1
|
Henderson SW, Nourmohammadi S, Hrmova M. Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation-Chloride Cotransporters Mediate Potassium-Chloride Symport. Int J Mol Sci 2024; 25:12955. [PMID: 39684666 DOI: 10.3390/ijms252312955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Plant cation-chloride cotransporters (CCCs) are proposed to be Na+-K+-2Cl- transporting membrane proteins, although evolutionarily, they associate more closely with K+-Cl- cotransporters (KCCs). Here, we investigated grapevine (Vitis vinifera L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein. The 3D protein modeling revealed that the signatures of ion binding sites in plant CCCs resembled those of animal KCCs, which was supported by phylogenomic analyses and ancestral sequence reconstruction. The conserved features of plant CCCs and animal KCCs included predicted K+ and Cl--binding sites and the absence of a Na+-binding site. Measurements with VvCCC-injected Xenopus laevis oocytes with VvCCC localizing to plasma membranes indicated that the oocytes had depleted intracellular Cl- and net 86Rb fluxes, which agreed with thermodynamic predictions for KCC cotransport. The 86Rb uptake by VvCCC-injected oocytes was Cl--dependent, did not require external Na+, and was partially inhibited by the non-specific CCC-blocker bumetanide, implying that these properties are typical of KCC transporters. A loop diuretic-insensitive Na+ conductance in VvCCC-injected oocytes may account for earlier observations of Na+ uptake by plant CCC proteins expressed in oocytes. Our data suggest plant CCC membrane proteins are likely to function as K+-Cl- cotransporters, which opens the avenues to define their biophysical properties and roles in plant physiology.
Collapse
Affiliation(s)
- Sam W Henderson
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| | - Saeed Nourmohammadi
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
2
|
Koumangoye R, Bastarache L, Delpire E. NKCC1: Newly Found as a Human Disease-Causing Ion Transporter. FUNCTION 2020; 2:zqaa028. [PMID: 33345190 PMCID: PMC7727275 DOI: 10.1093/function/zqaa028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
Among the electroneutral Na+-dependent chloride transporters, NKCC1 had until now evaded identification as a protein causing human diseases. The closely related SLC12A transporters, NKCC2 and NCC have been identified some 25 years ago as responsible for Bartter and Gitelman syndromes: two renal-dependent salt wasting disorders. Absence of disease was most surprising since the NKCC1 knockout mouse was shown in 1999 to be viable, albeit with a wide range of deleterious phenotypes. Here we summarize the work of the past 5 years that introduced us to clinical cases involving NKCC1. The most striking cases are of 3 children with inherited mutations, who have complete absence of NKCC1 expression. These cases establish that lack of NKCC1 causes deafness; CFTR-like secretory defects with mucus accumulation in lung and intestine; severe xerostomia, hypotonia, dysmorphic facial features, and severe neurodevelopmental disorder. Another intriguing case is of a patient with a dominant deleterious SLC12A2 allele. This de novo mutation introduced a premature stop codon leading to a truncated protein. This mutant transporter seems to exert dominant-negative effect on wild-type transporter only in epithelial cells. The patient who suffers from lung, bladder, intestine, pancreas, and multiple endocrine abnormalities has, however, normal hearing and cognition. Finally, new reports substantiate the haploinsufficiency prediction of the SLC12A2 gene. Cases with single allele mutations in SLC12A2 have been linked to hearing loss and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Corresponding author. E-mail:
| |
Collapse
|
3
|
Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci Rep 2018; 8:9877. [PMID: 29959396 PMCID: PMC6026185 DOI: 10.1038/s41598-018-27995-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
The Na+–K+–2Cl− cotransporter NKCC1 plays a role in neuronal Cl− homeostasis secretion and represents a target for brain pathologies with altered NKCC1 function. Two main variants of NKCC1 have been identified: a full-length NKCC1 transcript (NKCC1A) and a shorter splice variant (NKCC1B) that is particularly enriched in the brain. The loop diuretic bumetanide is often used to inhibit NKCC1 in brain disorders, but only poorly crosses the blood-brain barrier. We determined the sensitivity of the two human NKCC1 splice variants to bumetanide and various other chemically diverse loop diuretics, using the Xenopus oocyte heterologous expression system. Azosemide was the most potent NKCC1 inhibitor (IC50s 0.246 µM for hNKCC1A and 0.197 µM for NKCC1B), being about 4-times more potent than bumetanide. Structurally, a carboxylic group as in bumetanide was not a prerequisite for potent NKCC1 inhibition, whereas loop diuretics without a sulfonamide group were less potent. None of the drugs tested were selective for hNKCC1B vs. hNKCC1A, indicating that loop diuretics are not a useful starting point to design NKCC1B-specific compounds. Azosemide was found to exert an unexpectedly potent inhibitory effect and as a non-acidic compound, it is more likely to cross the blood-brain barrier than bumetanide.
Collapse
|
4
|
Henderson SW, Wege S, Gilliham M. Plant Cation-Chloride Cotransporters (CCC): Evolutionary Origins and Functional Insights. Int J Mol Sci 2018; 19:E492. [PMID: 29415511 PMCID: PMC5855714 DOI: 10.3390/ijms19020492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
Genomes of unicellular and multicellular green algae, mosses, grasses and dicots harbor genes encoding cation-chloride cotransporters (CCC). CCC proteins from the plant kingdom have been comparatively less well investigated than their animal counterparts, but proteins from both plants and animals have been shown to mediate ion fluxes, and are involved in regulation of osmotic processes. In this review, we show that CCC proteins from plants form two distinct phylogenetic clades (CCC1 and CCC2). Some lycophytes and bryophytes possess members from each clade, most land plants only have members of the CCC1 clade, and green algae possess only the CCC2 clade. It is currently unknown whether CCC1 and CCC2 proteins have similar or distinct functions, however they are both more closely related to animal KCC proteins compared to NKCCs. Existing heterologous expression systems that have been used to functionally characterize plant CCC proteins, namely yeast and Xenopus laevis oocytes, have limitations that are discussed. Studies from plants exposed to chemical inhibitors of animal CCC protein function are reviewed for their potential to discern CCC function in planta. Thus far, mutations in plant CCC genes have been evaluated only in two species of angiosperms, and such mutations cause a diverse array of phenotypes-seemingly more than could simply be explained by localized disruption of ion transport alone. We evaluate the putative roles of plant CCC proteins and suggest areas for future investigation.
Collapse
Affiliation(s)
- Sam W Henderson
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| | - Stefanie Wege
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
5
|
Kuda Y, Shibamoto T, Zhang T, Yang W, Tanida M, Kurata Y. Gastric vascular and motor responses to anaphylactic hypotension in anesthetized rats, in comparison to those with hemorrhagic or vasodilator-induced hypotension. J Physiol Sci 2017; 68:253-260. [PMID: 28144845 PMCID: PMC5886998 DOI: 10.1007/s12576-017-0527-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
Anaphylactic shock is life-threatening, but pathophysiology of the stomach lesion remains unclear. We determined gastric hemodynamics and gastric functions during anaphylactic hypotension, as compared to hypotension induced by hemorrhage or sodium nitroprusside (SNP) in anesthetized and ovalbumin-sensitized Sprague–Dawley rats. Systemic arterial pressure, portal venous pressure, and gastric arterial blood flow were measured, and gastric vascular resistance (GVR) was determined. Separately, the intragastric pressure (IGP) and gastric effluent, as a measure of gastric flux, were continuously measured. During anaphylaxis, GVR decreased only transiently at 0.5 min, followed by an increase. IGP increased markedly, while gastric flux decreased. During hemorrhage, GVR and IGP increased, while gastric flux did not change. When SNP was injected, both GVR and IGP decreased and gastric flux increased only just after injection. In conclusion, gastric vasodilatation occurs only transiently after antigen injection, and gastric motility increases, but gastric emptying deceases during anaphylactic hypotension in anesthetized rats.
Collapse
Affiliation(s)
- Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Toshishige Shibamoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan.
| | - Tao Zhang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan.,Department of Colorectal and Hernia Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Wei Yang
- Department of Physiology II, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan.,Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| |
Collapse
|
6
|
Lykke K, Töllner K, Feit PW, Erker T, MacAulay N, Löscher W. The search for NKCC1-selective drugs for the treatment of epilepsy: Structure-function relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A. Epilepsy Behav 2016; 59:42-9. [PMID: 27088517 DOI: 10.1016/j.yebeh.2016.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 11/30/2022]
Abstract
The Na(+)-K(+)-Cl(-) cotransporter NKCC1 plays a major role in the regulation of intraneuronal Cl(-) concentration. Abnormal functionality of NKCC1 has been implicated in several brain disorders, including epilepsy. Bumetanide is the only available selective NKCC1 inhibitor, but also inhibits NKCC2, which can cause severe adverse effects during treatment of brain disorders. A NKCC1-selective bumetanide derivative would therefore be a desirable option. In the present study, we used the Xenopus oocyte heterologous expression system to compare the effects of bumetanide and several derivatives on the two major human splice variants of NKCCs, hNKCC1A and hNKCC2A. The derivatives were selected from a series of ~5000 3-amino-5-sulfamoylbenzoic acid derivatives, covering a wide range of structural modifications and diuretic potencies. To our knowledge, such structure-function relationships have not been performed before for NKCC1. Half maximal inhibitory concentrations (IC50s) of bumetanide were 0.68 (hNKCC1A) and 4.0μM (hNKCC2A), respectively, indicating that this drug is 6-times more potent to inhibit hNKCC1A than hNKCC2A. Side chain substitutions in the bumetanide molecule variably affected the potency to inhibit hNKCC1A. This allowed defining the minimal structural requirements necessary for ligand interaction. Unexpectedly, only a few of the bumetanide derivatives examined were more potent than bumetanide to inhibit hNKCC1A, and most of them also inhibited hNKCC2A, with a highly significant correlation between IC50s for the two NKCC isoforms. These data indicate that the structural requirements for inhibition of NKCC1 and NKCC2 are similar, which complicates development of bumetanide-related compounds with high selectivity for NKCC1.
Collapse
Affiliation(s)
- Kasper Lykke
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Peter W Feit
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Thomas Erker
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
7
|
Lykke K, Töllner K, Römermann K, Feit PW, Erker T, MacAulay N, Löscher W. Structure-activity relationships of bumetanide derivatives: correlation between diuretic activity in dogs and inhibition of the human NKCC2A transporter. Br J Pharmacol 2015; 172:4469-4480. [PMID: 26101812 PMCID: PMC4562508 DOI: 10.1111/bph.13231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The N-K-Cl cotransporters (NKCCs) mediate the coupled, electroneutral movement of Na+ , K+ and Cl- ions across cell membranes. There are two isoforms of this cation co-transporter, NKCC1 and NKCC2. NKCC2 is expressed primarily in the kidney and is the target of diuretics such as bumetanide. Bumetanide was discovered by screening ∼5000 3-amino-5-sulfamoylbenzoic acid derivatives, long before NKCC2 was identified in the kidney. Therefore, structure-activity studies on effects of bumetanide derivatives on NKCC2 are not available. EXPERIMENTAL APPROACH In this study, the effect of a series of diuretically active bumetanide derivatives was investigated on human NKCC2 variant A (hNKCC2A) expressed in Xenopus laevis oocytes. KEY RESULTS Bumetanide blocked hNKCC2A transport with an IC50 of 4 μM. There was good correlation between the diuretic potency of bumetanide and its derivatives in dogs and their inhibition of hNKCC2A (r2 = 0.817; P < 0.01). Replacement of the carboxylic group of bumetanide by a non-ionic residue, for example, an anilinomethyl group, decreased inhibition of hNKCC2A, indicating that an acidic group was required for transporter inhibition. Exchange of the phenoxy group of bumetanide for a 4-chloroanilino group or the sulfamoyl group by a methylsulfonyl group resulted in compounds with higher potency to inhibit hNKCC2A than bumetanide. CONCLUSIONS AND IMPLICATIONS The X. laevis oocyte expression system used in these experiments allowed analysis of the structural requirements that determine relative potency of loop diuretics on human NKCC2 splice variants, and may lead to the discovery of novel high-ceiling diuretics.
Collapse
Affiliation(s)
- Kasper Lykke
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagen, Denmark
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| | - Peter W Feit
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
| | - Thomas Erker
- Department of Medicinal Chemistry, University of ViennaVienna, Austria
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagen, Denmark
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine HannoverHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| |
Collapse
|
8
|
Lu L, Fraser JA. Functional consequences of NKCC2 splice isoforms: insights from a Xenopus oocyte model. Am J Physiol Renal Physiol 2014; 306:F710-20. [PMID: 24477685 DOI: 10.1152/ajprenal.00369.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter NKCC2 is exclusively expressed in the renal thick ascending limb (TAL), where it exists as three main splice isoforms, NKCC2B, NKCC2A, and NKCC2F, with the latter two predominating. NKCC2A is expressed in both medullary and cortical TAL, but NKCC2F localizes to the medullary TAL. The biochemical characteristics of the isoforms have been extensively studied by ion uptake studies in Xenopus oocytes, but the functional consequences of alternative splicing remain unclear. We developed a charge-difference model of an NKCC2-transfected oocyte. The model closely recapitulated existing data from ion-uptake experiments. This allowed the reconciliation of different apparent Km values reported by various groups, which have hitherto either been attributed to species differences or remained unexplained. Instead, simulations showed that apparent Na(+) and Cl(-) dependencies are influenced by the ambient K(+) or Rb(+) bath concentrations, which differed between experimental protocols. At steady state, under bath conditions similar to the outer medulla, NKCC2F mediated greater Na(+) reabsorption than NKCC2A. Furthermore, Na(+) reabsorption by the NKCC2F-transfected oocyte was more energy efficient, as quantified by J NKCC/J Pump. Both the increased Na(+) reabsorption and the increased efficiency were eroded as osmolarity decreased toward levels observed in the cortical TAL. This supports the hypothesis that the NKCC2F is a medullary specialization of NKCC2 and demonstrates the utility of modeling in analyzing the functional implications of ion uptake data at physiologically relevant steady states.
Collapse
Affiliation(s)
- Liangjian Lu
- Physiological Laboratory, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
9
|
Ochoa-de la Paz LD, Salazar-Soto DB, Reyes JP, Miledi R, Martinez-Torres A. A hyperpolarization-activated ion current of amphibian oocytes. Pflugers Arch 2013; 465:1087-99. [PMID: 23440457 DOI: 10.1007/s00424-013-1231-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/29/2022]
Abstract
A comparative analysis of a hyperpolarization-activated ion current present in amphibian oocytes was performed using the two-electrode voltage-clamp technique in Xenopus laevis, Xenopus tropicalis, and Ambystoma mexicanum. This current appears to be driven mainly by Cl(-) ions, is independent of Ca(2+), and is made evident by applying extremely negative voltage pulses; it shows a slow activating phase and little or no desensitization. The pharmacological profile of the current is complex. The different channel blocker used for Cl(-), K(+), Na(+) and Ca(2+) conductances, exhibited various degrees of inhibition depending of the species. The profiles illustrate the intricacy of the components that give rise to this current. During X. laevis oogenesis, the hyperpolarization-activated current is present at all stages of oocytes tested (II-VI), and the amplitude of the current increases from about 50 nA in stage I to more than 1 μA in stage VI; nevertheless, there was no apparent modification of the kinetics. Our results suggest that the hyperpolarization-activated current is present both in order Anura and Urodela oocytes. However, the electrophysiological and pharmacological characteristics are quite perplexing and seem to suggest a mixture of ionic conductances that includes the activation of both anionic and cationic channels, most probably transiently opened due to the extreme hyperpolarizion of the plasma membrane. As a possible mechanism for the generation of the current, a kinetic model which fits the data suggests the opening of pores in the plasma membrane whose ion selectivity is dependent on the extracellular Cl(-) concentration. The extreme voltage conditions could induce the opening of otherwise latent pores in plasma membrane proteins (i.e., carriers), resembling the ´slippage´ events already described for some carriers. These observations should be valuable for other groups trying to express cloned, voltage-dependent ion channels in oocytes of amphibian in which hyperpolarizing voltage pulses are applied to activate the channels.
Collapse
Affiliation(s)
- L D Ochoa-de la Paz
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro, CP 76230, Mexico.
| | | | | | | | | |
Collapse
|
10
|
Friauf E, Rust MB, Schulenborg T, Hirtz JJ. Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system. Hear Res 2011; 279:96-110. [PMID: 21683130 DOI: 10.1016/j.heares.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 01/24/2023]
Abstract
The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5).
Collapse
Affiliation(s)
- Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
11
|
Migliati ER, Amiry-Moghaddam M, Froehner SC, Adams ME, Ottersen OP, Bhardwaj A. Na(+)-K (+)-2Cl (-) cotransport inhibitor attenuates cerebral edema following experimental stroke via the perivascular pool of aquaporin-4. Neurocrit Care 2010; 13:123-31. [PMID: 20458553 DOI: 10.1007/s12028-010-9376-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The Na(+)-K(+)-2Cl(-) cotransporter localized in the brain vascular endothelium has been shown to be important in the evolution of cerebral edema following experimental stroke. Previous in vivo studies have demonstrated that bumetanide, a selective Na(+)-K(+)-2Cl(-) cotransport inhibitor, attenuates ischemia-evoked cerebral edema. Recently, bumetanide has been shown to also inhibit water permeability via aquaporin-4 (AQP4) expressed in Xenopus laevis oocytes. We tested the hypothesis that the perivascular pool of AQP4 plays a significant role in the anti-edema effect of bumetanide by utilizing wild-type (WT) mice as well as mice with targeted disruption of alpha-syntrophin (alpha-Syn(-/-)) that lack the perivascular pool of AQP4. METHODS Isoflurane-anesthetized adult male WT C57Bl6 and alpha-Syn(-/-) mice were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by 24 or 48 h of reperfusion. Adequacy of MCAO and reperfusion was monitored with laser-Doppler flowmetry over the ipsilateral parietal cortex. Infarct volume (tetrazolium staining), cerebral edema (wet-to-dry ratios), and AQP4 protein expression (immunoblotting) were determined in different treatment groups in separate sets of experiments. RESULTS Bumetanide significantly attenuated infarct volume and decreased ipsilateral hemispheric water content in WT mice compared to vehicle treatment. In alpha-Syn(-/-) mice, bumetanide treatment had no effect on infarct volume or ischemia-evoked cerebral edema. Bumetanide-treated WT mice had a significant attenuation of AQP4 protein expression at 48 h post-MCAO compared to vehicle-treated WT mice. CONCLUSIONS These data suggest that bumetanide exerts its neuroprotective and anti-edema effects partly via blockade of the perivascular pool of AQP4 and may have therapeutic potential for ischemic stroke in the clinical setting.
Collapse
Affiliation(s)
- Elton R Migliati
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sherstobitov AO, Lapin AA, Glazunov VV, Nikiforov AA. Transport of monovalent thallium across the membrane of oocyte of the lamprey Lampetra fluviatilis. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010030026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Carota I, Theilig F, Oppermann M, Kongsuphol P, Rosenauer A, Schreiber R, Jensen BL, Walter S, Kunzelmann K, Castrop H. Localization and functional characterization of the human NKCC2 isoforms. Acta Physiol (Oxf) 2010; 199:327-38. [PMID: 20146722 DOI: 10.1111/j.1748-1716.2010.02099.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Salt reabsorption across the apical membrane of cells in the thick ascending limb (TAL) of Henle is primarily mediated by the bumetanide-sensitive Na(+)/K(+)/2Cl(-) cotransporter NKCC2. Three full-length splice variants of NKCC2 (NKCC2B, NKCC2A and NKCC2F) have been described. The NKCC2 isoforms have specific localizations and transport characteristics, as assessed for rabbit, rat and mouse. In the present study, we aimed to address the localization and transport characteristics of the human NKCC2 isoforms. METHODS RT-PCR, in situ hybridization and uptake studies in Xenopus oocytes were performed to characterize human NKCC2 isoforms. RESULTS All three classical NKCC2 isoforms were detected in the human kidney; in addition, we found splice variants with tandem duplicates of the variable exon 4. Contrary to rodents, in which NKCC2F is the most abundant NKCC2 isoform, NKCC2A was the dominant isoform in humans; similarly, isoform-specific in situ hybridization showed high expression levels of human NKCC2A along the TAL. Compared to NKCC2B and NKCC2F, human NKCC2A had the lowest Cl(-) affinity as determined by (86)Rb(+) uptake studies in oocytes. All NKCC2 isoforms were more efficiently inhibited by bumetanide than by furosemide. A sequence analysis of the amino acids encoded by exon 4 variants revealed high similarities between human and rodent NKCC2 isoforms, suggesting that differences in ion transport characteristics between species may be related to sequence variations outside the highly conserved sequence encoded by exon 4. CONCLUSION The human NKCC2 is an example of how differential splicing forms the basis for a diversification of transporter protein function.
Collapse
Affiliation(s)
- I Carota
- Institute of Physiology, University of Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gagnon KB, Delpire E. Molecular determinants of hyperosmotically activated NKCC1-mediated K+/K+ exchange. J Physiol 2010; 588:3385-96. [PMID: 20530115 DOI: 10.1113/jphysiol.2010.191932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Na(+)-K(+)-2Cl(-) cotransport (NKCC) mediates the movement of two Cl(-) ions for one Na(+) and one K(+) ion. Under isosmotic conditions or with activation of the kinases SPAK/WNK4, the NKCC1-mediated Cl(-) uptake in Xenopus laevis oocytes, as measured using (36)Cl, is twice the value of K(+) uptake, as determined using (86)Rb. Under hyperosmotic conditions, there is a significant activation of the bumetanide-sensitive K(+) uptake with only a minimal increase in bumetanide-sensitive Cl(-) uptake. This suggests that when stimulated by hypertonicity, the cotransporter mediates K(+)/K(+) and Cl(-)/Cl(-) exchange. Although significant stimulation of K(+)/K(+) exchange was observed with NKCC1, a significantly smaller hyperosmotic stimulatory effect was observed with NKCC2. In order to identify the molecular determinant(s) of this NKCC1-specific activation, we created chimeras of the mouse NKCC1 and the rat NKCC2. Swapping the regulatory amino termini of the cotransporters neither conferred activation to NKCC2 nor prevented activation of NKCC1. Using unique restrictions sites, we created additional chimeric molecules and determined that the first intracellular loop between membrane-spanning domains one and two and the second extracellular loop between membrane-spanning domains three and four of NKCC1 are necessary components of the hyperosmotic stimulation of K(+)/K(+) exchange.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
15
|
Migliati E, Meurice N, DuBois P, Fang JS, Somasekharan S, Beckett E, Flynn G, Yool AJ. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol Pharmacol 2009; 76:105-12. [PMID: 19403703 DOI: 10.1124/mol.108.053744] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aquaporin (AQP) water channels, essential for fluid homeostasis, are expressed in perivascular brain end-feet regions of astroglia (AQP4) and in choroid plexus (AQP1). At a high concentration, the loop diuretic bumetanide has been shown to reduce rat brain edema after ischemic stroke by blocking Na(+)-K(+)-2Cl(-) cotransport. We hypothesized that an additional inhibition of AQP contributes to the protection. We show that osmotic water flux in AQP4-expressing Xenopus laevis oocytes is reduced by extracellular bumetanide (> or =100 microM). The efficacy of block by bumetanide is increased by injection intracellularly. Forty-five synthesized bumetanide derivatives were tested on oocytes expressing human AQP1 and rat AQP4. Of these, one of the most effective was the 4-aminopyridine carboxamide analog, AqB013, which inhibits AQP1 and AQP4 (IC(50) approximately 20 microM, applied extracellularly). The efficacy of block was enhanced by mutagenesis of intracellular AQP4 valine-189 to alanine (V189A, IC(50) approximately 8 microM), confirming the aquaporin as the molecular target of block. In silico docking of AqB013 supported an intracellular candidate binding site in rat AQP4 and suggested that the block involves occlusion of the AQP water pore at the cytoplasmic side. AqB013 at 2 microM had no effect, and 20 microM caused 20% block of human Na(+)-K(+)-2Cl(-) cotransporter activity, in contrast to >90% block of the transporter by bumetanide. AqB013 did not affect X. laevis oocyte Cl(-) currents and did not alter rhythmic electrical conduction in an ex vivo gastric muscle preparation. The identification of AQP-selective pharmacological agents opens opportunities for breakthrough strategies in the treatment of edema and other fluid imbalance disorders.
Collapse
Affiliation(s)
- Elton Migliati
- Discipline of Physiology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Colmenero-Flores JM, Martínez G, Gamba G, Vázquez N, Iglesias DJ, Brumós J, Talón M. Identification and functional characterization of cation-chloride cotransporters in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:278-92. [PMID: 17355435 DOI: 10.1111/j.1365-313x.2007.03048.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chloride (Cl(-)) is an essential nutrient and one of the most abundant inorganic anions in plant tissues. We have cloned an Arabidopsis thaliana cDNA encoding for a member of the cation-Cl(-) cotransporter (CCC) family. Deduced plant CCC proteins are highly conserved, and phylogenetic analyses revealed their relationships to the sub-family of animal K(+):Cl(-) cotransporters. In Xenopus laevis oocytes, the A. thaliana CCC protein (At CCC) catalysed the co-ordinated symport of K(+), Na(+) and Cl(-), and this transport activity was inhibited by the 'loop' diuretic bumetanide, a specific inhibitor of vertebrate Na(+):K(+):Cl(-) cotransporters, indicating that At CCC encodes for a bona fide Na(+):K(+):Cl(-) cotransporter. Analysis of At CCC promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression in the root and shoot vasculature at the xylem/symplast boundary, root tips, trichomes, leaf hydathodes, leaf stipules and anthers. Plants homozygous for two independent T-DNA insertions in the CCC gene exhibited shorter organs such as inflorescence stems, roots, leaves and siliques. The elongation zone of the inflorescence stem of ccc plants often necrosed during bolt emergence, while seed production was strongly impaired. In addition, ccc plants exhibited defective Cl(-) homeostasis under high salinity, as they accumulated higher and lower Cl(-) amounts in shoots and roots, respectively, than the treated wild type, suggesting At CCC involvement in long-distance Cl(-) transport. Compelling evidence is provided on the occurrence of cation-chloride cotransporters in the plant kingdom and their significant role in major plant developmental processes and Cl(-) homeostasis.
Collapse
Affiliation(s)
- José M Colmenero-Flores
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km. 5, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Shibata T, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y. Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential. Am J Physiol Cell Physiol 2006; 291:C1038-48. [PMID: 16822945 DOI: 10.1152/ajpcell.00266.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cochlear endolymph has a highly positive potential of approximately +80 mV known as the endocochlear potential (EP). The EP is essential for hearing and is maintained by K(+) circulation from perilymph to endolymph through the cochlear lateral wall. Various K(+) transport apparatuses such as the Na(+),K(+)-ATPase, the Na(+)-K(+)-2Cl(-) cotransporter, and the K(+) channels Kir4.1 and KCNQ1/KCNE1 are expressed in the lateral wall and are known to play indispensable roles in cochlear K(+) circulation. The gastric type of the H(+),K(+)-ATPase was also shown to be expressed in the cochlear lateral wall (Lecain E, Robert JC, Thomas A, and Tran Ba Huy P. Hear Res 149: 147-154, 2000), but its functional role has not been well studied. In this study we examined the precise localization of H(+),K(+)-ATPase in the cochlea and its involvement in formation of EP. RT-PCR analysis showed that the cochlea expressed mRNAs of gastric alpha(1)-, but not colonic alpha(2)-, and beta-subunits of H(+),K(+)-ATPase. Immunolabeling of an antibody specific to the alpha(1) subunit was detected in type II, IV, and V fibrocytes distributed in the spiral ligament of the lateral wall and in the spiral limbus. Strong immunoreactivity was also found in the stria vascularis. Immunoelectron microscopic examination exhibited that the H(+),K(+)-ATPase was localized exclusively at the basolateral site of strial marginal cells. Application of Sch-28080, a specific inhibitor of gastric H(+),K(+)-ATPase, to the spiral ligament as well as to the stria vascularis caused prominent reduction of EP. These results may imply that the H(+),K(+)-ATPase in the cochlear lateral wall is crucial for K(+) circulation and thus plays a critical role in generation of EP.
Collapse
Affiliation(s)
- Toshiaki Shibata
- Div. of Molecular and Cellular Pharmacology, Department of Pharmacology, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Reversible phosphorylation by protein kinases is probably one of the most important examples of post-translational modification of ion transport proteins. Ste20-related proline alanine-rich kinase (SPAK) and oxidative stress response kinase (OSR1) are two serine/threonine kinases belonging to the germinal centre-like kinase subfamily VI. Genetic analysis suggests that OSR1 evolved first, with SPAK arising following a gene duplication in vertebrate evolution. SPAK and OSR1 are two recently discovered kinases which have been linked to several key cellular processes, including cell differentiation, cell transformation and proliferation, cytoskeleton rearrangement, and most recently, regulation of ion transporters. Na-K-2Cl cotransporter activity is regulated by phosphorylation. Pharmacological evidence has identified several kinases and phosphatases which alter cotransporter function, however, no direct linkage between these enzymes and the cotransporter has been demonstrated. This article will review some of the physical and physiological properties of SPAK and OSR1, and present new evidence of a direct interaction between the Na-K-Cl cotransporter and the stress kinases.
Collapse
Affiliation(s)
- E Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
19
|
Turner JH, Raymond JR. Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J Biol Chem 2005; 280:30741-50. [PMID: 15970592 DOI: 10.1074/jbc.m501696200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 5-hydroxytryptamine2A (5-HT2A) receptor is a G(q/11)-coupled serotonin receptor that activates phospholipase C and increases diacylglycerol formation. In this report, we demonstrated that calmodulin (CaM) co-immunoprecipitates with the 5-HT2A receptor in NIH-3T3 fibroblasts in an agonist-dependent manner and that the receptor contains two putative CaM binding regions. The putative CaM binding regions of the 5-HT2A receptor are localized to the second intracellular loop and carboxyl terminus. In an in vitro binding assay peptides encompassing the putative second intracellular loop (i2) and carboxyl-terminal (ct) CaM binding regions bound CaM in a Ca2+-dependent manner. The i2 peptide bound with apparent higher affinity and shifted the mobility of CaM in a nondenaturing gel shift assay. Fluorescence emission spectral analyses of dansyl-CaM showed apparent K(D) values of 65 +/- 30 nM for the i2 peptide and 168 +/- 38 nM for the ct peptide. The ct CaM-binding domain overlaps with a putative protein kinase C (PKC) site, which was readily phosphorylated by PKC in vitro. CaM binding and phosphorylation of the ct peptide were found to be antagonistic, suggesting a putative role for CaM in the regulation of 5-HT2A receptor phosphorylation and desensitization. Finally, we showed that CaM decreases 5-HT2A receptor-mediated [35S]GTPgammaS binding to NIH-3T3 cell membranes, supporting a possible role for CaM in regulating receptor-G protein coupling. These data indicate that the serotonin 5-HT2A receptor contains two high affinity CaM-binding domains that may play important roles in signaling and function.
Collapse
Affiliation(s)
- Justin H Turner
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425-2227, USA
| | | |
Collapse
|
20
|
Abstract
Experiments were performed on nembutal-narcotized rabbits. To study motor activity of the large intestine stimulation was applied to the right vagus nerve and left sympathetic trunk, as well as to the right pelvic nerve and left sympathetic trunk. We found a decreasing gradient of serotoninergic innervation from the ascending colon to the transverse colon and rectum (45-50, 30-35, and 25-30%, respectively) during simultaneous stimulation of the sympathetic trunk and vagus nerve and an increasing gradient of serotoninergic innervation in the large intestine during simultaneous stimulation of the sympathetic trunk and pelvic nerve. Stimulation of serotoninergic fibers was accompanied by arterial spasm in the microcirculatory bed and venous congestion.
Collapse
Affiliation(s)
- A E Lychkova
- Central Research Institute of Gastroenterology, Moscow
| |
Collapse
|
21
|
Diecke FP, Wen Q, Iserovich P, Li J, Kuang K, Fischbarg J. Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. Exp Eye Res 2005; 80:777-85. [PMID: 15939033 DOI: 10.1016/j.exer.2004.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 11/23/2004] [Accepted: 12/08/2004] [Indexed: 11/16/2022]
Abstract
We have previously demonstrated the presence of a Na(+)-K(+)-2Cl cotransporter in cultured bovine corneal endothelial cells (CBCEC) and determined that this cotransporter is located in the basolateral membrane. This transporter may contribute to volume regulation and transendothelial fluid transport. We have now investigated factors regulating the activity of the cotransporter. This activity was assessed by measuring the bumetanide-sensitive (86)Rubidium ((86)Rb) uptake in (86)Rb-containing solutions. Data were normalized to protein content determined with a Lowry protein assay. We investigated the regulation by extracellular and intracellular ion concentrations, by osmotic gradients, and by second messengers. Our results indicate that extracellular Na+ and K+ each are required for activation of the cotransporter and activate with first-order kinetics at half-maximally effective concentrations (k(1/2)) of 21.1 and 1.33 mM, respectively. Extracellular Cl- is also required for cotransport activation, but shows higher order kinetics; the k(1/2) for Cl- is 28.1 mM and the Hill coefficient 2.1. HCO(3)(-) exerts a modulating effect on cotransporter activity; at 0 HCO(3)(-) the bumetanide-sensitive K(+) uptake is reduced by 30% compared to that at 26 mm HCO(3)(-). Manipulations of the intracellular [Cl-] by preincubation in Cl- -free solution or inhibition of Cl- efflux resulted in increased uptake at low [Cl-](i) and decreased uptake at high [Cl-](i). To assess the role of protein kinases in the regulation of cotransport, we have determined the effect of protein kinase inhibitors. H-89 and KT5270, inhibitors of PKA, inhibit cotransport almost completely, while calphostin C, an inhibitor of PKC, produces a small activation of cotransport. The tyrosine kinase inhibitor genistein reduced K+ uptake while its inactive analog daidzein was without effect. The calmodulin kinase inhibitor KN-93 was without effect. We also investigated the effects of phosphatase inhibitors. Calyculin A (k(1/2)=21 nM) and okadaic acid (k(1/2)=915 nM) produced approximate doubling of K+ uptake, suggesting that phosphatase 1 is dominant. We also investigated the role of the cytoskeleton and its activation. Reduction of Ca(i)(2+) by preincubation in Ca2+ -free medium as well as by exposure to W-7, an inhibitor of the binding of Ca(2+) to calmodulin, reduced K+ uptake. Consistent with this, ML-7, a relatively specific inhibitor of the Ca2+ -calmodulin activated myosin light chain kinase, inhibited cotransport by 40%. The Ca2+ -calmodulin activated myosin light chain kinase contributes to the modulation of the cytoskeleton by regulating the actin-myosin interaction. Consistent with the above, disruption of the actin polymerization by cytochalasin D led to a decrease in K+ uptake. We conclude that extracellular Na+, K+ and Cl- are requirements for the function of the CBCEC Na(+)-K(+)-2Cl(-) cotransporter, while intracellular Cl- and extracellular HCO(3)(-) modulate its activity. Several protein kinases, including PKA, PKC, tyrosine kinase, and myosin light chain kinase, modulate the K+ uptake. Another modulating pathway for cotransport involves the state of the cytoskeleton.
Collapse
Affiliation(s)
- Friedrich P Diecke
- Department of Physiology and Pharmacology, UMDNJ-New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
22
|
de Haan L, van Amelsvoort T, Rosien K, Linszen D. Weight loss after switching from conventional olanzapine tablets to orally disintegrating olanzapine tablets. Psychopharmacology (Berl) 2004; 175:389-90. [PMID: 15322727 DOI: 10.1007/s00213-004-1951-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Guizouarn H, Gabillat N, Borgese F. Evidence for up-regulation of the endogenous Na-K-2Cl co-transporter by molecular interactions with the anion exchanger tAE1 expressed in Xenopus oocyte. J Biol Chem 2003; 279:11513-20. [PMID: 14699110 DOI: 10.1074/jbc.m311920200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of trout anion exchanger 1 (tAE1) in Xenopus oocyte led to the stimulation of a Na(+)- and Cl(-)-dependent Rb influx. Functional features and pharmacological data strongly suggest that this Rb influx is mediated by the endogenous Na-K-2Cl (NKCC) co-transporter. The functional relationship between expression of tAE1 and activation of the NKCC co-transporter was investigated. Indeed, it was shown previously that tAE1 expressed in Xenopus oocyte induces a strong anion conductance which is correlated with an increased taurine permeability. Measurements of intracellular ion contents ruled out the involvement of any modification of known electrochemical parameters in NKCC co-transporter activation by tAE1. Furthermore, using chimera of tAE1 made with AE1 from other species unable to exhibit anion conductance led to the conclusion that there was no correlation between tAE1 anion conductance and NKCC co-transporter stimulation. Therefore, a possible molecular interaction between tAE1 and the NKCC co-transporter was investigated. Our results clearly show that NKCC activation is dependent upon the C-terminal part of tAE1. Chimeric constructions where tAE1 C-terminal part was substituted by the corresponding part of mouse AE1 abolished co-transporter activation. Moreover, steric encumbrance on the C-terminal end of tAE1 with a specific antibody or with a protein fusion also prevented the co-transporter activation. These data suggest a new role for some anion exchangers in controlling other transporter activity by molecular interactions.
Collapse
Affiliation(s)
- Hélène Guizouarn
- Laboratoire de Physiologie des Membranes Cellulaires, Unité Mixte de Recherche 6078, CNRS-Université de Nice Sophia-Antipolis, Chemin du Lazaret, 06230 Villefranche-sur-Mer, France.
| | | | | |
Collapse
|
24
|
Giménez I, Isenring P, Forbush B. Spatially distributed alternative splice variants of the renal Na-K-Cl cotransporter exhibit dramatically different affinities for the transported ions. J Biol Chem 2002; 277:8767-70. [PMID: 11815599 DOI: 10.1074/jbc.c200021200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three splice variants of the renal Na-K-Cl cotransporter (NKCC2 F, A, and B) are spatially distributed along the thick ascending limb of the mammalian kidney. To test whether NKCC2 splice variants differ in ion transport characteristics we expressed cDNAs encoding rabbit NKCC2 F, A, and B in Xenopus oocytes and determined the ion dependence of bumetanide-sensitive (86)Rb influx. The three splice variants of NKCC2 showed dramatic differences in their kinetic behavior. The medullary variant F exhibited 3-4-fold lower affinity than variants A and B for Na(+) and K(+). Chloride affinities also markedly distinguish the three variants (K(m)F = 111.3, K(m)A = 44.7, and K(m)B = 8.9 mm Cl(-)). Thus, the kinetic properties of the NKCC2 splice variants are consistent with the spatial distribution of the variants along the thick ascending limb as they are involved in reabsorbing Na(+), K(+), and Cl(-) from a progressively diluted fluid in the tubule lumen. Variant B also showed an anomalous inhibition of rubidium influx at high extracellular Na(+) concentrations, possibly important in its highly specialized role in the macula densa. The adaptation of the kinetic characteristics of the NKCC2 variants to the luminal concentrations of substrate represents an excellent example of functional specialization and diversity that can be achieved through alternative mRNA splicing.
Collapse
Affiliation(s)
- Ignacio Giménez
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA.
| | | | | |
Collapse
|
25
|
Mercado A, de los Heros P, Vázquez N, Meade P, Mount DB, Gamba G. Functional and molecular characterization of the K-Cl cotransporter of Xenopus laevis oocytes. Am J Physiol Cell Physiol 2001; 281:C670-80. [PMID: 11443066 DOI: 10.1152/ajpcell.2001.281.2.c670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The K-Cl cotransporters (KCCs) have a broad range of physiological roles, in a number of cells and species. We report here that Xenopus laevis oocytes express a K-Cl cotransporter with significant functional and molecular similarity to mammalian KCCs. Under isotonic conditions, defolliculated oocytes exhibit a Cl(-)-dependent (86)Rb(+) uptake mechanism after activation by the cysteine-reactive compounds N-ethylmaleimide (NEM) and mercuric chloride (HgCl(2)). The activation of this K-Cl cotransporter by cell swelling is prevented by inhibition of protein phosphatase-1 with calyculin A; NEM activation of the transporter was not blocked by phosphatase inhibition. Kinetic characterization reveals apparent values for the Michaelis-Menten constant of 27.7 +/- 3.0 and 15.4 +/- 4.7 mM for Rb(+) and Cl(-), respectively, with an anion selectivity for K(+) transport of Cl(-) = PO(4)(3-) = Br(-) > I(-) > SCN(-) > gluconate. The oocyte K-Cl cotransporter was sensitive to several inhibitors, including loop diuretics, with apparent half-maximal inhibition values of 200 and 500 microM for furosemide and bumetanide, respectively. A partial cDNA encoding the Xenopus K-Cl cotransporter was cloned from oocyte RNA; the corresponding transcript is widely expressed in Xenopus tissues. The predicted COOH-terminal protein fragment exhibited particular homology to the KCC1/KCC3 subgroup of the mammalian KCCs, and the functional characteristics are the most similar to those of KCC1 (Mercado A, Song L, Vazquez N, Mount DB, and Gamba G. J Biol Chem 275: 30326--30334, 2000).
Collapse
Affiliation(s)
- A Mercado
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Tlalpan 14000, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
26
|
Shennan DB, Gow IF. Volume-activated K(+)(Rb(+)) efflux in lactating rat mammary tissue. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:420-8. [PMID: 11118551 DOI: 10.1016/s0005-2736(00)00324-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of cell swelling, induced by a hyposmotic shock, on K(+)(Rb(+)) efflux from lactating rat mammary tissue explants has been studied. A hyposmotic challenge increased the fractional release of K(+)(Rb(+)) from mammary tissue in the absence and presence of the loop-diuretic bumetanide (100 microM). However, the volume-sensitive moiety of K(+)(Rb(+)) efflux was proportionately larger when bumetanide was present in the incubation medium. On the other hand, a hyposmotic shock appeared to reduce the bumetanide-sensitive component of K(+)(Rb(+)) efflux. The increase in K(+)(Rb(+)) efflux, induced by cell swelling, was dependent upon the extent of the hyposmotic challenge. In the presence of bumetanide, substituting Cl(-) with NO(3)(-) reduced the initial increase in volume-sensitive K(+)(Rb(+)) efflux. However, volume-sensitive K(+)(Rb(+)) release was prolonged in the presence of NO(3)(-). Volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants was inhibited by quinine. Cell swelling increased the intracellular concentration of Ca(2+) in a fashion which depended on the presence of extracellular Ca(2+). However, removing extracellular Ca(2+) did not inhibit volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants. The results are consistent with the presence of volume-activated K(+) channels in lactating rat mammary tissue. Volume-activated K(+) efflux may play a central role in mammary cell volume regulation.
Collapse
|
27
|
Tosco M, Orsenigo MN, Gastaldi G, Faelli A. An endogenous monocarboxylate transport in Xenopus laevis oocytes. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1190-5. [PMID: 10801286 DOI: 10.1152/ajpregu.2000.278.5.r1190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the existence of an endogenous system for lactate transport in Xenopus laevis oocytes. (36)Cl-uptake studies excluded the involvement of a DIDS-sensitive anion antiporter as a possible pathway for lactate movement. L-[(14)C]lactate uptake was unaffected by superimposed pH gradients, stimulated by the presence of Na(+) in the incubating solution, and severely reduced by the monocarboxylate transporter inhibitor p-chloromercuribenzenesulphonate (pCMBS). Transport exhibited a broad cation specificity and was cis inhibited by other monocarboxylates, mostly by pyruvate. These results suggest that lactate uptake is mediated mainly by a transporter and that the preferred anion is pyruvate. [(14)C]pyruvate uptake exhibited the same pattern of functional properties evidenced for L-lactate. Kinetic parameters were calculated for both monocarboxylates, and a higher affinity for pyruvate was revealed. Various inhibitors of monocarboxylate transporters reduced significantly pyruvate uptake. These studies demonstrate that Xenopus laevis oocytes possess a monocarboxylate transport system that shares some functional features with the members of the mammalian monocarboxylate cotransporters family, but, in the meanwhile, exhibits some particular properties, mainly concerning cation specificity.
Collapse
Affiliation(s)
- M Tosco
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, via Celoria 26, I-20133 Milano, Italy.
| | | | | | | |
Collapse
|
28
|
Plata C, Rubio V, Gamba G. Protein kinase C activation reduces the function of the Na(+):K(+):2Cl(-) cotransporter in Xenopus laevis oocytes. Arch Med Res 2000; 31:21-7. [PMID: 10767476 DOI: 10.1016/s0188-4409(99)00070-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The basolateral isoform of the Na(+):K(+):2Cl(-) cotransporter is expressed in several epithelial and non-epithelial cells, in which it is involved in ion secretion processes and in cell volume regulation. In humans, this cotransporter has been implicated in the development of primary hypertension. The major goal of the present study was to characterize the effect of protein kinase C activation on the function of the Na(+):K(+):2Cl(-) cotransporter isoform present in Xenopus laevis oocytes. METHODS Oocytes were surgically harvested from adult female Xenopus laevis frogs, defolliculated by incubation in frog ringer containing collagenase B (2 mg/mL) under vigorous shaking, and by hand under the microscope. Only stage V-VI oocytes were used in the study. After overnight incubation in regular frog Ringer, oocytes were switched to a Cl(-)-free ringer for at least 12 h before beginning uptake experiments. The function of the Na(+):K(+):2Cl(-) cotransporter was determined by assessing tracer 22Na(+) uptake in the control group as well as under several experimental conditions, such as changes in extracellular osmolarity, absence of one of the cotransported ions, or the presence of drugs such as the specific cotransporter inhibitor bumetanide, phorbol esters (TPA, PDBu, or 4alphaPDD), and the PKC inhibitor bisindolylmaleimide I. At the end of the uptake period, tracer Na(+) uptake was counted by liquid scintillation of each individual oocyte previously dissolved in SDS. RESULTS Xenopus oocytes exhibited a bumetanide-sensitive Na(+):K(+):2Cl(-) cotransporter in the plasma membrane activated by hypertonicity and inhibited by hypotonicity. The bumetanide-sensitive fraction of Na(+) uptake was significantly reduced by the addition of phorbol esters TPA or PDBu to the uptake media. This inhibitory effect of PKC activators was dose- and time-dependent. Phorbol ester 4alphaPDD, which cannot activate PKC, exhibited no effect on Na(+):K(+):2Cl(-) cotransporter function. In addition, pretreatment of oocytes with the PKC inhibitor bisindolylmaleimide I partially abolished TPA-induced reduction in the cotransporter function. CONCLUSION In defolliculated Xenopus laevis oocytes, phorbol esters reduce the function of the Na(+):K(+):2Cl(-) cotransporter by a mechanism that includes the activation of an endogenous PKC.
Collapse
Affiliation(s)
- C Plata
- Unidad de Fisiología Molecular, Instituto Nacional de la Nutrición Salvador Zubirán, México, D.F., Mexico
| | | | | |
Collapse
|
29
|
Abstract
Obligatory, coupled cotransport of Na(+), K(+), and Cl(-) by cell membranes has been reported in nearly every animal cell type. This review examines the current status of our knowledge about this ion transport mechanism. Two isoforms of the Na(+)-K(+)-Cl(-) cotransporter (NKCC) protein (approximately 120-130 kDa, unglycosylated) are currently known. One isoform (NKCC2) has at least three alternatively spliced variants and is found exclusively in the kidney. The other (NKCC1) is found in nearly all cell types. The NKCC maintains intracellular Cl(-) concentration ([Cl(-)](i)) at levels above the predicted electrochemical equilibrium. The high [Cl(-)](i) is used by epithelial tissues to promote net salt transport and by neural cells to set synaptic potentials; its function in other cells is unknown. There is substantial evidence in some cells that the NKCC functions to offset osmotically induced cell shrinkage by mediating the net influx of osmotically active ions. Whether it serves to maintain cell volume under euvolemic conditons is less clear. The NKCC may play an important role in the cell cycle. Evidence that each cotransport cycle of the NKCC is electrically silent is discussed along with evidence for the electrically neutral stoichiometries of 1 Na(+):1 K(+):2 Cl- (for most cells) and 2 Na(+):1 K(+):3 Cl(-) (in squid axon). Evidence that the absolute dependence on ATP of the NKCC is the result of regulatory phosphorylation/dephosphorylation mechanisms is decribed. Interestingly, the presumed protein kinase(s) responsible has not been identified. An unusual form of NKCC regulation is by [Cl(-)](i). [Cl(-)](i) in the physiological range and above strongly inhibits the NKCC. This effect may be mediated by a decrease of protein phosphorylation. Although the NKCC has been studied for approximately 20 years, we are only beginning to frame the broad outlines of the structure, function, and regulation of this ubiquitous ion transport mechanism.
Collapse
Affiliation(s)
- J M Russell
- Department of Biology, Biological Research Laboratories, Syracuse, New York, USA. .,edu
| |
Collapse
|
30
|
Bhartur SG, Ballarin LJ, Musch MW, Bookstein C, Chang EB, Rao MC. A unique Na+/H+ exchanger, analogous to NHE1, in the chicken embryonic fibroblast. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R838-46. [PMID: 10070146 DOI: 10.1152/ajpregu.1999.276.3.r838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the characterization of an Na+/H+ exchanger (NHE) in embryonic fibroblasts (SL-29 cells) of the chicken, a terrestrial vertebrate, where Na+ conservation is important. This exchanger is electroneutral, has a single Na+ binding site, and is highly sensitive to amiloride (IC50 2 microM), dimethyl amiloride (350 nM), and ethyl-isopropyl amiloride (25 nM). It is stimulated by serum, transforming growth factor-alpha, hypertonicity, and okadaic acid. Although these features make it resemble mammalian NHE1, other characteristics suggest distinct differences. First, in contrast to mammalian NHE1 it is inhibited by cAMP and shows a biphasic response to phorbol esters and a highly variable response to increased intracellular Ca2+ concentration. Second, whereas full-length human and rat NHE1 cDNA probes recognize a 4.8-kb transcript in rat tissues, they recognize only a 3.9-kb transcript in chicken tissues. An antibody against amino acids 631-746 of human NHE1 sequence fails to recognize a protein in SL-29 cells. Rat NHE2 and NHE3 probes do not recognize any transcript in chicken fibroblasts. The SL-29 exchanger differs markedly from the previously characterized chicken intestinal apical exchanger in its amiloride sensitivity and regulation by phorbol esters. These results suggest that a modified version of mammalian NHE1 is present in chicken tissues and imply that another functionally distinct Na+/H+ exchanger is expressed in aves.
Collapse
Affiliation(s)
- S G Bhartur
- Department of Physiology and Biophysics, University of Illinois at Chicago, 60612, Illinois
| | | | | | | | | | | |
Collapse
|
31
|
Tosco M, Orsenigo MN, Gastaldi G, Faelli A. Functional expression of basolateral Cl-/HCO3- exchange from rat jejunum in Xenopus laevis oocytes. Cell Biochem Funct 1998; 16:35-42. [PMID: 9519458 DOI: 10.1002/(sici)1099-0844(199803)16:1<35::aid-cbf759>3.0.co;2-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Poly(A)+ RNA isolated from rat jejunum was injected into Xenopus laevis oocytes and expression of Cl-/HCO3- antiport was investigated by means of 36Cl- uptake. Two days after injection of 50 ng of poly(A)+ RNA, Cl- uptake was significantly increased with respect to water-injected oocytes. The expressed transport was inhibited by 0.2 mM DIDS, whereas endogenous Cl- uptake was unaffected by this disulphonic stilbene. After sucrose density gradient fractionation, the highest expression of DIDS-sensitive Cl- uptake was detected with mRNA size fraction of about 2-4 kb in length. The expressed Cl- uptake can occur against a Cl- concentration gradient and is unaffected by the known Cl- channel blocker anthracene-9-carboxylic acid. Cl- transport mechanism has properties similar to jejunal basolateral. Cl-/HCO3- exchange with regard to Na+ dependence.
Collapse
Affiliation(s)
- M Tosco
- Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Italy
| | | | | | | |
Collapse
|
32
|
Skaaning Jensen B, Levavi-Sivan B, Fishburn CS, Fuchs S. Functional expression of the murine D2, D3, and D4 dopamine receptors in Xenopus laevis oocytes. FEBS Lett 1997; 420:191-5. [PMID: 9459308 DOI: 10.1016/s0014-5793(97)01505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The different murine D2-type dopamine receptors (D2L, D2S, D3L, D3S, and D4) were expressed in Xenopus laevis oocytes. The D2-type receptors were all similarly and efficiently expressed in Xenopus oocytes and were shown to bind the D2 antagonist [125I]sulpride. They were all shown to activate Cl- influx upon agonist stimulation. Using the diagnostic inhibitor bumetanide, we were able to separate the Na+/K+/2Cl- cotransporter component of the Cl- influx from the total unidirectional Cl- influx. The D3L subtype was found to operate exclusively through the bumetanide-insensitive Cl- influx whereas the other D2-type receptors acted on the Na+/K+/2Cl- cotransporter as well. The pertussis toxin sensitivity of the receptor-activated chloride influx via the Na+/K+/2Cl- cotransporter varied between the various D2-type receptors showing that they may couple to different G proteins, and activate different second messenger systems.
Collapse
Affiliation(s)
- B Skaaning Jensen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
33
|
Jensen BS, Hoffmann EK. Hypertonicity enhances expression of functional Na+/K+/2Cl- cotransporters in Ehrlich ascites tumour cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1329:1-6. [PMID: 9370238 DOI: 10.1016/s0005-2736(97)00148-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ehrlich cells exposed to a hypertonic medium for five hours respond by an increased expression of Na+/K+/2Cl- cotransport proteins as estimated from immunoprecipitations using polyclonal anti-cotransporter antibodies. The 3.4-fold increase in cotransport expression is followed by a concomitant 2.6-fold increase in the maximal bumetanide-sensitive K+ influx during regulatory volume increase, indicating a 2.6-fold increase in the number of functional cotransporters in the plasma membrane.
Collapse
|
34
|
Agalakova NI, Lapin AV, Gusev GP. Temperature effects on ion transport across the erythrocyte membrane of the frog Rana temporaria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 117:411-8. [PMID: 9172392 DOI: 10.1016/s0300-9629(96)00367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Unidirectional K+ and Na+ influxes in the frog erythrocytes incubated in Cl- or NO(3)- media with 2.7 mM K+ were measured using 86Rb and 22Na as tracers. K+ influx was inhibited by 35-55% in the presence of 0.2-1.0 mM furosemide but it was unaffected by 0.1-0.2 mM bumetanide. Furosemide at a concentration of 0.5 mM had no effect on K+ loss from the frog red cells incubated in a nominally K(+)-free medium. Together with our previous studies the data support the existence of K-Cl cotransport and the absence of Na-K-2Cl cotransport in the frog erythrocyte membrane. Cell cooling from 20 to 5 degrees C caused a decrease in K+ influx and K+ efflux via the K-Cl cotransporter (3.2- and 3.7-fold, respectively) giving an apparent energy of activation (EA) of about 60 kJ/mol and Q10 value of 2.5. Only small decline (approximately 30%) in the ouabain-sensitive K+ influx was found as temperature was changed from 20 to 5-10 degrees C. Low values of Q10 (approximately 1.5) and EA (27.3 kJ/mol) were obtained for passive K+ influx in the frog erythrocytes (ouabain-insensitive in NO(3)- medium) at temperature within 5-20 degrees C. However, the temperature coefficients were greater for passive Na+ influx and passive K+ efflux (Q10 approximately 2.4-2.5 and EA approximately 56-58 kJ/mol). The temperature dependence of all ion transport components displayed discontinuities showing no changes at temperature between 5 and 10 degrees C. Thus, cooling of the frog red cells is associated with a greater decrease of Na+ influx and K+ efflux than passive and active K+ influx. These data indicate that the preservation of a relative high activity of the Na,K-pump during cell cooling and also the temperature-induced changes in the K-Cl cotransport activity and ion passive diffusion contribute to maintenance of ion concentration gradients in the frog erythrocytes at decreased temperature.
Collapse
Affiliation(s)
- N I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg
| | | | | |
Collapse
|
35
|
Jiang L, Chernova MN, Alper SL. Secondary regulatory volume increase conferred on Xenopus oocytes by expression of AE2 anion exchanger. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C191-202. [PMID: 9038825 DOI: 10.1152/ajpcell.1997.272.1.c191] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Xenopus oocytes lack volume regulation and Cl/anion-exchange (AE) activity but express endogenous Na+/H+ exchange (NHE). We postulated that expression in oocytes of heterologous anion exchangers might allow regulatory volume increase (RVI) via functional coupling with endogenous NHE. Expression of neither erythroid nor kidney isoforms of AE1 conferred any form of RVI. In contrast, although AE2 expression did not confer primary RVI, it did confer on oocytes secondary RVI, with a requirement for hypotonic swelling before hypertonic shrinkage. This secondary RVI required extracellular Cl- and Na+, was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and amiloride, was bumetanide insensitive, and was blocked by prevention of intracellular alkalinization, all properties consistent with functional coupling of AE2-mediated Cl-/HCO3- exchange and endogenous NHE. RVI was unaffected by CO2-HCO3- or by partial oocyte Cl- depletion and was unrelated to the rate of oocyte shrinkage. Prior hypotonic swelling did not significantly alter subsequent hypertonic stimulation of AE2-mediated 36Cl influx or efflux. We conclude that heterologous AE2 expression suffices to confer volume regulation on Xenopus oocytes that lack intrinsic volume-regulatory mechanisms.
Collapse
Affiliation(s)
- L Jiang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
36
|
Salvador MT, Rodríguez-Yoldi MC, Alcalde AI, Rodríguez-Yoldi MJ. 5-HT receptor subtypes involved in the serotonin-induced inhibition of L-leucine absorption in rabbit jejunum. Life Sci 1997; 61:309-18. [PMID: 9217291 DOI: 10.1016/s0024-3205(97)00387-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to determine the 5-HT receptor subtypes involved in the serotonin-induced inhibition of L-leucine absorption across rabbit jejunum in vitro. A number of agonists and antagonists were used to characterize the receptors through which serotonin inhibits this absorption. The results show that 2.5x10(-6) M 5-HT inhibits the amino acid absorption by about 20%. The 5-HT receptor agonists, alpha-methyl-5-HT (5-HT2), 2-methyl-5-HT (5-HT3) and zacopride (5-HT4) at concentrations 2.5x10(-6) and 2.5x10(-5) M produced 10-30% inhibition on L-leucine intestinal absorption. 5-carboxyamidotryptamine (5-HT1) did not produce any inhibition. The 5-HT antagonists, GR 113808A (5-HT4) at 2.5x10(-6) M and ritanserin (5-HT2) and ondansetron (5-HT3) at 2.5x10(-5) M completely blocked the effect of 5-HT. However, methiothepin (5-HT1) did not produce any effect on serotonin action in the intestinal absorption of amino acid. It can be concluded that 5-HT2, 5-HT3 and 5-HT4 receptors could mediate inhibition of L-leucine absorption across rabbit jejunum.
Collapse
Affiliation(s)
- M T Salvador
- Departamento de Fisiología, Facultad de Veterinaria, Zaragoza, Spain
| | | | | | | |
Collapse
|
37
|
Cougnon M, Bouyer P, Hulin P, Anagnostopoulos T, Planelles G. Further investigation of ionic diffusive properties and of NH4+ pathways in Xenopus laevis oocyte cell membrane. Pflugers Arch 1996; 431:658-67. [PMID: 8596713 DOI: 10.1007/bf02191917] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the ionic diffusive properties and the NH4+ pathways in the Xenopus laevis oocyte cell membrane, we recorded the effects of various inhibitors on membrane potential (Vm) and membrane resistance (Rm); intracellular acidification was taken as an index of NH4+ influx from the bath to the cytoplasm. The following results were obtained: in the control state, barium and quinine (Q) ions depolarized Vm and raised Rm, consistent with inhibition of K+ conductance(s). Diphenylamine-2-carboxylic acid (DPC), 3',5'-dichlorodiphenylamine-2-carboxylic acid (DCDPC) and gadolinium ions hyperpolarized Vm and increased Rm, suggesting the inhibition of nonselective cationic conductance(s). In the presence of 20 mmol/l NH4Cl, Vm depolarized, Rm fell, and intracellular pH (pHi) decreased, consistent with an NH4+ influx. In the presence of DPC, the same manoeuvre induced a biphasic Vm change (i.e. a spike depolarization followed by a membrane hyperpolarization) and a fall of Rm; in most oocytes, intracellular acidification persisted and was reversible upon adding ouabain (Oua). These results indicate that a DPC-sensitive conductance is not the unique NH4+ pathway and that Na, K-ATPase may also mediate NH4+ influx. However, Oua did not prevent the Rm decrease, suggesting that ouabain-insensitive rheogenic pathway(s) are activated. Thus, we investigated the Vm change induced by NH4Cl addition in the presence of DPC: the spike depolarization followed by secondary hyperpolarization became a plateau depolarization when Q was added, suggesting involvement of Q-sensitive pathway(s) in the above described biphasic Vm change. In the presence of DPC, Q and Oua, intracellular acidification upon adding NH4Cl persisted consistent with further NH4+ influx through quinine-, DPC- and Oua-insensitive pathway(s).
Collapse
Affiliation(s)
- M Cougnon
- INSERM, Faculté Necker-Enfants Malades, Université Paris, France
| | | | | | | | | |
Collapse
|
38
|
Payne JA, Forbush B. Molecular characterization of the epithelial Na-K-Cl cotransporter isoforms. Curr Opin Cell Biol 1995; 7:493-503. [PMID: 7495568 DOI: 10.1016/0955-0674(95)80005-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent advances in the molecular characterization of specific isoforms of the Na-K-Cl cotransporter have allowed rapid progress in the study of the structure, function, and regulation of these members of a family of Cl-dependent cation cotransporters. Two distinct isoforms have been identified, one from Cl(-)-secretory epithelia and another found specifically in the diluting segment of the vertebrate kidney, a Cl(-)-absorptive epithelium. The discovery of three alternatively spliced variants of the absorptive isoform, which differ only by 31 amino acids and which appear to be differentially distributed within the mammalian thick ascending limb of the loop of Henle, highlight this spliced region as an important functional component of the protein.
Collapse
Affiliation(s)
- J A Payne
- Department of Human Physiology, University of California School of Medicine, Davis 95616, USA
| | | |
Collapse
|
39
|
Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee W, Hediger M, Hebert S. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32499-7] [Citation(s) in RCA: 445] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|