1
|
Squecco R, Luciani P, Idrizaj E, Deledda C, Benvenuti S, Giuliani C, Fibbi B, Peri A, Francini F. Hyponatraemia alters the biophysical properties of neuronal cells independently of osmolarity: a study on Ni(2+) -sensitive current involvement. Exp Physiol 2018; 101:1086-100. [PMID: 27307205 DOI: 10.1113/ep085806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
What is the central question of this study? Hyponatraemia, an electrolyte disorder encountered in hospitalized patients, can cause neurological symptoms usually attributed to a reduction in plasma osmolarity. Here, we investigated whether low [Na(+) ] per se can cause neuronal changes independent of osmolarity, focusing on involvement of the Na(+) -Ca(2+) exchanger. What is the main finding and its importance? We show that hyponatraemia per se causes alterations of neuronal properties. The novel finding of Na(+) -Ca(2+) exchanger involvement helps us to elucidate the volume regulation following hyponatraemia. This might have relevance in a translational perspective because Na(+) -Ca(2+) exchanger could be a target for novel therapies. Hyponatraemia is the most frequent electrolyte disorder encountered in hospitalized patients, and it can cause a wide variety of neurological symptoms. Most of the negative effects of this condition on neuronal cells are attributed to cell swelling because of the reduction of plasma osmolarity, although in hyponatraemia different membrane proteins are supposed to be involved in the conservation of neuronal volume. We have recently reported detrimental effects of hyponatraemia on two different neuronal cell lines, SK-N-AS and SH-SY5Y, independent of osmotic alterations. In this study we investigated, in the same cell lines, whether hyponatraemic conditions per se can cause electrophysiological alterations and whether these effects vary over time. Accordingly, we carried out experiments in low-sodium medium in either hyposmotic [Osm(-)] or isosmotic [Osm(+)] conditions, for a short (24 h) or long time (7 days). Using a patch pipette in voltage-clamp conditions, we recorded possible modifications of cell capacitance (Cm ) and membrane conductance (Gm ). Our results indicate that in both Osm(-) and Osm(+) medium, Cm and Gm show a similar increase, but such effects are dependent on the time in culture in different ways. Notably, regarding the possible mechanisms involved in the maintenance of Cm , Gm and Gm /Cm in Osm(+) conditions, we observed a greater contribution of the Na(+) -Ca(2+) exchanger compared with Osm(-) and control conditions. Overall, these novel electrophysiological results help us to understand the mechanisms of volume regulation after ionic perturbation. Our results might also have relevance in a translational perspective because the Na(+) -Ca(2+) exchanger can be considered a target for planning novel therapies.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134, Florence, Italy
| | - Paola Luciani
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, 50134, Florence, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134, Florence, Italy
| | - Cristiana Deledda
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, 50134, Florence, Italy
| | - Susanna Benvenuti
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, 50134, Florence, Italy
| | - Corinna Giuliani
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, 50134, Florence, Italy
| | - Benedetta Fibbi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, 50134, Florence, Italy
| | - Alessandro Peri
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, 50134, Florence, Italy
| | - Fabio Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134, Florence, Italy
| |
Collapse
|
2
|
Martinac B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:682-91. [PMID: 23886913 DOI: 10.1016/j.bbamem.2013.07.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/05/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
As biological force-sensing systems mechanosensitive (MS) ion channels present the best example of coupling molecular dynamics of membrane proteins to the mechanics of the surrounding cell membrane. In animal cells MS channels have over the past two decades been very much in focus of mechanotransduction research. In recent years this helped to raise awareness of basic and medical researchers about the role that abnormal MS channels may play in the pathophysiology of diseases, such as cardiac hypertrophy, atrial fibrillation, muscular dystrophy or polycystic kidney disease. To date a large number of MS channels from organisms of diverse phylogenetic origins have been identified at the molecular level; however, the structure of only few of them has been determined. Although their function has extensively been studied in a great variety of cells and tissues by different experimental approaches it is, with exception of bacterial MS channels, very little known about how these channels sense mechanical force and which cellular components may contribute to their function. By focusing on MS channels found in animal cells this article discusses the ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Wurm M, Zeng AP. Mechanical disruption of mammalian cells in a microfluidic system and its numerical analysis based on computational fluid dynamics. LAB ON A CHIP 2012; 12:1071-1077. [PMID: 22311121 DOI: 10.1039/c2lc20918g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The lysis of mammalian cells is an essential part of different lab-on-a-chip sample preparation methods, which aim at the release, separation, and subsequent analysis of DNA, proteins, or metabolites. Particularly for the analysis of compartmented in vivo metabolism of mammalian cells, such a method must be very fast compared to the metabolic turnover-rates, it should not affect the native metabolite concentrations, and should ideally leave cell organelles undamaged. So far, no such a method is available. We have developed a microfluidic system for the effective rapid mechanical cell disruption and established a mathematical model to describe the efficiency of the system. Chinese hamster ovary (CHO) cells were disrupted with high efficiency by passing through two consecutive micronozzle arrays. Simultaneous cell compression and shearing led to a disruption rate of ≥90% at a sample flow rate of Q = 120 μL min(-1) per nozzle passage, which corresponds to a mean fluid velocity of 13.3 m s(-1) and a mean Reynolds number of 22.6 in the nozzle gap. We discussed the problem of channel clogging by cellular debris and the resulting flow instability at the micronozzle arrays. The experimental results were compared to predictions from Computational Fluid Dynamics (CFD) simulations and the critical energy dissipation rate for the disruption of the CHO cell population with known size distribution was determined to be 4.7 × 10(8) W m(-3). Our model for the calculation of cell disruption on the basis of CFD-data could be applied to other microgeometries to predict intended disruption or undesired cell damage.
Collapse
Affiliation(s)
- Matthias Wurm
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg, Germany
| | | |
Collapse
|
4
|
Ye X, Xie F, Romanova EV, Rubakhin SS, Sweedler JV. PRODUCTION OF NITRIC OXIDE WITHIN THE APLYSIA CALIFORNICA NERVOUS SYSTEM. ACS Chem Neurosci 2010; 1:182-193. [PMID: 20532188 DOI: 10.1021/cn900016z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO), an intercellular signaling molecule, helps coordinate neuronal network activity. Here we examine NO generation in the Aplysia central nervous system using 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent reagent that forms 4,5-diaminofluorescein triazole (DAF-2T) upon reaction with NO. Recognizing that other fluorescence products are formed within the biochemically complex intracellular environment, we validate the observed fluorescence as being from DAF-2T; using both capillary electrophoresis and mass spectrometry we confirm that DAF-2T is formed from tissues and cells exposed to DAF-2 DA. We observe three distinct subcellular distributions of fluorescence in neurons exposed to DAF-2 DA. The first shows uniform fluorescence inside the cell, with these cells being among previously confirmed NOS-positive regions in the Aplysia cerebral ganglion. The second, seen inside buccal neurons, exhibits point sources of fluorescence, 1.5 ± 0.7 µm in diameter. Interestingly, the number of fluorescence puncta increases when the tissue is preincubated with the NOS substrate L-arginine, and they disappear when cells are preexposed to the NOS inhibitor L-NAME, demonstrating that the fluorescence is connected to NOS-dependent NO production. The third distribution type, seen in the R2 neuron, also exhibits fluorescent puncta, but only on the cell surface. Fluorescence is also observed in the terminals of cultured bag cell neurons loaded with DAF-2 DA. Surprisingly, fluorescence at the R2 surface and bag cell neuron terminals is not modulated by L-arginine or L-NAME, suggesting it has a source distinct from the buccal and cerebral ganglion DAF 2T-positive tissues.
Collapse
Affiliation(s)
- Xiaoying Ye
- Department of Chemistry and the Beckman Institute. University of Illinois, Urbana, Illinois 61801
| | - Fang Xie
- Department of Chemistry and the Beckman Institute. University of Illinois, Urbana, Illinois 61801
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute. University of Illinois, Urbana, Illinois 61801
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute. University of Illinois, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute. University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
5
|
Gauthier NC, Rossier OM, Mathur A, Hone JC, Sheetz MP. Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol Biol Cell 2009; 20:3261-72. [PMID: 19458190 DOI: 10.1091/mbc.e09-01-0071] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of plasma membrane (PM) area as a critical factor during cell motility is poorly understood, mainly due to an inability to precisely follow PM area dynamics. To address this fundamental question, we developed static and dynamic assays to follow exocytosis, endocytosis, and PM area changes during fibroblast spreading. Because the PM area cannot increase by stretch, spreading proceeds by the flattening of membrane folds and/or by the addition of new membrane. Using laser tweezers, we found that PM tension progressively decreases during spreading, suggesting the addition of new membrane. Next, we found that exocytosis increases the PM area by 40-60% during spreading. Reducing PM area reduced spread area, and, in a reciprocal manner, reducing spreadable area reduced PM area, indicating the interconnection between these two parameters. We observed that Golgi, lysosomes, and glycosylphosphatidylinositol-anchored protein vesicles are exocytosed during spreading, but endoplasmic reticulum and transferrin receptor-containing vesicles are not. Microtubule depolymerization blocks lysosome and Golgi exocytosis but not the exocytosis of glycosylphosphatidylinositol-anchored protein vesicles or PM area increase. Therefore, we suggest that fibroblasts are able to regulate about half of their original PM area by the addition of membrane via a glycosylphosphatidylinositol-anchored protein compartment.
Collapse
Affiliation(s)
- Nils C Gauthier
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
6
|
Yamazaki T, Kawamura Y, Uemura M. Extracellular freezing-induced mechanical stress and surface area regulation on the plasma membrane in cold-acclimated plant cells. PLANT SIGNALING & BEHAVIOR 2009; 4:231-3. [PMID: 19721759 PMCID: PMC2652538 DOI: 10.4161/psb.4.3.7911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 05/20/2023]
Abstract
Freezing tolerance is an important feature for plant survival during winter. In plants, extracellular freezing occurs at subzero temperatures, resulting in dehydration and mechanical stresses upon the plasma membrane. However, many plants can acquire enhanced freezing tolerance by exposure to non-freezing temperatures, which is referred to as cold acclimation. The plasma membrane is the primary site of freezing injury. During cold acclimation, the lipid composition in the plasma membrane changes, which may protect the plasma membrane from injuries caused by freeze-induced dehydration stress (e.g., phase transition). Recently, we have examined the behavior of the plasma membrane during the freezing process using protoplasts isolated from cold-acclimated Arabidopsis leaves. The observations indicate that the cryobehavior of the plasma membrane after cold acclimation may act to resist the mechanical stress caused by freezing.
Collapse
Affiliation(s)
| | - Yukio Kawamura
- The Iwate University 21 Century COE Program; Morioka, Iwate, Japan
| | - Matsuo Uemura
- The Iwate University 21 Century COE Program; Morioka, Iwate, Japan
- Cryobiofrontier Research Center; Faculty of Agriculture; Iwate University; Morioka, Iwate, Japan
| |
Collapse
|
7
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
8
|
Tsitolovsky LE. Protection from neuronal damage evoked by a motivational excitation is a driving force of intentional actions. ACTA ACUST UNITED AC 2005; 49:566-94. [PMID: 16269320 DOI: 10.1016/j.brainresrev.2005.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 02/25/2005] [Indexed: 01/13/2023]
Abstract
Motivation may be understood as an organism's subjective attitude to its current physiological state, which somehow modulates generation of actions until the organism attains an optimal state. How does this subjective attitude arise and how does it modulate generation of actions? Diverse lines of evidence suggest that elemental motivational states (hunger, thirst, fear, drug-dependence, etc.) arise as the result of metabolic disturbances and are related to transient injury, while rewards (food, water, avoidance, drugs, etc.) are associated with the recovery of specific neurons. Just as motivation and the very life of an organism depend on homeostasis, i.e., maintenance of optimum performance, so a neuron's behavior depends on neuronal (i.e., ion) homeostasis. During motivational excitation, the conventional properties of a neuron, such as maintenance of membrane potential and spike generation, are disturbed. Instrumental actions may originate as a consequence of the compensational recovery of neuronal excitability after the excitotoxic damage induced by a motivation. When the extent of neuronal actions is proportional to a metabolic disturbance, the neuron theoretically may choose a beneficial behavior even, if at each instant, it acts by chance. Homeostasis supposedly may be directed to anticipating compensation of the factors that lead to a disturbance of the homeostasis and, as a result, participates in the plasticity of motivational behavior. Following this line of thought, I suggest that voluntary actions arise from the interaction between endogenous compensational mechanisms and excitotoxic damage of specific neurons, and thus anticipate the exogenous compensation evoked by a reward.
Collapse
Affiliation(s)
- Lev E Tsitolovsky
- Department of Life Science, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
9
|
Falktoft B, Lambert IH. Ca2+-mediated Potentiation of the Swelling-induced Taurine Efflux from HeLa Cells: On the Role of Calmodulin and Novel Protein Kinase C Isoforms. J Membr Biol 2004; 201:59-75. [PMID: 15630544 DOI: 10.1007/s00232-004-0705-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 07/19/2004] [Indexed: 11/27/2022]
Abstract
The present work sets out to investigate how Ca(2+) regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca(2+)-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation of the release pathway. The accelerated inactivation is not observed in hypotonic Ca(2+)-free or high-K(+) media. Addition of Ca(2+)-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca(2+)-activated K(+) channels. The taurine release from control cells and cells exposed to Ca(2+) agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca(2+)-augmented taurine release. Exposure to Ca(2+)-mobilizing agonists prior to a hypotonic challenge also augments a subsequent swelling-induced taurine release even though the intracellular Ca(2+)-concentration has returned to the unstimulated level. The Ca(2+)-induced augmentation of the swelling-induced taurine release is abolished by inhibition of calmodulin, but unaffected by inhibition of calmodulin-dependent kinase II, myosin light chain kinase and calcineurin. The effect of Ca(2+)-mobilizing agonists is mimicked by protein kinase C (PKC) activation and abolished in the presence of the PKC inhibitor Gö6850 and following downregulation of phorbol ester-sensitive PKC isoforms. It is suggested that Ca(2+) regulates the volume-sensitive taurine-release pathway through activation of calmodulin and PKC isoforms belonging to the novel subclass (nPKC).
Collapse
Affiliation(s)
- B Falktoft
- Biochemical Department, August Krogh Institute, Universitetsparken 13, Copenhagen, DK-2100 Denmark
| | | |
Collapse
|
10
|
Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Role of deformation-induced lipid trafficking in the prevention of plasma membrane stress failure. Am J Respir Crit Care Med 2002; 166:1282-9. [PMID: 12403699 DOI: 10.1164/rccm.200203-207oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cells experience plasma membrane stress failure when the matrix to which they adhere undergoes large deformations. In the lung, such a mechanism might explain mechanical ventilation-associated cell injury. We have previously shown that in alveolar epithelial cells, deformation induces lipid trafficking to the plasma membrane, thereby accommodating the required increase in the cell surface area. We now show that cell wounding is strain amplitude and rate dependent and that under conditions of impaired exocytosis strain-induced cell wounding is significantly increased. In addition, the susceptibility of cells to mechanical injury was not correlated with changes in cell stiffness. Using a dual-labeling technique, we differentiated between cell populations that were reversibly and irreversibly injured and showed that interventions that impair deformation-induced lipid trafficking also reduce the likelihood of plasma membrane resealing. Our findings suggest that cell plasticity and remodeling responses such as deformation-induced lipid trafficking are more important for cytoprotection from strain injury than are the innate mechanical properties of the cell. We also conclude that in deformation experiments, tests of cell membrane integrity cannot be interpreted as tests of cell viability because an intact plasma membrane after deformation does not mean that no injury had occurred.
Collapse
Affiliation(s)
- Nicholas E Vlahakis
- Pulmonary and Critical Care Medicine Division, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
11
|
Morris CE. Mechanosensitive Membrane Traffic and an Optimal Strategy for Volume and Surface Area Regulation in CNS Neurons1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0721:mmtaao]2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Morris CE. Mechanosensitive Membrane Traffic and an Optimal Strategy for Volume and Surface Area Regulation in CNS Neurons. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.4.721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Abstract
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes. When a protein is inserted in the lipid bilayer, an energetic cost may arise because of hydrophobic mismatch between the protein and bilayer. Localized changes in bilayer thickness and curvature may compensate for this mismatch. The peptides alamethicin and gramicidin and the bacterial membrane protein MscL form mechanically gated (MG) channels when inserted in lipid bilayers. Their mechanosensitivity may arise because channel opening is associated with a change in the protein's membrane-occupied area, its hydrophobic mismatch with the bilayer, excluded water volume, or a combination of these effects. As a consequence, bilayer dilation/thinning or changes in local membrane curvature may shift the equilibrium between channel conformations. Recent evidence indicates that MG channels in specific animal cell types (e.g., Xenopus oocytes) are also gated directly by bilayer tension. However, animal cells lack the rigid cell wall that protects bacteria and plants cells from excessive expansion of their bilayer. Instead, a cortical cytoskeleton (CSK) provides a structural framework that allows the animal cell to maintain a stable excess membrane area (i.e., for its volume occupied by a sphere) in the form of membrane folds, ruffles, and microvilli. This excess membrane provides an immediate membrane reserve that may protect the bilayer from sudden changes in bilayer tension. Contractile elements within the CSK may locally slacken or tighten bilayer tension to regulate mechanosensitivity, whereas membrane blebbing and tight seal patch formation, by using up membrane reserves, may increase membrane mechanosensitivity. In specific cases, extracellular and/or CSK proteins (i.e., tethers) may transmit mechanical forces to the process (e.g., hair cell MG channels, MS intracellular Ca(2+) release, and transmitter release) without increasing tension in the lipid bilayer.
Collapse
Affiliation(s)
- O P Hamill
- Physiology and Biophysics, University Of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
14
|
Vlahakis NE, Hubmayr RD. Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol (1985) 2000; 89:2490-6;discussion 2497. [PMID: 11090606 DOI: 10.1152/jappl.2000.89.6.2490] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this review, we examine the hypothesis that plasma membrane stress failure is a central event in the pathophysiology of injury from alveolar overdistension. This hypothesis leads us to consider alveolar micromechanics and specifically the mechanical interactions between lung matrix and alveolar epithelial cell cytoskeleton and plasma membrane. We then explore events that are central to the regulation of plasma membrane tension and detail the lipid-trafficking responses of in vitro deformed and/or injured cells. We conclude with a reference to upregulation of stress-responsive genes after membrane injury and resealing.
Collapse
Affiliation(s)
- N E Vlahakis
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
15
|
Reid JM, O'Neil RG. Osmomechanical regulation of membrane trafficking in polarized cells. Biochem Biophys Res Commun 2000; 271:429-34. [PMID: 10799314 DOI: 10.1006/bbrc.2000.2638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of membrane trafficking is thought to be predominantly under the control of agonist-receptor transduction pathways. In the present study, osmomechanical stress due to swelling, a condition often accompanying cell activation, was shown to induce multiple membrane trafficking pathways in polarized absorptive epithelial cells in the absence of agonists. Osmomechanical stress activated rapidly (seconds) pathways of calcium-dependent membrane insertion into the basolateral domain, pathways of calcium-independent membrane retrieval from the basolateral domain, and a novel pathway of transcytosis (transcellular) between basolateral and apical cell domains. These pathways appear to underlie the transfer and regulation of transport proteins amongst cell compartments. This broad affect of osmomechanical stress on trafficking pathways may reflect a global mechanism for redistribution of transport proteins and other membrane components amongst cell compartments during states of mechanical stress.
Collapse
Affiliation(s)
- J M Reid
- Department of Integrative Biology and Pharmacology, The University of Texas-Houston Health Science Center, Houston, Texas, 77030, USA
| | | |
Collapse
|
16
|
Herring TL, Juranka P, Mcnally J, Lesiuk H, Morris CE. The spectrin skeleton of newly-invaginated plasma membrane. J Muscle Res Cell Motil 2000; 21:67-77. [PMID: 10813636 DOI: 10.1023/a:1005644931741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As a cell's shape and volume change. its surface area must re-adjust. How is the plasma membrane's spectrin skeleton implicated? For erythrocytes, cells of fixed surface area, spectrin responses to mechanical disturbances have been studied, but for more typical cells with changeable surface areas, they have not. In rapidly shrinking cells, surface membrane at an adherent substratum invaginates, forming transient vacuole-like dilations (VLDs). We exploited this readily inducible surface area perturbation to pose a simple question: is newly invaginated plasma membrane naked or is it supported by a spectrin skeleton? The spectrin skeleton was examined immunocytochemically in L6 cells (rat skeletal muscle) before and after VLD formation, using fixation in cold methanol and 4112, an antibody against beta-fodrin and beta-spectrin. 4112 was visualized by confocal fluorescence microscopy, while paired phase contrast images independently located the VLDs. To generate VLDs, cells were hypotonically swelled then reshrunk in isotonic medium. Swollen L6 cells maintained their plasma membrane (sarcolemma) spectrin skeleton. Within minutes of subsequent shrinkage, VLDs of 1-2 microm diameter invaginated at the substratum surface of myotubes. Both sarcolemma and VLDs were lined by a relatively uniform spectrin skeleton. Z-series suggested that some of the spectrin skeleton-lined sarcolemma became internalized as vacuoles.
Collapse
Affiliation(s)
- T L Herring
- Loeb Health Research Institute, Ottawa Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Amzica F, Neckelmann D. Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures. J Neurophysiol 1999; 82:2731-46. [PMID: 10561441 DOI: 10.1152/jn.1999.82.5.2731] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dual intracellular recordings in vivo were used to disclose relationships between cortical neurons and glia during spontaneous slow (<1 Hz) sleep oscillations and spike-wave (SW) seizures in cat. Glial cells displayed a slow membrane potential oscillation (<1 Hz), in close synchrony with cortical neurons. In glia, each cycle of this oscillation was made of a round depolarizing potential of 1.5-3 mV. The depolarizing slope corresponded to a steady depolarization and sustained synaptic activity in neurons (duration, 0.5-0.8 s). The repolarization of the glial membrane (duration, 0.5-0.8 s) coincided with neuronal hyperpolarization, associated with disfacilitation, and suppressed synaptic activity in cortical networks. SW seizures in glial cells displayed phasic events, synchronized with neuronal paroxysmal potentials, superimposed on a plateau of depolarization, that lasted for the duration of the seizure. Measurements of the neuronal membrane capacitance during slow oscillating patterns showed small fluctuations around the resting values in relation to the phases of the slow oscillation. In contrast, the glial capacitance displayed a small-amplitude oscillation of 1-2 Hz, independent of phasic sleep and seizure activity. Additionally, in both cell types, SW seizures were associated with a modulatory, slower oscillation ( approximately 0.2 Hz) and a persistent increase of capacitance, developing in parallel with the progression of the seizure. These capacitance variations were dependent on the severity of the seizure and the distance between the presumed seizure focus and the recording site. We suggest that the capacitance variations may reflect changes in the membrane surface area (swelling) and/or of the interglial communication via gap junctions, which may affect the synchronization and propagation of paroxysmal activities.
Collapse
Affiliation(s)
- F Amzica
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada
| | | |
Collapse
|
18
|
Wan X, Juranka P, Morris CE. Activation of mechanosensitive currents in traumatized membrane. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C318-27. [PMID: 9950759 DOI: 10.1152/ajpcell.1999.276.2.c318] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanosensitive (MS) channels, ones whose open probability varies with membrane tension in patch recordings, are diverse and ubiquitous, yet many are remarkably insensitive to mechanical stimuli in situ. Failure to elicit mechanocurrents from cells with abundant MS channels suggests that, in situ, the channels are protected from mechanical stimuli. To establish what conditions affect MS channel gating, we monitored Lymnaea neuron stretch-activated K (SAK) channels in cell-attached patches after diverse treatments. Mechanosensitivity was gauged by rapidity of onset and extent of channel activation during a step pressure applied to a "naive" patch. The following treatments enhanced mechanosensitivity: actin depolymerization (cytochalasin B), N-ethylmaleimide, an inhibitor of ATPases including myosin, elevated Ca (using A-23187), and osmotic swelling (acutely and after 24 h). Osmotic shrinking decreased mechanosensitivity. A unifying interpretation is that traumatized cortical cytoskeleton cannot prevent transmission of mechanical stimuli to plasma membrane channels. Mechanoprotection and capricious mechanosensitivity are impediments to cloning efforts with MS channels. We demonstrate a potpourri of endogenous MS currents from L-M(TK-) fibroblasts; others had reported these cells to be MS current null and hence to be suitable for expressing putative MS channels.
Collapse
Affiliation(s)
- X Wan
- Neurosciences, Loeb Health Research Institute, Ottawa Hospital, Ottawa, Ontario, Canada K1Y 4E9
| | | | | |
Collapse
|