1
|
Harlow RC, Pea GA, Broyhill SE, Patro A, Bromert KH, Stewart RH, Heaps CL, Castorena-Gonzalez JA, Dongaonkar RM, Zawieja SD. Loss of anoctamin 1 reveals a subtle role for BK channels in lymphatic muscle action potentials. J Physiol 2024; 602:3351-3373. [PMID: 38704841 PMCID: PMC11250503 DOI: 10.1113/jp285459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.
Collapse
Affiliation(s)
- Rebecca C Harlow
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Grace A Pea
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E Broyhill
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H Bromert
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Randolph H Stewart
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Cristine L Heaps
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | | | - Ranjeet M Dongaonkar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Hernandez-Hernandez G, O'Dwyer SC, Yang PC, Matsumoto C, Tieu M, Fong Z, Lewis TJ, Santana LF, Clancy CE. A computational model predicts sex-specific responses to calcium channel blockers in mammalian mesenteric vascular smooth muscle. eLife 2024; 12:RP90604. [PMID: 38335126 PMCID: PMC10942543 DOI: 10.7554/elife.90604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
The function of the smooth muscle cells lining the walls of mammalian systemic arteries and arterioles is to regulate the diameter of the vessels to control blood flow and blood pressure. Here, we describe an in silico model, which we call the 'Hernandez-Hernandez model', of electrical and Ca2+ signaling in arterial myocytes based on new experimental data indicating sex-specific differences in male and female arterial myocytes from murine resistance arteries. The model suggests the fundamental ionic mechanisms underlying membrane potential and intracellular Ca2+ signaling during the development of myogenic tone in arterial blood vessels. Although experimental data suggest that KV1.5 channel currents have similar amplitudes, kinetics, and voltage dependencies in male and female myocytes, simulations suggest that the KV1.5 current is the dominant current regulating membrane potential in male myocytes. In female cells, which have larger KV2.1 channel expression and longer time constants for activation than male myocytes, predictions from simulated female myocytes suggest that KV2.1 plays a primary role in the control of membrane potential. Over the physiological range of membrane potentials, the gating of a small number of voltage-gated K+ channels and L-type Ca2+ channels are predicted to drive sex-specific differences in intracellular Ca2+ and excitability. We also show that in an idealized computational model of a vessel, female arterial smooth muscle exhibits heightened sensitivity to commonly used Ca2+ channel blockers compared to male. In summary, we present a new model framework to investigate the potential sex-specific impact of antihypertensive drugs.
Collapse
Affiliation(s)
| | - Samantha C O'Dwyer
- Department of Physiology & Membrane Biology, University of California, DavisDavisUnited States
| | - Pei-Chi Yang
- Department of Physiology & Membrane Biology, University of California, DavisDavisUnited States
| | - Collin Matsumoto
- Department of Physiology & Membrane Biology, University of California, DavisDavisUnited States
| | - Mindy Tieu
- Department of Physiology & Membrane Biology, University of California, DavisDavisUnited States
| | - Zhihui Fong
- Department of Physiology & Membrane Biology, University of California, DavisDavisUnited States
| | - Timothy J Lewis
- Department of Mathematics, University of California, DavisDavisUnited States
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, University of California, DavisDavisUnited States
| | - Colleen E Clancy
- Department of Physiology & Membrane Biology, University of California, DavisDavisUnited States
- Center for Precision Medicine and Data Sciences, University of California, DavisDavisUnited States
| |
Collapse
|
3
|
Hernandez-Hernandez G, O’Dwyer SC, Matsumoto C, Tieu M, Fong Z, Yang PC, Lewis TJ, Fernando Santana L, Clancy CE. A computational model predicts sex-specific responses to calcium channel blockers in mammalian mesenteric vascular smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.24.546394. [PMID: 37425682 PMCID: PMC10327109 DOI: 10.1101/2023.06.24.546394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The function of the smooth muscle cells lining the walls of mammalian systemic arteries and arterioles is to regulate the diameter of the vessels to control blood flow and blood pressure. Here, we describe an in-silico model, which we call the "Hernandez-Hernandez model", of electrical and C a 2+ signaling in arterial myocytes based on new experimental data indicating sex-specific differences in male and female arterial myocytes from murine resistance arteries. The model suggests the fundamental ionic mechanisms underlying membrane potential and intracellular C a 2+ signaling during the development of myogenic tone in arterial blood vessels. Although experimental data suggest that KV1.5 channel currents have similar amplitudes, kinetics, and voltage dependencies in male and female myocytes, simulations suggest that the KV1.5 current is the dominant current regulating membrane potential in male myocytes. In female cells, which have larger KV2.1 channel expression and longer time constants for activation than male myocytes, predictions from simulated female myocytes suggest that KV2.1 plays a primary role in the control of membrane potential. Over the physiological range of membrane potentials, the gating of a small number of voltage-gated K+ channels and L-type C a 2+ channels are predicted to drive sex-specific differences in intracellular C a 2+ and excitability. We also show that in an idealized computational model of a vessel, female arterial smooth muscle exhibits heightened sensitivity to commonly used C a 2+ channel blockers compared to male. In summary, we present a new model framework to investigate the potential sex-specific impact of anti-hypertensive drugs.
Collapse
Affiliation(s)
- Gonzalo Hernandez-Hernandez
- Department of Physiology & Membrane Biology, Center for Precision Medicine and Data Science, University of California School of Medicine, Davis, California, 95616
- Department of Mathematics, University of California, Davis, California, 95616
| | - Samantha C. O’Dwyer
- Department of Physiology & Membrane Biology, Center for Precision Medicine and Data Science, University of California School of Medicine, Davis, California, 95616
- Department of Mathematics, University of California, Davis, California, 95616
| | - Collin Matsumoto
- Department of Physiology & Membrane Biology, Center for Precision Medicine and Data Science, University of California School of Medicine, Davis, California, 95616
- Department of Mathematics, University of California, Davis, California, 95616
| | - Mindy Tieu
- Department of Physiology & Membrane Biology, Center for Precision Medicine and Data Science, University of California School of Medicine, Davis, California, 95616
- Department of Mathematics, University of California, Davis, California, 95616
| | - Zhihui Fong
- Department of Physiology & Membrane Biology, Center for Precision Medicine and Data Science, University of California School of Medicine, Davis, California, 95616
- Department of Mathematics, University of California, Davis, California, 95616
| | - Pei-Chi Yang
- Department of Physiology & Membrane Biology, Center for Precision Medicine and Data Science, University of California School of Medicine, Davis, California, 95616
- Department of Mathematics, University of California, Davis, California, 95616
| | - Timothy J. Lewis
- Department of Mathematics, University of California, Davis, California, 95616
| | | | - Colleen E. Clancy
- Department of Physiology & Membrane Biology, Center for Precision Medicine and Data Science, University of California School of Medicine, Davis, California, 95616
| |
Collapse
|
4
|
Mysiewicz S, North KC, Moreira L, Odum SJ, Bukiya AN, Dopico AM. Interspecies and regional variability of alcohol action on large cerebral arteries: regulation by KCNMB1 proteins. Am J Physiol Regul Integr Comp Physiol 2023; 324:R480-R496. [PMID: 36717168 PMCID: PMC10027090 DOI: 10.1152/ajpregu.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches. We tested whether ethanol action on cerebral arteries differed between male rat and mouse and/or across different brain regions and identified the targets of alcohol action. In both species and all Willis' circle branches, ethanol evoked reversible and concentration-dependent constriction (EC50s ≈ 37-86 mM; below lethal BEC in alcohol-naïve humans). Although showing similar constriction to depolarization, both species displayed differential responses to ethanol: in mice, MCA constriction was highly sensitive to the presence/absence of the endothelium, whereas in rat PCA was significantly more sensitive to ethanol than its mouse counterpart. In the rat, but not the mouse, BA was more ethanol sensitive than other branches. Both interspecies and regional variability were ameliorated by endothelium. Selective large conductance (BK) channel block in de-endothelialized vessels demonstrated that these channels were the effectors of alcohol-induced cerebral artery constriction across regions and species. Variabilities in alcohol actions did not fully matched KCNMB1 expression across vessels. However, immunofluorescence data from KCNMB1-/- mouse arteries electroporated with KCNMB1-coding cDNA demonstrate that KCNMB1 proteins, which regulate smooth muscle (SM) BK channel function and vasodilation, regulate interspecies and regional variability of brain artery responses to alcohol.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Luiz Moreira
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Schyler J Odum
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
5
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
6
|
Rutkai I, Merdzo I, Wunnava S, McNulty C, Chandra PK, Katakam PV, Busija DW. Detrimental effects of transient cerebral ischemia on middle cerebral artery mitochondria in female rats. Am J Physiol Heart Circ Physiol 2022; 323:H1343-H1351. [PMID: 36367688 PMCID: PMC9744641 DOI: 10.1152/ajpheart.00346.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial numbers and dynamics in brain blood vessels differ between young male and female rats under physiological conditions, but how these differences are affected by stroke is unclear. In males, we found that mitochondrial numbers, possibly due to mitochondrial fission, in large middle cerebral arteries (MCAs) increased following transient middle cerebral artery occlusion (tMCAO). However, mitochondrial effects of stroke on MCAs of female rats have not been studied. To address this disparity, we conducted morphological, biochemical, and functional studies using electron microscopy, Western blot, mitochondrial respiration, and Ca2+ sparks activity measurements in MCAs of female, naïve or sham Sprague-Dawley rats before and 48 h after 90 min of tMCAO. Adverse changes in mitochondrial characteristics and the relationship between mitochondria and sarcoplasmic reticulum (SR) in MCAs were present on both sides. However, mitochondria and mitochondrial/SR associations were often within the range of normal appearance. Mitochondrial protein levels were similar between ipsilateral (ipsi) and contralateral (contra) sides. Nonrespiratory oxygen consumption, maximal respiration, and spare respiratory capacity were similar between ipsi and contra but were reduced compared with sham. Basal respiration, proton leak, and ATP production were similar among MCAs. Ca2+ sparks activity increased in sham and ipsi MCAs exposed to a mitochondrial ATP-sensitive potassium channel opener: diazoxide. Our results show that tMCAO has effects on mitochondria in MCAs on both the ipsi and contra sides. Mitochondrial responses of cerebral arteries to tMCAO in females are substantially different from responses seen previously in male rats suggesting the need for specific sex-based therapies.NEW & NOTEWORTHY We propose that differences in mitochondrial characteristics of males and females, including mitochondrial morphology, respiration, and calcium sparks activity contribute to sex differences in protective and repair mechanisms in response to transient ischemia-reperfusion.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sanjay Wunnava
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Catherine McNulty
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| |
Collapse
|
7
|
Dridi H, Santulli G, Gambardella J, Jankauskas SS, Yuan Q, Yang J, Reiken S, Wang X, Wronska A, Liu X, Lacampagne A, Marks AR. IP3 receptor orchestrates maladaptive vascular responses in heart failure. J Clin Invest 2022; 132:e152859. [PMID: 35166236 PMCID: PMC8843748 DOI: 10.1172/jci152859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/21/2021] [Indexed: 12/02/2022] Open
Abstract
Patients with heart failure (HF) have augmented vascular tone, which increases cardiac workload, impairing ventricular output and promoting further myocardial dysfunction. The molecular mechanisms underlying the maladaptive vascular responses observed in HF are not fully understood. Vascular smooth muscle cells (VSMCs) control vasoconstriction via a Ca2+-dependent process, in which the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) on the sarcoplasmic reticulum (SR) plays a major role. To dissect the mechanistic contribution of intracellular Ca2+ release to the increased vascular tone observed in HF, we analyzed the remodeling of IP3R1 in aortic tissues from patients with HF and from controls. VSMC IP3R1 channels from patients with HF and HF mice were hyperphosphorylated by both serine and tyrosine kinases. VSMCs isolated from IP3R1VSMC-/- mice exhibited blunted Ca2+ responses to angiotensin II (ATII) and norepinephrine compared with control VSMCs. IP3R1VSMC-/- mice displayed significantly reduced responses to ATII, both in vivo and ex vivo. HF IP3R1VSMC-/- mice developed significantly less afterload compared with HF IP3R1fl/fl mice and exhibited significantly attenuated progression toward decompensated HF and reduced interstitial fibrosis. Ca2+-dependent phosphorylation of the MLC by MLCK activated VSMC contraction. MLC phosphorylation was markedly increased in VSMCs from patients with HF and HF mice but reduced in VSMCs from HF IP3R1VSMC-/- mice and HF WT mice treated with ML-7. Taken together, our data indicate that VSMC IP3R1 is a major effector of increased vascular tone, which contributes to increased cardiac afterload and decompensation in HF.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Vasoconstriction
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gaetano Santulli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Jessica Gambardella
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- International Translational Research and Medical Education (ITME) Consortium, Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jingyi Yang
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, New York, New York, USA
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Xiaoping Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHRU Montpellier, Montpellier, France
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
8
|
Reid C, Romero M, Chang SB, Osman N, Puglisi JL, Wilson CG, Blood AB, Zhang L, Wilson SM. Long-Term Hypoxia Negatively Influences Ca2+ Signaling in Basilar Arterial Myocytes of Fetal and Adult Sheep. Front Physiol 2022; 12:760176. [PMID: 35115953 PMCID: PMC8804533 DOI: 10.3389/fphys.2021.760176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Cerebral arterial vasoreactivity is vital to the regulation of cerebral blood flow. Depolarization of arterial myocytes elicits whole-cell Ca2+ oscillations as well as subcellular Ca2+ sparks due to activation of ryanodine receptors on the sarcoplasmic reticulum. Previous evidence illustrates that contraction of cerebral arteries from sheep and underlying Ca2+ signaling pathways are modified by age and that long-term hypoxia (LTH) causes aberrations in Ca2+ signaling pathways and downstream effectors impacting vasoregulation. We hypothesize that age and LTH affect the influence of membrane depolarization on whole-cell intracellular Ca2+ oscillations and sub-cellular Ca2+ spark activity in cerebral arteries. To test this hypothesis, we examined Ca2+ oscillatory and spark activities using confocal fluorescence imaging techniques of Fluo-4 loaded basilar arterial myocytes of low- and high-altitude term fetal (∼145 days of gestation) and adult sheep, where high-altitude pregnant and non-pregnant sheep were placed at 3,801 m for >100 days. Ca2+ oscillations and sparks were recorded using an in situ preparation evaluated in the absence or presence of 30 mM K+ (30K) to depolarize myocytes. Myocytes from adult animals tended to have a lower basal rate of whole-cell Ca2+ oscillatory activity and 30K increased the activity within cells. LTH decreased the ability of myocytes to respond to depolarization independent of age. These observations illustrate that both altitude and age play a role in affecting whole-cell and localized Ca2+ signaling, which are important to arterial vasoreactivity and cerebral blood flow.
Collapse
Affiliation(s)
- Casey Reid
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Stephanie B. Chang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Noah Osman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jose L. Puglisi
- Department of Biostatistics, School of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Christopher G. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Arlin B. Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, CA, United States
- *Correspondence: Sean M. Wilson,
| |
Collapse
|
9
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
10
|
Jackson WF. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Front Physiol 2021; 12:770450. [PMID: 34819877 PMCID: PMC8607693 DOI: 10.3389/fphys.2021.770450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and organs, control capillary blood pressure and microvascular fluid exchange, govern peripheral vascular resistance, and contribute to the regulation of blood pressure. These important microvessels display pressure-dependent myogenic tone, the steady state level of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar internal diameter such that arterioles can both dilate and constrict to meet the blood flow and pressure needs of the tissues and organs that they perfuse. This perspective will focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels (TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-mediated control of BKCa channel activity, or positive-feedback regulation in cooperation with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) channels causing membrane hyperpolarization that is conducted to overlying VSMCs producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion channels importantly contribute to many aspects of the regulation of myogenic tone in arterioles in the microcirculation.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Hu XQ, Song R, Romero M, Dasgupta C, Huang X, Holguin MA, Williams V, Xiao D, Wilson SM, Zhang L. Pregnancy Increases Ca 2+ Sparks/Spontaneous Transient Outward Currents and Reduces Uterine Arterial Myogenic Tone. Hypertension 2019; 73:691-702. [PMID: 30661479 DOI: 10.1161/hypertensionaha.118.12484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spontaneous transient outward currents (STOCs) at physiological membrane potentials of vascular smooth muscle cells fundamentally regulate vascular myogenic tone and blood flow in an organ. We hypothesize that heightened STOCs play a key role in uterine vascular adaptation to pregnancy. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep. Ca2+ sparks were measured by confocal microscopy, and STOCs were determined by electrophysiological recording in smooth muscle cells. Percentage of Ca2+ spark firing myocytes increased dramatically at the resting condition in uterine arterial smooth muscle of pregnant animals, as compared with nonpregnant animals. Pregnancy upregulated the expression of RyRs (ryanodine receptors) and significantly boosted Ca2+ spark frequency. Ex vivo treatment of uterine arteries of nonpregnant sheep with estrogen and progesterone imitated pregnancy-induced RyR upregulation. STOCs occurred at much more negative membrane potentials in uterine arterial myocytes of pregnant animals. STOCs in uterine arterial myocytes were diminished by inhibiting large-conductance Ca2+-activated K+ (BKCa) channels and RyRs, thus functionally linking Ca2+ sparks and BKCa channel activity to STOCs. Pregnancy and steroid hormone treatment significantly increased STOCs frequency and amplitude in uterine arteries. Of importance, inhibition of STOCs with RyR inhibitor ryanodine eliminated pregnancy- and steroid hormone-induced attenuation of uterine arterial myogenic tone. Thus, the present study demonstrates a novel role of Ca2+ sparks and STOCs in the regulation of uterine vascular tone and provides new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Rui Song
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Monica Romero
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Chiranjib Dasgupta
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Xiaohui Huang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Mark A Holguin
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - VaShon Williams
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Daliao Xiao
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Sean M Wilson
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| | - Lubo Zhang
- From the Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, CA
| |
Collapse
|
13
|
Nanoscale coupling of junctophilin-2 and ryanodine receptors regulates vascular smooth muscle cell contractility. Proc Natl Acad Sci U S A 2019; 116:21874-21881. [PMID: 31591206 PMCID: PMC6815135 DOI: 10.1073/pnas.1911304116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Junctophilin proteins maintain close contacts between the endoplasmic/sarcoplasmic reticulum (ER/SR) and the plasma membrane in many types of cells, as typified by junctophilin-2 (JPH2), which is necessary for the formation of the cardiac dyad. Here, we report that JPH2 is the most abundant junctophilin isotype in native smooth muscle cells (SMCs) isolated from cerebral arteries and that acute knockdown diminishes the area of sites of interaction between the SR and plasma membrane. Superresolution microscopy revealed nanometer-scale colocalization of JPH2 clusters with type 2 ryanodine receptor (RyR2) clusters near the cell surface. Knockdown of JPH2 had no effect on the frequency, amplitude, or kinetics of spontaneous Ca2+ sparks generated by transient release of Ca2+ from the SR through RyR2s, but it did nearly abolish Ca2+ spark-activated, large-conductance, Ca2+-activated K+ (BK) channel currents. We also found that JPH2 knockdown was associated with hypercontractility of intact cerebral arteries. We conclude that JPH2 maintains functional coupling between RyR2s and BK channels and is critically important for cerebral arterial function.
Collapse
|
14
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
15
|
Agrawal A, Suryakumar G, Rathor R. Role of defective Ca 2+ signaling in skeletal muscle weakness: Pharmacological implications. J Cell Commun Signal 2018; 12:645-659. [PMID: 29982883 DOI: 10.1007/s12079-018-0477-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023] Open
Abstract
The misbehaving attitude of Ca2+ signaling pathways could be the probable reason in many muscular disorders such as myopathies, systemic disorders like hypoxia, sepsis, cachexia, sarcopenia, heart failure, and dystrophy. The present review throws light upon the calcium flux regulating signaling channels like ryanodine receptor complex (RyR1), SERCA (Sarco-endoplasmic Reticulum Calcium ATPase), DHPR (Dihydropyridine Receptor) or Cav1.1 and Na+/Ca2+ exchange pump in detail and how remodelling of these channels contribute towards disturbed calcium homeostasis. Understanding these pathways will further provide an insight for establishing new therapeutic approaches for the prevention and treatment of muscle atrophy under stress conditions, targeting calcium ion channels and associated regulatory proteins.
Collapse
Affiliation(s)
- Akanksha Agrawal
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
16
|
Lazuko SS, Kuzhel OP, Belyaeva LE, Manukhina EB, Downey HF, Fred Downey H, Tseilikman OB, Komelkova MV, Tseilikman VE. Posttraumatic Stress Disorder Disturbs Coronary Tone and Its Regulatory Mechanisms. Cell Mol Neurobiol 2018; 38:209-217. [PMID: 28676988 PMCID: PMC11481920 DOI: 10.1007/s10571-017-0517-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/26/2017] [Indexed: 11/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is associated with myocardial injury, but changes in coronary regulatory mechanisms in PTSD have not been investigated. This study evaluated the effect of PTSD-inducing stress on coronary tone and its regulation by nitric oxide (NO) and voltage-gated K+ channels. PTSD was induced by exposing rats to predator stress, 15 min daily for 10 days, followed by 14 stress-free days. Presence of PTSD was confirmed by the elevated plus-maze test. Coronary tone was evaluated from changes in coronary perfusion pressure of Langendorff isolated hearts. Predator stress induced significant decreases in coronary tone of isolated hearts and in blood pressure of intact rats. L-NAME, a non-selective NO synthase (NOS) inhibitor, but not S-MT, a selective iNOS inhibitor, and increased coronary tone of control rats. In PTSD rats, both L-NAME and S-MT increased coronary tone. Therefore, the stress-induced coronary vasodilation resulted from NO overproduction by both iNOS and eNOS. NOS induction was apparently due to systemic inflammation as evidenced by increased serum interleukin-1β and C-reactive protein in PTSD rats. Decreased corticosterone in PTSD rats may have contributed to inflammation and its effect on coronary tone. PTSD was also associated with voltage-gated K+ channel dysfunction, which would have also reduced coronary tone.
Collapse
Affiliation(s)
- Svetlana S Lazuko
- Vitebsk State Medical University, Frunze Av 27, Vitebsk, 210023, Republic of Belarus
| | - Olga P Kuzhel
- Vitebsk State Medical University, Frunze Av 27, Vitebsk, 210023, Republic of Belarus
| | - Lyudmila E Belyaeva
- Vitebsk State Medical University, Frunze Av 27, Vitebsk, 210023, Republic of Belarus
| | - Eugenia B Manukhina
- South Ural State University Biomedical School, Lenin Ave, Chelyabinsk, 454080, Russian Federation
- Institute of General Pathology and Pathophysiology, Baltijskaya 8, Moscow, 125315, Russian Federation
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | | | - H Fred Downey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Olga B Tseilikman
- South Ural State University Biomedical School, Lenin Ave, Chelyabinsk, 454080, Russian Federation
| | - Maria V Komelkova
- South Ural State University Biomedical School, Lenin Ave, Chelyabinsk, 454080, Russian Federation
| | - Vadim E Tseilikman
- South Ural State University Biomedical School, Lenin Ave, Chelyabinsk, 454080, Russian Federation.
| |
Collapse
|
17
|
Shen CP, Romero M, Brunelle A, Wolfe C, Dobyns A, Francis M, Taylor MS, Puglisi JL, Longo LD, Zhang L, Wilson CG, Wilson SM. Long-term high-altitude hypoxia influences pulmonary arterial L-type calcium channel-mediated Ca 2+ signals and contraction in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 2017; 314:R433-R446. [PMID: 29167165 DOI: 10.1152/ajpregu.00154.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term hypoxia (LTH) has a profound effect on pulmonary arterial vasoconstriction in the fetus and adult. Dysregulation in Ca2+ signaling is important during the development of LTH-induced pulmonary hypertension. In the present study, we tested the hypothesis that L-type Ca2+ channels (CaL), which are voltage dependent and found in smooth, skeletal, and cardiac muscle, are important in the adaptation of pulmonary arterial contractions in postnatal maturation and in response to LTH. Pulmonary arteries were isolated from fetal or adult sheep maintained at low or high altitude (3,801 m) for >100 days. The effects were measured using an L-type Ca2+ channel opener FPL 64176 (FPL) in the presence or absence of an inhibitor, Nifedipine (NIF) on arterial contractions, intracellular Ca2+ oscillations, and ryanodine receptor-driven Ca2+ sparks. FPL induced pulmonary arterial contractions in all groups were sensitive to NIF. However, when compared with 125 mM K+, FPL contractions were greater in fetuses than in adults. FPL reduced Ca2+ oscillations in myocytes of adult but not fetal arteries, independently of altitude. The FPL effects on Ca2+ oscillations were reversed by NIF in myocytes of hypoxic but not normoxic adults. FPL failed to enhance Ca2+ spark frequency and had little impact on spatiotemporal firing characteristics. These data suggest that CaL-dependent contractions are largely uncoupled from intracellular Ca2+ oscillations and the development of Ca2+ sparks. This raises questions regarding the coupling of pulmonary arterial contractility to membrane depolarization, attendant CaL facilitation, and the related associations with the activation of Ca2+ oscillations and Ca2+ sparks.
Collapse
Affiliation(s)
- Christine P Shen
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunelle
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Craig Wolfe
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Abigail Dobyns
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Michael Francis
- Department of Physiology, University of South Alabama College of Medicine , Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology, University of South Alabama College of Medicine , Mobile, Alabama
| | - Jose L Puglisi
- Department of Biostatistics, California Northstate University School of Medicine , Elk Grove, California
| | - Lawrence D Longo
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Christopher G Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
18
|
Pritchard HAT, Gonzales AL, Pires PW, Drumm BT, Ko EA, Sanders KM, Hennig GW, Earley S. Microtubule structures underlying the sarcoplasmic reticulum support peripheral coupling sites to regulate smooth muscle contractility. Sci Signal 2017; 10:eaan2694. [PMID: 28928237 PMCID: PMC6328376 DOI: 10.1126/scisignal.aan2694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Junctional membrane complexes facilitate excitation-contraction coupling in skeletal and cardiac muscle cells by forming subcellular invaginations that maintain close (≤20 nm) proximity of ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR) with voltage-dependent Ca2+ channels in the plasma membrane. In fully differentiated smooth muscle cells, junctional membrane complexes occur as distributed sites of peripheral coupling. We investigated the role of the cytoskeleton in maintaining peripheral coupling and associated Ca2+ signaling networks within native smooth muscle cells of mouse and rat cerebral arteries. Using live-cell confocal and superresolution microscopy, we found that the tight interactions between the SR and the plasma membrane in these cells relied on arching microtubule structures present at the periphery of smooth muscle cells and were independent of the actin cytoskeleton. Loss of peripheral coupling associated with microtubule depolymerization altered the spatiotemporal properties of localized Ca2+ sparks generated by the release of Ca2+ through type 2 RyRs (RyR2s) on the SR and decreased the number of sites of colocalization between RyR2s and large-conductance Ca2+-activated K+ (BK) channels. The reduced BK channel activity associated with the loss of SR-plasma membrane interactions was accompanied by increased pressure-induced constriction of cerebral resistance arteries. We conclude that microtubule structures maintain peripheral coupling in contractile smooth muscle cells, which is crucial for the regulation of contractility and cerebral vascular tone.
Collapse
Affiliation(s)
- Harry A T Pritchard
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Paulo W Pires
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Eun A Ko
- Department of Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Grant W Hennig
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
19
|
De Loof A. Calcitox-aging counterbalanced by endogenous farnesol-like sesquiterpenoids: An undervalued evolutionarily ancient key signaling pathway. Commun Integr Biol 2017; 10:e1341024. [PMID: 28919940 PMCID: PMC5595427 DOI: 10.1080/19420889.2017.1341024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Cells are powerful miniature electrophoresis chambers, at least during part of their life cycle. They die at the moment the voltage gradient over their plasma membrane, and their ability to drive a self-generated electric current carried by inorganic ions through themselves irreversibly collapses. Senescence is likely due to the progressive, multifactorial damage to the cell's electrical system. This is the essence of the "Fading electricity theory of aging" (De Loof et al., Aging Res. Rev. 2013;12:58-66). "Biologic electric current" is not carried by electrons, but by inorganic ions. The major ones are H+, Na+, K+, Ca2+, Mg2+, Cl- and HCO3-. Ca2+ and H+ in particular are toxic to cells. At rising concentrations, they can alter the 3D-conformation of chromatin and some (e.g. cytoskeletal) proteins: Calcitox and Protontox. This paper only focuses on Calcitox and endogenous sesquiterpenoids. pH-control and Ca2+-homeostasis have been shaped to near perfection during billions of years of evolution. The role of Ca2+ in some aspects of aging, e.g., as causal to neurodegenerative diseases is still debated. The main anti-Calcitox mechanism is to keep free cytoplasmic Ca2+ as low as possible. This can be achieved by restricting the passive influx of Ca2+ through channels in the plasma membrane, and by maximizing the active extrusion of excess Ca2+ e.g., by means of different types of Ca2+-ATPases. Like there are mechanisms that antagonize the toxic effects of Reactive Oxygen Species (ROS), there must also exist endogenous tools to counteract Calcitox. During a re-evaluation of which mechanism(s) exactly initiates the fast aging that accompanies induction of metamorphosis in insects, a causal relationship between absence of an endogenous sesquiterpenoid, namely the farnesol ester named "juvenile hormone," and disturbed Ca2+-homeostasis was suggested. In this paper, this line of thinking is further explored and extended to vertebrate physiology. A novel concept emerges: horseshoe-shaped sesquiterpenoids seem to act as "inbrome" agonists with the function of a "chemical valve" or "spring" in some types of multi-helix transmembrane proteins (intramolecular prenylation), from bacterial rhodopsins to some types of GPCRs and ion pumps, in particular the SERCA-Ca2+-pump. This further underpins the Fading Electricity Theory of Aging.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Mullan B, Pettis J, Jackson WF. T-type voltage-gated Ca 2+ channels do not contribute to the negative feedback regulation of myogenic tone in murine superior epigastric arteries. Pharmacol Res Perspect 2017; 5:e00320. [PMID: 28603637 PMCID: PMC5464347 DOI: 10.1002/prp2.320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
T-type voltage-gated Ca2+ channels (CaV3.2 VGCC) have been hypothesized to control spontaneous transient outward currents (STOCs) through large-conductance Ca2+-activated K+ channels (BKCa), and contribute to the negative-feedback regulation of myogenic tone. We tested this hypothesis in superior epigastric arteries (SEAs) isolated from male C57BL/6 mice. SEAs were isolated and enzymatically dissociated to obtain single smooth muscle cells (SMCs) for whole-cell recording of paxilline-sensitive (PAX, 1 μmol/L) STOCs at -30 mV, or cannulated and studied by pressure myography (80 cm H2O, 37°C). The CaV3.2 blocker Ni2+ (30 μmol/L) had no effect on STOC amplitude (20.1 ± 1.7 pA vs. 20.6 ± 1.7 pA; n = 12, P = 0.6), but increased STOC frequency (0.79 ± 0.15 Hz vs. 1.21 ± 0.22 Hz; n = 12, P = 0.02). Although Ni2+ produced concentration-dependent constriction of isolated, pressurized SEAs (logEC50 = -5.8 ± 0.09; Emax = 72 ± 5% constriction), block of BKCa with PAX had no effect on vasoconstriction induced by 30 μmol/L Ni2+ (in the absence of PAX = 66 ± 4% constriction vs. in the presence of 1 μmol/L PAX = 65 ± 4% constriction; n = 7, P = 0.06). In contrast to Ni2+, the nonselective T-type blocker, mibefradil, produced only vasodilation (logEC50 = -6.9 ± 0.2; Emax = 74 ± 8% dilation), whereas the putative T-type blocker, ML218, had no significant effect on myogenic tone between 10 nmol/L and 10 μmol/L (n = 6-7, P = 0.59). Our data do not support a role for CaV3.2 VGCC in the negative-feedback regulation of myogenic tone in murine SEAs and suggest that Ni2+ may constrict SEAs by means other than block of CaV3.2 VGCC.
Collapse
Affiliation(s)
- Brendan Mullan
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan48824
| | - Jessica Pettis
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan48824
| | - William F. Jackson
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan48824
| |
Collapse
|
21
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
22
|
Hashad AM, Mazumdar N, Romero M, Nygren A, Bigdely-Shamloo K, Harraz OF, Puglisi JL, Vigmond EJ, Wilson SM, Welsh DG. Interplay among distinct Ca 2+ conductances drives Ca 2+ sparks/spontaneous transient outward currents in rat cerebral arteries. J Physiol 2016; 595:1111-1126. [PMID: 27805790 DOI: 10.1113/jp273329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Distinct Ca2+ channels work in a coordinated manner to grade Ca2+ spark/spontaneous transient outward currents (STOCs) in rat cerebral arteries. The relative contribution of each Ca2+ channel to Ca2+ spark/STOC production depends upon their biophysical properties and the resting membrane potential of smooth muscle. Na+ /Ca2+ exchanger, but not TRP channels, can also facilitate STOC production. ABSTRACT Ca2+ sparks are generated in a voltage-dependent manner to initiate spontaneous transient outward currents (STOCs), events that moderate arterial constriction. In this study, we defined the mechanisms by which membrane depolarization increases Ca2+ sparks and subsequent STOC production. Using perforated patch clamp electrophysiology and rat cerebral arterial myocytes, we monitored STOCs in the presence and absence of agents that modulate Ca2+ entry. Beginning with CaV 3.2 channel inhibition, Ni2+ was shown to decrease STOC frequency in cells held at hyperpolarized (-40 mV) but not depolarized (-20 mV) voltages. In contrast, nifedipine, a CaV 1.2 inhibitor, markedly suppressed STOC frequency at -20 mV but not -40 mV. These findings aligned with the voltage-dependent profiles of L- and T-type Ca2+ channels. Furthermore, computational and experimental observations illustrated that Ca2+ spark production is intimately tied to the activity of both conductances. Intriguingly, this study observed residual STOC production at depolarized voltages that was independent of CaV 1.2 and CaV 3.2. This residual component was insensitive to TRPV4 channel modulation and was abolished by Na+ /Ca2+ exchanger blockade. In summary, our work highlights that the voltage-dependent triggering of Ca2+ sparks/STOCs is not tied to a single conductance but rather reflects an interplay among multiple Ca2+ permeable pores with distinct electrophysiological properties. This integrated orchestration enables smooth muscle to grade Ca2+ spark/STOC production and thus precisely tune negative electrical feedback.
Collapse
Affiliation(s)
- Ahmed M Hashad
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada
| | - Neil Mazumdar
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Monica Romero
- Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA, USA
| | - Anders Nygren
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Kamran Bigdely-Shamloo
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.,Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Osama F Harraz
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Jose L Puglisi
- California Northstate University College of Medicine, CA, USA
| | - Edward J Vigmond
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada.,LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France
| | - Sean M Wilson
- Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA, USA
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Khavandi K, Baylie RA, Sugden SA, Ahmed M, Csato V, Eaton P, Hill-Eubanks DC, Bonev AD, Nelson MT, Greenstein AS. Pressure-induced oxidative activation of PKG enables vasoregulation by Ca2+ sparks and BK channels. Sci Signal 2016; 9:ra100. [PMID: 27729550 DOI: 10.1126/scisignal.aaf6625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of Ca2+-sensitive, large-conductance potassium (BK) channels in vascular smooth muscle cells (VSMCs) by local, ryanodine receptor-mediated Ca2+ signals (Ca2+ sparks) acts as a brake on pressure-induced (myogenic) vasoconstriction-a fundamental mechanism that regulates blood flow in small resistance arteries. We report that physiological intraluminal pressure within resistance arteries activated cGMP-dependent protein kinase (PKG) in VSMCs through oxidant-induced formation of an intermolecular disulfide bond between cysteine residues. Oxidant-activated PKG was required to trigger Ca2+ sparks, BK channel activity, and vasodilation in response to pressure. VSMCs from arteries from mice expressing a form of PKG that could not be activated by oxidants showed reduced Ca2+ spark frequency, and arterial preparations from these mice had decreased pressure-induced activation of BK channels. Thus, the absence of oxidative activation of PKG disabled the BK channel-mediated negative feedback regulation of vasoconstriction. Our results support the concept of a negative feedback control mechanism that regulates arterial diameter through mechanosensitive production of oxidants to activate PKG and enhance Ca2+ sparks.
Collapse
Affiliation(s)
- Kaivan Khavandi
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, Saint Thomas' Hospital, London, SE1 7EH, UK
| | - Rachael A Baylie
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| | - Sarah A Sugden
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| | - Majid Ahmed
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Viktoria Csato
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Philip Eaton
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, Saint Thomas' Hospital, London, SE1 7EH, UK
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Mark T Nelson
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Adam S Greenstein
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| |
Collapse
|
24
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
25
|
Krishnamoorthy-Natarajan G, Koide M. BK Channels in the Vascular System. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:401-38. [PMID: 27238270 DOI: 10.1016/bs.irn.2016.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators.
Collapse
Affiliation(s)
| | - M Koide
- University of Vermont, Burlington, VT, United States
| |
Collapse
|
26
|
Jackson-Weaver O, Osmond JM, Naik JS, Gonzalez Bosc LV, Walker BR, Kanagy NL. Intermittent hypoxia in rats reduces activation of Ca2+ sparks in mesenteric arteries. Am J Physiol Heart Circ Physiol 2015; 309:H1915-22. [PMID: 26408536 DOI: 10.1152/ajpheart.00179.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/17/2015] [Indexed: 01/25/2023]
Abstract
Ca(+) sparks are vascular smooth muscle cell (VSMC) Ca(2+)-release events that are mediated by ryanodine receptors (RyR) and promote vasodilation by activating large-conductance Ca(2+)-activated potassium channels and inhibiting myogenic tone. We have previously reported that exposing rats to intermittent hypoxia (IH) to simulate sleep apnea augments myogenic tone in mesenteric arteries through loss of hydrogen sulfide (H2S)-induced dilation. Because we also observed that H2S can increase Ca(2+) spark activity, we hypothesized that loss of H2S after IH exposure reduces Ca(2+) spark activity and that blocking Ca(2+) spark generation reduces H2S-induced dilation. Ca(2+) spark activity was lower in VSMC of arteries from IH compared with sham-exposed rats. Furthermore, depolarizing VSMC by increasing luminal pressure (from 20 to 100 mmHg) or by elevating extracellular [K(+)] increased spark activity in VSMC of arteries from sham rats but had no effect in arteries from IH rats. Inhibiting endogenous H2S production in sham arteries prevented these increases. NaHS or phosphodiesterase inhibition increased spark activity to the same extent in sham and IH arteries. Depolarization-induced increases in Ca(2+) spark activity were due to increased sparks per site, whereas H2S increases in spark activity were due to increased spark sites per cell. Finally, inhibiting Ca(2+) spark activity with ryanodine (10 μM) enhanced myogenic tone in arteries from sham but not IH rats and blocked dilation to exogenous H2S in arteries from both sham and IH rats. Our results suggest that H2S regulates RyR activation and that H2S-induced dilation requires Ca(2+) spark activation. IH exposure decreases endogenous H2S-dependent Ca(2+) spark activation to cause membrane depolarization and enhance myogenic tone in mesenteric arteries.
Collapse
Affiliation(s)
- Olan Jackson-Weaver
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Jessica M Osmond
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
27
|
Kidd MW, Leo MD, Bannister JP, Jaggar JH. Intravascular pressure enhances the abundance of functional Kv1.5 channels at the surface of arterial smooth muscle cells. Sci Signal 2015; 8:ra83. [PMID: 26286025 DOI: 10.1126/scisignal.aac5128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Voltage-dependent potassium (K(v)) channels are present in various cell types, including smooth muscle cells (myocytes) of resistance-sized arteries that control systemic blood pressure and regional organ blood flow. Intravascular pressure depolarizes arterial myocytes, stimulating calcium (Ca(2+)) influx through voltage-dependent Ca(2+) (Ca(v)) channels that results in vasoconstriction and also K(+) efflux through K(v) channels that oppose vasoconstriction. We hypothesized that pressure-induced depolarization may not only increase the open probability of plasma membrane-resident K(v) channels but also increase the abundance of these channels at the surface of arterial myocytes to limit vasoconstriction. We found that K(v)1.5 and K(v)2.1 proteins were abundant in the myocytes of resistance-sized mesenteric arteries. K(v)1.5, but not K(v)2.1, continuously recycled between the intracellular compartment and the plasma membrane in contractile arterial myocytes. Using ex vivo preparations of intact arteries, we showed that physiological intravascular pressure through membrane depolarization or membrane depolarization in the absence of pressure inhibited the degradation of internalized K(v)1.5 and increased recycling of K(v)1.5 to the plasma membrane. Accordingly, by stimulating the activity of Ca(v)1.2, membrane depolarization increased whole-cell K(v)1.5 current density in myocytes and K(v)1.5 channel activity in pressurized arteries. In contrast, the total amount and cell surface abundance of K(v)2.1 were independent of intravascular pressure or membrane potential. Thus, our data indicate that intravascular pressure-induced membrane depolarization selectively increased K(v)1.5 surface abundance to increase K(v) currents in arterial myocytes, which would limit vasoconstriction.
Collapse
Affiliation(s)
- Michael W Kidd
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John P Bannister
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
28
|
Li N, Li Y, Gao Q, Li D, Tang J, Sun M, Zhang P, Liu B, Mao C, Xu Z. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs-BKCa down-regulation in rat offspring. Sci Rep 2015; 5:13225. [PMID: 26277840 PMCID: PMC4642531 DOI: 10.1038/srep13225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 01/10/2023] Open
Abstract
Caffeine modifies vascular/cardiac contractility. Embryonic exposure to caffeine altered cardiac functions in offspring. This study determined chronic influence of prenatal caffeine on vessel functions in offspring. Pregnant Sprague-Dawley rats (5-month-old) were exposed to high dose of caffeine, their offspring (5-month-old) were tested for vascular functions in mesenteric arteries (MA) and ion channel activities in smooth muscle cells. Prenatal exposure to caffeine increased pressor responses and vasoconstrictions to phenylephrine, accompanied by enhanced membrane depolarization. Large conductance Ca2+-activated K+ (BKCa) channels in buffering phenylephrine-induced vasoconstrictions was decreased, whole cell BKCa currents and spontaneous transient outward currents (STOCs) were decreased. Single channel recordings revealed reduced voltage/Ca2+ sensitivity of BKCa channels. BKCa α-subunit expression was unchanged, BKCa β1-subunit and sensitivity of BKCa to tamoxifen were reduced in the caffeine offspring as altered biophysical properties of BKCa in the MA. Simultaneous [Ca2+]i fluorescence and vasoconstriction testing showed reduced Ca2+, leading to diminished BKCa activation via ryanodine receptor Ca2+ release channels (RyRs), causing enhanced vascular tone. Reduced RyR1 was greater than that of RyR3. The results suggest that the altered STOCs activity in the caffeine offspring could attribute to down-regulation of RyRs-BKCa, providing new information for further understanding increased risks of hypertension in developmental origins.
Collapse
Affiliation(s)
- Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yongmei Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Dawei Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Caiping Mao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- 1] Institute for Fetology, First Hospital of Soochow University, Suzhou, China [2] Center for Perinatal Biology, Loma Linda University, California, USA
| |
Collapse
|
29
|
Li L, Wang R, Ma KT, Li XZ, Zhang CL, Liu WD, Zhao L, Si JQ. Differential effect of calcium-activated potassium and chloride channels on rat basilar artery vasomotion. ACTA ACUST UNITED AC 2014; 34:482-490. [PMID: 25135715 DOI: 10.1007/s11596-014-1303-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
| | - Rui Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
| | - Xin-Zhi Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuan-Lin Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
| | - Wei-Dong Liu
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
| | - Lei Zhao
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, 832002, China.
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832002, China.
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430070, China.
| |
Collapse
|
30
|
Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 2014; 115:650-61. [PMID: 25085940 DOI: 10.1161/circresaha.114.304056] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE T-type (CaV3.1/CaV3.2) Ca(2+) channels are expressed in rat cerebral arterial smooth muscle. Although present, their functional significance remains uncertain with findings pointing to a variety of roles. OBJECTIVE This study tested whether CaV3.2 channels mediate a negative feedback response by triggering Ca(2+) sparks, discrete events that initiate arterial hyperpolarization by activating large-conductance Ca(2+)-activated K(+) channels. METHODS AND RESULTS Micromolar Ni(2+), an agent that selectively blocks CaV3.2 but not CaV1.2/CaV3.1, was first shown to depolarize/constrict pressurized rat cerebral arteries; no effect was observed in CaV3.2(-/-) arteries. Structural analysis using 3-dimensional tomography, immunolabeling, and a proximity ligation assay next revealed the existence of microdomains in cerebral arterial smooth muscle which comprised sarcoplasmic reticulum and caveolae. Within these discrete structures, CaV3.2 and ryanodine receptor resided in close apposition to one another. Computational modeling revealed that Ca(2+) influx through CaV3.2 could repetitively activate ryanodine receptor, inducing discrete Ca(2+)-induced Ca(2+) release events in a voltage-dependent manner. In keeping with theoretical observations, rapid Ca(2+) imaging and perforated patch clamp electrophysiology demonstrated that Ni(2+) suppressed Ca(2+) sparks and consequently spontaneous transient outward K(+) currents, large-conductance Ca(2+)-activated K(+) channel mediated events. Additional functional work on pressurized arteries noted that paxilline, a large-conductance Ca(2+)-activated K(+) channel inhibitor, elicited arterial constriction equivalent, and not additive, to Ni(2+). Key experiments on human cerebral arteries indicate that CaV3.2 is present and drives a comparable response to moderate constriction. CONCLUSIONS These findings indicate for the first time that CaV3.2 channels localize to discrete microdomains and drive ryanodine receptor-mediated Ca(2+) sparks, enabling large-conductance Ca(2+)-activated K(+) channel activation, hyperpolarization, and attenuation of cerebral arterial constriction.
Collapse
Affiliation(s)
- Osama F Harraz
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rasha R Abd El-Rahman
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Kamran Bigdely-Shamloo
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Sean M Wilson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Suzanne E Brett
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Monica Romero
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Albert L Gonzales
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Scott Earley
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Edward J Vigmond
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Anders Nygren
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Bijoy K Menon
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rania E Mufti
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tim Watson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Yves Starreveld
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tobias Furstenhaupt
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Philip R Muellerleile
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - David T Kurjiaka
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Barry D Kyle
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Andrew P Braun
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Donald G Welsh
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.). dwelsh@ucalgary
| |
Collapse
|
31
|
Ye Y, Jian K, Jaggar JH, Bukiya AN, Dopico AM. Type 2 ryanodine receptors are highly sensitive to alcohol. FEBS Lett 2014; 588:1659-65. [PMID: 24631538 PMCID: PMC4193545 DOI: 10.1016/j.febslet.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 11/16/2022]
Abstract
Exposure to ethanol levels reached in circulation during alcohol intoxication (>10mM) constricts cerebral arteries in rats and humans. Remarkably, targets and mechanisms underlying this action remain largely unidentified. Artery diameter is regulated by myocyte Ca(2+) sparks, a vasodilatory signal contributed to by type 2 ryanodine receptors (RyR2). Using laser confocal microscopy in rat cerebral arteries and bilayer electrophysiology we unveil that ethanol inhibits both Ca(2+) spark and RyR2 activity with IC50<20 mM, placing RyR2 among the ion channels that are most sensitive to ethanol. Alcohol directly targets RyR2 and its lipid microenvironment, leading to stabilization of RyR2 closed states.
Collapse
Affiliation(s)
- Yanping Ye
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Kuihuan Jian
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jonathan H Jaggar
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Anna N Bukiya
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alex M Dopico
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
32
|
Hayoz S, Bradley V, Boerman EM, Nourian Z, Segal SS, Jackson WF. Aging increases capacitance and spontaneous transient outward current amplitude of smooth muscle cells from murine superior epigastric arteries. Am J Physiol Heart Circ Physiol 2014; 306:H1512-24. [PMID: 24705555 DOI: 10.1152/ajpheart.00492.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Large conductance Ca(2+)-activated K(+) channels (BKCa) contribute to negative feedback regulation of smooth muscle cell (SMC) tone. However, the effects of aging on BKCa function are unclear. We tested the hypothesis that aging alters SMC BKCa function in superior epigastric arteries (SEAs) by using perforated patch recording of enzymatically isolated SMCs from 3- to 4-mo-old male C57BL/6 mice (Young) and 24- to 26-mo-old male C57BL/6 mice (Old). SMC capacitance from Young (15.7 ± 0.4 pF; n = 110) was less than Old (17.9 ± 0.5 pF; n = 104) (P < 0.05). SMCs displayed spontaneous transient outward currents (STOCs) at membrane potentials more positive than -30 mV; depolarization increased STOC amplitude and frequency (P < 0.05; n = 19-24). STOC frequency in Young (2.2 ± 0.6 Hz) was less than Old (4.2 ± 0.7 Hz) at -10 mV (P < 0.05, n = 27-30), with no difference in amplitude (1.0 ± 0.1 vs. 0.9 ± 0.1 pA/pF, respectively). At +30 mV, STOC amplitude in Young (3.2 ± 0.3 pA/pF) was less than Old (5.0 ± 0.5 pA/pF; P < 0.05, n = 61-67) with no difference in frequency (3.9 ± 0.4 vs. 3.2 ± 0.3 Hz, respectively). BKCa blockers (1 μM paxilline, 100 nM iberiotoxin, 1 mM tetraethylammonium) or a ryanodine receptor antagonist (100 μM tetracaine) inhibited STOCs (n ≥ 6; P < 0.05 each). Western blots revealed increased expression of BKCa α-subunit protein in Old. Pressure myography revealed no effect of age on SEA maximal diameter, myogenic tone, or paxilline-induced constriction (n = 10-12; P > 0.05). Enhanced functional expression of SMC BKCa-dependent STOCs in Old may represent an adaptation of resistance arteries to maintain functional integrity.
Collapse
Affiliation(s)
- Sebastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Vanessa Bradley
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | - Zahra Nourian
- Dalton Cardiovascular Research Center, Columbia, Missouri
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and Dalton Cardiovascular Research Center, Columbia, Missouri
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
33
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
34
|
Krishnamoorthy G, Sonkusare SK, Heppner TJ, Nelson MT. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 2014; 306:H981-8. [PMID: 24508642 DOI: 10.1152/ajpheart.00866.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation by electrical field stimulation. Inhibition of BK channels with paxilline increased both myogenic and nerve-induced constrictions of pressurized, resistance-sized mesenteric arteries from mice. Inhibition of RyRs with ryanodine increased myogenic constriction, but it decreased nerve-evoked constriction along with a reduction in the amplitude of nerve-evoked increases in global intracellular Ca2+. In the presence of L-type voltage-dependent Ca2+ channel (VDCC) antagonists, nerve stimulation failed to evoke a change in arterial diameter, and BK channel and RyR inhibitors were without effect, suggesting that nerve- induced constriction is dependent on activation of VDCCs. Collectively, these results indicate that BK channels and RyRs have different roles in the regulation of myogenic versus neurogenic tone: whereas BK channels and RyRs act in concert to oppose myogenic vasoconstriction, BK channels oppose neurogenic vasoconstriction and RyRs augment it. A scheme for neurogenic vasoregulation is proposed in which RyRs act in conjunction with VDCCs to regulate nerve-evoked constriction in mesenteric resistance arteries.
Collapse
|
35
|
Roberts OL, Kamishima T, Barrett-Jolley R, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery. J Physiol 2013; 591:5107-23. [PMID: 23959673 DOI: 10.1113/jphysiol.2013.262006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2-O-Me-cAMP-AM (5 μM, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n = 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K(+) over the same time period (n = 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca(2+)-sensitive, large-conductance K(+) (BK(Ca)) channel opening as iberiotoxin (100 nM) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n = 5; P < 0.05). 8-pCPT-AM increased Ca(2+) spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s(-1) μm(-1) (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s(-1)) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n = 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nM) and to ryanodine (30 μM). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n = 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n = 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n = 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca(2+)-sensitive, small- and intermediate-conductance K(+) (SK(Ca) and IK(Ca)) channels, respectively, and N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase (NOS). In Fluo-4-AM-loaded mesenteric endothelial cells, 8-pCPT-AM induced a sustained increase in global Ca(2+). Our data suggest that Epac hyperpolarizes smooth muscle by (1) increasing localized Ca(2+) release from ryanodine receptors (Ca(2+) sparks) to activate BK(Ca) channels, and (2) endothelial-dependent mechanisms involving the activation of SK(Ca)/IK(Ca) channels and NOS. Epac-mediated smooth muscle hyperpolarization will limit Ca(2+) entry via voltage-sensitive Ca(2+) channels and represents a novel mechanism of arterial relaxation.
Collapse
Affiliation(s)
- Owain Llŷr Roberts
- C. Dart: Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | | | | | | | |
Collapse
|
36
|
Hadley SR, Blood Q, Rubalcava M, Waskel E, Lumbard B, Le P, Longo LD, Buchholz JN, Wilson SM. Maternal high-altitude hypoxia and suppression of ryanodine receptor-mediated Ca2+ sparks in fetal sheep pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2012; 303:L799-813. [PMID: 22962012 DOI: 10.1152/ajplung.00009.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ca(2+) sparks are fundamental Ca(2+) signaling events arising from ryanodine receptor (RyR) activation, events that relate to contractile and dilatory events in the pulmonary vasculature. Recent studies demonstrate that long-term hypoxia (LTH) can affect pulmonary arterial reactivity in fetal, newborn, and adult animals. Because RyRs are important to pulmonary vascular reactivity and reactivity changes with ontogeny and LTH we tested the hypothesis that RyR-generated Ca(2+) signals are more active before birth and that LTH suppresses these responses. We examined these hypotheses by performing confocal imaging of myocytes in living arteries and by performing wire myography studies. Pulmonary arteries (PA) were isolated from fetal, newborn, or adult sheep that lived at low altitude or from those that were acclimatized to 3,801 m for > 100 days. Confocal imaging demonstrated preservation of the distance between the sarcoplasmic reticulum, nucleus, and plasma membrane in PA myocytes. Maturation increased global Ca(2+) waves and Ca(2+) spark activity, with sparks becoming larger, wider, and slower. LTH preferentially depressed Ca(2+) spark activity in immature pulmonary arterial myocytes, and these sparks were smaller, wider, and slower. LTH also suppressed caffeine-elicited contraction in fetal PA but augmented contraction in the newborn and adult. The influence of both ontogeny and LTH on RyR-dependent cell excitability shed new light on the therapeutic potential of these channels for the treatment of pulmonary vascular disease in newborns as well as adults.
Collapse
Affiliation(s)
- Scott R Hadley
- Center for Perinatal Biology, Loma Linda University, California 92350, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Takeda Y, Nystoriak MA, Nieves-Cintrón M, Santana LF, Navedo MF. Relationship between Ca2+ sparklets and sarcoplasmic reticulum Ca2+ load and release in rat cerebral arterial smooth muscle. Am J Physiol Heart Circ Physiol 2011; 301:H2285-94. [PMID: 21984539 PMCID: PMC3233819 DOI: 10.1152/ajpheart.00488.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022]
Abstract
Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of sarcolemmal L-type Ca(2+) channels. Ca(2+) sparklet activity varies within the sarcolemma of arterial myocytes. In this study, we examined the relationship between Ca(2+) sparklet activity and sarcoplasmic reticulum (SR) Ca(2+) accumulation and release in cerebral arterial myocytes. Our data indicate that the SR is a vast organelle with multiple regions near the sarcolemma of these cells. Ca(2+) sparklet sites were located at or <0.2 μm from SR-sarcolemmal junctions. We found that while Ca(2+) sparklets increase the rate of SR Ca(2+) refilling in arterial myocytes, their activity did not induce regional variations in SR Ca(2+) content or Ca(2+) spark activity. In arterial myocytes, L-type Ca(2+) channel activity was independent of SR Ca(2+) load. This ruled out a potential feedback mechanism whereby SR Ca(2+) load regulates the activity of these channels. Together, our data suggest a model in which Ca(2+) sparklets contribute Ca(2+) influx into a cytosolic Ca(2+) pool from which sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps Ca(2+) into the SR, indirectly regulating SR function.
Collapse
Affiliation(s)
- Yukari Takeda
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195, USA
| | | | | | | | | |
Collapse
|
38
|
Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 2011; 3:a004549. [PMID: 21709182 DOI: 10.1101/cshperspect.a004549] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).
Collapse
Affiliation(s)
- David C Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
39
|
Krishnamoorthy G, Regehr K, Berge S, Scherer EQ, Wangemann P. Calcium sparks in the intact gerbil spiral modiolar artery. BMC PHYSIOLOGY 2011; 11:15. [PMID: 21871098 PMCID: PMC3170618 DOI: 10.1186/1472-6793-11-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022]
Abstract
Background Calcium sparks are ryanodine receptor mediated transient calcium signals that have been shown to hyperpolarize the membrane potential by activating large conductance calcium activated potassium (BK) channels in vascular smooth muscle cells. Along with voltage-dependent calcium channels, they form a signaling unit that has a vasodilatory influence on vascular diameter and regulation of myogenic tone. The existence and role of calcium sparks has hitherto been unexplored in the spiral modiolar artery, the end artery that controls blood flow to the cochlea. The goal of the present study was to determine the presence and properties of calcium sparks in the intact gerbil spiral modiolar artery. Results Calcium sparks were recorded from smooth muscle cells of intact arteries loaded with fluo-4 AM. Calcium sparks occurred with a frequency of 2.6 Hz, a rise time of 17 ms and a time to half-decay of 20 ms. Ryanodine reduced spark frequency within 3 min from 2.6 to 0.6 Hz. Caffeine (1 mM) increased spark frequency from 2.3 to 3.3 Hz and prolonged rise and half-decay times from 17 to 19 ms and from 20 to 23 ms, respectively. Elevation of potassium (3.6 to 37.5 mM), presumably via depolarization, increased spark frequency from 2.4 to 3.2 Hz. Neither ryanodine nor depolarization changed rise or decay times. Conclusions This is the first characterization of calcium sparks in smooth muscle cells of the spiral modiolar artery. The results suggest that calcium sparks may regulate the diameter of the spiral modiolar artery and cochlear blood flow.
Collapse
|
40
|
Investigation of myorelaxant activity of 9-aryl-3,4,6,7-tetrahydroacridine-1,8-(2H,5H,9H,10H)-diones in isolated rabbit gastric fundus. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9698-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 2011; 300:H1616-30. [PMID: 21357503 DOI: 10.1152/ajpheart.00728.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(²+) sparks and Ca(²+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(²+) and constricted the arteries. The blockade of IP₃Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(²+) sparks. Importantly, the IP₃Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(²+) waves: Ca(²+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(²+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(²+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(²+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
42
|
|
43
|
Mufti RE, Brett SE, Tran CHT, Abd El-Rahman R, Anfinogenova Y, El-Yazbi A, Cole WC, Jones PP, Chen SRW, Welsh DG. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves. J Physiol 2010; 588:3983-4005. [PMID: 20736418 DOI: 10.1113/jphysiol.2010.193300] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study examined whether elevated intravascular pressure stimulates asynchronous Ca(2+) waves in cerebral arterial smooth muscle cells and if their generation contributes to myogenic tone development. The endothelium was removed from rat cerebral arteries, which were then mounted in an arteriograph, pressurized (20-100 mmHg) and examined under a variety of experimental conditions. Diameter and membrane potential (V(M)) were monitored using conventional techniques; Ca(2+) wave generation and myosin light chain (MLC(20))/MYPT1 (myosin phosphatase targeting subunit) phosphorylation were assessed by confocal microscopy and Western blot analysis, respectively. Elevating intravascular pressure increased the proportion of smooth muscle cells firing asynchronous Ca(2+) waves as well as event frequency. Ca(2+) wave augmentation occurred primarily at lower intravascular pressures (<60 mmHg) and ryanodine, a plant alkaloid that depletes the sarcoplasmic reticulum (SR) of Ca(2+), eliminated these events. Ca(2+) wave generation was voltage insensitive as Ca(2+) channel blockade and perturbations in extracellular [K(+)] had little effect on measured parameters. Ryanodine-induced inhibition of Ca(2+) waves attenuated myogenic tone and MLC(20) phosphorylation without altering arterial V(M). Thapsigargin, an SR Ca(2+)-ATPase inhibitor also attenuated Ca(2+) waves, pressure-induced constriction and MLC(20) phosphorylation. The SR-driven component of the myogenic response was proportionally greater at lower intravascular pressures and subsequent MYPT1 phosphorylation measures revealed that SR Ca(2+) waves facilitated pressure-induced MLC(20) phosphorylation through mechanisms that include myosin light chain phosphatase inhibition. Cumulatively, our findings show that mechanical stimuli augment Ca(2+) wave generation in arterial smooth muscle and that these transient events facilitate tone development particularly at lower intravascular pressures by providing a proportion of the Ca(2+) required to directly control MLC(20) phosphorylation.
Collapse
Affiliation(s)
- Rania E Mufti
- Hotchkiss Brain Institute, Libin Cardiovascular Institute, Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
45
|
Xi Q, Umstot E, Zhao G, Narayanan D, Leffler CW, Jaggar JH. Glutamate regulates Ca2+ signals in smooth muscle cells of newborn piglet brain slice arterioles through astrocyte- and heme oxygenase-dependent mechanisms. Am J Physiol Heart Circ Physiol 2009; 298:H562-9. [PMID: 19966053 DOI: 10.1152/ajpheart.00823.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glutamate is the principal cerebral excitatory neurotransmitter and dilates cerebral arterioles to match blood flow to neural activity. Arterial contractility is regulated by local and global Ca(2+) signals that occur in smooth muscle cells, but modulation of these signals by glutamate is poorly understood. Here, using high-speed confocal imaging, we measured the Ca(2+) signals that occur in arteriole smooth muscle cells of newborn piglet tangential brain slices, studied signal regulation by glutamate, and investigated the physiological function of heme oxygenase (HO) and carbon monoxide (CO) in these responses. Glutamate elevated Ca(2+) spark frequency by approximately 188% and reduced global intracellular Ca(2+) concentration ([Ca(2+)](i)) to approximately 76% of control but did not alter Ca(2+) wave frequency in brain arteriole smooth muscle cells. Isolation of cerebral arterioles from brain slices abolished glutamate-induced Ca(2+) signal modulation. In slices treated with l-2-alpha-aminoadipic acid, a glial toxin, glutamate did not alter Ca(2+) sparks or global [Ca(2+)](i) but did activate Ca(2+) waves. This shift in Ca(2+) signal modulation by glutamate did not occur in slices treated with d-2-alpha-aminoadipic acid, an inactive isomer of l-2-alpha-aminoadipic acid. In the presence of chromium mesoporphyrin, a HO blocker, glutamate inhibited Ca(2+) sparks and Ca(2+) waves and did not alter global [Ca(2+)](i). In isolated arterioles, CORM-3 [tricarbonylchloro(glycinato)ruthenium(II)], a CO donor, activated Ca(2+) sparks and reduced global [Ca(2+)](i). These effects were blocked by 1H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one, a soluble guanylyl cyclase inhibitor. Collectively, these data indicate that glutamate can modulate Ca(2+) sparks, Ca(2+) waves, and global [Ca(2+)](i) in arteriole smooth muscle cells via mechanisms that require astrocytes and HO. These data also indicate that soluble guanylyl cyclase is involved in CO activation of Ca(2+) sparks in arteriole smooth muscle cells.
Collapse
Affiliation(s)
- Qi Xi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
46
|
Oliveira APS, Lunardi CN, Rodrigues GJ, Bendhack LM. Relaxation induced by calcium ionophore is impaired in carotid arteries from 2K-1C rats due to failed effect of nitric oxide on the smooth muscle cells. Vascul Pharmacol 2009; 50:153-9. [PMID: 19100862 DOI: 10.1016/j.vph.2008.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Vascular endothelium generates nitric oxide (NO) in large vessels and induces relaxation of vascular smooth muscle cells (VSMC). The aim of this study was to evaluate the contribution of NO produced in the endothelial cells (EC) to the relaxation induced by the Ca2+ ionophore A23187 and whether this relaxation is impaired in renal hypertensive (2K-1C) rat arteries. Concentration-effect curves for A23187 were constructed in intact endothelium isolated carotid rings from 2K-1C and normotensive (2K) in the absence or in the presence of the extracellular NO scavenger haemoglobin or inhibitors of NO-synthase (NOS, L-NOARG), guanylyl-cyclase (GC, ODQ). In carotid rings loaded with Fluo-3AM, both EC and VSMC were simultaneously imaged by a confocal microscope and [Ca2+]c was derived from fluorescence intensities (IF). The maximal relaxation (ME) induced by A23187 was lower in 2K-1C than in 2K arteries. A23187-induced relaxation was abolished by haemoglobin and L-NOARG in both groups. ODQ reduced the ME to A23187 in 2K and abolished its relaxation in 2K-1C. A23187 increased [Ca2+]c in a similar way in 2K and 2K-1C EC, and decreased [Ca2+]c in VSMC, which effect was higher in 2K than in 2K-1C arteries. L-NOARG inhibited the effect of A23187 in VSMC from 2K and abolished it in 2K-1C rats. On the other hand, L-NOARG did not modify the effect of A23187 in EC from 2K and 2K-1C rats. The basal content of cGMP was higher in 2K than in 2K-1C arterial rings that was similarly increased by A23187. In conclusion, the Ca2+ ionophore A23187 increases Ca2+, activates NOS and NO production in the EC activating GC in VSMC and [Ca2+]c decrease. All these effects are higher in 2K, which contribute to the impaired relaxation to A23187 in 2K-1C rat arteries.
Collapse
Affiliation(s)
- Ana P S Oliveira
- Laboratório de Farmacología, Faculdade de Ciências Farmaocêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 RibeirBo Preto, SP Brazil
| | | | | | | |
Collapse
|
47
|
Tamagawa Y, Saino T, Matsuura M, Satoh YI. The effects of diuretics on intracellular Ca2+ dynamics of arteriole smooth muscles as revealed by laser confocal microscopy. Acta Histochem Cytochem 2009; 42:121-8. [PMID: 19759873 PMCID: PMC2742722 DOI: 10.1267/ahc.09006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/12/2009] [Indexed: 01/26/2023] Open
Abstract
The regulation of cytosolic Ca2+ homeostasis is essential for cells, including vascular smooth muscle cells. Arterial tone, which underlies the maintenance of peripheral resistance in the circulation, is a major contributor to the control of blood pressure. Diuretics may regulate intracellular Ca2+ concentration ([Ca2+]i) and have an effect on vascular tone. In order to investigate the influence of diuretics on peripheral resistance in circulation, we investigated the alteration of [Ca2+]i in testicular arterioles with respect to several categories of diuretics using real-time confocal laser scanning microscopy. In this study, hydrochlorothiazide (100 µM) and furosemide (100 µM) had no effect on the [Ca2+]i dynamics. However, when spironolactone (300 µM) was applied, the [Ca2+]i of smooth muscles increased. The response was considerably inhibited under either extracellular Ca2+-free conditions, the presence of Gd3+, or with a treatment of diltiazem. After the thapsigargin-induced depletion of internal Ca2+ store, the spironolactone-induced [Ca2+]i dynamics was slightly inhibited. Therefore, the spironolactone-induced dynamics of [Ca2+]i can be caused by either a Ca2+ influx from extracellular fluid or Ca2+ mobilization from internal Ca2+ store, with the former being dominant. As tetraethylammonium, an inhibitor of the K+ channel, slightly inhibited the spironolactone-induced [Ca2+]i dynamics, the K+ channel might play a minor role in those dynamics. Tetrodotoxin, a neurotoxic Na+ channel blocker, had no effect, therefore the spironolactone-induced dynamics is a direct effect to smooth muscles, rather than an indirect effect via vessel nerves.
Collapse
Affiliation(s)
- Yasunori Tamagawa
- Department of Anatomy (Cell Biology), School of Medicine, Iwate Medical University
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), School of Medicine, Iwate Medical University
| | - Makoto Matsuura
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University
| | - Yoh-ichi Satoh
- Department of Anatomy (Cell Biology), School of Medicine, Iwate Medical University
| |
Collapse
|
48
|
Masu K, Saino T, Kuroda T, Matsuura M, Russa AD, Ishikita N, Satoh YI. Regional differences in 5-HT receptors in cerebral and testicular arterioles of the rat as revealed by Ca2+ imaging of real-time confocal microscopy: variances by artery size and organ specificity. ACTA ACUST UNITED AC 2009; 71:291-302. [PMID: 19556691 DOI: 10.1679/aohc.71.291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
5-hydroxytriptamine (5-HT) is an important transmitter for vessel constriction. The present study was performed to clarify the effect of 5-HT on smooth muscles in large- and small-sized cerebral and testicular arterioles by confocal microscopy, with special reference to intracellular Ca2+ concentration ([Ca2+]i) dynamics. In cerebral vessels, 5-HT induced a [Ca2+]i increase and the contraction of smooth muscle cells in large- and midsized arterioles (external diameters>50 microm) but not in small-sized arterioles. Conspicuous [Ca2+]i changes by 5-HT were especially observed in the portions close to the cerebral arterial circle, and the 5-HT-induced responses were caused by both Ca2+ influx and mobilization. Experiments using agonists and antagonists also revealed that cerebral arteriole smooth muscles possess 5-HT1a, 1b, 2 (G-protein-coupled type), and 3 (ion channel type) receptors; specifically, 5-HT2 plays a major role in these responses. On the other hand, in testicular vessels, there were few regional differences among responses to 5-HT, and both large- and small-sized arterioles responded to 5-HT. The responses were caused by only Ca2+ mobilization mediated 5-HT1a and 2. These results indicate that arterioles in different tissues may respond to 5-HT in different manners. Regional differences and the size-dependent manner of responses to 5-HT in cerebral blood vessels also indicate that the regulatory mechanism of blood circulation is highly differentiated in each region of the central nervous system.
Collapse
Affiliation(s)
- Kazuki Masu
- Department of Anatomy, School of Medicine, Iwate Medical University, Morioka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Hypertension of Kcnmb1-/- is linked to deficient K secretion and aldosteronism. Proc Natl Acad Sci U S A 2009; 106:11800-5. [PMID: 19556540 DOI: 10.1073/pnas.0904635106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice lacking the beta1-subunit (gene, Kcnmb1; protein, BK-beta1) of the large Ca-activated K channel (BK) are hypertensive. This phenotype is thought to result from diminished BK currents in vascular smooth muscle where BK-beta1 is an ancillary subunit. However, the beta1-subunit is also expressed in the renal connecting tubule (CNT), a segment of the aldosterone-sensitive distal nephron, where it associates with BK and facilitates K secretion. Because of the correlation between certain forms of hypertension and renal defects, particularly in the distal nephron, it was determined whether the hypertension of Kcnmb1(-/-) has a renal origin. We found that Kcnmb1(-/-) are hypertensive, volume expanded, and have reduced urinary K and Na clearances. These conditions are exacerbated when the animals are fed a high K diet (5% K; HK). Supplementing HK-fed Kcnmb1(-/-) with eplerenone (mineralocorticoid receptor antagonist) corrected the fluid imbalance and more than 70% of the hypertension. Finally, plasma [aldo] was elevated in Kcnmb1(-/-) under basal conditions (control diet, 0.6% K) and increased significantly more than wild type when fed the HK diet. We conclude that the majority of the hypertension of Kcnmb1(-/-) is due to aldosteronism, resulting from renal potassium retention and hyperkalemia.
Collapse
|
50
|
Hill MA, Meininger GA, Davis MJ, Laher I. Therapeutic potential of pharmacologically targeting arteriolar myogenic tone. Trends Pharmacol Sci 2009; 30:363-74. [PMID: 19541373 DOI: 10.1016/j.tips.2009.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 01/05/2023]
Abstract
The arteriolar myogenic response, which is defined as vasoconstriction to increases in intraluminal pressure and, conversely, dilation to a reduction in pressure, is key in the setting of vascular resistance, local control of microvascular blood flow through autoregulation, and in the control of capillary hydrostatic pressure. Although considerable progress has been made in the quest for understanding the underlying sensory apparatus and cellular mechanisms, fundamental questions remain - particularly if this pathway is to be considered as a target for novel strategies of pharmacological intervention. We propose that an ability to 're-set' myogenic tone would enable modification of systemic vascular resistance and pressure while at the same time preserving existing interactions with neurohumoral regulatory mechanisms. The challenge, therefore, is to identify steps unique to the myogenic signaling pathway to enable specific pharmacological targeting.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|