1
|
Lariccia V, Amoroso S. Calcium- and ATP-dependent regulation of Na/Ca exchange function in BHK cells: Comparison of NCX1 and NCX3 exchangers. Cell Calcium 2018; 73:95-103. [PMID: 29705719 DOI: 10.1016/j.ceca.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Na+/Ca2+ exchangers (NCX) mediate bidirectional Ca2+ fluxes across cell membranes and contribute to Ca2+ homeostasis in many cell types. Exchangers are regulated by gating reactions that depend on Na+ and Ca2+ binding to transport and regulatory sites. A Na+i-dependent inactivation is prominent in all isoforms, whereas Ca2+i-dependent regulation varies among isoforms. Here we characterize new details of NCX operation and describe differences and similarities between NCX3 and NCX1 regulation by intracellular Ca2+ and ATP. To compare isoforms, we employed BHK cells expressing NCX3 or NCX1 constitutively and exchange activity was analysed in whole-cell and excised patch recordings under "zero-trans" conditions (i.e., with only one transported ion species on each side). Using BHK cells with low cytoplasmic Ca2+ buffering, outward (reverse) currents, reflecting Ca2+ influx, are activated by applying extracellular Ca2+ (Cao) in the presence of Na+ on the cytoplasmic side. When firstly activated, peak outward NCX3 currents rapidly decay over seconds and then typically develop a secondary transient peak with slower kinetics, until Cao removal abolishes all outward current. The delayed rise of outward current is the signature of an activating process since peak outward NCX3 currents elicited at subsequent Cao bouts remain stimulated for minutes and slower decline towards a non-zero level during continued Cao application. Secondary transient peaks and current stimulation are suppressed by increasing the intracellular Ca2+ buffer capacity or by replacing cytoplasmic ATP with the analogues AMP-PNP or ATPγS. In BHK cells expressing NCX1, outward currents activated under identical settings decay to a steady-state level during single Cao application and are significantly larger, causing strong and long-lived run down of subsequent outward currents. NCX1 current run down is not prevented by increasing cytoplasmic Ca2+ buffering but secondary transient peaks in the outward current profile can be resolved in the presence of ATP. Finally, inward currents recorded in patches excised from NCX3-expressing cells reveal a proteolysis-sensitive, Ca-dependent inactivation process that is unusual for NCX1 forward activity. Together, our results suggest that NCX function is regulated more richly than appreciated heretofore, possibly including processes that are lost in excised membrane patches.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Biomedical Science and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Science and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| |
Collapse
|
2
|
Berberián G, Podjarny A, DiPolo R, Beaugé L. Metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger: recent kinetic, biochemical and structural developments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:47-63. [PMID: 21964458 DOI: 10.1016/j.pbiomolbio.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
The Na⁺/Ca²⁺ exchangers are structural membrane proteins, essential for the extrusion of Ca²⁺ from most animal cells. Apart from the transport sites, they have several interacting ionic and metabolic sites located at the intracellular loop of the exchanger protein. One of these, the intracellular Ca²⁺ regulatory sites, are essential and must be occupied by Ca²⁺ to allow any type of ion (Na⁺ or Ca²⁺) translocation. Intracellular protons and Na⁺ are inhibitory by reducing the affinity of the regulatory sites for Ca²⁺; MgATP stimulates by antagonizing H⁺ and Na⁺. We have proposed a kinetic scheme to explain all ionic and metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger. This model uniquely accounts for most of the new kinetic data provided here; however, none of the existing models can explain the trans effects of the Ca(i)²⁺-regulatory sites on external cation transport sites; i.e. all models are incomplete. MgATP up-regulation of the squid Na⁺/Ca²⁺ exchanger requires a cytosolic protein, which has been recently identified as a member of the lipocalin super family of Lipid Binding Proteins (LBP or FABP) of 132 amino acids (ReP1-NCXSQ, access to GenBank EU981897). This protein was cloned, expressed and purified. To be active, ReP1-NCXSQ must be phosphorylated from MgATP by a kinase present in the plasma membrane. Phosphorylated ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. Experiments with proteoliposomes proved that this up-regulation can take place just with the lipid membrane and the exchanger protein. The structure of ReP1-NCXSQ predicted from the amino acid sequence has been confirmed by X-ray crystal analysis; it has a "barrel" formed by ten beta sheets and two alpha helices, with a lipid coordinated by hydrogen bonds with Arg 126 and Tyr 128.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica "Mercedes y Martín Ferreyra" (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
3
|
Forcato D, Posada V, Beaugé L, Berberián G. Optimal metabolic regulation of the mammalian heart Na(+)/Ca(2+) exchanger requires a spacial arrangements with a PtdIns(4)-5kinase. Biochem Biophys Res Commun 2010; 402:147-52. [PMID: 20933499 DOI: 10.1016/j.bbrc.2010.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 11/15/2022]
Abstract
In inside-out bovine heart sarcolemmal vesicles, p-chloromercuribenzenesulfonate (PCMBS) and n-ethylmaleimide (NEM) fully inhibited MgATP up-regulation of the Na(+)/Ca(2+) exchanger (NCX1) and abolished the MgATP-dependent PtdIns-4,5P2 increase in the NCX1-PtdIns-4,5P2 complex; in addition, these compounds markedly reduced the activity of the PtdIns(4)-5kinase. After PCMBS or NEM treatment, addition of dithiothreitol (DTT) restored a large fraction of the MgATP stimulation of the exchange fluxes and almost fully restored PtdIns(4)-5kinase activity; however, in contrast to PCMBS, the effects of NEM did not seem related to the alkylation of protein SH groups. By itself DTT had no effect on the synthesis of PtdIns-4,5P2 but affected MgATP stimulation of NCX1: moderate inhibition at 1mM MgATP and 1μM Ca(2+) and full inhibition at 0.25mM MgATP and 0.2μM Ca(2+). In addition, DDT prevented coimmunoprecipitation of NCX1 and PtdIns(4)-5kinase. These results indicate that, for a proper MgATP up-regulation of NCX1, the enzyme responsible for PtdIns-4,5P2 synthesis must be (i) functionally competent and (ii) set in the NCX1 microenvironment closely associated to the exchanger. This kind of supramolecular structure is needed to optimize binding of the newly synthesized PtdIns-4,5P2 to its target region in the exchanger protein.
Collapse
Affiliation(s)
- Diego Forcato
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), CC 389, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
4
|
Key role of a PtdIns-4,5P2 micro domain in ionic regulation of the mammalian heart Na+/Ca2+ exchanger. Cell Calcium 2009; 45:546-53. [PMID: 19394081 DOI: 10.1016/j.ceca.2009.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 03/13/2009] [Accepted: 03/17/2009] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol biphosphate (PtdIns-4,5P(2)) plays a key role in the regulation of the mammalian heart Na(+)/Ca(2+) exchanger (NCX1) by protecting the intracellular Ca(2+) regulatory site against H(+)(i) and (H(+)(i)+Na(+)(i)) synergic inhibition. MgATP and MgATP-gamma-S up-regulation of NCX1 takes place via the production of this phosphoinositide. In microsomes containing PtdIns-4,5P(2) incubated in the absence of MgATP and at normal [Na(+)](i), alkalinization increases the affinity for Ca(2+)(i) to the values seen in the presence of the nucleotide at normal pH; under this condition, addition of MgATP does not increase the affinity for Ca(2+)(i) any further. On the other hand, prevention of Na(+)(i) inhibition by alkalinization in the absence of MgATP does not take place when the microsomes are depleted of PtdIns-4,5P(2). Experiments on NCX1-PtdIns-4,5P(2) cross-coimmunoprecipitation show that the relevant PtdIns-4,5P(2) is not the overall membrane component but specifically that tightly attached to NCX1. Consequently, the highest affinity of the Ca(2+)(i) regulatory site is seen in the deprotonated and PtdIns-4,5P(2)-bound NCX1. Confirming these results, a PtdIns-5-kinase also cross-coimmunoprecipitates with NCX1 without losing its functional competence. These observations indicate, for the first time, the existence of a PtdIns-5-kinase in the NCX1 microdomain.
Collapse
|
5
|
Berberián G, DiPolo R, Beaugé L. Some biochemical properties of the upregulation of the squid nerve Na+/Ca2+ exchanger by MgATP and phosphoarginine. Ann N Y Acad Sci 2007; 1099:152-65. [PMID: 17446452 DOI: 10.1196/annals.1387.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In squid nerve MgATP upregulation of Na+/Ca2+ exchange requires a soluble cytosolic regulatory protein (SCRP) of about 13 kDa; phosphoarginine (PA) stimulation does not. MgATP-gamma-S mimics MgATP. When a 30-10-kDa cytosolic fraction is exposed to 0.5 mM [32P]ATP in the same solution used for transport assays, and in the presence of native membrane vesicles, a 13-kDa and a 25-kDa band become phosphorylated. Membrane vesicles alone do not show these phosphorylated bands and heat denaturation of the cytosolic fraction prevents phosphorylation. Moreover, staurosporine, a general inhibitor of kinases, does not affect MgATP + SCRP stimulation of the exchanger or the phosphorylation of the 13 kDa but prevents phosphorylation of the 25-kDa cytosolic band. The 30-10-kDa fraction phosphorylated in the presence of staurosporine stimulates Na+/Ca2+ exchange in vesicles in the absence of ATP but with Mg2+ in the medium. The 30-10-kDa fraction is not phosphorylated by PA. In membrane vesicles two protein bands, at about 60 kDa and 70 kDa identified as the low molecular weight neurofilament (NF), are phosphorylated by PA, but not by MgATP. This phosphorylation is specific for PA, insensitive to staurosporine (similar to the PA-stimulated fluxes), and labile. In addition, co-immunoprecipitation was observed between the NF and the exchanger protein. Under the conditions of these experiments no phosphorylation of the exchanger is detected, either with MgATP or PA.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
6
|
Hilgemann DW. On the physiological roles of PIP(2) at cardiac Na+ Ca2+ exchangers and K(ATP) channels: a long journey from membrane biophysics into cell biology. J Physiol 2007; 582:903-9. [PMID: 17463041 PMCID: PMC2075268 DOI: 10.1113/jphysiol.2007.132746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the last 10 years we have tried to understand the roles of PIP(2) in regulating cardiac Na(+)-Ca(2+) exchangers and K(ATP) K(+) channels, both of which are directly activated by PIP(2). Up to now, the idea that hormones might physiologically regulate these mechanisms by causing changes of PIP(2) concentrations in the cardiac sarcolemma, either locally or globally, is not well supported. In intact myocardium, but not excised patches, phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity appears to be Ca(2+) activated and dependent on cardiac activity. Potentially therefore the primary second messenger of the heart, cytoplasmic Ca(2+), may regulate PIP(2) and therewith numerous cardiac membrane processes. In general, however, PIP(2) may simply serve to strongly activate various cardiac channels and transporters when they are inserted in the sarcolemma, while a lack of PIP(2) on internal membranes maintains transporters and channels inactive during trafficking and processing. As in most, if not all, strong regulatory systems of cells, the activating effects of PIP(2) can apparently be countered by strong inactivation mechanisms. In this context, our recent work suggests that internalization of cardiac Na(+)-Ca(2+) exchangers is promoted by increased PIP(2) synthesis, especially in combination with other cell signals. Assuming that multiple adapter-PIP(2) interactions are necessary to initiate the budding of individual membrane vesicles, the dependence of endocytosis on PIP(2) in the surface membrane can potentially be a very steep function. Thus, a better understanding of the regulation of cardiac lipid kinases may be key to understanding when and how cardiac ion transporters and channels are internalized.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
7
|
Posada V, Beaugé L, Berberián G. In Bovine Heart Na+/Ca2+ Exchanger Maximal Ca2+i Affinity Requires Simultaneously High pHi and PtdIns-4,5-P2 Binding to the Carrier. Ann N Y Acad Sci 2007; 1099:171-4. [PMID: 17446454 DOI: 10.1196/annals.1387.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Na+ i-dependent Ca2+ uptake, Na+-dependent Ca2+ release, and PtdIns-4,5-P2 binding to Na+/Ca2+ exchanger (NCX1) as a function of extravesicular (intracellular) [Ca2+] were measured. Alkalinization increases Ca2+ i affinity and PtdIns-4,5-P2 bound to NCX1; these effects are abolished by pretreatment with PtdIns-PLC and are insensitive to MgATP. Acidification reduces Ca2+ i affinity. MgATP reverts it only partially despite the fact that the PtdIns-4,5-P2 bound to NCX1 reaches the same levels as at pH 7.8. Extravesicular Na+-stimulated and Ca2+-dependent Ca2+ efflux indicate the Ca2+ regulatory site is involved. Therefore, to display maximal affinity to Ca2+ i, PtdIns-4,5-P2 binding and deprotonation of NCX1 are simultaneously need.
Collapse
Affiliation(s)
- Velia Posada
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
8
|
Riedel MJ, Baczkó I, Searle GJ, Webster N, Fercho M, Jones L, Lang J, Lytton J, Dyck JRB, Light PE. Metabolic regulation of sodium-calcium exchange by intracellular acyl CoAs. EMBO J 2006; 25:4605-14. [PMID: 16977318 PMCID: PMC1589979 DOI: 10.1038/sj.emboj.7601321] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 08/09/2006] [Indexed: 11/09/2022] Open
Abstract
The sodium-calcium exchanger (NCX) is a critical mediator of calcium homeostasis. In the heart, NCX1 predominantly operates in forward mode to extrude Ca(2+); however, reverse-mode NCX1 activity during ischemia/reperfusion (IR) contributes to Ca(2+) loading and electrical and contractile dysfunction. IR injury has also been associated with altered fat metabolism and accumulation of long-chain acyl CoA esters. Here, we show that acyl CoAs are novel, endogenous activators of reverse-mode NCX1 activity, exhibiting chain length and saturation dependence, with longer chain saturated acyl moieties being the most effective NCX1 activators. These results implicate dietary fat composition as a plausible determinant of IR injury. We further show that acyl CoAs may interact directly with the XIP (exchanger inhibitory peptide) sequence, a known region of anionic lipid modulation, to dynamically regulate NCX1 activity and Ca(2+) homeostasis. Additionally, our findings have broad implications for the coupling of Ca(2+) homeostasis to fat metabolism in a variety of tissues.
Collapse
Affiliation(s)
- Michael J Riedel
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - István Baczkó
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical Center, University of Szeged, Szeged, Hungary
| | - Gavin J Searle
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Nicola Webster
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew Fercho
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Lynn Jones
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica Lang
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Lytton
- Departments of Biochemistry & Molecular Biology and Physiology & Biophysics, University of Calgary, Alberta, Canada
| | - Jason R B Dyck
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Departments of Pharmacology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-58 Medical Sciences Bldg, Edmonton, Edmonton, Alberta, Canada T6G 2H7. Tel.: +1 780 492 0638; Fax: +1 780 492 4325; E-mail:
| |
Collapse
|
9
|
DiPolo R, Beaugé L. Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol Rev 2006; 86:155-203. [PMID: 16371597 DOI: 10.1152/physrev.00018.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na(+)/Ca(2+) exchanger's family of membrane transporters is widely distributed in cells and tissues of the animal kingdom and constitutes one of the most important mechanisms for extruding Ca(2+) from the cell. Two basic properties characterize them. 1) Their activity is not predicted by thermodynamic parameters of classical electrogenic countertransporters (dependence on ionic gradients and membrane potential), but is markedly regulated by transported (Na(+) and Ca(2+)) and nontransported ionic species (protons and other monovalent cations). These modulations take place at specific sites in the exchanger protein located at extra-, intra-, and transmembrane protein domains. 2) Exchange activity is also regulated by the metabolic state of the cell. The mammalian and invertebrate preparations share MgATP in that role; the squid has an additional compound, phosphoarginine. This review emphasizes the interrelationships between ionic and metabolic modulations of Na(+)/Ca(2+) exchange, focusing mainly in two preparations where most of the studies have been carried out: the mammalian heart and the squid giant axon. A surprising fact that emerges when comparing the MgATP-related pathways in these two systems is that although they are different (phosphatidylinositol bisphosphate in the cardiac and a soluble cytosolic regulatory protein in the squid), their final target effects are essentially similar: Na(+)-Ca(2+)-H(+) interactions with the exchanger. A model integrating both ionic and metabolic interactions in the regulation of the exchanger is discussed in detail as well as its relevance in cellular Ca(i)(2+) homeostasis.
Collapse
Affiliation(s)
- Reinaldo DiPolo
- Laboratorio de Permebilidad Ionica, Centro de Biofísica y Bioquímica, Instituío Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela.
| | | |
Collapse
|
10
|
Michailova A, Saucerman J, Belik ME, McCulloch AD. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+. Biophys J 2005; 88:2234-49. [PMID: 15738467 PMCID: PMC1305273 DOI: 10.1529/biophysj.104.046284] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.
Collapse
Affiliation(s)
- Anushka Michailova
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
11
|
DiPolo R, Berberián G, Beaugé L. Phosphoarginine regulation of the squid nerve Na+/Ca2+ exchanger: metabolic pathway and exchanger-ligand interactions different from those seen with ATP. J Physiol 2004; 554:387-401. [PMID: 14578490 PMCID: PMC1664779 DOI: 10.1113/jphysiol.2003.050930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Accepted: 10/20/2003] [Indexed: 11/08/2022] Open
Abstract
In squid nerves the Na(+)-Ca(2+) exchanger is up-regulated by ATP and phosphoarginine (PA). ATP regulation involves drastic alterations in the Na(+)(i), H(+)(i) and Ca(2+)(i) interactions with the large intracellular cytoplasmic loop of the exchanger protein. In this work we explored the mechanisms associated with PA regulation in intracellular dialysed squid axons and squid optic nerve membrane vesicles. Dialysed axons were used to measure the four modes of exchange fluxes (Na(+)(o)-Ca(2+)(i) or forward exchange, Ca(2+)(o)-Na(+)(i) or reverse exchange, Ca(2+)(o)-Ca(2+)(i) exchange and Na(+)(o)-Na(+)(i) exchange) under controlled intra- and extracellular conditions. Inside-out membrane vesicles allowed measurement of the Na(+)-gradient-dependent (45)Ca(2+) uptake (forward mode) as influenced by ligands and digestion with chymotrypsin from the intracellular side. The results show that, unlike ATP, PA regulation does not affect the H(+)(i), Na(+)(i) and Ca(2+)(i) interactions with the intracellular 'regulatory' loop, but increases the affinity of the intracellular transport sites, preferentially for Ca(2+)(i) (about 20-fold) over Na(+)(i) (50%); i.e. PA favours the forward mode over the other exchange modes. Intracellular chymotrypsin digestion removed ATP regulation while leaving modulation by PA unmodified. Western blot analysis suggested that chymotrypsin disrupts the large intracellular loop. Together these results indicate that ATP and PA regulations are associated with different structures inside and outside the exchanger protein. Based on these observations we expanded our previous model for metabolic regulation of the Na(+)-Ca(2+) exchanger by adding to the original 'ATP region' a new zone, the 'PA region', related to the intracellular transport sites for Na(+)(i) and Ca(2+)(i). This new model is able to explain most previous and present results.
Collapse
|
12
|
Sergeeva OA, Amberger BT, Eriksson KS, Scherer A, Haas HL. Co-ordinated expression of 5-HT2C receptors with the NCX1 Na+/Ca2+ exchanger in histaminergic neurones. J Neurochem 2003; 87:657-64. [PMID: 14535948 DOI: 10.1046/j.1471-4159.2003.02036.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The different roles of Na+/Ca2+ (NCX) exchangers and Na+/Ca2+/K+ (NCKX) exchangers in regulation of the ionic homeostasis in neurones are poorly understood. We have previously shown that serotonin excites histaminergic tuberomamillary (TM) neurones by activation of 5-HT2C-receptors and Na+/Ca2+ exchange. With the help of single-cell RT-PCR (sc-RT-PCR) we have now determined the coexpression pattern of different subtypes of NCX and NCKX with serotonin receptors. The majority of TM neurones express NCX1, NCX2 and NCKX3. Serotonin 2C receptor-mRNA was detected in 70% while 5-HT2A mRNA was found in only 10% of TM neurones. In all neurones expressing the 5-HT2C receptor NCX1-mRNA was present. Double immunostaining revealed the presence of the NCX1 protein in histidine decarboxylase-positive neurones. In the majority of TM neurones one or two out of five isoforms, NCX1.4, NCX1.5, NCX1.7, NCX1.14, NCX1.15, were detected by cDNA sequencing and/or by restriction analysis. The alternative splicing region is important for the Ca2+ sensitivity and presumably for the modulation of NCX1 function by second messengers. We conclude that several exchanger-subtypes can be coexpressed in single neurones and that TM cells are heterogeneous with respect to their calcium homeostasis regulation.
Collapse
Affiliation(s)
- O A Sergeeva
- Department of Neurophysiology, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
13
|
Schulze DH, Muqhal M, Lederer WJ, Ruknudin AM. Sodium/calcium exchanger (NCX1) macromolecular complex. J Biol Chem 2003; 278:28849-55. [PMID: 12754202 DOI: 10.1074/jbc.m300754200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodium-calcium exchanger, NCX1, is a ubiquitously expressed membrane protein essential in calcium homeostasis for many cells including those in mammalian heart and brain. The function of NCX1 depends on subcellular ("local") factors, the phosphorylation state of NCX1, and the subcellular location of NCX1 within the cell. Here we investigate the molecular organization of NCX1 within the cardiac myocyte. We show that NCX1 is dynamically phosphorylated by protein kinase A (PKA)-dependent phosphorylation in vitro. We also provide evidence that the regulation of this phosphorylation is attributed to the existence of an NCX1 macromolecular complex. Specifically, we show that the macromolecular complex includes both the catalytic and regulatory subunits of PKA. However, only the RI regulatory subunit is found in this macromolecular complex, not RII. Other critical regulatory enzymes are also associated with NCX1, including protein kinase C (PKC) and two serine/threonine protein phosphatases, PP1 and PP2A. Importantly, the protein kinase A-anchoring protein, mAKAP, is found and its presence in the macromolecular complex suggests that these regulatory enzymes are coordinately positioned to regulate NCX1 as has been found in diverse cells for a number of channel proteins. Dual immunocytochemical staining showed the colocalization of NCX1 protein with mAKAP and PKA-RI proteins in cardiomyocytes. Finally, leucine/isoleucine zipper motifs have been identified as possible sites of interaction. Our finding of an NCX1 macromolecular complex in heart suggests how NCX1 regulation is achieved in heart and other cells. The existence of the NCX1 macromolecular complex may also provide an explanation for recent controversial findings.
Collapse
Affiliation(s)
- Dan H Schulze
- Department of Microbiology and Immunology, School of Medicine, and Institute of Molecular Cardiology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
14
|
Beaugé L, Asteggiano C, Berberián G. Regulation of phosphatidylinositol-4,5-biphosphate bound to the bovine cardiac Na+/Ca2+ exchanger. Ann N Y Acad Sci 2002; 976:288-99. [PMID: 12502572 DOI: 10.1111/j.1749-6632.2002.tb04752.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Western blot and cross immunoprecipitation analysis with specific antibodies demonstrate that in bovine heart sarcolemmal vesicles phosphatidylinositol-4,5-biphosphate (PtdIns-4,5-P(2)) binds strongly to the Na(+)/Ca(2+) exchanger (NCX1). This binding is modulated by ATP, Ca(2+), vanadate, exchanger inhibitory peptide (XIP), and PLC-PtdIns specific in a way resembling the ATP regulation of the exchange fluxes. With 1 microM Ca(2+), 3 mM Mg(2+), and 0.4 mM vanadate, 1 mM ATP increased about twofold the bound PtdIns-4,5-P(2), reaching a steady state in 3-5 s at 37 degrees C. With 100 microM Ca(2+), ATP had no effect on the PtdIns-4,5-P(2) bound to NCX1 or on the exchange fluxes. Without vanadate the bound PtdIns-4,5-P(2) was largely reduced; under this condition ATP failed to increase it and did not stimulate the exchanger. XIP inhibits the exchanger, more noticeable in the absence of ATP. With XIP, ATP does not modify the levels of bound PtdIns-4,5-P(2); however there is a small but distinct ATP stimulation of the exchanger. Vesicles pretreated with PtdIns-PLC, showed no de novo, [(32)P]ATP-induced, production of PtdIns-4,5-P(2), but some ATP-stimulated increase in the bound PtdIns-4,5-P(2) was detected; however, that increase did not exceed the levels found with vanadate and no ATP. These results indicate that in bovine heart sarcolemmal vesicles, ATP upregulation of NCX1 is related to PtdIns-4,5-P(2) bound to the exchanger, perhaps over a "threshold" or "unspecific" amount. In addition, vanadate could influence the amount of detected PtdIns-4,5-P(2) either by inhibiting phosphoinositide-specific phosphatases and/or by inducing a redistribution of PtdIns-4,5-P(2) molecules associated with the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- Luis Beaugé
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, 5000 Córdoba, Argentina.
| | | | | |
Collapse
|
15
|
Berberián G, Asteggiano C, Pham C. ATP stimulation of Na+/Ca2+ exchanger in bovine brain membrane vesicles is similar to that of the heart and independent of ionic strength of assay or preparation. Ann N Y Acad Sci 2002; 976:418-20. [PMID: 12502590 DOI: 10.1111/j.1749-6632.2002.tb04770.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina.
| | | | | |
Collapse
|
16
|
Han J, Truell J, Gnatenco C, Kim D. Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 2002; 542:431-44. [PMID: 12122143 PMCID: PMC2290413 DOI: 10.1113/jphysiol.2002.017590] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebellar granule neurons express a standing outward (background) K+ current (I(K,SO)) that regulates the resting membrane potential and cell excitability. As several tandem-pore (2P) K+ channel mRNAs are highly expressed in cerebellar granule cells, we studied whether, and which, 2P K+ channels contribute to I(K,SO). I(K,SO) was highly sensitive to changes in extracellular pH and was partially inhibited by acetylcholine, as reported previously. In cell-attached patches from cultured cerebellar granule neurons, four types of K+ channels were found to be active when membrane potential was held at -50 mV or +50 mV in symmetrical 140 mM KCl. Based on single-channel conductances, gating kinetics and modulation by pharmacological agents and pH, three K+ channels could be considered as functional correlates of TASK-1, TASK-3 and TREK-2, which are members of the 2P K+ channel family. The fourth K+ channel (Type 4) has not been described previously and its molecular correlate is not yet known. Based on the measurement of channel current densities, the Type 2 (TASK-3) and the Type 4 K+ channels were determined to be the major sources of I(K,SO) in cultured cerebellar granule neurons. The Type 1 (TASK-1) and Type 3 (TREK-2) activities were relatively low throughout cell growth in culture (1-10 days). Similar to TASK-1 and TASK-3, the Type 4 K+ channel was highly sensitive to changes in extracellular pH, showing a 78 % inhibition by changing the extracellular pH from 7.3 to 6.3. The results of this study show that three 2P K+ channels and an additional pH-sensing K+ channel (Type 4) comprise the I(K,SO) in cultured cerebellar granule neurons. Our results also show that the high sensitivity of I(K,SO) to extracellular pH comes from the high sensitivity of Type 2 (TASK-3) and Type 4 K+ channels.
Collapse
Affiliation(s)
- Jaehee Han
- Department of Physiology, Gyeongsang National University School of Medicine, Chinju, Korea
| | | | | | | |
Collapse
|
17
|
Nasuhoglu C, Feng S, Mao Y, Shammat I, Yamamato M, Earnest S, Lemmon M, Hilgemann DW. Modulation of cardiac PIP2 by cardioactive hormones and other physiologically relevant interventions. Am J Physiol Cell Physiol 2002; 283:C223-34. [PMID: 12055091 DOI: 10.1152/ajpcell.00486.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) affects profoundly several cardiac ion channels and transporters, and studies of PIP2-sensitive currents in excised patches suggest that PIP2 can be synthesized and broken down within 30 s. To test when, and if, total phosphatidylinositol 4-phosphate (PIP) and PIP(2) levels actually change in intact heart, we used a new, nonradioactive HPLC method to quantify anionic phospholipids. Total PIP and PIP2 levels (10-30 micromol/kg wet weight) do not change, or even increase, with activation of Galpha(q)/phospholipase C (PLC)-dependent pathways by carbachol (50 microM), phenylephrine (50 microM), and endothelin-1 (0.3 microM). Adenosine (0.2 mM) and phorbol 12-myristate 13-acetate (1microM) both cause 30% reduction of PIP2 in ventricles, suggesting that diacylglycerol (DAG)-dependent mechanisms negatively regulate cardiac PIP2. PIP2, but not PIP, increases reversibly by 30% during electrical stimulation (2 Hz for 5 min) in guinea pig left atria; the increase is blocked by nickel (2 mM). Both PIP and PIP2 increase within 3 min in hypertonic solutions, roughly in proportion to osmolarity, and similar effects occur in multiple cell lines. Inhibitors of several volume-sensitive signaling mechanisms do not affect these responses, suggesting that PIP2 metabolism might be sensitive to membrane tension, per se.
Collapse
Affiliation(s)
- Cem Nasuhoglu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
DiPolo R, Beaugé L. Ionic ligand interactions with the intracellular loop of the sodium-calcium exchanger. Modulation by ATP. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 80:43-67. [PMID: 12231222 DOI: 10.1016/s0079-6107(02)00014-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last decade, there has been a large increase in the study of the Na(+)/Ca(2+) exchanger due to its implications in physiological and pathophysiological processes at the cell and organ levels. Key areas of these studies have been molecular biology, regulation and physiology-pathophysiology of the exchanger. There are three main types of regulation that take place at the large intracellular loop of the Na(+)/Ca(2+) exchanger: (i) ionic (sodium inactivation, calcium regulation and proton inhibition), (ii) metabolic (ATP as phosphoryl group donor), and (iii) genetic (alternative splicing). This review analyzes the most recent data on the mutual interactions of regulatory ionic ligands (Ca(2+), Na(+), H(+)) and how they are secondarily modulated by MgATP, emphasizing the importance of the binding of Ca(2+) to its regulatory site as an essential requirement for the exchange function. Intracellular protons and sodium inhibit the Na(+)/Ca(2+) exchanger by reducing the apparent affinity of the Ca(i)-regulatory site for Ca(2+). Although the metabolic pathways are different in the mammalian heart (membrane lipids) and squid nerve cells (soluble cytosolic regulatory protein), the final mechanism for the protective effect of MgATP is the same: a reduction of Na(i)(+)-H(i)(+) binding affinities facilitating the attachment of Ca(2+) to its regulatory site. Kinetic models, which partially analyzed some of these ionic and metabolic interactions, can be integrated into a single scheme where the Ca(i)-regulatory site plays a central role.
Collapse
Affiliation(s)
- Reinaldo DiPolo
- Laboratorio de Permeabilidad Iónica, Centro de Biofísica y Bioquímica, IVIC, Apartado 21287, Caracas 1020 A, Venezuela.
| | | |
Collapse
|
19
|
DiPolo R, Beaugé L. MgATP counteracts intracellular proton inhibition of the sodium-calcium exchanger in dialysed squid axons. J Physiol 2002; 539:791-803. [PMID: 11897850 PMCID: PMC2290192 DOI: 10.1113/jphysiol.2001.013377] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Accepted: 12/17/2001] [Indexed: 11/08/2022] Open
Abstract
Intracellular Na(+) and H(+) inhibit Na(+)-Ca(2+) exchange. ATP regulates exchange activity by altering kinetic parameters for Ca(2+)(i), Na(+)(i) and Na(+)(o). The role of the Ca(2+)(i)regulatory site on Na(+)(i)-H(+)(i)-ATP interactions was explored by measuring the Na(+)(o)-dependent (45)Ca(2+) efflux (Na(+)(o)-Ca(2+)(i) exchange) and Ca(2+)(i)-dependent (22)Na(+) efflux (Na(+)(o)-Na(+)(i) exchange) in intracellular-dialysed squid axons. Our results show that: (1) without ATP, inhibition by Na(+)(i) is strongly dependent on H(+)(i). Lowering the pH(i) by 0.4 units from its physiological value of 7.3 causes 80 % inhibition of Na(+)(o)-Ca(2+)(i) exchange; (2) in the presence of MgATP, H(+)(i) and Na(+)(i) inhibition is markedly diminished; and (3) experiments on Na(+)(o)-Na(+)(i) exchange indicate that the drastic changes in the Na(+)(i)-H(+)(i)-ATP interactions take place at the Ca(2+)(i) regulatory site. The increase in Ca(2+)(i) affinity induced by ATP at acid pH (6.9) can be mimicked by a rise in pH(i) from 6.9 to 7.3 in the absence of the nucleotide. We conclude that ATP modulation of the Na(+)-Ca(2+) exchange occurs by protection from intracellular proton and sodium inhibition. These findings are predicted by a model where: (i) the binding of Ca(2+) to the regulatory site is essential for translocation but not for the binding of Na(+)(i) or Ca(2+)(i) to the transporting site; (ii) H(+)(i) competes with Ca(2+)(i) for the same form of the exchanger without an effect on the Ca(2+)(i) transporting site; (iii) protonation of the carrier increases the apparent affinity and changes the cooperativity for Na(+)(i) binding; and (iv) ATP prevents both H(+)(i) and Na(+)(i)-effects. The relief of H(+) and Na(+) inhibition induced by ATP could be important in cardiac ischaemia, in which a combination of acidosis and rise in [Na(+)](i) occurs.
Collapse
Affiliation(s)
- Reinaldo DiPolo
- Laboratorio de Permeabilidad Iónica, Centro de Biofísica y Bioquímica, IVIC, Apartado 21827, Caracas 1020-A, Venezuela.
| | | |
Collapse
|
20
|
Eigel BN, Hadley RW. Antisense inhibition of Na+/Ca2+ exchange during anoxia/reoxygenation in ventricular myocytes. Am J Physiol Heart Circ Physiol 2001; 281:H2184-90. [PMID: 11668081 DOI: 10.1152/ajpheart.2001.281.5.h2184] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the role of the Na+/Ca2+ exchanger (NCX) in regulating cytosolic intracellular Ca2+ concentration ([Ca2+]i) during anoxia/reoxygenation in guinea pig ventricular myocytes. The hypothesis that the NCX is the predominant mechanism mediating [Ca2+]i overload in this model was tested through inhibition of NCX expression by an antisense oligonucleotide. Immunocytochemistry revealed that this antisense oligonucleotide, directed at the area around the start site of the guinea pig NCX1, specifically reduced NCX expression in cultured adult myocytes by 90 +/- 4%. Antisense treatment inhibited evoked NCX activity by 94 +/- 3% and decreased the rise in [Ca2+]i during anoxia/reoxygenation by 95 +/- 3%. These data suggest that NCX is the predominant mechanism mediating Ca2+ overload during anoxia/reoxygenation in guinea-pig ventricular myocytes.
Collapse
Affiliation(s)
- B N Eigel
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
21
|
Eriksson KS, Stevens DR, Haas HL. Serotonin excites tuberomammillary neurons by activation of Na(+)/Ca(2+)-exchange. Neuropharmacology 2001; 40:345-51. [PMID: 11166327 DOI: 10.1016/s0028-3908(00)00175-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have studied the effects of serotonin on the histaminergic neurons in the hypothalamic tuberomammillary nucleus. Intracellular recordings of the membrane potential were made with sharp electrodes from superfused rat hypothalamic slices. We found that serotonin increased the firing rate of the neurons to 224% of the control rate and depolarized them dose-dependently. Insensitivity to tetrodotoxin indicated a postsynaptic effect, which was unrelated to any conductance change. The involved receptor appeared to be a 5-HT2C receptor. The depolarization was strongly dependent on temperature and replacement of extracellular Na(+) with Li(+) or with N-methyl-D-glucamine suppressed the depolarization. Pretreatment with Ni(2+), 2',4'-dichlorobenzamil or KB-R7943 strongly attenuated the effect. These features indicate that the depolarization is the result of activation of an electrogenic Na(+)/Ca(2+)-exchanger which leads to an net inward current. These results support the view that the Na(+)/Ca(2+)-exchanger can play a role in determining the excitability of neurons. The results also provide a functional connection between two transmitter systems, the histaminergic and serotonergic, which modulate many physiological functions in the brain.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Physiology II, Heinrich-Heine-Universität, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | |
Collapse
|
22
|
Asteggiano C, Berberián G, Beaugé L. Phosphatidyl inositol-4,5-bisphosphate bound to bovine cardiac Na+/Ca2+ exchanger displays a MgATP regulation similar to that of the exchange fluxes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:437-42. [PMID: 11168380 DOI: 10.1046/j.1432-1033.2001.01906.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This work shows the existence of a phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) bound form of the cardiac sarcolemmal Na+/Ca2+ exchanger. That was demonstrated in Western blots and cross-immunoprecipitation by using specific antibodies against the NCX1 exchanger (NCX1) and against PtdIns-4,5-P2. In addition, PtdIns-4,5-P2 bound to the Na+/Ca2+ exchanger and the Na+/Ca2+ exchange fluxes displayed a similar MgATP regulation: (a) both increase by 100-130% when membrane vesicles are incubated (15-20 s at 37 degrees C) with 1 mM MgATP and 1 microM Ca2+ (b) in the presence of 100 microM Ca2+, MgATP fails to stimulate the exchange fluxes and does not modify the levels of PtdIns-4,5-P2 bound to the exchanger. In addition, in the absence of Ca2+, the net synthesis of total membrane PtdIns-4,5-P2 is greatly reduced compared with that in the presence of 1 microM Ca2+. Furthermore, in the absence of Ca2+ there is no effect of MgATP on the levels of PtdIns-4,5-P2 bound to the exchanger. These results indicate that, in bovine heart, MgATP-stimulation of Na+/Ca2+ exchange is associated with intracellular Ca2+-dependent levels of PtdIns-4,5-P2 bound to the exchanger molecule.
Collapse
Affiliation(s)
- C Asteggiano
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
23
|
Smith JP, Cunningham LA, Partridge LD. Coupling of AMPA receptors with the Na(+)/Ca(2+) exchanger in cultured rat astrocytes. Brain Res 2000; 887:98-109. [PMID: 11134594 DOI: 10.1016/s0006-8993(00)02973-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Astrocytes exhibit three transmembrane Ca(2+) influx pathways: voltage-gated Ca(2+) channels (VGCCs), the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na(+)/Ca(2+) exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca(2+) concentration ([Ca(2+)](i)); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca(2+)](i) is not known. We demonstrate here that 100 microM AMPA in the presence of 100 microM cyclothiazide (CTZ) causes an increase in [Ca(2+)](i) in cultured cerebral astrocytes that requires transmembrane Ca(2+) influx. This increase of [Ca(2+)](i) is blocked by 100 microM benzamil or 0.5 microM U-73122, which inhibit reverse-mode operation of the Na(+)/Ca(2+) exchanger by independent mechanisms. This response does not require Ca(2+) influx through VGCCs, nor does it depend upon a significant Ca(2+) influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca(2+) stores, although depletion of these Ca(2+) stores does not decrease the peak [Ca(2+)](i) response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca(2+)](i) to increase through the reverse mode operation of the Na(+)/Ca(2+) exchanger with an associated release of Ca(2+) from intracellular stores. This proposed mechanism requires neither Ca(2+)-permeant AMPARs nor the activation of VGCCs to be effective.
Collapse
Affiliation(s)
- J P Smith
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
24
|
Fan Z, Neff RA. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation. J Physiol 2000; 529 Pt 3:707-21. [PMID: 11118500 PMCID: PMC2270230 DOI: 10.1111/j.1469-7793.2000.00707.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cell stress is implicated in a number of pathological states of metabolism, such as ischaemia, reperfusion and apoptosis in heart, neurons and other tissues. While it is known that the ATP-sensitive K+ (KATP) channel plays a role during metabolic abnormality, little information is available about the direct response of this channel to cell stress. Using photoirradiation stimulation, we studied the effects of cell stress on both native and cloned KATP channels. Single KATP channel currents were recorded from cell-attached and inside-out patches of rat ventricular myocytes and COS-1 cells coexpressing SUR2 and Kir6.2. KATP channel activity increased within < 1 min upon irradiation. The activity resulted from increased maximal open probability and decreased ATP inhibition. The effects remained after the irradiation was stopped. Irradiation also affected the channels formed only by Kir6.2DeltaC35. The irradiation-induced activation was comparable to that induced by phosphoinositides. Analysis of phosphatidylinositol composition revealed an elevated phosphatidylinositol bisphosphate level with irradiation. Wortmannin, an inhibitor of phosphatidylinositol kinases, decreased both the irradiation-induced channel activity and the production of phosphatidylinositol bisphosphates. Radical scavengers also reduced the irradiation-induced activation, suggesting a role for free radicals, an immediate product of photoirradiation. We conclude that photoirradiation can modify the single-channel properties of KATP, which appears to be mediated by phosphoinositides. Our study suggests that cellular stress may be linked with KATP channels, and we offer a putative mechanism for such a linkage.
Collapse
Affiliation(s)
- Z Fan
- The Department of Physiology, University of Tennessee, College of Medicine, Memphis, TN 38163, USA.
| | | |
Collapse
|
25
|
DiPolo R, Berberián G, Beaugé L. In squid nerves intracellular Mg(2+) promotes deactivation of the ATP-upregulated Na(+)/Ca(2+) exchanger. Am J Physiol Cell Physiol 2000; 279:C1631-9. [PMID: 11029311 DOI: 10.1152/ajpcell.2000.279.5.c1631] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of intracellular Mg(2+) (Mg(i)(2+)) on the ATP regulation of Na(+)/Ca(2+) exchanger in squid axons and bovine heart. In squid axons and nerve vesicles, the ATP-upregulated exchanger remains activated after removal of cytoplasmic Mg(2+), even in the absence of ATP. Rapid and complete deactivation of the ATP-stimulated exchange occurs upon readmission of Mg(i)(2+). At constant ATP concentration, the effect of intracellular Mg(2+) concentration ([Mg(2+)](i)) on the ATP regulation of exchanger is biphasic: activation at low [Mg(2+)](i), followed by deactivation as [Mg(2+)](i) is increased. No correlation was found between the above results and the levels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] measured in nerve membrane vesicles. Incorporation of PtdIns(4,5)P(2) into membrane vesicles activates Na(+)/Ca(2+) exchange in mammalian heart but not in squid nerve. Moreover, an exogenous phosphatase prevents MgATP activation in squid nerves but not in mammalian heart. It is concluded that 1) Mg(i)(2+) is an essential cofactor for the deactivation part of ATP regulation of the exchanger and 2) the metabolic pathway of ATP upregulation of the Na(+)/Ca(2+) exchanger is different in mammalian heart and squid nerves.
Collapse
Affiliation(s)
- R DiPolo
- Laboratorio de Permeabilidad Iónica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Caracas 1020-A, Venezuela.
| | | | | |
Collapse
|
26
|
Debetto P, Cargnelli G, Antolini M, Bova S, Trevisi L, Varotto R, Luciani S. Alpha1-adrenoceptor-mediated formation of glycerophosphoinositol 4-phosphate in rat heart: possible role in the positive inotropic response. Biochem Pharmacol 1999; 58:1437-46. [PMID: 10513987 DOI: 10.1016/s0006-2952(99)00220-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present study, we investigated whether phospholipase A2 (PLA2)/lysophospholipase activity producing glycerophosphoinositols from phosphoinositides was operating in rat heart and could be stimulated by alpha1-adrenergic agonists. PLA2/lysophospholipase activity was found in homogenates from rat right ventricles. The stimulation of PLA2/lysophospholipase activity by noradrenaline (NA) was prevented either by the alpha1-adrenergic antagonist prazosin or arachidonyl trifluoromethyl ketone, a selective inhibitor of the 85-110 kDa, sn-2-arachidonyl-specific cytosolic PLA2. The selective alpha1-adrenergic agonist phenylephrine induced a concentration- and time-dependent increase in glycerophosphoinositol (GroPIns) and glycerophosphoinositol 4-phosphate (GroPIns4P) in rat right ventricle slices prelabelled with D-myo-[3H]inositol. In electrically driven strips of rat right ventricles, prelabelled with D-myo-[3H]inositol, the positive inotropic effect induced by 20 microM NA in the presence of propranolol was accompanied by the formation of GroPIns and GroPIns4P. The concentration of the formed GroPIns4P (1.33+/-0.12 microM, N = 6) was similar to that previously reported to inhibit the Na+/Ca2+ exchanger in cardiac sarcolemmal vesicles (Luciani S, Antolini M, Bova S, Cargnelli G, Cusinato F, Debetto P, Trevisi L and Varotto R, Biochem Biophys Res Commun 206: 674-680, 1995). These findings show that the stimulation of alpha1-adrenoceptors in rat heart is followed by an increase in the formation of GroPIns4P, which may contribute to the positive inotropic effect of alpha1-adrenergic agonists by inhibition of the Na+/Ca2+ exchanger.
Collapse
Affiliation(s)
- P Debetto
- Department of Pharmacology, University of Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Abstract
1. G protein-gated K+ channels (KACh channels) in the heart and brain are activated by the betagamma subunit of inhibitory G protein. Phosphatidylinositol-4,5-bisphosphate (PIP2) has recently been reported to directly activate KACh channels (GIRK) expressed in oocytes, as well as to support activation by the betagamma subunit in the presence of Na+. We examined the effect of Na+, PIP2 and other phospholipids on the KACh channel to understand better their role in KACh channel activation and modulation. 2. In atrial membrane patches, none of the phospholipids tested including PIP2 caused activation of the KACh channel in either the presence or the absence of 30 mM Na+. PIP2 (3 microM) and other phospholipids (30 microM) blocked acetylcholine-induced activation of the KACh channel. 3. When KACh channels were first activated with GTPgammaS, however, all phospholipids (100 microM) tested augmented the KACh channel activity 1.5- to 2-fold. Phosphatidylinositol-4-phosphate (PIP) and PIP2 were an order of magnitude more potent than other phospholipids. The increase in KACh channel activity was the result of a shift in the gating mode of the channel from a short-lived to a longer-lived open state. Such a modulatory effect was qualitatively similar to that produced by intracellular ATP. Trypsin blocked the ATP effect but not the phospholipid effect on the KACh channel kinetics. 4. The phosphate group linked to the glycerol backbone was important for KACh channel modulation by phospholipids. The higher potency of PIP and PIP2 was due to the presence of inositol phosphates. 5. Intracellular Na+ (30 mM) increased the frequency of KACh channel opening approximately 2-fold if the channels were already active, but did not affect modulation by phospholipids. The effects of Na+ and phospholipids on KACh channel activity were additive. 6. A low concentration of ATP (20 microM), which had no effect on the KACh channel by itself, potentiated the stimulatory action of phospholipids, indicating that ATP and phospholipids interacted to modulate KACh channel function. 7. We conclude that exogenously applied PIP2 and other phospholipids block agonist-mediated KACh channel activation. However, if the KACh channel is already activated with GTPgammaS, phospholipids augment the existing activity by increasing the number of longer-lived channel openings. The evidence for and against the role of PIP and PIP2 in the stimulatory effect of ATP on the KACh channel is presented and discussed.
Collapse
Affiliation(s)
- D Kim
- Department of Physiology and Biophysics, Finch University of Health Sciences, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | |
Collapse
|
29
|
DiPolo R, Beaugé L. Metabolic pathways in the regulation of invertebrate and vertebrate Na+/Ca2+ exchange. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:57-71. [PMID: 10082981 DOI: 10.1016/s0005-2736(99)00002-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- R DiPolo
- Laboratorio de Permeabilidad Iónica, Centro de Biofísica y Bioquímica, IVIC, Apartado 21827, Caracas 1020-A, Venezuela.
| | | |
Collapse
|