1
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Waldenström A, Haney M, Biber B, Kavianipour M, Moritz T, Strandén P, Wikström G, Ronquist G. Ischaemic preconditioning is related to decreasing levels of extracellular adenosine that may be metabolically useful in the at-risk myocardium: an experimental study in the pig. Acta Physiol (Oxf) 2010; 199:1-9. [PMID: 20028345 DOI: 10.1111/j.1748-1716.2009.02071.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM 'Pre-treatment' with short repetitive periods of ischaemia (ischaemic preconditioning) has proved to be a powerful mechanism for modification of the extent of myocardial damage following acute coronary artery occlusion. The exact mechanism of protection induced by ischaemic preconditioning is not known. We herewith put forward a contributing component for protection with preconditioning involving a shift in the adenylate kinase (AK) equilibrium reaction in favour of adenosine triphosphate (ATP) formation. METHODS A coronary artery was occluded in anaesthetized thoracotomized pigs to induce ischaemic preconditioning as well as a longer period of ischaemia. Microdialysis probes were inserted in ischaemic and control myocardium and were infused with (14)C- adenosine with two different specific activities. (14)C-lactate was identified and measured in the effluent. RESULTS (14)C-adenosine was taken up by non-preconditioned and preconditioned myocardium during ischaemia. Significantly increased levels of (14)C-lactate were recovered in preconditioned myocardium. (14)C-adenosine with high specific activity resulted in a specific activity of lactate that was 2.7 times higher than that of lactate after administration of (14)C-adenosine with low specific activity. Mass spectrography verified the identity of (14)C-lactate. CONCLUSIONS Preconditioning up-regulates a new metabolic pathway (starting with 5'-nucleotidase and ending up with lactate) resulting in ATP formation in the micromolar range on top of another effect terminating in a useful shift in the AK equilibrium reaction in favour of ATP generation in the millimolar range. Although the up-regulation of the purine nucleoside phosphorylase pathway is clearly demonstrated, its biological relevance remains to be proved.
Collapse
Affiliation(s)
- A Waldenström
- Department of Public Health and Clinical Medicine, Cardiology and Heart Centre, Umeå University, University Hospital of Umeå, Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Ross FM, Brodie MJ, Stone TW. Nucleotide and dinucleotide effects on rates of paroxysmal depolarising bursts in rat hippocampus. PROGRESS IN BRAIN RESEARCH 1999; 120:251-62. [PMID: 10551002 DOI: 10.1016/s0079-6123(08)63560-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Slices of rat hippocampus can be induces to generate spontaneous interictal-like bursts of action potentials when perfused with a with a medium containing no added magnesium and 4-aminopyridine (4AP). The frequency of these bursts is depressed by adenosine 5'triphosphate (ATP) and this effect can be prevented by cyclopentyltheophylline but not by adenosine deaminase. AMP (50 microM) had a similar action to reduce discharge rate. At 10 microM, adenosine, diadenosine tetraphosphate and diadenosine pentaphosphate all decreased the burst frequency. Adenosine deaminase (0.2 U ml-1) totally annulled the inhibition of epileptiform activity produced by 10 microM adenosine but reduced only the later components of the inhibition by 10 microM diadenosine tetraphosphate and diadenosine pentaphosphate. Cyclopentyltheophylline prevented the depression of burst discharges by diadenosine tetraphosphate. 5'-adenylic acid deaminase (AMPPase) did not significantly alter the discharge rate over the 10 min superfusion period used for drum application but did prevent the depressant effect of AMP and ATP. AMP deaminase did not prevent the inhibitory effects of diadenosine tetraphosphate. The results suggests that in the CA3 region of the hippocampus, diadenosine tertraphosphate and diadenosine pentaphosphate act partly by stimulating xanthine sensitive receptors directly and partly via metabolism to adenosine, and that AMP may be responsible for the inhibitory effects of ATP on epileptiform activity.
Collapse
Affiliation(s)
- F M Ross
- Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | |
Collapse
|
4
|
Abstract
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5'-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.
Collapse
Affiliation(s)
- A M Hohl
- Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
5
|
Hohl CM. AMP deaminase in piglet cardiac myocytes: effect on nucleotide metabolism during ischemia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1502-10. [PMID: 10330232 DOI: 10.1152/ajpheart.1999.276.5.h1502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine in situ regulation of AMP deaminase in newborn piglet cardiac myocytes and to determine its role in nucleotide metabolism during ischemia. When a rapid deenergization paradigm was used to assay AMP deaminase, enzyme activity depended on the hormonal and metabolic status of cells just before deenergization. Inosine 5'-monophosphate (IMP) formation was increased 150% in deenergized myocytes pretreated with phorbol 12-myristate 13-acetate (PMA; EC50 = 4.7 x 10(-8) M). This effect was 90% blocked with the protein kinase C (PKC) inhibitor staurosporine. In addition, the beta-adrenergic agonist isoproterenol stimulated AMP deaminase activity (EC50 = 1.5 x 10(-8) M), and IMP formation was directly correlated to intracellular cAMP levels (r2 = 0.9). Furthermore, adenosine increased IMP formation, whereas nonrespiring, glycolyzing piglet myocytes had reduced AMP deaminase activity. Pretreatment of perfused piglet hearts with adenosine, but not PMA, before exposure to global ischemia resulted in enhanced conversion of AMP to IMP during the ischemic period. Similar results were obtained in piglet myocytes preincubated with adenosine or PMA before exposure to simulated ischemia. These results may be relevant to the preconditioning phenomenon.
Collapse
Affiliation(s)
- C M Hohl
- Department of Medical Biochemistry, Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
6
|
Ross FM, Brodie MJ, Stone TW. Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors. Br J Pharmacol 1998; 124:818-24. [PMID: 9690876 PMCID: PMC1565445 DOI: 10.1038/sj.bjp.0701890] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. When perfused with a medium containing no added magnesium and 4-aminopyridine (4AP) (50 microM) hippocampal slices generated epileptiform bursts of an interictal nature. We have shown in a previous study that adenosine 5'-triphosphate (ATP) depressed epileptiform activity and that this effect was blocked by the adenosine A1 receptor antagonist cyclopentyltheophylline but was not affected by adenosine deaminase. This implied that ATP might act indirectly at P1 receptors or at a xanthine-sensitive P2 receptor. The aim of the present study was to investigate further the action of ATP on epileptiform activity. 2. ATP can be metabolized by ecto-nucleotidases to adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP) and adenosine, respectively. Each of these metabolites can activate receptors in its own right: P2 receptors for ADP and P1 receptors for AMP and adenosine. 3. We now show that both AMP and ATP (50 microM) significantly decrease epileptiform discharge rate in a rapid and reversible manner. 5'Adenylic acid deaminase (AMP deaminase, AMPase) (0.2 u ml(-1)), when perfused alone did not significantly alter the discharge rate over the 10 min superfusion period used for drug application. When perfused concurrently with AMP (50 microM), AMP deaminase prevented the depressant effect of AMP on discharge rate. 4. AMP deaminase, at a concentration of 0.2 u ml(-1) which annulled the effect of AMP (50 microM), prevented the inhibitory activity of ATP (50 microM). A higher concentration of ATP (200 microM) depressed the frequency of spontaneous bursts to approximately 30% control and this response was also prevented by AMP deaminase. 5. Superfusion of the slices with 5'-nucleotidase also prevented the inhibitory activity of ATP on epileptiform discharges. 6. The results suggest that AMP mediates the inhibitory effects of ATP on epileptiform activity, a conclusion which can explain the earlier finding that cyclopentyltheophylline but not adenosine deaminase inhibited the effect of ATP. A corollary to this is that, when examining the pharmacology of ATP, care must be taken to inactivate AMP with AMP deaminase, as well as adenosine with adenosine deaminase, before a direct action of ATP on P1 receptors can be postulated. Failure to do so may have led to erroneous conclusions in some previous studies of nucleotide activity on nucleotide receptors.
Collapse
Affiliation(s)
- F M Ross
- Institute of Biomedical and Life Sciences, Division of Neuroscience and Biomedical Systems, Glasgow, Scotland
| | | | | |
Collapse
|
7
|
Marks WH, Ma Y, Yirdaw G, Florence L. Asialoglycoprotein/asialoglycoprotein receptor (AGP-AGPr) interaction is an important mechanism for the uptake of FK506 by hepatocytes. Transplantation 1997; 63:293-8. [PMID: 9020333 DOI: 10.1097/00007890-199701270-00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatic tissue concentrations of FK506 have been correlated with early acute rejection following liver transplantation. Asialoglycoproteins (AGP) reputedly bind FK506 in blood. AGP are removed from the circulation by the liver via the AGP receptor (AGPr), which resides on hepatocytes. This study was undertaken to determine if the AGP-AGPr mechanism enhances the delivery of FK506 to hepatocytes. Human orosomucoid (OM) was used as a representative AGP. asialoOM (aOM) was prepared by desialation of OM. Fresh rat hepatocytes were isolated by collagenase digestion. Tritium labeled FK506 (FK) was used to identify and quantitate FK506. Quantitation of FK in serum and culture media was by direct counting. FK in animal tissues used a method developed in our laboratory for the purpose. AGPr on resting hepatocytes was demonstrated by flow cytometry using FITC-orosomucoid and FITC-BSA controls. AGPr were enhanced by 2 g glucose/L. Two serum FK-binding fractions, 44 kD and 15 kD, were identified by gel filtration. Exogenous OM avidly bound FK and displaced FK activity from the 15 kD fraction. Serum (1%) and the 44 kD fraction enhanced the uptake of FK by hepatocytes, while serum depleted of OM-aOM by affinity chromatography was only 72.5% as effective as control serum; aOM enhanced the uptake of FK by hepatocytes to a degree similar to that of control serum but OM did not significantly affect the uptake of FK. Cold FK506 blocked the uptake and was dose dependent; cold CsA had no effect. Affinity extraction of OM from serum to which FK had previously been added removed 28.4% of FK activity. Following i.v. infusion, the kidney had the highest and liver the lowest tissue concentration of FK at 1 hr and 3 hr. In contrast, after oral administration the liver had the highest concentrations of the other tissues tested. The AGP-AGPr mechanism plays a significant role in the delivery of FK506 to hepatocytes and is likely responsible for the differences in bioavailability observed after oral and i.v. administration. Factors governing the AGP-AGPr mechanism are germane to understanding both the efficacy and toxicity of FK506 and the development optimal therapeutic strategies.
Collapse
Affiliation(s)
- W H Marks
- Laboratory for Transplantation Biology and Organ Transplant Program, Swedish Medical Center, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The transport of metabolites across the mitochondrial membrane is regulated by specific exchange and shuttle systems that are often dependent on the mitochondrial membrane potential. Thus, metabolite concentrations in the cytosol and mitochondrial compartments are largely determined by the energy state of the cardiac muscle cell. The purpose of this study was to investigate metabolic compartmentalization in ventricular myocytes isolated from newborn (< 24 h) swine hearts. Furthermore, the effect of respiratory inhibition on these distribution patterns was examined. Freshly isolated cells contained 33 nmol of ATP and 37 nmol of total adenine nucleotides (AN) per mg of myocyte protein. Rapid digitonin fractionation indicated that 95% of ATP and 86% of AN were cytosolic, whereas > 50% of the pyridine nucleotides were mitochondrial. With 11 mM added glucose, myocytes treated with the respiratory inhibitor, rotenone, maintained ATP at 88% of that of aerobic myocytes, but phosphocreatine declined by 50% over 30 min. Rotenone treatment caused the mitochondrial NAD/NADH ratio to decline from 1.2 to 0.06, whereas the cytosolic pyridine nucleotides remained > 90% oxidized. Total adenine and pyridine nucleotide content and their compartmentalization were unaffected by respiratory inhibition. Comparisons of metabolite content and respiratory activity between isolated piglet mitochondria and the mitochondrial compartment of piglet myocytes indicated that mitochondria account for approximately 30% of total myocyte protein. A similar value (29%) was obtained for the aqueous volume fraction of the in situ mitochondrial matrix using the 4000 Mr 14C-labeled polyethylene glycol-impermeable 3H2O spaces of intact and lysed myocytes. These results are comparable to literature values for myocardium from other species and age groups.
Collapse
Affiliation(s)
- B E Livingston
- Ohio State University Department of Medical Biochemistry, Columbus 43210, USA
| | | | | |
Collapse
|
9
|
Thakkar JK, Janero DR, Sharif HM, Hreniuk D, Yarwood C. Cardiac adenylate deaminase: molecular, kinetic and regulatory properties under phosphate-free conditions. Biochem J 1994; 300 ( Pt 2):359-63. [PMID: 8002940 PMCID: PMC1138170 DOI: 10.1042/bj3000359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenylate deaminase (EC 3.5.4.6) may help to regulate the adenine nucleotide catabolism characteristic of such disease states as myocardial ischaemia. We report analysis of the molecular, kinetic and allosteric properties of rabbit heart adenylate deaminase when extracted and purified under phosphate-free conditions (i.e., with Hepes/KOH). The enzyme's subunit molecular mass (approximately 81 kDa), pI (6.5), substrate specificity for 5'-AMP, and activation by K+ were identical in the absence or presence of phosphate. At each chromatographic step during isolation without phosphate, cardiac adenylate deaminase showed a lower apparent activity as compared with the enzyme prepared with phosphate present. Kinetic constants for the phosphate-free rabbit heart adenylate deaminase preparation (Km 0.54 mM AMP; Vmax. 1.4 mumol/min per mg of protein) were approximately 10-fold lower than those of the enzyme isolated with phosphate. The same irreversible decrease in kinetic constants could be achieved by dialysing phosphate from the phosphate-containing enzyme preparation. The relationship between enzyme activity and substrate concentration was sigmoidal in the presence of phosphate, but hyperbolic in its absence. Cardiac adenylate deaminase under phosphate-free conditions was no longer allosterically activated by ATP and ADP, yet remained inhibitable by GTP. Enzyme inhibition by the transition-state mimic coformycin was not influenced by phosphate status. The phosphate-free preparation of rabbit heart adenylate deaminase was markedly labile and extremely susceptible to proteolysis by trypsin or chymotrypsin. The inactivation kinetics and fragmentation pattern in response to controlled proteolysis depended on whether the enzyme had been isolated with or without phosphate present, suggesting a conformational difference between the two enzyme preparations. These data constitute direct evidence that the absence of phosphate irreversibly converts cardiac adenylate deaminase into a pseudo-isoenzyme with distinct kinetic, regulatory and stability properties.
Collapse
Affiliation(s)
- J K Thakkar
- Research Department, Ciba Pharmaceuticals, Summit, NJ 07901
| | | | | | | | | |
Collapse
|