na+-K+-ATPase, MDA level, and the expression of PGC-1α and Na+-K+-ATPase protein in N2a cells were measured by different TMT doses and times, in order to verify the experiments in vivo. Our results found that most of the mice showed depression, tremor, epilepsy, spasm and other symptoms after TMT exposure. Moreover, with the increase of TMT dose, the activity of Na+-K+-ATPase and the expressions of AMPK protein in the hippocampus and medulla oblongata of mice decreased, and the expressions of p-AMPK protein increased. Peroxidative damage was evident in hippocampus, medulla oblongata of mice and N2a cells, and the expression of PGC-1α and Na+-K+-ATPase protein was significantly down-regulated. Therefore, it is reasonable to believe that TMT-induced neurotoxic symptoms and inhibition of energy metabolism may be related to p-AMPK and down-regulation of PGC-1α in the hippocampus and medulla oblongata.
Collapse
Affiliation(s)
- Zhenzhong Liu
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China; Innovative Platform of Basic Medical Sciences, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China.
| | - Jiaqi Lv
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Zhuangyu Zhang
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Bo Wang
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Lili Duan
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Cuihua Li
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Haiyue Xie
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Tongxing Li
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xuemei Zhou
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Rui Xu
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Chen
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Huang Ming
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China.
| |
Collapse
|
9
|
Basso PJ, Andrade-Oliveira V, Câmara NOS. Targeting immune cell metabolism in kidney diseases. Nat Rev Nephrol 2021; 17:465-480. [PMID: 33828286 DOI: 10.1038/s41581-021-00413-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Insights into the relationship between immunometabolism and inflammation have enabled the targeting of several immunity-mediated inflammatory processes that underlie infectious diseases and cancer or drive transplant rejection, but this field remains largely unexplored in kidney diseases. The kidneys comprise heterogeneous cell populations, contain distinct microenvironments such as areas of hypoxia and hypersalinity, and are responsible for a functional triad of filtration, reabsorption and secretion. These distinctive features create myriad potential metabolic therapeutic targets in the kidney. Immune cells have crucial roles in the maintenance of kidney homeostasis and in the response to kidney injury, and their function is intricately connected to their metabolic properties. Changes in nutrient availability and biomolecules, such as cytokines, growth factors and hormones, initiate cellular signalling events that involve energy-sensing molecules and other metabolism-related proteins to coordinate immune cell differentiation, activation and function. Disruption of homeostasis promptly triggers the metabolic reorganization of kidney immune and non-immune cells, which can promote inflammation and tissue damage. The metabolic differences between kidney and immune cells offer an opportunity to specifically target immunometabolism in the kidney.
Collapse
Affiliation(s)
- Paulo José Basso
- Laboratory of Immunobiology of Transplantation, Department of Immunology, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Laboratory of Immunobiology of Transplantation, Department of Immunology, Universidade de São Paulo, São Paulo, São Paulo, Brazil. .,Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
The Endothelial Glycocalyx as a Target of Ischemia and Reperfusion Injury in Kidney Transplantation-Where Have We Gone So Far? Int J Mol Sci 2021; 22:ijms22042157. [PMID: 33671524 PMCID: PMC7926299 DOI: 10.3390/ijms22042157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The damage of the endothelial glycocalyx as a consequence of ischemia and/or reperfusion injury (IRI) following kidney transplantation has come at the spotlight of research due to potential associations with delayed graft function, acute rejection as well as long-term allograft dysfunction. The disintegration of the endothelial glycocalyx induced by IRI is the crucial event which exposes the denuded endothelial cells to further inflammatory and oxidative damage. The aim of our review is to present the currently available data regarding complex links between shedding of the glycocalyx components, like syndecan-1, hyaluronan, heparan sulphate, and CD44 with the activation of intricate immune system responses, including toll-like receptors, cytokines and pro-inflammatory transcription factors. Evidence on modes of protection of the endothelial glycocalyx and subsequently maintenance of endothelial permeability as well as novel nephroprotective molecules such as sphingosine-1 phosphate (S1P), are also depicted. Although advances in technology are making the visualization and the analysis of the endothelial glycocalyx possible, currently available evidence is mostly experimental. Ongoing progress in understanding the complex impact of IRI on the endothelial glycocalyx, opens up a new era of research in the field of organ transplantation and clinical studies are of utmost importance for the future.
Collapse
|
11
|
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ, Leuvenink HGD. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J Clin Med 2020; 9:jcm9010253. [PMID: 31963521 PMCID: PMC7019324 DOI: 10.3390/jcm9010253] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Søren E. Pischke
- Clinic for Emergencies and Critical Care, Department of Anesthesiology, Department of Immunology, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway;
| | - Stefan P. Berger
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Jan Stephan F. Sanders
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Robert A. Pol
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Rutger J. Ploeg
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| |
Collapse
|
12
|
Sammeturi M, Shaik AH, Bongu SBR, Cheemanapalli S, Mohammad A, Kodidhela LD. Protective effects of syringic acid, resveratrol and their combination against isoprenaline administered cardiotoxicity in wistar rats. Saudi J Biol Sci 2019; 26:1429-1435. [PMID: 31762605 PMCID: PMC6864382 DOI: 10.1016/j.sjbs.2019.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To evaluate the cardio-protection of syringic acid (SA) in combination with resveratrol (RV) in isoproterenol (ISO) induced myocardial infarcted (MI) rats. Methods Groups of all rats were subjected oral pre-treatment at the beginning of the study with SA (50 mg/kg), RV (50 mg/kg) and combination (COMB) of SA (25 mg/kg) and RV (25 mg/kg) along with gallic acid (GA) (50 mg/kg) for 30 days. After sacrification, homogenate of heart tissue along with serum were utilized for further biochemical investigations. The effects on creatine kinase (CK), aspartate transaminase (AST), alanine transaminase (ALT) and gamma glutamyl transferase (GGT) were studied in serum and heart tissues. Glutathione-s-transferase (GST), glutathione peroxidase (GPX) and reduced glutathione (GSH), membrane bound enzymes and electrolytes were tested in heart tissues. Body weights and heart weights were also observed along with high sensitivity C-reactive protein (hs-CRP), uric acid and total protein content (TPC) in serum. Results CK, AST, ALT and GGT levels in serum were augmented significantly while these enzymes are decreased in cardiac tissue samples of ISO-treated rats. GST, GPX, GSH, Na+/K+, Mg2+, Ca2+ ATPases, K+ ions were significantly decreased while Na+ and Ca2+ ions were increased in the heart tissues of ISO-injected rats. Loss and gain of body and heart weights were noticed significantly in rats having ISO administration. ISO group showed significant increase in hs-CRP and Uric acid while significant decrease in TPC. All of actions of ISO were ameliorated by COMB. Conclusions COMB suppressed ISO induced MI in rats and exhibited cardio-protection.
Collapse
Affiliation(s)
- Manjunatha Sammeturi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Althaf Hussain Shaik
- Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sasi Bhusana Rao Bongu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | | - Altaf Mohammad
- Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
13
|
Pefanis A, Ierino FL, Murphy JM, Cowan PJ. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int 2019; 96:291-301. [PMID: 31005270 DOI: 10.1016/j.kint.2019.02.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023]
Abstract
Ischemia-reperfusion injury (IRI) is the outcome of an inflammatory process that is triggered when an organ undergoes a transient reduction or cessation of blood flow, followed by re-establishment of perfusion. In the clinical setting, IRI contributes to significant acute kidney injury, patient morbidity and mortality, and adverse outcomes in transplantation. Tubular cell death by necrosis and apoptosis is a central feature of renal IRI. Recent research has challenged traditional views of cell death by identifying new pathways in which cells die in a regulated manner but with the morphologic features of necrosis. This regulated necrosis (RN) takes several forms, with necroptosis and ferroptosis being the best described. The precise mechanisms and relationships between the RN pathways in renal IRI are currently the subject of active research. The common endpoint of RN is cell membrane rupture, resulting in the release of cytosolic components with subsequent inflammation and activation of the immune system. We review the evidence and mechanisms of RN in the kidney following renal IRI, and discuss the use of small molecule inhibitors and genetically modified mice to better understand this process and guide potentially novel therapeutic interventions.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Fitzroy, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Francesco L Ierino
- Department of Medicine, University of Melbourne, Melbourne, Australia; Department of Nephrology, St. Vincent's Hospital Melbourne, Fitzroy, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Fitzroy, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
14
|
Juriasingani S, Akbari M, Chan JYH, Whiteman M, Sener A. H2S supplementation: A novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide 2018; 81:57-66. [DOI: 10.1016/j.niox.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
|
15
|
Proteome Investigation of Rat Lungs subjected to Ex Vivo Perfusion (EVLP). Molecules 2018; 23:molecules23123061. [PMID: 30467300 PMCID: PMC6321151 DOI: 10.3390/molecules23123061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022] Open
Abstract
Ex vivo lung perfusion (EVLP) is an emerging procedure that allows organ preservation, assessment and reconditioning, increasing the number of marginal donor lungs for transplantation. However, physiological and airflow measurements are unable to unveil the molecular mechanisms responsible of EVLP beneficial effects on lung graft and monitor the proper course of the treatment. Thus, it is urgent to find specific biomarkers that possess these requirements but also accurate and reliable techniques that identify them. The purpose of this study is to give an overview on the potentiality of shotgun proteomic platforms in characterizing the status and the evolution of metabolic pathways during EVLP in order to find new potential EVLP-related biomarkers. A nanoLC-MS/MS system was applied to the proteome analysis of lung tissues from an optimized rat model in three experimental groups: native, pre- and post-EVLP. Technical and biological repeatability were evaluated and, together with clustering analysis, underlined the good quality of data produced. In-house software and bioinformatics tools allowed the label-free extraction of differentially expressed proteins among the three examined conditions and the network visualization of the pathways mainly involved. These promising findings encourage further proteomic investigations of the molecular mechanisms behind EVLP procedure.
Collapse
|
16
|
Khan V, Sharma S, Bhandari U, Ali SM, Haque SE. Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sci 2017; 194:205-212. [PMID: 29225109 DOI: 10.1016/j.lfs.2017.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022]
Abstract
AIM The cardioprotective role of raspberry ketone (RK) against isoproterenol (ISO)-induced myocardial infarction (MI) in rats was assessed. MATERIALS AND METHODS Rats were randomly divided into Group I - Vehicle control; Group II - Toxic control ISO (85mg/kg, s.c.); Group III, IV and V - RK (50, 100 and 200mg/kg, respectively) with ISO; Group VI- RK (200mg/kg) alone; Group VII - Propranolol (10mg/kg) with ISO; and Group VIII - Propranolol (10mg/kg) alone. After twenty-four hours of the last dose, animals were sacrificed and creatine kinase-MB, lactate dehydrogenase, total cholesterol, triglycerides, high-density-lipoprotein, low-density-lipoprotein, very-low-density-lipoprotein, malondialdehyde, reduced glutathione, superoxide dismutase, catalase, Na+, K+-ATPase, nitric oxide, histopathological and immunohistochemical analysis (tumor necrosis factor-α and inducible nitric oxide synthase) were performed. KEY FINDINGS Treatment with ISO significantly deviated the biochemical parameters from the normal levels, which were considerably restored by RK at 100 and 200mg/kg doses. 50mg/kg dose, however, did not demonstrate any significant cardioprotective action. The histopathological and immunohistochemical analysis further substantiated these findings. SIGNIFICANCE Our study showed a dose-dependent reduction in oxidative stress, inflammation and dyslipidemia by RK in ISO-intoxicated rats, which signifies that RK from the European red raspberry plant might be a valuable entity for the management of MI.
Collapse
Affiliation(s)
- Vasim Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Milia Islamia, New Delhi 110025, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Sandal S, Bansal P, Cantarovich M. The evidence and rationale for the perioperative use of loop diuretics during kidney transplantation: A comprehensive review. Transplant Rev (Orlando) 2017; 32:92-101. [PMID: 29242033 DOI: 10.1016/j.trre.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/08/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Loop diuretics (LD) attenuate ischemic injury in nephrons. They are thought to decrease delayed graft function (DGF) during kidney transplantation (KT). This review aimed to summarize the current evidence for the perioperative use of LD during KT. METHODS We performed an analysis of all articles that were published since the inception of Medline and Embase: 26 studies were selected for inclusion. Scope was LD use during the perioperative phase of KT only. RESULTS Six animal studies demonstrated mixed results in terms of renal function and survival. Of the 20 studies performed in humans, 4 were randomized clinical trials. The risk of bias was mostly unclear. Evidence supporting the role of LD to increase diuresis was mixed and to prevent DGF was weak. There was poor evidence to support LD use to improve initial and long-term graft function. No data on patient survival could be found. Overall, there was a lack of any robust clinical evidence for LD use perioperatively during KT. IMPLICATIONS There is poor evidence to support the perioperative use of LD during KT. Well-designed trials are needed to further explore their safety and efficacy, and we summarize several rationales. Pragmatic rationales include volume management. There is evidence to suggest that LD have a vasodilatory effect, and decrease edema, congestion and oxygen requirements. Lastly, there are several theoretical rationales to explore LD use during KT, in particular, attenuating ischemia-reperfusion injury and modulating autophagy.
Collapse
Affiliation(s)
- Shaifali Sandal
- Division of Nephrology and Multi-Organ Transplant Program, McGill University Health Centre, 1001 boul. Decarie, Montreal, QC, Canada. H4A 3J1.
| | - Pannya Bansal
- Michigan State University College of Osteopathic Medicine, East Fee Hall, 965 Fee Rd, East Lansing, MI 48825, USA
| | - Marcelo Cantarovich
- Division of Nephrology and Multi-Organ Transplant Program, McGill University Health Centre, 1001 boul. Decarie, Montreal, QC, Canada. H4A 3J1
| |
Collapse
|
18
|
Dietary fenugreek ( Trigonella foenum-graecum ) seeds and garlic ( Allium sativum ) alleviates oxidative stress in experimental myocardial infarction. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Ischémie–reperfusion. Liquides de conservation et machines de perfusion en transplantation rénale. Prog Urol 2016; 26:964-976. [DOI: 10.1016/j.purol.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
|
20
|
Adil M, Kandhare AD, Ghosh P, Bodhankar SL. Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-β/Smad and Nrf/HO pathways. Chem Biol Interact 2016; 253:66-77. [DOI: 10.1016/j.cbi.2016.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/24/2016] [Accepted: 05/08/2016] [Indexed: 01/06/2023]
|
21
|
Novel Antioxidant Properties of Ghrelin and Oleuropein Versus Lipopolysaccharide-Mediated Renal Failure in Rats. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Abstract
Ischemia reperfusion injury occurs in the kidney when blood supply is interrupted in clinical settings such as kidney transplantation or nephron sparing surgery for renal tumors. These lesions lead to acute kidney injury (AKI) a detrimental situation associated with impaired short-term allograft function (delayed graft function or primary non function) but also long-term transplant survival through the onset of chronic allograft nephropathy. The present review details the cellular and molecular consequences of ischemia reperfusion in a native kidney as well as in a kidney graft after cold ischemia time, giving a comprehensive description of biological pathways involved during the phase of ischemia and during the reperfusion period where the rapid return to normoxia leads to a large burst of reactive oxygen species along with a dramatic reduction in antioxidant defenses. This work also focuses on the distinct susceptibilities of kidney cells to ischemia (endothelial vs epithelial) and the outcome of acute kidney injury.
Collapse
|
23
|
Jing L, Wang Y, Zhao XM, Zhao B, Han JJ, Qin SC, Sun XJ. Cardioprotective Effect of Hydrogen-rich Saline on Isoproterenol-induced Myocardial Infarction in Rats. Heart Lung Circ 2014; 24:602-10. [PMID: 25533677 DOI: 10.1016/j.hlc.2014.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Infusion with hydrogen gas-saturated saline has recently been reported to exert antioxidant and anti-inflammatory activity that may protect against organ damage induced by oxidative stress. Therefore because oxidative stress plays a significant role in the pathophysiology of myocardial infarction (MI), the aim of our study was to investigate whether hydrogen-rich saline has cardioprotective effects against isoproterenol-induced MI in rats. METHODS An acute MI model was induced in male Wistar rats by subcutaneous injection of isoproterenol. Different doses of hydrogen-rich saline (5, 7.5, and 10 mL/kg body weight i.p.) or Vitamin C (250 mg/kg body weight i.g.) were administered to the rats. Oxidative stress indices including levels of myocardial marker enzymes, inflammatory cytokines, membrane-bound myocardial enzymes and histopathological changes were measured. RESULTS Compared with those in isoproterenol-MI group, hydrogen-rich saline decreased malondialdehyde and 8-hydroxy-desoxyguanosine concentrations, enhanced superoxide dismutase and Na(+)-K(+)-ATPase activity, lowered Ca(2+)-ATPase activity and decreased interleukin-6 and tumour necrosis factor-α levels in the serum and/or cardiac tissue of rats. Hydrogen-rich saline pretreatment also diminished infarct size, improved left heart function, and ameliorated pathological changes of the left heart. CONCLUSION From these results, hydrogen-rich saline exerts cardiovascular protective effects against isoproterenol-induced MI at least in part via interactions which evoke antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Lei Jing
- Key Laboratory of Atherosclerosis in Universities of Shandong (Taishan Medical University), Taian, 271000, China; Department of Pharmocology, Taishan Medical University, Taian, 271000, China; Department of Pharmacy, Dongping County People's Hospital, Dongping, 271500, China
| | - Yun Wang
- Key Laboratory of Atherosclerosis in Universities of Shandong (Taishan Medical University), Taian, 271000, China
| | - Xiao-Min Zhao
- Key Laboratory of Atherosclerosis in Universities of Shandong (Taishan Medical University), Taian, 271000, China; Department of Pharmocology, Taishan Medical University, Taian, 271000, China.
| | - Bing Zhao
- Key Laboratory of Atherosclerosis in Universities of Shandong (Taishan Medical University), Taian, 271000, China; Department of Pharmocology, Taishan Medical University, Taian, 271000, China; Department of Pharmacy, Boshan District Hospital of Zibo, Boshan, 255200, China
| | - Ji-Ju Han
- Key Laboratory of Atherosclerosis in Universities of Shandong (Taishan Medical University), Taian, 271000, China
| | - Shu-Cun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong (Taishan Medical University), Taian, 271000, China
| | - Xue-Jun Sun
- Department of Diving Medicine, the Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
24
|
Abad C, Vallejos C, De Gregorio N, Díaz P, Chiarello DI, Mendoza M, Piñero S, Proverbio T, Botana D, Rojas P, Riquelme G, Proverbio F, Marín R. Na⁺, K⁺-ATPase and Ca²⁺-ATPase activities in basal and microvillous syncytiotrophoblast membranes from preeclamptic human term placenta. Hypertens Pregnancy 2014; 34:65-79. [PMID: 25356531 DOI: 10.3109/10641955.2014.973038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate the effect of preeclampsia on the level of lipid peroxidation, activity and expression of both plasma membrane Ca(2+)- and Na(+), K(+)-ATPases in syncytiotrophoblast. METHODS The level of lipid peroxidation was estimated by measuring TBARS. ATPase activities were quantified by a colorimetric method measuring the amount of inorganic phosphate during the assay. Expression of Ca(2+)- and Na(+), K(+)-ATPases in syncytiotrophoblast plasma membranes and term placenta tissue sections was investigated using Western blot and immunohistochemistry, respectively. RESULTS Our results show a higher level of lipid peroxidation of syncytiotrophoblast plasma membranes from preeclamptic, as compared to uncomplicated pregnant women. Preeclampsia also significantly reduced the activity of Ca(2+)- and Na(+), K(+)-ATPases; however, expression of both ATPases was unaffected. CONCLUSION Our findings suggest that the reduction of Ca(2+)- and Na(+), K(+)-ATPase activities during preeclampsia could be at least partially due to an increased level of lipid peroxidation of the syncytiotrophoblast plasma membranes.
Collapse
Affiliation(s)
- Cilia Abad
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC) , Caracas , Venezuela , and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Acute superoxide radical scavenging reduces blood pressure but does not influence kidney function in hypertensive rats with postischemic kidney injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:512619. [PMID: 25050356 PMCID: PMC4090523 DOI: 10.1155/2014/512619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR) with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance (P < 0.05) compared to AKI control. It also increased cardiac output and catalase activity (P < 0.05). Lipid peroxidation and renal vascular resistance were decreased in TEMPOL (P < 0.05). Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.
Collapse
|
26
|
Wang Y, Ye Q, Liu C, Xie JX, Yan Y, Lai F, Duan Q, Li X, Tian J, Xie Z. Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells. Free Radic Biol Med 2014; 71:415-426. [PMID: 24703895 PMCID: PMC6779055 DOI: 10.1016/j.freeradbiomed.2014.03.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 11/17/2022]
Abstract
We have shown that Na/K-ATPase interacts with Src. Here, we test the role of this interaction in H2O2-induced activation of Src and ERK. We found that exposure of LLC-PK1 cells to H2O2 generated by the addition of glucose oxidase into the culture medium activated Src and ERK1/2. It also caused a modest reduction in the number of surface Na/K-ATPases and in ouabain-sensitive Rb(+) uptake. These effects of H2O2 seem similar to those induced by ouabain, a specific ligand of Na/K-ATPase, in LLC-PK1 cells. In accordance, we found that the effects of H2O2 on Src and ERK1/2 were inhibited in α1 Na/K-ATPase-knockdown PY-17 cells. Whereas expression of wild-type α1 or the A420P mutant α1 defective in Src regulation rescued the pumping activity in PY-17 cells, only α1, and not the A420P mutant, was able to restore the H2O2-induced activation of protein kinases. Consistent with this, disrupting the formation of the Na/K-ATPase/Src complex with pNaKtide attenuated the effects of H2O2 on the kinases. Moreover, a direct effect of H2O2 on Na/K-ATPase-mediated regulation of Src was demonstrated. Finally, H2O2 reduced the expression of E-cadherin through the Na/K-ATPase/Src-mediated signaling pathway. Taken together, the data suggest that the Na/K-ATPase/Src complex may serve as one of the receptor mechanisms for H2O2 to regulate Src/ERK protein kinases and consequently the phenotype of renal epithelial cells.
Collapse
Affiliation(s)
- Yu Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China
| | - Qiqi Ye
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Changxuan Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China
| | - Jeffrey X Xie
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Yanling Yan
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Fangfang Lai
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Qiming Duan
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Xiaomei Li
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China
| | - Jiang Tian
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Zijian Xie
- Department of Physiology and Department of Pharmacology and Medicine, College of Medicine, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
27
|
Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox. Int J Mol Sci 2014; 15:3596-611. [PMID: 24583849 PMCID: PMC3975356 DOI: 10.3390/ijms15033596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/29/2014] [Accepted: 02/17/2014] [Indexed: 11/16/2022] Open
Abstract
Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses.
Collapse
|
28
|
Wei B, You MG, Ling JJ, Wei LL, Wang K, Li WW, Chen T, Du QM, Ji H. Regulation of antioxidant system, lipids and fatty acid β-oxidation contributes to the cardioprotective effect of sodium tanshinone IIA sulphonate in isoproterenol-induced myocardial infarction in rats. Atherosclerosis 2013; 230:148-56. [PMID: 23958267 DOI: 10.1016/j.atherosclerosis.2013.07.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Myocardial infarction (MI) is a cause of high morbidity and mortality in the world. Sodium tanshinone IIA sulphonate (STS) has been well used in Oriental medicine for treating cardiovascular diseases, however, the underlying mechanisms remain unclear. Alterations of circulating lipid profiles, increased fatty acid β-oxidation and oxidative stress play most important roles in the pathogenesis of MI. The present study aims to elucidate whether STS possesses cardioprotective effect against MI driven by isoproterenol (ISO), and to investigate its potential mechanisms of action. METHODS MI was induced by subcutaneous injection of ISO (85 mg/kg at interval of 24 h for 2 consecutive days) to rats. The rats were randomly divided into 6 groups: (1) control; (2) ISO; (3) STS (16 mg/kg) +control; (4-6) STS (16, 8, 4 mg/kg) +ISO. RESULTS Our study showed that STS could ameliorate cardiac dysfunction and variation of myocardial zymogram, up-regulate antioxidant systems, and maintain the levels of circulating lipids driven by supramaximal doses ISO as well. Moreover, modulation of redox-sensitive extracellular signal-regulated kinase1/2 (ERK1/2)/Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase (ACC)/carnitine palmitoyltransferase (CPT) 1 pathways were involved in STS induced cardioprotection. CONCLUSIONS STS exerts strong favorable cardioprotective action. Additionally, the properties of STS, such as anti-dyslipidemia, anti-oxidant and inhibition of fatty acid β-oxidation, may be the mechanisms underlying the observed results.
Collapse
Affiliation(s)
- Bo Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Patel DK, Desai SN, Gandhi HP, Devkar RV, Ramachandran A. Cardio protective effect of Coriandrum sativum L. on isoproterenol induced myocardial necrosis in rats. Food Chem Toxicol 2012; 50:3120-5. [DOI: 10.1016/j.fct.2012.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 05/17/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
30
|
Abad C, Proverbio T, Piñero S, Botana D, Chiarello DI, Marín R, Proverbio F. Preeclampsia, Placenta, Oxidative Stress, and PMCA. Hypertens Pregnancy 2012; 31:427-41. [DOI: 10.3109/10641955.2012.690058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Shaik AH, Rasool SN, Vikram Kumar Reddy A, Abdul Kareem M, Saayi Krushna G, Lakshmi Devi K. Cardioprotective effect of HPLC standardized ethanolic extract of Terminalia pallida fruits against isoproterenol-induced myocardial infarction in albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:33-40. [PMID: 22366678 DOI: 10.1016/j.jep.2012.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/25/2011] [Accepted: 01/10/2012] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia pallida is an evergreen endemic tree, mentioned in Ayurveda as the fruits of Terminalia pallida are excellent in cardioprotective property. Tribal people use Terminalia pallida fruit for the treatment of diabetes and this plant widely used in many other disorders. AIM OF STUDY The present investigation was to evaluate the antioxidant, biochemical profile and histological studies of qualitatively standardized ethanolic extract of Terminalia pallida fruits (TpFE) against isoproterenol-induced myocardial infarction in rats. MATERIALS AND METHODS TpFE was standardized by high performance liquid chromatography (HPLC) and mass spectroscopy (MS). Rats were pretreated orally with different doses of TpFE (100, 300, and 500mgkg(-1) body weight) and cardioprotective positive control gallic acid (GA) for 30 days prior to isoproterenol (ISO) induced myocardial infarction. The rats were sacrificed, hearts were collected and homogenized for biochemical analysis. The effects on total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and very low density lipoprotein cholesterol (VLDL-C), high density lipoprotein cholesterol (HDL-C), lipid peroxidation (LPO) marker, malondialdehyde (MDA), creatine kinase (CK), lactate dehydrogenase (LDH), alanine transaminase (ALT), aspartate transaminase (AST), catalase (CAT), glutathione peroxidase (GPx), sodium potassium (Na(+)/K(+)), calcium (Ca(2+)) and magnesium (Mg(2+)) adenosine triphosphatases (ATPases) were estimated in heart tissue homogenate. RESULTS Rats administered with ISO showed a significant increase in TC, TG, LDL-C, VLDL-C, and MDA and a significant decrease in HDL-C, cardiac marker enzymes - CK, LDH, ALT and AST. ISO significantly reduced antioxidants - CAT, GPx, and membrane bound enzymes - Na(+)/K(+), Ca(2+) and Mg(2+) ATPases. Pretreatment with TpFE (100, 300, and 500mgkg(-1) bw) and GA (15mgkg(-1) bw) for a period of 30 days significantly inhibited the effects of ISO. Moreover, biochemical findings were supported by histopathological observations. CONCLUSION The present study provide evidence for the first time, that TpFE pretreatment ameliorated myocardial injury in ISO-induced myocardial infarcted rats and exhibited cardioprotective activity.
Collapse
Affiliation(s)
- Althaf Hussain Shaik
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur 515003, A.P., India
| | | | | | | | | | | |
Collapse
|
32
|
Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid States. ScientificWorldJournal 2012; 2012:741861. [PMID: 22649319 PMCID: PMC3354657 DOI: 10.1100/2012/741861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/25/2011] [Indexed: 02/07/2023] Open
Abstract
Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism). The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.
Collapse
Affiliation(s)
- Pallavi Mishra
- Department of Zoology, Utkal University, Odisha, Bhubaneswar 751004, India
| | | |
Collapse
|
33
|
Liu CF, Lin CH, Lin CC, Lin YH, Chen CF, Lin SC. Protective Effect of Propolis Ethanol Extract on Ethanol-Induced Renal Toxicity: Anin VivoStudy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 33:779-86. [PMID: 16265990 DOI: 10.1142/s0192415x05003363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute p.o. administration of absolute ethanol (10 ml/kg) to fasted mice would produce extensive renal failure. Pretreatment with p.o. administration of propolis ethanol extract (PEE) could prevent such renal failure effectively and dose dependently. This renal protective effect of PEE may be contributed, at least in part, to its antioxidative activity. The maximal antioxidative effect against absolute ethanol (AE)-induced renal failure could be observed 1 hour after PEE administration. In order to further investigate the renal protective mechanism of PEE, lipid peroxidation and superoxide scavenging activity were conducted in vivo. PEE exhibited dose-dependent antioxidative effects on lipid peroxidation in mice renal homogenate. Results indicated that mice with acute renal failure have higher malonic dialdehyde (MDA) levels compared with those in PEE administered mice. It was concluded that the renal protective mechanism of PEE could be contributed, at least in part, to its prominent superoxide scavenging effect; hence, it could protect, indirectly, the kidney from superoxide-induced renal damages.
Collapse
Affiliation(s)
- Chi-Feng Liu
- National Taipei College of Nursing, Taipei, 112, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Ramadass N, Kombiyil S, Kasinathan NK, Sivasithamparam ND. Attenuation of mitochondrial oxidative stress by morin during chemical carcinogen-mediated mammary carcinogenesis. BIOMEDICINE & PREVENTIVE NUTRITION 2012; 2:9-15. [DOI: 10.1016/j.bionut.2011.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Weis SN, Schunck RVA, Pettenuzzo LF, Krolow R, Matté C, Manfredini V, do Carmo R Peralba M, Vargas CR, Dalmaz C, Wyse ATS, Netto CA. Early biochemical effects after unilateral hypoxia-ischemia in the immature rat brain. Int J Dev Neurosci 2011; 29:115-20. [PMID: 21255637 DOI: 10.1016/j.ijdevneu.2010.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/25/2010] [Accepted: 12/26/2010] [Indexed: 11/30/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) gives rise to inadequate substrate supply to the brain tissue, resulting in damage to neural cells. Previous studies at different time points of development, and with different animal species, suggest that the HI insult causes oxidative damage and changes Na+, K+-ATPase activity, which is known to be very susceptible to free radical-related lipid peroxidation. The aim of the present study was to establish the onset of the oxidative damage response in neonatal Wistar rats subjected to brain HI, evaluating parameters of oxidative stress, namely nitric oxide production, lipoperoxidation by thiobarbituric acid reactive substances (TBA-RS) production and malondialdehyde (MDA) levels, reactive species production by DCFH oxidation, antioxidant enzymatic activities of catalase, glutathione peroxidase, superoxide dismutase as well as Na+, K+-ATPase activity in hippocampus and cerebral cortex. Rat pups were subjected to right common carotid ligation followed by exposure to a hypoxic atmosphere (8% oxygen and 92% nitrogen) for 90 min. Animals were sacrificed by decapitation 0, 1 and 2 h after HI and both hippocampus and cerebral cortex from the right hemisphere (ipsilateral to the carotid occlusion) were dissected out for further experimentation. Results show an early decrease of Na+, K+-ATPase activity (at 0 and 1 h), as well as a late increase in MDA levels (2 h) and superoxide dismutase activity (1 and 2 h after HI) in the hippocampus. There was a late increase in both MDA levels and DCFH oxidation (1 and 2 h) and an increase in superoxide dismutase activity (2 h after HI) in cortex; however Na+, K+-ATPase activity remained unchanged. We suggest that neonatal HI induces oxidative damage to both hippocampus and cortex, in addition to a decrease in Na+, K+-ATPase activity in hippocampus early after the insult. These events might contribute to the later morphological damage in the brain and indicate that it would be essential to pursue neuroprotective strategies, aimed to counteract oxidative stress, as early as possible after the HI insult.
Collapse
Affiliation(s)
- Simone N Weis
- Programa de Pós-Graduação em Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Balasubramaniyan V, Viswanathan P, Nalini N. Effect of leptin administration on membrane-bound adenosine triphosphatase activity in ethanol-induced experimental liver toxicity. J Pharm Pharmacol 2010; 58:1113-9. [PMID: 16872559 DOI: 10.1211/jpp.58.8.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Hepatic injury elicits intracellular stress that leads to peroxidation of membrane lipids accompanied by alteration of structural and functional characteristics of the membrane, which affects the activity of membrane-bound ATPases. We have explored the effect of leptin on hepatic marker enzyme and membrane-bound adenosine triphosphatases in ethanol-induced liver toxicity in mice. The experimental groups were control, leptin (230 μg kg−1, i.p. every alternate day for last 15 days), alcohol (6.32 g kg−1, by intragastric intubation for 45 days), and alcohol plus leptin. Ethanol feeding to mice significantly (P < 0.05) elevated the plasma leptin, alanine transaminase (ALT), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (GGT) and hepatic lipid hydroperoxides (LOOH), and plasma and hepatic total ATPases, Na+, K+-ATPase and Mg2+-ATPase. There was a significant decrease in Ca2+-ATPase and reduced glutathione (GSH). Leptin injections to ethanol-fed animals further elevated the levels of hepatic LOOH, plasma and hepatic total ATPases, Na+, K+-ATPase and Mg2+-ATPase, while the Ca2+-ATPase and GSH were decreased significantly. In addition, leptin administration was found to increase the plasma levels of leptin, ALT, ALP, GGT, Na+ and inorganic phosphorous, and decrease the levels of K+ and Ca2+ in ethanol-fed mice. These findings were consistent with our histological observations, confirming that leptin enhanced liver ailments in ethanol-supplemented mice.
Collapse
Affiliation(s)
- Vairappan Balasubramaniyan
- Department of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | | | | |
Collapse
|
37
|
Gutiérrez P, Abad C, Proverbio T, Piñero S, Marín R, Proverbio F. Ca-ATPase Activity of Human Red Cell Ghosts: Preeclampsia, Lipid Peroxidation and MgSO4. Hypertens Pregnancy 2009; 28:390-401. [DOI: 10.3109/10641950802629642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Carrera F, Casart YC, Proverbio T, Proverbio F, Marín R. Preeclampsia and Calcium‐ATPase Activity of Plasma Membranes from Human Myometrium and Placental Trophoblast. Hypertens Pregnancy 2009; 22:295-304. [PMID: 14572366 DOI: 10.1081/prg-120024033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE We determined calcium-activated adenosine triphosphatase (Ca-ATPase) activity and thiobarbituric acid-reactive substances (TBARS) of plasma membranes from myometrium and placental trophoblast of normotensive and preeclamptic pregnant women. METHODS Samples of myometrium were obtained by uterine biopsies taken upon delivery by cesarean section from nulliparous normotensive and preeclamptic pregnant women. Placentas were obtained after full term vaginal delivery from either normotensive or preeclamptic women. Plasma membrane fractions were prepared from both myometrium and placenta and assayed for Ca-ATPase activity and TBARS. MAIN OUTCOME MEASURE(S) We expected to find a higher level of TBARS and, consequently, a lower activity of Ca-ATPase of the plasma membrane fractions obtained from both myometrium and placenta of preeclamptic women. RESULTS The Ca-ATPase activity of myometrium and placental trophoblast from preeclamptic women was about 50% lower than that from normotensive women, while the TBARS were higher. CONCLUSIONS A reduced Ca-ATPase activity, caused by an increased level of TBARS, may result in an increase in the cytosolic calcium concentration in the vascular smooth muscle cells of preeclamptic women and thus partially explain the high blood pressure developed by these patients.
Collapse
Affiliation(s)
- Francisco Carrera
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
39
|
Devika PT, Stanely Mainzen Prince P. (-)Epigallocatechingallate protects the mitochondria against the deleterious effects of lipids, calcium and adenosine triphosphate in isoproterenol induced myocardial infarcted male Wistar rats. J Appl Toxicol 2009; 28:938-44. [PMID: 18528854 DOI: 10.1002/jat.1357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study was undertaken to evaluate the protective effect of (-)epigallocatechin gallate (EGCG) on mitochondrial lipids, lipid peroxides, Na(+)/K(+) ATPase, calcium and adenosine triphosphate in isoproterenol (ISO) induced myocardial infarction in male Wistar rats. Rats were pretreated with EGCG (30 mg kg(-1) body weight) orally using an intragastric tube daily for a period of 21 days. After that, ISO (100 mg kg(-1) body weight) was subcutaneously injected to rats at intervals of 24 h for two days. ISO induced rats showed significant increase in the levels of cholesterol, triglycerides and free fatty acids with subsequent decrease in the levels of phospholipids in mitochondrial fraction of the heart. ISO induction also caused significant increase in lipid peroxidation products (thiobarbituric acid reactive substances and lipid hydroperoxides) and significant decrease in the activity of Na(+)/K(+) ATPase in mitochondrial fraction of the heart. A significant increase in the levels of calcium and significant decrease in the levels of adenosine triphosphate were observed in ISO-induced mitochondrial heart. Prior treatment with EGCG (30 mg kg(-1)) significantly protected these alterations and maintained normal mitochondrial function. Thus, this study confirmed the protective effect of EGCG on mitochondria in experimentally induced cardiotoxicity in Wistar rats.
Collapse
Affiliation(s)
- P T Devika
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | | |
Collapse
|
40
|
Senthil S, Sridevi M, Pugalendi KV. Protective Effect of Ursolic Acid Against Myocardial Ischemia Induced by Isoproterenol in Rats. Toxicol Mech Methods 2008; 17:57-65. [DOI: 10.1080/15376510600822649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Effect of Placental Hypoxia on the Plasma Membrane Ca-ATPase (PMCA) Activity and the Level of Lipid Peroxidation of Syncytiotrophoblast and Red Blood Cell Ghosts. Placenta 2008; 29:44-50. [DOI: 10.1016/j.placenta.2007.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 08/28/2007] [Accepted: 08/30/2007] [Indexed: 11/17/2022]
|
42
|
Senthil S, Sridevi M, Pugalendi KV. Cardioprotective effect of oleanolic acid on isoproterenol-induced myocardial ischemia in rats. Toxicol Pathol 2007; 35:418-23. [PMID: 17455091 DOI: 10.1080/01926230701230312] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was designed to investigate the protective effect of oleanolic acid (OA) against isoproterenol-induced myocardial ischemia in rat myocardium. Wistar strain rats were pretreated with OA (20, 40, and 60 mg/kg, s.c) for 7 days and then intoxicated with isoproterenol (ISO, 85 mg/kg, sc for 2 consecutive days). Heart were excised from the experimental animals and assessed for the activities of marker enzymes [alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine phosphokinase (CPK)], the levels of lipid peroxide products [thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD)], myeloperoxidase (MPO), lipid profiles [total cholesterol (TC), free cholesterol, ester cholesterol, triglycerides (TG), free fatty acids (FFA) and phospholipids (PL)], and membrane-bound ATPase enzymes (total ATPase, Na(+)K(+) ATPase, Ca(2 +) ATPase, and Mg(2 +) ATPase). Troponin T and I were estimated in plasma. Leakage of cardiac markers, elevated lipid peroxidation with increased lipid profiles and decreased activities of membrane-bound ATPase enzymes were confirmed the severe myocardial damage occurring as a consequence of isoproterenol-induced ischemia, and they also showed the significant improvement effected by oleanolic acid pretreatment. These findings provided evidence that oleanolic acid was found to be protecting rat myocardium against ischemic insult and the protective effect could attribute to its anti-oxidative, anti-hyperlipedemic, and anti-arrhythmic properties as well as its membrane-stabilizing action.
Collapse
Affiliation(s)
- S Senthil
- Department of Biochemistry, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India
| | | | | |
Collapse
|
43
|
Rasbach KA, Schnellmann RG. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Commun 2007; 355:734-9. [PMID: 17307137 DOI: 10.1016/j.bbrc.2007.02.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/03/2007] [Indexed: 11/23/2022]
Abstract
Cell death from mitochondrial dysfunction and compromised bioenergetics is common after ischemia-reperfusion injury and toxicant exposure. Thus, promoting mitochondrial biogenesis is therapeutically attractive for sustaining oxidative phosphorylation and maintaining ATP-dependent cellular functions. Here, we evaluated increased mitochondrial biogenesis prior to or after oxidant exposure in primary cultures of renal proximal tubular cells (RPTC). Over-expression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1 alpha (PGC-1alpha) in control RTPC increased basal and uncoupled cellular respiration, ATP, and mitochondria. Increasing mitochondrial number/function prior to oxidant exposure did not preserve mitochondrial function, but potentiated dysfunction and cell death. However, increased mitochondrial biogenesis after oxidant injury accelerated recovery of mitochondrial function. In oxidant treated RPTC, mitochondrial protein expression was reduced by 50%. Also, ATP and cellular respiration decreased 48 h after oxidant exposure, whereas mitochondrial function in injured RPTC over-expressing PGC-1alpha returned to control values. Thus, up-regulation of mitochondrial biogenesis after oxidant exposure accelerates recovery of mitochondrial and cellular functions.
Collapse
Affiliation(s)
- Kyle A Rasbach
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun St. POB 250140, Charleston, SC 29425, USA
| | | |
Collapse
|
44
|
Subashini R, Gnanapragasam A, Senthilkumar S, Yogeeta SK, Devaki T. Protective Efficacy of Nardostachys jatamansi (Rhizomes) on Mitochondrial Respiration and Lysosomal Hydrolases during Doxorubicin Induced Myocardial Injury in Rats. ACTA ACUST UNITED AC 2007. [DOI: 10.1248/jhs.53.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Kuhad A, Tirkey N, Pilkhwal S, Chopra K. Renoprotective effect of Spirulina fusiformis on cisplatin-induced oxidative stress and renal dysfunction in rats. Ren Fail 2006; 28:247-54. [PMID: 16703798 DOI: 10.1080/08860220600580399] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent used in the treatment of a wide array of both pediatric and adult malignancies. Dose-dependent and cumulative nephrotoxicity is the major toxicity of this compound, sometimes requiring a reduction in dose or discontinuation of treatment. Recent evidences have implicated oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Spirulina fusiformis, blue-green algae, is claimed to be a potential antioxidant. The present study was designed to explore the renoprotective potential of Spirulina fusiformis against cisplatin-induced oxidative stress and renal dysfunction. Spirulina fusiformis (500,1000,1500 mg/kg(-1) p.o.) was administered 2 days before and until 3 days after cisplatin challenge (5 mg/kg(-1) i.p.). Renal injury was assessed by measuring serum creatinine, blood urea nitrogen, creatinine and urea clearance, and serum nitrite levels. Renal oxidative stress was determined by renal TBARS levels, reduced glutathione levels, and by enzymatic activity of superoxide dismutase and catalase. A single dose of cisplatin produced marked renal oxidative and nitrosative stress and significantly deranged renal functions. Chronic Spirulina fusiformis treatment significantly and dose-dependently restored renal functions, reduced lipid peroxidation, and enhanced reduced glutathione levels, superoxide dismutase, and catalase activities. The results of the present study clearly demonstrate the pivotal role of reactive oxygen species and their relation to renal dysfunction and point to the therapeutic potential of Spirulina fusiformis in cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
46
|
Liu L, Li J, Liu J, Yuan Z, Pierre SV, Qu W, Zhao X, Xie Z. Involvement of Na+/K+-ATPase in hydrogen peroxide-induced hypertrophy in cardiac myocytes. Free Radic Biol Med 2006; 41:1548-56. [PMID: 17045923 DOI: 10.1016/j.freeradbiomed.2006.08.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 08/08/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
We have shown that increased production of reactive oxygen species (ROS) was required for ouabain-induced hypertrophy in cultured cardiac myocytes. In the present study we assessed whether long-term exposure of myocytes to nontoxic ROS stress alone is sufficient to induce hypertrophy. A moderate amount of H2O2 was continuously generated in culture media by glucose oxidase. This resulted in a steady increase in intracellular ROS in cultured cardiac myocytes for at least 12 h. Such sustained, but not transient, increase in intracellular ROS at a level comparable to that induced by ouabain was sufficient to stimulate protein synthesis, increase cell size, and change the expression of several hypertrophic marker genes. Like ouabain, glucose oxidase increased intracellular Ca2+ and activated extracellular signal-regulated kinases 1 and 2 (ERK1/2). These effects of glucose oxidase were additive to ouabain-induced cellular changes. Furthermore, glucose oxidase stimulated endocytosis of the plasma membrane Na+/K+-ATPase, resulting in significant inhibition of sodium pump activity. While inhibition of ERK1/2 abolished glucose oxidase-induced increases in protein synthesis, chelating intracellular Ca2+ by BAPTA-AM showed no effect. These results, taken together with our prior observations, suggest that ROS may cross talk with Na+/K+-ATPase, leading to the activation of hypertrophic pathways in cardiac myocytes.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Islam F. Effect of Saffron (Crocus sativus) on Neurobehavioral and Neurochemical Changes in Cerebral Ischemia in Rats. J Med Food 2006; 9:246-53. [PMID: 16822211 DOI: 10.1089/jmf.2006.9.246] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The modifying effects of Crocus sativus (CS) stigma extract on neurobehavioral activities, malondialdehyde (MDA), reduced glutathione (GSH), glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase (SOD), catalase (CAT), and Na(+),K(+)-ATPase activities, and glutamate (Glu) and aspartate (Asp) content were examined in the middle cerebral artery (MCA) occlusion (MCAO) model of acute cerebral ischemia in rats. The right MCA of male Wistar rats was occluded for 2 hours using intraluminal 4-0 monofilament, and reperfusion was allowed for 22 hours. MCAO caused significant depletion in the contents of GSH and its dependent enzymes while significant elevation of MDA, Glu, and Asp. The activities of Na(+),K(+)-ATPase, SOD, and CAT were decreased significantly by MCAO. The neurobehavioral activities (grip strength, spontaneous motor activity, and motor coordination) were also decreased significantly in the MCAO group. All the alterations induced by ischemia were significantly attenuated by pretreatment of CS (100 mg/kg of body weight, p.o.) 7 days before the induction of MCAO and correlated well with histopathology by decreasing the neuronal cell death following MCAO and reperfusion. The present results may suggest the effectiveness of CS in focal ischemia most probably by virtue of its antioxidant property.
Collapse
Affiliation(s)
- Sofiyan Saleem
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dinant S, van Veen SQ, Roseboom HJ, van Vliet AK, van Gulik TM. Liver protection by hypothermic perfusion at different temperatures during total vascular exclusion. Liver Int 2006; 26:486-93. [PMID: 16629653 DOI: 10.1111/j.1478-3231.2006.01248.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
INTRODUCTION In situ hypothermic perfusion (HP) can be applied to attenuate ischemia and reperfusion (I/R) injury during liver resection under total vascular exclusion (TVE). This study examines the protective effect of cooling by HP at 20 and 28 degrees C as compared with no HP during TVE in a porcine liver I/R model. METHODS Twenty-one pigs underwent 60 min TVE of the liver followed by 24 h reperfusion. HP was performed via the portal vein using ringerlactate solution of 4 degrees C. Pigs were assigned to three groups: TVE without HP (no-HP, n=9), TVE with HP at 28 degrees C (HP-28, n=6) and TVE with HP at 20 degrees C (HP-20, n=6). RESULTS Perfusion volumes during TVE were 5.1+/-0.5 and 17.3+/-1.7 l in HP-28 and HP-20, respectively (P<0.05). Aspartate aminotransferase (AST) after 24 h reperfusion was 1172+/-440 U/l in no-HP as compared with 223+/-69 and 180+/-22 U/l in HP-28 and HP-20, respectively (P<0.05). No differences in liver function or histopathology were found between the HP-28 and HP-20 groups. CONCLUSIONS HP at 20 degrees C is equally effective in preserving liver function and preventing hepatocellular injury under TVE as compared with HP at 28 degrees C. HP at 28 degrees C is advised, because of the lesser perfusion volume necessary for cooling of the liver.
Collapse
Affiliation(s)
- Sander Dinant
- Department of Surgery (Surgical Laboratory), Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
49
|
Borrego E, Proverbio T, Marín R, Proverbio F. Lipid Peroxidation and Ca-ATPase Activity of Basal Plasma Membranes of Syncytiotrophoblast from Normotensive Pregnant Women. Gynecol Obstet Invest 2006; 61:128-32. [PMID: 16272818 DOI: 10.1159/000089491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/06/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Ca-ATPase activity of the plasma membranes of several tissues of preeclamptic pregnant women is significantly reduced when compared with the values of normotensive pregnant women. This has been explained considering the raise in the level of lipid peroxidation of the plasma membranes with preeclampsia. In this work we studied the effect of lipid peroxidation of syncytiotrophoblast basal (fetal facing) plasma membranes from normotensive pregnant women, on their level of Ca-ATPase activity. METHODS The syncytiotrophoblast basal (fetal facing) plasma membranes from normotensive pregnant women were isolated and irradiated with ultraviolet (UV) light (254 nm). The membranes were then assayed for Ca-ATPase activity and lipid peroxidation by TBARS. RESULTS The UV irradiation raises the level of lipid peroxidation of the membranes, producing a concomitant inhibition of their Ca-ATPase activity. Presence of the antioxidant butylated hydroxytoluene during the UV irradiation of the membranes prevents increase in their level of lipid peroxidation and hence the inhibition of their Ca-ATPase activity. CONCLUSION These results give a strong support to the hypothesis that the lowered Ca-ATPase activity already described for plasma membranes of several tissues of preeclamptic women is the consequence of the increased level of lipid peroxidation shown by these membranes.
Collapse
Affiliation(s)
- Emma Borrego
- Laboratorio de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela
| | | | | | | |
Collapse
|
50
|
Kuhad A, Tirkey N, Pilkhwal S, Chopra K. Effect of Spirulina, a blue green algae, on gentamicin-induced oxidative stress and renal dysfunction in rats. Fundam Clin Pharmacol 2006; 20:121-8. [PMID: 16573712 DOI: 10.1111/j.1472-8206.2006.00396.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gentamicin (GM), an aminoglycoside, is widely employed in clinical practice for the treatment of serious Gram-negative infections. The clinical utility of GM is limited by the frequent incidence of acute renal failure. Experimental evidences suggest that oxidative and nitrosative stress play an important role in GM nephrotoxicity. Spirulina fusiformis is a blue green algae with potent free radical scavenging properties. The present study was designed to investigate renoprotective potential of S. fusiformis, against GM-induced oxidative stress and renal dysfunction. Spirulina fusiformis (500, 1000, 1500 mg/kg, p.o.) was administered 2 days before and 8 days concurrently with GM (100 mg/kg, i.p.). Renal injury was assessed by measuring serum creatinine, blood urea nitrogen and creatinine clearance and serum nitrite levels. Renal oxidative stress was determined by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of superoxide dismutase (SOD) and catalase. Chronic GM administration resulted in marked renal oxidative and nitrosative stress and significantly deranged renal functions. Treatment with S. fusiformis significantly and dose-dependently restored renal functions, reduced lipid peroxidation and enhanced reduced glutathione levels, SOD and catalase activities. The results of present study clearly demonstrate the pivotal role of reactive oxygen species and their relation to renal dysfunction and point to the therapeutic potential of S. fusiformis in GM-induced nephrotoxicity.
Collapse
Affiliation(s)
- Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|