1
|
Vázquez-Cuevas FG, Cruz-Rico A, Garay E, García-Carrancá A, Pérez-Montiel D, Juárez B, Arellano RO. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse. Reprod Fertil Dev 2014; 25:971-84. [PMID: 23050672 DOI: 10.1071/rd12196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/04/2012] [Indexed: 12/13/2022] Open
Abstract
Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.
Collapse
Affiliation(s)
- F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP, 76230, Querétaro México
| | | | | | | | | | | | | |
Collapse
|
2
|
Hammami S, Willumsen NJ, Meinild AK, Klaerke DA, Novak I. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges. Acta Physiol (Oxf) 2013; 207:503-15. [PMID: 22805606 DOI: 10.1111/j.1748-1716.2012.02460.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/11/2012] [Accepted: 05/28/2012] [Indexed: 11/27/2022]
Abstract
AIM A number of K(+) channels are regulated by small, fast changes in cell volume. The mechanisms underlying cell volume sensitivity are not known, but one possible mechanism could be purinergic signalling. Volume activated ATP release could trigger signalling pathways that subsequently lead to ion channel stimulation and cell volume back-regulation. Our aim was to investigate whether volume sensitivity of the voltage-gated K(+) channel, KCNQ1, is dependent on ATP release and regulation by purinergic signalling. METHODS We used Xenopus oocytes heterologously expressing human KCNQ1, KCNE1, water channels (AQP1) and P2Y2 receptors. ATP release was monitored by a luciferin-luciferase assay and ion channel conductance was recorded by two-electrode voltage clamp. RESULTS The luminescence assay showed that oocytes released ATP in response to mechanical, hypoosmotic stimuli and hyperosmotic stimuli. Basal ATP release was approx. three times higher in the KCNQ1 + AQP1 and KCNQ1 injected oocytes compared to the non-injected ones. Exogenously added ATP (0.1 mm) did not have any substantial effect on volume-induced KCNQ1 currents. Nevertheless, apyrase decreased all currents by about 50%. Suramin inhibited about 23% of the KCNQ1 volume sensitivity. Expression of P2Y2 receptors stimulated endogenous Cl(-) channels, but it also led to 68% inhibition of the KCNQ1 currents. Adenosine (0.1 mm) also inhibited the KCNQ1 currents by about 56%. CONCLUSION Xenopus oocytes release ATP in response to mechanical stimuli and cell volume changes. Purinergic P2 and P1 receptors confer some of the KCNQ1 channel volume sensitivity, although endogenous adenosine receptors and expressed P2Y2 receptors do so in the negative direction.
Collapse
Affiliation(s)
- S. Hammami
- Department of Biology; University of Copenhagen; Copenhagen; Denmark
| | - N. J. Willumsen
- Department of Biology; University of Copenhagen; Copenhagen; Denmark
| | - A.-K. Meinild
- Department of Biology; University of Copenhagen; Copenhagen; Denmark
| | - D. A. Klaerke
- Department of Physiology and Biochemistry; IBHV, University of Copenhagen; Copenhagen; Denmark
| | - I. Novak
- Department of Biology; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
3
|
Arellano RO, Robles-Martínez L, Serrano-Flores B, Vázquez-Cuevas F, Garay E. Agonist-activated Ca2+ influx and Ca2+ -dependent Cl- channels in Xenopus ovarian follicular cells: functional heterogeneity within the cell monolayer. J Cell Physiol 2012; 227:3457-70. [PMID: 22213197 DOI: 10.1002/jcp.24046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion-current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage-clamp technique. All agonists elicited Cl(-) currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca(2+) concentration ([Ca(2+) ](i)), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl(-) (F(Cl)) currents, while AII activated an oscillatory response; a robust Ca(2+) influx linked specifically to F(Cl) activation elicited an inward current (I(iw,Ca)) which was carried mainly by Cl(-) ions, through channels with a sequence of permeability of SCN(-) > I(-) > Br(-) > Cl(-). Like F(Cl), I(iw,Ca) was not dependent on oocyte [Ca(2+) ](i) ; instead both were eliminated by preventing [Ca(2+) ](i) increase in the follicular cells, and also by U73122 and 2-APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that F(Cl) and I(iw,Ca) were produced by the expected, PLC-stimulated Ca(2+) -release and Ca(2+) -influx, respectively, and by the opening of I(Cl(Ca)) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca(2+) -influx appeared to be driven through store-operated, calcium-like channels. The AII response, which is also known to require PLC activation, did not activate I(iw,Ca) and was strictly dependent on oocyte [Ca(2+) ](i) increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap-junction channels.
Collapse
Affiliation(s)
- Rogelio O Arellano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México.
| | | | | | | | | |
Collapse
|
4
|
Parodi J, la Paz LOD, Miledi R, Martínez-Torres A. Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes. Mol Cells 2012; 34:349-55. [PMID: 23104436 PMCID: PMC3887764 DOI: 10.1007/s10059-012-2247-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 08/22/2012] [Accepted: 09/05/2012] [Indexed: 01/04/2023] Open
Abstract
Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.
Collapse
Affiliation(s)
- Jorge Parodi
- Laboratorio de Fisiología de la Reproducción, Núcleo de Producción Alimentaria, Escuela de Medicina, Veterinaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco,
Chile
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla-Querétaro, UNAM,
México
| | - Lenin Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla-Querétaro, UNAM,
México
| | - Ricardo Miledi
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla-Querétaro, UNAM,
México
| | - Ataúlfo Martínez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla-Querétaro, UNAM,
México
| |
Collapse
|
5
|
Montiel-Herrera M, Zaske AM, García-Colunga J, Martínez-Torres A, Miledi R. Ion currents induced by ATP and angiotensin II in cultured follicular cells of Xenopus laevis. Mol Cells 2011; 32:397-404. [PMID: 22083304 PMCID: PMC3887691 DOI: 10.1007/s10059-011-1023-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 10/15/2022] Open
Abstract
Xenopus laevis oocytes are commonly used to study the biophysical and pharmacological properties of foreign ion channels and receptors, but little is known about those endogenously expressed in their enveloping layer of follicular cells (FCs). Whole-cell recordings and the perforated patch-clamp technique in cultured FCs held at -60 mV revealed that ATP (20-250 μM) generates inward currents of 465 ± 93 pA (mean ± standard error) in ~60% of the FCs studied, whereas outward currents of 317 ± 100 pA were found in ~5% of the cells. The net effect of ATP on the FCs was to activate both mono- and biphasic inward currents, with an associated increase in membrane chloride conductance. Two-microelectrode voltage-clamp recordings of nude oocytes held at -60 mV disclosed that ATP elicited biphasic inward currents, corresponding to the well-known F(in) and S(in)-like currents. ATP receptor antagonists like suramin, TNP-ATP, and RB2 did not inhibit any of these responses. On the other hand, when using whole-cell recordings, 1 μM Ang II yielded smooth inward currents of 157 ± 45 pA in ~16% of the FC held at -60 mV. The net Ang II response, mediated by the activation of the AT(1) receptor, was a chloride current inhibited by 10 nM ZD7155. This study will help to better understand the roles of ATP and Ang II receptors in the physiology of X. laevis oocytes.
Collapse
Affiliation(s)
- Marcelino Montiel-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd. Juriquilla 3001, Juriquilla, Querétaro, México.
| | | | | | | | | |
Collapse
|
6
|
Vázquez-Cuevas FG, Zárate-Díaz EP, Garay E, Arellano RO. Functional expression and intracellular signaling of UTP-sensitive P2Y receptors in theca-interstitial cells. Reprod Biol Endocrinol 2010; 8:88. [PMID: 20630102 PMCID: PMC2912313 DOI: 10.1186/1477-7827-8-88] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Purinergic receptors are expressed in the ovary of different species; their physiological roles remain to be elucidated. UTP-sensitive P2Y receptor activity may regulate cell proliferation. The aim of the present work was to study the functional expression of these receptors in theca/interstitial cells (TIC). METHODS TIC were isolated by centrifugation in a Percoll gradient. P2Y receptors and cellular markers in TIC were detected by RT-PCR and Western blot. Intracellular calcium mobilization induced by purinergic drugs was evaluated by fluorescence microscopy, phosphorylation of MAPK p44/p42 and of cAMP response element binding protein (CREB) was determined by Western blot and proliferation was quantified by [3H]-thymidine incorporation into DNA. RESULTS RT-PCR showed expression of p2y2r and p2y6r transcripts, expression of the corresponding proteins was confirmed. UTP and UDP, agonists for P2Y2 and P2Y6 receptors, induced an intracellular calcium increase with a maximum of more than 400% and 200% of basal level, respectively. The response elicited by UTP had an EC50 of 3.5 +/- 1.01 microM, while that for UDP was 3.24 +/- 0.82 microM. To explore components of the pathway activated by these receptors, we evaluated the phosphorylation induced by UTP or UDP of MAPK p44 and p42. It was found that UTP increased MAPK phosphorylation by up to 550% with an EC50 of 3.34 +/- 0.92 and 1.41 +/- 0.67 microM, for p44 and p42, respectively; these increases were blocked by suramin. UDP also induced p44/p42 phosphorylation, but at high concentrations. Phosphorylation of p44/p42 was dependent on PKC and intracellular calcium. To explore possible roles of this pathway in cell physiology, cell proliferation and hCG-induced CREB-phosphorylation assays were performed; results showed that agonists increased cell proliferation and prevented CREB-phosphorylation. CONCLUSION Here, it is shown that UTP-sensitive P2Y receptors are expressed in cultured TIC and that these receptors had the ability to activate mitogenic signaling pathways and to promote cell proliferation, as well as to prevent CREB-phosphorylation by hCG. Regulation of TIC proliferation and steroidogenesis is relevant in ovarian pathophysiology since theca hyperplasia is involved in polycystic ovarian syndrome. Purinergic receptors described might represent an important new set of molecular therapeutic targets.
Collapse
Affiliation(s)
- Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| | - Erika P Zárate-Díaz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| | - Edith Garay
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| | - Rogelio O Arellano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, México
| |
Collapse
|
7
|
Functional interaction between native G protein-coupled purinergic receptors in Xenopus follicles. Proc Natl Acad Sci U S A 2009; 106:16680-5. [PMID: 19805357 DOI: 10.1073/pnas.0905811106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purinergic receptors are expressed in the membrane of the follicular cell layer that communicates with the Xenopus oocyte. Adenosine (Ado) generates a cAMP-dependent K(+) current (I(K,cAMP)), whereas ATP activates a Cl(-) current (F(Cl)) and has a dual effect on I(K,cAMP), provoking both its activation and inhibition. Here, purinergic responses were studied electrophysiologically, first in the whole follicle (w.f.), and then in the same follicle after removal of its epithelium/theca layers (e.t.r. follicle). Responses were analyzed as the ratio of the current amplitudes (i(etr)/i(wf)) in the two preparations. For ATP activation of I(K,cAMP) and F(Cl), the ratios i(etr)/i(wf) were 0.053 and 22, respectively, whereas that for Ado was 0.75. Thus, epithelium/theca removal drastically altered the ATP response, suggesting a change in the signaling pathway that correlated with changes in the pharmacological characteristics: the half-maximal effective concentration for activation of the main current in w.f. (I(K,cAMP)) was 14 +/- 3.8 microM [Hill coefficient (nH) = 2.7 +/- 0.61], and that in e.t.r. follicles (F(Cl)) was 1.8 +/- 0.68 microM (nH = 0.76 +/- 0.09), whereas Ado-response parameters did not change. Responses to UTP and beta,gamma-methylene-ATP, specific agonists for I(K,cAMP) inhibition and activation, respectively, indicated that in e.t.r. follicles inhibition increased and activation decreased drastically. Thus, purinergic responses were not independent; instead, they were functionally linked. We hypothesize that this property was due to direct interactions between receptors for Ado (A2 subtype) and ATP (P2Y subtype) in the Xenopus follicle.
Collapse
|
8
|
Saldaña C, Garay E, Rangel GE, Reyes LM, Arellano RO. Native ion current coupled to purinergic activation via basal and mechanically induced ATP release in Xenopus follicles. J Cell Physiol 2008; 218:355-65. [PMID: 18932209 DOI: 10.1002/jcp.21611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Xenopus follicle-enclosed oocytes are endowed with purinergic receptors located in the follicular cell membrane; their stimulation by ATP elicits an electrical response that includes generation of a fast inward current (F(Cl)) carried by Cl(-). Here, it was found that mechanical stimulation of the follicle provoked a native electrical response named I(mec). This was dependent on coupling between oocyte and follicular cells, because I(mec) was eliminated by enzymatic defolliculation or application of uncoupling drugs, such as heptanol or carbenoxolone. Moreover, the characteristics of I(mec) suggested that it corresponded with opening of the Cl(-) channel involved in F(Cl). For example, I(mec) showed cross-talk with the membrane mechanism that activates the F(Cl) response and anionic selectivity similar to that displayed by F(Cl). Also like F(Cl), I(mec) was independent of extracellular or intracellular Ca(2+). Furthermore, I(mec) was inhibited by superfusion with a purinergic antagonist, suramin, or by an enzyme that rapidly hydrolyzes ATP, apyrase. The response to mechanical stimulation was reconstituted in defolliculated oocytes expressing P2X channels as an ATP sensor. Recently, it has been shown that ATP release from the Xenopus oocyte is triggered by mechanical stimulation. Together, these observations seemed to indicate that I(mec) is activated through a mechanism that involves oocyte release of ATP that diffuses and activates purinergic receptors in follicular cells, with subsequent opening of F(Cl) channels. Thus, I(mec) generation disclosed a paracrine communication system via ATP between the oocyte and its companion follicular cells that might be of physiological importance during the growth and development of the gamete.
Collapse
Affiliation(s)
- Carlos Saldaña
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | | | | | |
Collapse
|
9
|
Fujita R, Kimura S, Kawasaki S, Watanabe S, Watanabe N, Hirano H, Matsumoto M, Sasaki K. Electrophysiological and pharmacological characterization of the K(ATP) channel involved in the K+-current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. J Physiol Sci 2007; 57:51-61. [PMID: 17239259 DOI: 10.2170/physiolsci.rp010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/21/2007] [Indexed: 11/05/2022]
Abstract
The follicular cells surrounding Xenopus oocyte under voltage clamp produce K(+)-current responses to follicle-stimulating hormone (FSH), adenosine (Ade), and intracellularly applied cAMP. We previously reported that these responses are suppressed by the stimulation of P2Y receptor through phosphorylation by PKC presumably of the ATP-sensitive K(+) (K(ATP)) channel. This channel comprises sulfonylurea receptors (SURs) and K(+) ionophores (Kirs) having differential sensitivities to K(+) channel openers (KCOs) depending on the SURs. To characterize the K(+) channels involved in the FSH- and Ade-induced responses, we investigated the effects of various KCOs and SUR blockers on the agonist-induced responses. The applications of PCO400, cromakalim (Cro), and pinacidil, but not diazoxide, produced K(+)-current responses similar to the FSH- and Ade-induced responses in the magnitude order of PCO400 > Cro >> pinacidil in favor of SUR2A. The application of glibenclamide, phentolamine, and tolbutamide suppressed all the K(+)-current responses to FSH, Ade, cAMP, and KCOs. Furthermore, both the FSH- and Ade-induced responses were markedly augmented during the KCO-induced responses, or vice versa. The I-V curves for the K(+)-current responses induced by Cro, Ade, and FSH showed outward rectification in normal [K(+)](o), but weak inward rectification in 122 mM [K(+)](o). Also, stimulations of P2Y receptor by UTP or PKC by PDBu markedly depressed the K(+)-current response to KCOs in favor of Kir6.1, as previously observed with the responses to FSH and Ade. These results suggest that the K(+)-current responses to FSH and Ade may be produced by the opening of a novel type of K(ATP) channel comprising SUR2A and Kir6.1.
Collapse
Affiliation(s)
- Reiko Fujita
- Department of Chemistry, School of Liberal Arts & Sciences, Iwate Medical University, Morioka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Morales-Tlalpan V, Arellano RO, Díaz-Muñoz M. Interplay between ryanodine and IP3 receptors in ATP-stimulated mouse luteinized-granulosa cells. Cell Calcium 2005; 37:203-13. [PMID: 15670867 DOI: 10.1016/j.ceca.2004.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 12/01/2022]
Abstract
In mouse luteinized-granulosa cells (MGLC), ATP induces an increase in intracellular Ca2+ concentration by stimulating phospholipase C (PLC) associated with purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent release of Ca2+ from intracellular stores. In this study, we examined the cross-talk between the ryanodine receptors (RyR) and IP3 receptors (IP3R) in response to ATP in MGLC. Specifically, the effect of RyR modulators on ATP response was examined. The results showed that ATP-induced intracellular calcium elevation was abolished by inhibitors of the RyR, such as dantrolene (25 microM) and ryanodine (80 microM). When the MGLC were stimulated with activators of RyR, 2 microM ryanodine and 10 mM caffeine, the ATP-elicited response was decreased. These actions were independent of IP3 production stimulated by ATP. Hence, ATP-induced intracellular Ca2+ mobilization involves the coordinated action of both types of calcium release channels (CRCs). Using fluorescent probes, it was shown that IP3R is uniformly distributed throughout the cell; in contrast, RyR is mainly found around the nuclei. It is concluded that the IP3R and the RyR are functionally associated, and both play a role in the pattern of Ca2+ increase observed during purinergic stimulation of MGLC. This coupling may provide a highly efficient amplification mechanism for ATP stimulation of Ca2+ mobilization.
Collapse
Affiliation(s)
- V Morales-Tlalpan
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus, Juriquilla Querétaro 76230, QRO, Mexico
| | | | | |
Collapse
|
11
|
Saldaña C, Vázquez-Cuevas F, Garay E, Arellano RO. Epithelium and/or theca are required for ATP-elicited K+ current in follicle-enclosed Xenopus oocytes. J Cell Physiol 2005; 202:814-21. [PMID: 15389645 DOI: 10.1002/jcp.20184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Xenopus follicular cell membrane is endowed with ATP-sensitive K+ channels, which are operated by various transmitters. These generate the ionic response named IK,cAMP via a mechanism that involves intracellular cAMP synthesis. It is known that opening these K+ channels favors oocyte maturation. Follicle stimulation by adenosine (Ado) or ATP consistently generates a strong IK,cAMP via activation of P1 and P3 purinergic receptors; however, ATP can also inhibit IK,cAMP, apparently acting on a third receptor type. Here, we show that IK,cAMP might be elicited by ATP released within the follicle, and that current activation by ATP was entirely dependent on the presence of epithelial and/or theca layers. Morphological studies confirmed that removal of epithelium/theca in these follicles (e.t.r.) was complete, and activation of fast Cl- (Fin) currents by ATP in e.t.r. follicles confirmed that communication between oocyte and follicular cells remained unchanged. Thus, dependence on epithelium/theca was specific for ATP-elicited K+ current. Using UTP and betagamma-MeATP as specific purinergic agents for IK,cAMP inhibition and activation, respectively, it was found that inhibition of IK,cAMP elicited by ATP or UTP was robustly present in e.t.r. follicles but was absent or strongly decreased in whole follicles (w.f.). Accordingly, this indicated that in w.f., epithelium and/or theca downregulated the IK,cAMP inhibition evoked by ATP, and that this control mechanism was absent in e.t.r. follicles. We suggest that this notable action on follicular cells involves one or both of two mechanisms, a paracrine transmitter released from epithelial and/or theca layers and action of ecto-ATPases.
Collapse
Affiliation(s)
- Carlos Saldaña
- Laboratorio de Neurofisiología Celular, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología UNAM, México
| | | | | | | |
Collapse
|
12
|
Aleu J, Martín-Satué M, Navarro P, Pérez de Lara I, Bahima L, Marsal J, Solsona C. Release of ATP induced by hypertonic solutions in Xenopus oocytes. J Physiol 2003; 547:209-19. [PMID: 12562935 PMCID: PMC2342618 DOI: 10.1113/jphysiol.2002.029660] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 11/27/2002] [Indexed: 01/23/2023] Open
Abstract
ATP mediates intercellular communication. Mechanical stress and changes in cell volume induce ATP release from various cell types, both secretory and non-secretory. In the present study, we stressed Xenopus oocytes with a hypertonic solution enriched in mannitol (300 mM). We measured simultaneously ATP release and ionic currents from a single oocyte. A decrease in cell volume, the activation of an inward current and ATP release were coincident. We found two components of ATP release: the first was associated with granule or vesicle exocytosis, because it was inhibited by tetanus neurotoxin, and the second was related to the inward current. A single exponential described the correlation between ATP release and the hypertonic-activated current. Gadolinium ions, which block mechanically activated ionic channels, inhibited the ATP release and the inward current but did not affect the decrease in volume. Oocytes expressing CFTR (cystic fibrosis transmembrane regulator) released ATP under hypertonic shock, but ATP release was significantly inhibited in the first component: that related to granule exocytosis. Since the ATP measured is the balance between ATP release and ATP degradation by ecto-enzymes, we measured the nucleoside triphosphate diphosphohydrolase (NTPDase) activity of the oocyte surface during osmotic stress, as the calcium-dependent hydrolysis of ATP, which was inhibited by more than 50 % in hypertonic conditions. The best-characterized membrane protein showing NTPDase activity is CD39. Oocytes injected with an antisense oligonucleotide complementary to CD39 mRNA released less ATP and showed a lower amplitude in the inward current than those oocytes injected with water.
Collapse
Affiliation(s)
- Jordi Aleu
- Laboratory of Molecular and Cellular Neurobiology, Department of Cell Biology, Medical School, Hospital of Bellvitge, University of Barcelona-Campus of Bellvitge, Feixa Llarga s/n, L' Hospitalet de Llobregat, E-08907 Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Arellano RO, Martínez-Torres A, Garay E. Ionic currents activated via purinergic receptors in the cumulus cell-enclosed mouse oocyte. Biol Reprod 2002; 67:837-46. [PMID: 12193392 DOI: 10.1095/biolreprod.102.003889] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Several chemical signals synthesized in the ovary, including neurotransmitters, have been proposed to serve as regulators of folliculogenesis, however, their mechanisms of action have not been completely elucidated. Here, electrophysiological and molecular biology techniques were used to study responses generated via purinergic stimulation in cultured mouse cumulus cell-enclosed oocytes (CEOs). Application of extracellular ATP elicited depolarizing responses in CEOs. Using the voltage clamp technique by impaling oocytes with two microelectrodes, we determined that these responses were mainly due to activation of two distinct ionic currents. The first corresponded to the opening of Ca2+-dependent Cl- channels (I(Cl(Ca))) and the second to the opening of Ca2+-independent channels that are permeable to Na+ (I(c+)). The potency order for different nucleotides (50 micro M) was UTP > ATP > 2meS-ATP > ADP, and alpha,betame-ATP and adenosine were found to be inactive. Suramin (100 micro M) blocked the response elicited by ATP or UTP. In addition, voltage dependent K+ currents activated by depolarization of CEOs were characterized. All CEO ionic currents recorded from the oocyte were completely inhibited by octanol (1 mM), a gap junction blocker. Thus, purinergic responses and K+ currents originate mainly in the membrane of cumulus cells. Transcripts of the purinergic receptor P2Y2 subtype were amplified by polymerase chain reaction from the cDNA of granulosa cells or cumulus cells. This study shows that P2Y2 receptors are expressed in CEOs, and that their stimulation opens at least two different types of ion channels. Both the ion channels and the receptors seemed to be located in the cumulus cells, which transmit their corresponding electrical signals to the oocyte via gap junction channels.
Collapse
Affiliation(s)
- Rogelio O Arellano
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, México.
| | | | | |
Collapse
|
14
|
Fujita R, Kimura S, Kawasaki S, Takashima K, Matsumoto M, Hirano H, Sasaki K. ATP suppresses the K(+) current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:491-500. [PMID: 11564286 DOI: 10.2170/jjphysiol.51.491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The application of either follicle-stimulating hormone (FSH) or adenosine (Ade) induces a K(+)-current response in the follicular cells surrounding a Xenopus oocyte under a voltage clamp. These K(+)-current responses are reported to be produced by an increase in intracellular cAMP. A previous application of ATP to the same cells markedly depressed the K(+)-current responses to FSH and Ade. Furthermore, a 2 min application of phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), significantly depressed the K(+)-current responses to FSH and Ade, but it had no significant effect on the Cl(-)-current response to ATP. An application of either ATP or PDBu also depressed the K(+)-current response induced by intracellularly applied cAMP. In contrast to the effect of PDBu, the application of 1-octanol, an inhibitor of gap junction channel, significantly depressed both the Ade- and ATP-induced responses, indicating that the acting site of 1-octanol is different from that of PKC. The results suggest that the depressing effect of ATP on the FSH- and Ade-induced K(+)-current responses might be mediated by PKC activation and that the site of PKC action might be downstream of the cAMP production involved in the K(+) channel opening.
Collapse
Affiliation(s)
- R Fujita
- Department of Chemistry, School of Liberal Arts and Sciences, Iwate Medical University, Morioka, 020-0015, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Escalada A, Aleu J, Bodas E, Martín-Satué M, Felipe A, Marsal J, Gómez de Aranda I, Pujol G, Solsona C. ATP release from the electric organ of Torpedoand from Xenopusoocytes. Drug Dev Res 2001. [DOI: 10.1002/ddr.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
|
17
|
Bodas E, Aleu J, Pujol G, Martin-Satué M, Marsal J, Solsona C. ATP crossing the cell plasma membrane generates an ionic current in xenopus oocytes. J Biol Chem 2000; 275:20268-73. [PMID: 10764752 DOI: 10.1074/jbc.m000894200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The presence of ATP within cells is well established. However, ATP also operates as an intercellular signal via specific purinoceptors. Furthermore, nonsecretory cells can release ATP under certain experimental conditions. To measure ATP release and membrane currents from a single cell simultaneously, we used Xenopus oocytes. We simultaneously recorded membrane currents and luminescence. Here, we show that ATP release can be triggered in Xenopus oocytes by hyperpolarizing pulses. ATP release (3.2 +/- 0.3 pmol/oocyte) generated a slow inward current (2.3 +/- 0.1 microA). During hyperpolarizing pulses, the permeability for ATP(4-) was more than 4000 times higher than that for Cl(-). The sensitivity to GdCl(3) (0. 2 mm) of hyperpolarization-induced ionic current, ATP release and E-ATPase activity suggests their dependence on stretch-activated ion channels. The pharmacological profile of the current inhibition coincides with the inhibition of ecto-ATPase activity. This enzyme is highly conserved among species, and in humans, it has been cloned and characterized as CD39. The translation, in Xenopus oocytes, of human CD39 mRNA encoding enhances the ATP-supported current, indicating that CD39 is directly or indirectly responsible for the electrodiffusion of ATP.
Collapse
Affiliation(s)
- E Bodas
- Laboratory of Molecular Neurobiology, Department of Cell Biology and Pathology, Medical School, Hospital of Bellvitge, University of Barcelona, Campus of Bellvitge, Feixa Llarga s/n, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Pérez-Samartín AL, Miledi R, Arellano RO. Activation of volume-regulated Cl(-) channels by ACh and ATP in Xenopus follicles. J Physiol 2000; 525 Pt 3:721-34. [PMID: 10856124 PMCID: PMC2269977 DOI: 10.1111/j.1469-7793.2000.00721.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Osmolarity-dependent ionic currents from follicle-enclosed Xenopus oocytes (follicles) were studied using electrophysiological techniques. Whole follicle currents were monitored using a two-electrode voltage clamp and single-channel activity was measured using the patch-clamp technique. In follicles held at -60 mV two chloride currents were activated in external hyposmotic solutions. One was the habitual volume-regulated current elicited by external hyposmolarity (ICl,swell), and the second was a slow and smooth current (Sin) generated by ACh or ATP application. In follicles, the permeability ratios for different anions with respect to Cl- were similar for both ICl,swell and Sin, with a sequence of: SCN- > I- > Br- >= NO3- >= Cl- > gluconate >= cyclamate > acetate > SO42-. Extracellular ATP blocked the outward component of Sin. Also, extracellular pH modulated the inactivation kinetics of Sin elicited by ACh; e.g. inactivation at +80 mV was approximately 100 % slower at pH 8.0 compared with that at pH 6.0. Lanthanides inhibited ICl, swell and Sin. La3+ completely inhibited ICl,swell with a half-maximal inhibitory concentration (IC50) of 17 +/- 1.9 microM, while Sin was blocked up to 55 % with an apparent IC50 of 36 +/- 2.6 microM. Patch-clamp recordings in follicular cells showed that hyposmotic challenge opened inward single-channel currents. The single channel conductance (4.7 +/- 0.4 pS) had a linear current-voltage relationship with a reversal membrane potential close to -20 mV. This single-channel activity was increased by application of ACh or ATP. The ICl,swell generation was not affected by pirenzepine or metoctramine, and did not affect the purinergic activation of the chloride current named Fin. Thus, ICl,swell was not generated via neurotransmitters released during cellular swelling. All together, equal discrimination for different anions, similar modulatory effects by extracellular pH, the blocking effects by ATP and La3+, and the same single-channel activity, strongly suggest that ICl,swell and Sin currents depend on the opening of the same type or a closely related class of volume-regulated chloride channels.
Collapse
Affiliation(s)
- A L Pérez-Samartín
- Departamento de Neurociencias, Universidad del País Vasco, 48940 Leioa (Vizcaya), España
| | | | | |
Collapse
|
19
|
Arellano RO, Garay E, Miledi R. Muscarinic receptor heterogeneity in follicle-enclosed Xenopus oocytes. J Physiol 1999; 521 Pt 2:409-19. [PMID: 10581312 PMCID: PMC2269680 DOI: 10.1111/j.1469-7793.1999.00409.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Ionic current responses elicited by acetylcholine (ACh) in follicle-enclosed Xenopus oocytes (follicles) were studied using the two-electrode voltage-clamp technique. ACh generated a fast chloride current (Fin) and inhibited K+ currents gated by cAMP (IK,cAMP) following receptor activation by adenosine, follicle-stimulating hormone or noradrenaline. These previously described cholinergic responses were confirmed to be of the muscarinic type, and were independently generated among follicles from different frogs. 2. Inhibition of IK,cAMP was about 100 times more sensitive to ACh than Fin activation; the half-maximal effective concentrations (EC50) were 6.6 +/- 0.4 and 784 +/- 4 nM, respectively. 3. Both responses were blocked by several muscarinic receptor antagonists. Using the respective EC50 concentrations of ACh as standard, the antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide blocked the two effects with very different potencies. Fin was blocked with a half-maximal inhibitory concentration (IC50) of 2.4 +/- 0.07 nM, whilst the IC50 for IK,cAMP inhibition was 5.9 +/- 0.2 microM. 4. Oxotremorine, a muscarinic agonist, preferentially stimulated IK, cAMP inhibition (EC50 = 15.8 +/- 1.4 microM), whilst Fin was only weakly activated. In contrast, oxotremorine inhibited Fin generated by ACh with an IC50 of 2.3 +/- 0.7 microM. 5. Fin elicited via purinergic receptor stimulation was not affected by oxotremorine, indicating that the inhibition produced was specific to the muscarinic receptor, and suggesting that muscarinic actions do not exert a strong effect on follicular cell-oocyte coupling. 6. Using reverse transcription-PCR, transcripts of a previously cloned muscarinic receptor from Xenopus (XlmR) were amplified from the RNA of both the isolated follicular cells and the oocyte. The pharmacological and molecular characteristics suggest that XlmR is involved in IK,cAMP inhibition. 7. In conclusion, follicular cells possess two different muscarinic receptors, one resembling the M2 (or M4) subtype and the other the M3 subtype. These receptors are coupled to distinct membrane mechanisms leading to independent regulation of two membrane conductances.
Collapse
Affiliation(s)
- R O Arellano
- Centro de Neurobiología, Universidad Nacional Autonoma de Mexico, Queretaro, Mexico, C.P. 76001.
| | | | | |
Collapse
|
20
|
Light DB, Capes TL, Gronau RT, Adler MR. Extracellular ATP stimulates volume decrease in Necturus red blood cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C480-91. [PMID: 10484335 DOI: 10.1152/ajpcell.1999.277.3.c480] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined whether extracellular ATP stimulates regulatory volume decrease (RVD) in Necturus maculosus (mudpuppy) red blood cells (RBCs). The hemolytic index (a measure of osmotic fragility) decreased with extracellular ATP (50 microM). In contrast, the ATP scavenger hexokinase (2.5 U/ml, 1 mM glucose) increased osmotic fragility. In addition, the ATP-dependent K+ channel antagonist glibenclamide (100 microM) increased the hemolytic index, and this inhibition was reversed with ATP (50 microM). We also measured cell volume recovery in response to hypotonic shock electronically with a Coulter counter. Extracellular ATP (50 microM) enhanced cell volume decrease in a hypotonic (0.5x) Ringer solution. In contrast, hexokinase (2.5 U/ml) and apyrase (an ATP diphosphohydrolase, 2.5 U/ml) inhibited cell volume recovery. The inhibitory effect of hexokinase was reversed with the Ca2+ ionophore A-23187 (1 microM); it also was reversed with the cationophore gramicidin (5 microM in a choline-Ringer solution), indicating that ATP was linked to K+ efflux. In addition, glibenclamide (100 microM) and gadolinium (10 microM) inhibited cell volume decrease, and the effect of these agents was reversed with ATP (50 microM) and A-23187 (1 microM). Using the whole cell patch-clamp technique, we found that ATP (50 microM) stimulated a whole cell current under isosmotic conditions. In addition, apyrase (2.5 U/ml), glibenclamide (100 microM), and gadolinium (10 microM) inhibited whole cell currents that were activated during hypotonic swelling. The inhibitory effect of apyrase was reversed with the nonhydrolyzable analog adenosine 5'-O-(3-thiotriphosphate) (50 microM), and the effect of glibenclamide or gadolinium was reversed with ATP (50 microM). Finally, anionic whole cell currents were activated with hypotonic swelling when ATP was the only significant charge carrier, suggesting that increases in cell volume led to ATP efflux through a conductive pathway. Taken together, these results indicate that extracellular ATP stimulated cell volume decrease via a Ca2+-dependent step that led to K+ efflux.
Collapse
Affiliation(s)
- D B Light
- Department of Biology, Ripon College, Ripon, Wisconsin 54971, USA.
| | | | | | | |
Collapse
|