1
|
DAĞLI F, GUNTURK I, SEYDEL GŞ, YAZICI C. Deneysel hipertiroidide fiziksel ve vital bulguların ve karnozinin etkisinin değerlendirilmesi. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1099652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: This study aims to investigate the effects of experimental hyperthyroidism and carnosine which is known to have antioxidant properties on physical and vital findings in rats, and to determine the relationship between these parameters and free T3 (FT3) levels.
Materials and Methods: Rats were analyzed in 7 groups (each containing 12 animals); control (CONT), hyperthyroidism-1 (T:10-day L-thyroxine (L-T4) administration), hyperthyroidism-2 (T-T: 20-day L-T4 administration), Carnosine (10 day carnosine administration), Hyperthyroidism-1 + Carnosine (T-C), Hyperthyroidism-2 + Carnosine (T-TC), and Carnosine + Hyperthyroidism-1 (C-T). In order to create a hyperthyroidism model, L-thyroxine (L-T4) doses of 300 µg/kg rat weight/day and carnosine doses of 300 µg/kg rat weight/ day were intraperitoneally (ip) administered to the rats.
Results: After 10 and 20 days of thyroxine administration, FT3 levels (T:3.640.51pg/mL, T-T: 4.060.91pg/mL) and body temperature (T:37.10.3oC, T-T: 37.60.3oC), significantly increased while body weight decreased (T:240.722.0g, T-T:263.028.7g). Carnosine administration only prevented the increase of FT3 levels, but had no effect on other parameters.
Conclusion: The increased FT3 levels observed with L-T4 administration were consistent with the physical and vital findings, but carnosine administration did not reflect the expected effects on the physical findings observed in the hyperthyroid condition.
Collapse
Affiliation(s)
| | - Inayet GUNTURK
- NİĞDE ÜNİVERSİTESİ, NİĞDE ZÜBEYDE HANIM SAĞLIK YÜKSEKOKULU
| | | | | |
Collapse
|
2
|
Bomer N, Pavez-Giani MG, Deiman FE, Linders AN, Hoes MF, Baierl CL, Oberdorf-Maass SU, de Boer RA, Silljé HH, Berezikov E, Simonides WS, Westenbrink BD, van der Meer P. Selenoprotein DIO2 Is a Regulator of Mitochondrial Function, Morphology and UPRmt in Human Cardiomyocytes. Int J Mol Sci 2021; 22:11906. [PMID: 34769334 PMCID: PMC8584701 DOI: 10.3390/ijms222111906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the fetal-gene-program may act as regulatory components to impede deleterious events occurring with cardiac remodeling, and constitute potential novel therapeutic heart failure (HF) targets. Mitochondrial energy derangements occur both during early fetal development and in patients with HF. Here we aim to elucidate the role of DIO2, a member of the fetal-gene-program, in pluripotent stem cell (PSC)-derived human cardiomyocytes and on mitochondrial dynamics and energetics, specifically. RNA sequencing and pathway enrichment analysis was performed on mouse cardiac tissue at different time points during development, adult age, and ischemia-induced HF. To determine the function of DIO2 in cardiomyocytes, a stable human hPSC-line with a DIO2 knockdown was made using a short harpin sequence. Firstly, we showed the selenoprotein, type II deiodinase (DIO2): the enzyme responsible for the tissue-specific conversion of inactive (T4) into active thyroid hormone (T3), to be a member of the fetal-gene-program. Secondly, silencing DIO2 resulted in an increased reactive oxygen species, impaired activation of the mitochondrial unfolded protein response, severely impaired mitochondrial respiration and reduced cellular viability. Microscopical 3D reconstruction of the mitochondrial network displayed substantial mitochondrial fragmentation. Summarizing, we identified DIO2 to be a member of the fetal-gene-program and as a key regulator of mitochondrial performance in human cardiomyocytes. Our results suggest a key position of human DIO2 as a regulator of mitochondrial function in human cardiomyocytes.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Mario G. Pavez-Giani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Frederik E. Deiman
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Annet N. Linders
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Martijn F. Hoes
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Christiane L.J. Baierl
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Silke U. Oberdorf-Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Herman H.W. Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Warner S. Simonides
- Department of Physiology, Amsterdam University Medical Centre, Vrije Unversiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| | - Peter van der Meer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.G.P.-G.); (F.E.D.); (A.N.L.); (M.F.H.); (C.L.J.B.); (S.U.O.-M.); (R.A.d.B.); (H.H.W.S.); (B.D.W.); (P.v.d.M.)
| |
Collapse
|
3
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
- Fujie Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
4
|
Protective Effects of Euthyroidism Restoration on Mitochondria Function and Quality Control in Cardiac Pathophysiology. Int J Mol Sci 2019; 20:ijms20143377. [PMID: 31295805 PMCID: PMC6678270 DOI: 10.3390/ijms20143377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.
Collapse
|
5
|
Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 2016; 473:2295-314. [DOI: 10.1042/bcj20160009] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
Skeletal muscle is a tissue with a low mitochondrial content under basal conditions, but it is responsive to acute increases in contractile activity patterns (i.e. exercise) which initiate the signalling of a compensatory response, leading to the biogenesis of mitochondria and improved organelle function. Exercise also promotes the degradation of poorly functioning mitochondria (i.e. mitophagy), thereby accelerating mitochondrial turnover, and preserving a pool of healthy organelles. In contrast, muscle disuse, as well as the aging process, are associated with reduced mitochondrial quality and quantity in muscle. This has strong negative implications for whole-body metabolic health and the preservation of muscle mass. A number of traditional, as well as novel regulatory pathways exist in muscle that control both biogenesis and mitophagy. Interestingly, although the ablation of single regulatory transcription factors within these pathways often leads to a reduction in the basal mitochondrial content of muscle, this can invariably be overcome with exercise, signifying that exercise activates a multitude of pathways which can respond to restore mitochondrial health. This knowledge, along with growing realization that pharmacological agents can also promote mitochondrial health independently of exercise, leads to an optimistic outlook in which the maintenance of mitochondrial and whole-body metabolic health can be achieved by taking advantage of the broad benefits of exercise, along with the potential specificity of drug action.
Collapse
|
6
|
Johnson JM, Lai SY, Cotzia P, Cognetti D, Luginbuhl A, Pribitkin EA, Zhan T, Mollaee M, Domingo-Vidal M, Chen Y, Campling B, Bar-Ad V, Birbe R, Tuluc M, Martinez Outschoorn U, Curry J. Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer. Semin Oncol 2015; 42:915-22. [PMID: 26615136 PMCID: PMC4663018 DOI: 10.1053/j.seminoncol.2015.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically monocarboxylate transporter 1 (MCT1) and translocase of the outer mitochondrial membrane member 20 (TOMM20). Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer [PTC], and eight non-cancerous thyroid) and nine ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (P<.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (P<.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (P<.001). These xenograft tumors have high (13)C- pyruvate uptake. ATC has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target.
Collapse
Affiliation(s)
- Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Stephen Y Lai
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Cotzia
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - David Cognetti
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA
| | - Adam Luginbuhl
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| | - Edmund A Pribitkin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| | - Tingting Zhan
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Mehri Mollaee
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | | | - Yunyun Chen
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Ruth Birbe
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | | | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
7
|
Abstract
Thyroid hormone (TH) has long been recognized as a major modulator of metabolic efficiency, energy expenditure, and thermogenesis. TH effects in regulating metabolic efficiency are transduced by controlling the coupling of mitochondrial oxidative phosphorylation and the cycling of extramitochondrial substrate/futile cycles. However, despite our present understanding of the genomic and nongenomic modes of action of TH, its control of mitochondrial coupling still remains elusive. This review summarizes historical and up-to-date findings concerned with TH regulation of metabolic energetics, while integrating its genomic and mitochondrial activities. It underscores the role played by TH-induced gating of the mitochondrial permeability transition pore (PTP) in controlling metabolic efficiency. PTP gating may offer a unified target for some TH pleiotropic activities and may serve as a novel target for synthetic functional thyromimetics designed to modulate metabolic efficiency. PTP gating by long-chain fatty acid analogs may serve as a model for such strategy.
Collapse
Affiliation(s)
- Einav Yehuda-Shnaidman
- Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel 91120
| | | | | |
Collapse
|
8
|
Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One 2013; 8:e69327. [PMID: 23935986 PMCID: PMC3720551 DOI: 10.1371/journal.pone.0069327] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/07/2013] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations lead to decrements in mitochondrial function and accelerated rates of these mutations has been linked to skeletal muscle loss (sarcopenia). The purpose of this study was to investigate the effect of mtDNA mutations on mitochondrial quality control processes in skeletal muscle from animals (young; 3–6 months and older; 8–15 months) expressing a proofreading-deficient version of mtDNA polymerase gamma (PolG). This progeroid aging model exhibits elevated mtDNA mutation rates, mitochondrial dysfunction, and a premature aging phenotype that includes sarcopenia. We found increased expression of the mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its target proteins, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (Tfam) in PolG animals compared to wild-type (WT) (P<0.05). Muscle from older PolG animals displayed higher mitochondrial fission protein 1 (Fis1) concurrent with greater induction of autophagy, as indicated by changes in Atg5 and p62 protein content (P<0.05). Additionally, levels of the Tom22 import protein were higher in PolG animals when compared to WT (P<0.05). In contrast, muscle from normally-aged animals exhibited a distinctly different expression profile compared to PolG animals. Older WT animals appeared to have higher fusion (greater Mfn1/Mfn2, and lower Fis1) and lower autophagy (Beclin-1 and p62) compared to young WT suggesting that autophagy is impaired in aging muscle. In conclusion, muscle from mtDNA mutator mice display higher mitochondrial fission and autophagy levels that likely contribute to the sarcopenic phenotype observed in premature aging and this differs from the response observed in normally-aged muscle.
Collapse
|
9
|
Fraga H, Ventura S. Oxidative folding in the mitochondrial intermembrane space in human health and disease. Int J Mol Sci 2013; 14:2916-27. [PMID: 23364613 PMCID: PMC3588022 DOI: 10.3390/ijms14022916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative folding in the mitochondrial intermembrane space (IMS) is a key cellular event associated with the folding and import of a large and still undetermined number of proteins. This process is catalyzed by an oxidoreductase, Mia40 that is able to recognize substrates with apparently little or no homology. Following substrate oxidation, Mia40 is reduced and must be reoxidized by Erv1/Alr1 that consequently transfers the electrons to the mitochondrial respiratory chain. Although our understanding of the physiological relevance of this process is still limited, an increasing number of pathologies are being associated with the impairment of this pathway; especially because oxidative folding is fundamental for several of the proteins involved in defense against oxidative stress. Here we review these aspects and discuss recent findings suggesting that oxidative folding in the IMS is modulated by the redox state of the cell.
Collapse
Affiliation(s)
- Hugo Fraga
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| | - Salvador Ventura
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| |
Collapse
|
10
|
Londono C, Osorio C, Gama V, Alzate O. Mortalin, apoptosis, and neurodegeneration. Biomolecules 2012; 2:143-64. [PMID: 24970131 PMCID: PMC4030873 DOI: 10.3390/biom2010143] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023] Open
Abstract
Mortalin is a highly conserved heat-shock chaperone usually found in multiple subcellular locations. It has several binding partners and has been implicated in various functions ranging from stress response, control of cell proliferation, and inhibition/prevention of apoptosis. The activity of this protein involves different structural and functional mechanisms, and minor alterations in its expression level may lead to serious biological consequences, including neurodegeneration. In this article we review the most current data associated with mortalin's binding partners and how these protein-protein interactions may be implicated in apoptosis and neurodegeneration. A complete understanding of the molecular pathways in which mortalin is involved is important for the development of therapeutic strategies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolina Londono
- Systems Proteomics Center Laboratory, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, Escuela de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Cristina Osorio
- Systems Proteomics Center Laboratory and Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Vivian Gama
- Neuroscience Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Oscar Alzate
- Systems Proteomics Center Laboratory, Department of Cell and Developmental Biology, Program in Molecular Biology and Biotechnology and Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, Escuela de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia.
| |
Collapse
|
11
|
Joseph AM, Hood DA. Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity. Mitochondrion 2011; 12:305-12. [PMID: 22142511 DOI: 10.1016/j.mito.2011.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
We investigated the assembly of the TOM complex within skeletal muscle under conditions of chronic contractile activity-induced mitochondrial biogenesis. Tom40 import into mitochondria was increased by chronic contractile activity, as was its time-dependent assembly into the TOM complex. These changes coincided with contractile activity-induced augmentations in the expression of key protein import machinery components Tim17, Tim23, and Tom22, as well as the cytosolic chaperone Hsp90. These data indicate the adaptability of the TOM protein import complex and suggest a regulatory role for the assembly of this complex in exercise-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Anna-Maria Joseph
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
12
|
Singh K, Hood DA. Effect of denervation-induced muscle disuse on mitochondrial protein import. Am J Physiol Cell Physiol 2011; 300:C138-45. [DOI: 10.1152/ajpcell.00181.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study determined whether muscle disuse affects mitochondrial protein import and whether changes in protein import are related to mitochondrial content and function. Protein import was measured using a model of unilateral peroneal nerve denervation in rats for 3 ( n = 10), 7 ( n = 12), or 14 ( n = 14) days. We compared the import of preproteins into the matrix of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria isolated from the denervated and the contralateral control tibialis anterior muscles. Denervation led to 50% and 29% reductions in protein import after 14 days of disuse in SS and IMF mitochondria, respectively. This was accompanied by significant decreases in mitochondrial state 3 respiration, muscle mass, and whole muscle cytochrome c oxidase activity. To investigate the mechanisms involved, we assessed disuse-related changes in 1) protein import machinery components and 2) mitochondrial function, reflected by respiration and reactive oxygen species (ROS) production. Denervation significantly reduced the expression of translocases localized in the inner membrane (Tim23), outer membrane (Tom20), and mitochondrial heat shock protein 70 (mtHsp70), especially in the SS subfraction. Denervation also resulted in elevated ROS generation, and exogenous ROS was found to markedly reduce protein import. Thus our data indicate that protein import kinetics are closely related to alterations in mitochondrial respiratory capacity ( r = 0.95) and are negatively impacted by ROS. Deleterious changes in the protein import system likely facilitate the reduction in mitochondrial content and the increase in organelle dysfunction (i.e., increased ROS production and decreased respiration) during chronic disuse, which likely contribute to the activation of degradative pathways leading to muscle atrophy.
Collapse
Affiliation(s)
- Kaustabh Singh
- Muscle Health Research Center,
- School of Kinesiology and Health Science, and
| | - David A. Hood
- Muscle Health Research Center,
- School of Kinesiology and Health Science, and
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Devaux F, Lelandais G, Garcia M, Goussard S, Jacq C. Posttranscriptional control of mitochondrial biogenesis: Spatio-temporal regulation of the protein import process. FEBS Lett 2010; 584:4273-9. [DOI: 10.1016/j.febslet.2010.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/10/2010] [Accepted: 09/18/2010] [Indexed: 11/30/2022]
|
14
|
Mitochondrial base excision repair pathway failed to respond to status epilepticus induced by pilocarpine. Neurosci Lett 2010; 474:22-5. [DOI: 10.1016/j.neulet.2010.02.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/11/2022]
|
15
|
Joseph AM, Ljubicic V, Adhihetty PJ, Hood DA. Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. Am J Physiol Cell Physiol 2010; 298:C1308-14. [PMID: 20107041 DOI: 10.1152/ajpcell.00644.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence exists that mitochondrial content and/or function is reduced in muscle of aging individuals. The purposes of this study were to investigate the contribution of outer membrane protein import and assembly processes to this decline and to determine whether the assembly process could adapt to chronic contractile activity (CCA). Tom40 assembly into the translocases of the outer membrane (TOM complex) was measured in subsarcolemmal mitochondria obtained from young (6 mo old) and aged (36 mo old) Fischer 344 x Brown Norway animals. While the initial import of Tom40 did not differ between young and aged animals, its subsequent assembly into the final approximately 380 kDa complex was 2.2-fold higher (P < 0.05) in mitochondria from aged compared with young animals. This was associated with a higher abundance of Tom22, a protein vital for the assembly process. CCA induced a greater initial import and subsequent assembly of Tom40 in mitochondria from young animals, resulting in a CCA-induced 75% increase (P < 0.05) in Tom40 within mitochondria. This effect of CCA was attenuated in mitochondria from old animals. These data suggest that the import and assembly of proteins into the outer membrane do not contribute to reduced mitochondrial content or function in aged animals. Indeed, the greater assembly rate in mitochondria from aged animals may be a compensatory mechanism attempting to offset any decrements in mitochondrial content or function within aged muscle. Our data also indicate the potential of CCA to contribute to increased mitochondrial biogenesis in muscle through changes in the outer membrane import and assembly pathway.
Collapse
Affiliation(s)
- Anna-Maria Joseph
- School of Kinesiology and Health Science, York Univesity, Toronto, ON, Canada
| | | | | | | |
Collapse
|
16
|
Huang JH, Joseph AM, Ljubicic V, Iqbal S, Hood DA. Effect of age on the processing and import of matrix-destined mitochondrial proteins in skeletal muscle. J Gerontol A Biol Sci Med Sci 2010; 65:138-46. [PMID: 20045872 DOI: 10.1093/gerona/glp201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Deregulation of muscle mitochondrial biogenesis may explain the altered mitochondrial properties associated with aging. Maintenance of the mitochondrial network requires the continuous incorporation of nascent proteins into their subcompartments via the protein import pathway. We examined whether this pathway was impaired in muscle of aged animals, focusing on the subsarcolemmal and intermyofibrillar mitochondrial populations. Our results indicate that the import of proteins into the mitochondrial matrix was unaltered with age. Interestingly, import assays supplemented with the cytosolic fraction illustrated an attenuation of protein import, and this effect was similar between age groups. We observed a 2.5-fold increase in protein degradation in the presence of the cytosolic fraction obtained from aged animals. Thus, the reduction of mitochondrial content and/or function observed with aging may not rely on altered activity of the import pathway but rather on the availability of preproteins that are susceptible to elevated rates of degradation by cytosolic factors.
Collapse
Affiliation(s)
- Julianna H Huang
- School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Frier BC, Williams DB, Wright DC. The effects of apelin treatment on skeletal muscle mitochondrial content. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1761-8. [DOI: 10.1152/ajpregu.00422.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adipose tissue is recognized as a key player in the regulation of whole body metabolism. Apelin, is a recently identified adipokine that when given to mice results in increases in skeletal muscle uncoupling protein 3 (UCP3) content. Similarly, acute apelin treatment has been shown to increase the activity of 5′-AMP-activated protein kinase (AMPK), a reputed mediator of skeletal muscle mitochondrial biogenesis. Given these findings, we sought to determine the effects of apelin on skeletal muscle mitochondrial content. Male Wistar rats were given daily intraperitoneal injections of apelin-13 (100 nmol/kg) for 2 wk. We made the novel observation that the activities of citrate synthase, cytochrome c oxidase, and β-hydroxyacyl coA dehydrogenase (βHAD) were increased in triceps but not heart and soleus muscles from apelin-treated rats. When confirming these results we found that both nuclear and mitochondrial-encoded subunits of the respiratory chain were increased in triceps from apelin-treated rats. Similarly, apelin treatment increased the protein content of components of the mitochondrial import and assembly pathway. The increases in mitochondrial marker proteins were associated with increases in proliferator-activated receptor-γ coactivator-1 (PGC-1β) but not PGC-1α or Pgc-1-related co-activator (PRC) mRNA expression. Chronic and acute apelin treatment did not increase the protein content and/or phosphorylation status of AMPK and its downstream substrate acetyl-CoA carboxylase. These findings are the first to demonstrate that apelin treatment can induce skeletal muscle mitochondrial content. Given the lack of an effect of apelin on AMPK signaling and PGC-1α mRNA expression, these results suggest that apelin increases skeletal muscle mitochondrial content through a mechanism that is distinct from that of more robust physiological stressors.
Collapse
Affiliation(s)
- Bruce C. Frier
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Deon B. Williams
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David C. Wright
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Marín-García J. Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol 2009; 52:120-30. [PMID: 19857604 DOI: 10.1016/j.vph.2009.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
Mitochondria have been central in the development of some of the most important ideas in modern biology. Since the discovery that mitochondria have its own DNA and specific mutations and deletions were found in association with neuromuscular and heart diseases, as well as in aging, an extraordinary number of publications have followed, and the term mitochondrial medicine was coined. Recently, it has been found that thyroid hormone (TH) stimulates cardiac mitochondrial biogenesis increasing myocardial mitochondrial mass, mitochondrial respiration, oxidative phosphorylation (OXPHOS), enzyme activities, mitochondrial protein synthesis (by stimulation in a T3-dependent manner), cytochrome, phospholipid and mtDNA content. Also, TH therapy may modulate cardiac mitochondrial protein-import apparatus. To identify the sequence of events, molecules and signaling pathways that is activated by TH affecting mitochondrial structure, biogenesis and function further research is warranted.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA.
| |
Collapse
|
19
|
Bugger H, Schwarzer M, Chen D, Schrepper A, Amorim PA, Schoepe M, Nguyen TD, Mohr FW, Khalimonchuk O, Weimer BC, Doenst T. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 2009; 85:376-84. [DOI: 10.1093/cvr/cvp344] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
20
|
Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta Gen Subj 2009; 1800:223-34. [PMID: 19682549 DOI: 10.1016/j.bbagen.2009.07.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 12/18/2022]
Abstract
Acute contractile activity of skeletal muscle initiates the activation of signaling kinases. This promotes the phosphorylation of transcription factors, leading to enhanced DNA binding and transcriptional activation and/or repression. The mRNA products of nuclear genes encoding mitochondrial proteins are translated in the cytosol and imported into pre-existing mitochondria. When contractile activity is repeated, the recapitulation of these cellular events progressively leads to an expansion of the mitochondrial reticulum within muscle. This has physiologically relevant health benefit, including enhanced lipid metabolism and reduced muscle fatigability. In aging skeletal muscle, the response to contractile activity appears to be attenuated, suggesting that a greater contractile stimulus is required to attain a similar phenotype adaptation. This review summarizes our current understanding of the effects of exercise on the gene expression pathway leading to organelle biogenesis in muscle.
Collapse
|
21
|
Lumini JA, Magalhães J, Oliveira PJ, Ascensão A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med 2009; 38:735-50. [PMID: 18712941 DOI: 10.2165/00007256-200838090-00003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiopathology of diabetes mellitus has been closely associated with a variety of alterations in mitochondrial histology, biochemistry and function. Generally, the alterations comprise increased mitochondrial reactive oxygen and nitrogen species (RONS) generation, resulting in oxidative stress and damage; decreased capacity to metabolize lipids, leading to intramyocyte lipid accumulation; and diminished mitochondrial density and reduced levels of uncoupling proteins (UCPs), with consequent impairment in mitochondrial function. Chronic physical exercise is a physiological stimulus able to induce mitochondrial adaptations that can counteract the adverse effects of diabetes on muscle mitochondria. However, the mechanisms responsible for mitochondrial adaptations in the muscles of diabetic patients are still unclear. The main mechanisms by which exercise may be considered an important non-pharmacological strategy for preventing and/or attenuating diabetes-induced mitochondrial impairments may involve (i) increased mitochondrial biogenesis, which is dependent on the increased expression of some important proteins, such as the 'master switch' peroxisome proliferator-activated receptor (PPAR)-gamma-coactivator-1alpha (PGC-1alpha) and heat shock proteins (HSPs), both of which are severely downregulated in the muscles of diabetic patients; and (ii) the restoration or attenuation of the low UCP3 expression in skeletal muscle mitochondria of diabetic patients, which is suggested to play a pivotal role in mitochondrial dysfunction.There is evidence that chronic exercise and lifestyle interventions reverse impairments in mitochondrial density and size, in the activity of respiratory chain complexes and in cardiolipin content; however, the mechanisms by which chronic exercise alters mitochondrial respiratory parameters, mitochondrial antioxidant systems and other specific proteins involved in mitochondrial metabolism in the muscles of diabetic patients remain to be elucidated.
Collapse
Affiliation(s)
- José A Lumini
- Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
22
|
Irrcher I, Walkinshaw DR, Sheehan TE, Hood DA. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. J Appl Physiol (1985) 2007; 104:178-85. [PMID: 17962579 DOI: 10.1152/japplphysiol.00643.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thyroid hormone (T(3)) regulates the function of many tissues within the body. The effects of T(3) have largely been attributed to the modulation of thyroid hormone receptor-dependent gene transcription. However, nongenomic actions of T(3) via the initiation of signaling events are emerging in a number of cell types. This study investigated the ability of short-term T(3) treatment to phosphorylate and, therefore, activate signaling proteins in rat tissues in vivo. The kinases investigated included p38, AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK) 1/2. Following 2 h of T(3) treatment, p38 and AMPK phosphorylation was increased in both the slow-twitch soleus and the fast-twitch plantaris muscles. In contrast, ERK1/2 was not activated in either muscle type. Neither p38 nor AMPK was affected in heart. However, AMPK activation was decreased by T(3) in liver. ERK1/2 activation was decreased by T(3) in heart, but increased in liver. Possible downstream consequences of T(3)-induced kinase phosphorylation were investigated by measuring cAMP response element binding protein (CREB) and thyroid hormone receptor DNA binding, as well as peroxisome proliferator-activated receptor-alpha coactivator-1 mRNA levels. Protein DNA binding to the cAMP or thyroid hormone response elements was unaltered by T(3). However, peroxisome proliferator-activated receptor-alpha coactivator-1 mRNA expression was increased following 12 h of T(3) treatment in soleus. These data are the first to characterize the effects of T(3) treatment on kinase phosphorylation in vivo. We show that T(3) rapidly modifies kinase activity in a tissue-specific fashion. Moreover, the T(3)-induced phosphorylation of p38 and AMPK in both slow- and fast-twitch skeletal muscles suggests that these events may be important in mediating hormone-induced increases in mitochondrial biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- Isabella Irrcher
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Short KR, Nygren J, Nair KS. Effect of T(3)-induced hyperthyroidism on mitochondrial and cytoplasmic protein synthesis rates in oxidative and glycolytic tissues in rats. Am J Physiol Endocrinol Metab 2007; 292:E642-7. [PMID: 17047159 DOI: 10.1152/ajpendo.00397.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperthyroidism increases metabolic rate, mitochondrial ATP production, and protein synthesis, but it remains to be determined whether all tissues and synthesis of specific protein pools are equally affected by hyperthyroidism. Previous studies showed that mitochondrial function was less responsive to elevated triiodothyronine (T(3)) levels in the low-oxidative plantaris muscle compared with other tissues in rats. We tested the hypothesis that in T(3)-treated animals mitochondrial protein synthesis would increase in oxidative but not glycolytic tissues. Male rats received either T(3) (200 mug/day, n = 10) or saline (controls, n = 9) by subcutaneous pump for 14 days, and then in vivo protein synthesis rates were measured using [(15)N]phenylalanine in liver, heart, plantaris, and red gastrocnemius (Red Gast). Mitochondrial protein synthesis rate in T(3)-treated rats was higher than in controls by 62% in Red Gast and plantaris and 89 and 115% in liver and heart, respectively (P < 0.01). Cytoplasmic protein synthesis rates in the T(3) group were 107-176% higher than control values (P < 0.01). There was also indirect evidence that protein breakdown was increased in all tissues of the T(3)-treated rats. Phosphorylation of selected regulators of protein synthesis in plantaris and Red Gast (mTOR, p70 S6 kinase, 4E-BP1), however, were not significantly affected by T(3). We conclude that T(3) infusion stimulates a general increase in mitochondrial and cytoplasmic protein synthesis rate among tissues and that this does not appear to explain the tissue-specific responses in mitochondrial oxidative capacity.
Collapse
Affiliation(s)
- Kevin R Short
- Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
24
|
Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2006; 42:263-74. [PMID: 17188442 DOI: 10.1016/j.exger.2006.10.020] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Mortalin was first cloned as a mortality factor that existed in the cytoplasmic fractions of normal, but not in immortal, mouse fibroblasts. A decade of efforts have expanded its persona from a house keeper protein involved in mitochondrial import, energy generation and chaperoning of misfolded proteins, to a guardian of stress that has multiple binding partners and to a killer protein that contributes to carcinogenesis on one hand and to old age disorders on the other. Being proved to be an attractive target for cancer therapy, it also warrants attention from the perspectives of management of old age diseases and healthy aging.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | |
Collapse
|
25
|
MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1772:509-23. [PMID: 17300922 PMCID: PMC2702852 DOI: 10.1016/j.bbadis.2006.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/31/2022]
Abstract
The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, 133 Piez Hall, State University of New York at Oswego, Oswego, NY 13126, USA.
| | | |
Collapse
|
26
|
Bowers M, Ardehali H. TOM20 and the Heartbreakers: Evidence for the role of mitochondrial transport proteins in cardioprotection. J Mol Cell Cardiol 2006; 41:406-9. [PMID: 16890951 DOI: 10.1016/j.yjmcc.2006.06.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Lasaitiene D, Chen Y, Mildaziene V, Nauciene Z, Sundelin B, Johansson BR, Yano M, Friberg P. Tubular mitochondrial alterations in neonatal rats subjected to RAS inhibition. Am J Physiol Renal Physiol 2006; 290:F1260-9. [PMID: 16249276 DOI: 10.1152/ajprenal.00150.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pharmacological interruption of the angiotensin II (ANG II) type 1 receptor signaling during nephrogenesis in rats perturbs renal tubular development. This study aimed to further investigate tubular developmental defects in neonatal rats subjected to ANG II inhibition with enalapril. We evaluated tubular ultrastructural changes using electron microscopy and estimated spectrophotometrically activity or concentrations of succinate dehydrogenase (SDH), cytochromes a and c, which are components of mitochondrial respiratory chain, on postnatal days 2 and 9 (PD2 and PD9). Renal expression of sodium-potassium adenosinetriphosphatase (Na+-K+-ATPase) and two reflectors of mitochondrial biogenesis [mitochondrial transcription factor A (TFAM) and translocase of outer mitochondrial membrane 20 (TOM20)] also were studied using Western immunoblotting and immunohistochemistry. Enalapril disrupted inner mitochondrial membranes of developing cortical and medullary tubular cells on PD2 and PD9. These findings were paralleled by impaired mitochondrial respiratory function, as revealed from the changes in components of the mitochondrial respiratory chain, such as decreased cytochrome c level in the cortex and medulla on PD2 and PD9, decreased cytochrome a level in the cortex and medulla on PD2, and diminished cortical SDH activity on PD2 and PD9. Moreover, tubular expression of the most active energy-consuming pump Na+-K+-ATPase was decreased by enalapril treatment. Renal expression of TFAM and TOM20 was not altered by neonatal enalapril treatment. Because nephrogenesis is a highly energy-demanding biological process, with the energy being utilized for renal growth and transport activities, the structural-functional alterations of the mitochondria induced by neonatal enalapril treatment may provide the propensity for the tubular developmental defect.
Collapse
Affiliation(s)
- Daina Lasaitiene
- Dept. of Clinical Physiology, Univ. of Gothenburg, S-413 45 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mercy L, Pauw AD, Payen L, Tejerina S, Houbion A, Demazy C, Raes M, Renard P, Arnould T. Mitochondrial biogenesis in mtDNA-depleted cells involves a Ca2+-dependent pathway and a reduced mitochondrial protein import. FEBS J 2005; 272:5031-55. [PMID: 16176275 DOI: 10.1111/j.1742-4658.2005.04913.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alterations in mitochondrial activity resulting from defects in mitochondrial DNA (mtDNA) can modulate the biogenesis of mitochondria by mechanisms that are still poorly understood. In order to study mitochondrial biogenesis in cells with impaired mitochondrial activity, we used rho-L929 and rho(0)143 B cells (partially and totally depleted of mtDNA, respectively), that maintain and even up-regulate mitochondrial population, to characterize the activity of major transcriptional regulators (Sp1, YY1, MEF2, PPARgamma, NRF-1, NRF-2, CREB and PGC-1alpha) known to control the expression of numerous nuclear genes encoding mitochondrial proteins. Among these regulators, cyclic AMP-responsive element binding protein (CREB) activity was the only one to be increased in mtDNA-depleted cells. CREB activation mediated by a calcium-dependent pathway in these cells also regulates the expression of cytochrome c and the abundance of mitochondrial population as both are decreased in mtDNA-depleted cells that over-express CREB dominant negative mutants. Mitochondrial biogenesis in mtDNA-depleted cells is also dependent on intracellular calcium as its chelation reduces mitochondrial mass. Despite a slight increase in mitochondrial mass in mtDNA-depleted cells, the mitochondrial protein import activity was reduced as shown by a decrease in the import of radiolabeled matrix-targeted recombinant proteins into isolated mitochondria and by the reduced mitochondrial localization of ectopically expressed HA-apoaequorin targeted to the mitochondria. Decrease in ATP content, in mitochondrial membrane potential as well as reduction in mitochondrial Tim44 abundance could explain the lower mitochondrial protein import in mtDNA-depleted cells. Taken together, these results suggest that mitochondrial biogenesis is stimulated in mtDNA-depleted cells and involves a calcium-CREB signalling pathway but is associated with a reduced mitochondrial import for matrix proteins.
Collapse
Affiliation(s)
- Ludovic Mercy
- Laboratory of Biochemistry and Cellular Biology, University of Namur (FUNDP), Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lister R, Hulett JM, Lithgow T, Whelan J. Protein import into mitochondria: origins and functions today (review). Mol Membr Biol 2005; 22:87-100. [PMID: 16092527 DOI: 10.1080/09687860500041247] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mitochondria are organelles derived from alpha-proteobacteria over the course of one to two billion years. Mitochondria from the major eukaryotic lineages display some variation in functions and coding capacity but sequence analysis demonstrates them to be derived from a single common ancestral endosymbiont. The loss of assorted functions, the transfer of genes to the nucleus, and the acquisition of various 'eukaryotic' proteins have resulted in an organelle that contains approximately 1000 different proteins, with most of these proteins imported into the organelle across one or two membranes. A single translocase in the outer membrane and two translocases in the inner membrane mediate protein import. Comparative sequence analysis and functional complementation experiments suggest some components of the import pathways to be directly derived from the eubacterial endosymbiont's own proteins, and some to have arisen 'de novo' at the earliest stages of 'mitochondrification' of the endosymbiont. A third class of components appears lineage-specific, suggesting they were incorporated into the process of protein import long after mitochondria was established as an organelle and after the divergence of the various eukaryotic lineages. Protein sorting pathways inherited from the endosymbiont have been co-opted and play roles in intraorganelle protein sorting after import. The import apparatus of animals and fungi show significant similarity to one another, but vary considerably to the plant apparatus. Increasing complexity in the eukaryotic lineage, i.e., from single celled to multi-cellular life forms, has been accompanied by an expansion in genes encoding each component, resulting in small gene families encoding many components. The functional differences in these gene families remain to be elucidated, but point to a mosaic import apparatus that can be regulated by a variety of signals.
Collapse
Affiliation(s)
- Ryan Lister
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | |
Collapse
|
30
|
Hu Y, Jones SVP, Dillmann WH. Effects of hyperthyroidism on delayed rectifier K+ currents in left and right murine atria. Am J Physiol Heart Circ Physiol 2005; 289:H1448-55. [PMID: 15894573 DOI: 10.1152/ajpheart.00828.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperthyroidism has been associated with atrial fibrillation (AF); however, hyperthyroidism-induced ion channel changes that may predispose to AF have not been fully elucidated. To understand the electrophysiological changes that occur in left and right atria with hyperthyroidism, the patch-clamp technique was used to compare action potential duration (APD) and whole cell currents in myocytes from left and right atria from both control and hyperthyroid mice. Additionally, RNase protection assays and immunoblotting were performed to evaluate the mRNA and protein expression levels of K(+) channel alpha-subunits in left and right atria. The results showed that 1) in control mice, the APD was shorter and the ultra-rapid delayed rectifier K(+) conductance (I(Kur)) and the sustained delayed rectifier K(+) conductance (I(ss)) were larger in the left than in the right atrium; also, mRNA and protein expression levels of Kv1.5 and Kv2.1 were higher in the left atrium; 2) in hyperthyroid mice, the APD was shortened and I(Kur) and I(ss) were increased in both left and right atrial myocytes, and the protein expression levels of Kv1.5 and Kv2.1 were increased significantly in both atria; and 3) the influence of hyperthyroidism on APD and delayed rectifier K(+) currents was more prominent in right than in left atrium, which minimized the interatrial APD difference. In conclusion, hyperthyroidism resulted in more significant APD shortening and greater delayed rectifier K(+) current increases in the right vs. the left atrium, which can contribute to the propensity for atrial arrhythmia in hyperthyroid heart.
Collapse
Affiliation(s)
- Ying Hu
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0618, USA
| | | | | |
Collapse
|
31
|
Abstract
The protein import process of mitochondria is vital for the assembly of the hundreds of nuclear-derived proteins into an expanding organelle reticulum. Most of our knowledge of this complex multisubunit network comes from studies of yeast and fungal systems, with little information known about the protein import process in mammalian cells, particularly skeletal muscle. However, growing evidence indicates that the protein import machinery can respond to changes in the energy status of the cell. In particular, contractile activity, a powerful inducer of mitochondrial biogenesis, has been shown to alter the stoichiometry of the protein import apparatus via changes in several protein import machinery components. These adaptations include the induction of cytosolic molecular chaperones that transport precursors to the matrix, the up-regulation of outer membrane import receptors, and the increase in matrix chaperonins that facilitate the import and proper folding of the protein for subsequent compartmentation in the matrix or inner membrane. The physiological importance of these changes is an increased capacity for import into the organelle at any given precursor concentration. Defects in the protein import machinery components have been associated with mitochondrial disorders. Thus, contractile activity may serve as a possible mechanism for up-regulation of mitochondrial protein import and compensation for mitochondrial phenotype alterations observed in diseased muscle.
Collapse
Affiliation(s)
- David A Hood
- School of Kinesiology and Health Science, Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
32
|
Alexeyev MF, Ledoux SP, Wilson GL. Mitochondrial DNA and aging. Clin Sci (Lond) 2004; 107:355-64. [PMID: 15279618 DOI: 10.1042/cs20040148] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/22/2004] [Accepted: 07/28/2004] [Indexed: 12/21/2022]
Abstract
Among the numerous theories that explain the process of aging, the mitochondrial theory of aging has received the most attention. This theory states that electrons leaking from the ETC (electron transfer chain) reduce molecular oxygen to form O2•− (superoxide anion radicals). O2•−, through both enzymic and non-enzymic reactions, can cause the generation of other ROS (reactive oxygen species). The ensuing state of oxidative stress results in damage to ETC components and mtDNA (mitochondrial DNA), thus increasing further the production of ROS. Ultimately, this ‘vicious cycle’ leads to a physiological decline in function, or aging. This review focuses on recent developments in aging research related to the role played by mtDNA. Both supportive and contradictory evidence is discussed.
Collapse
Affiliation(s)
- Mikhail F Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, 307 University Blvd, Mobile, AL 36688, USA.
| | | | | |
Collapse
|
33
|
Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab 2004; 286:E968-74. [PMID: 14970006 DOI: 10.1152/ajpendo.00478.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of thyroid hormone (T(3)) on respiration is partly mediated via its effect on the cytochrome c oxidase (COX) enzyme, a multi-subunit complex within the mitochondrial respiratory chain. We compared the expression of COX subunits I, III, Vb, and VIc and thyroid receptors (TR)alpha1 and TRbeta1 with functional changes in COX activity in tissues that possess high oxidative capacities. In response to 5 days of T(3) treatment, TRbeta1 increased 1.6-fold in liver, whereas TRalpha1 remained unchanged. T(3) also induced concomitant increases in the protein and mRNA expression of nuclear-encoded subunit COX Vb in liver, matched by a 1.3-fold increase in binding to a putative thyroid response element (TRE) within the COX Vb promoter in liver, suggesting transcriptional regulation. In contrast, T(3) had no effect on COX Vb expression in heart. T(3) produced a significant increase in COX III mRNA in liver but decreased COX III mRNA in heart. These changes were matched by parallel alterations in mitochondrial transcription factor A expression in both tissues. In contrast, COX I protein increased in both liver and heart 1.7- and 1.5-fold (P < 0.05), respectively. These changes in COX I closely paralleled the T(3)-induced increases in COX activity observed in both of these tissues. In liver, T(3) induced a coordinated increase in the expression of the nuclear (COX Vb) and mitochondrial (COX I) genomes at the protein level. However, in heart, the main effect of T(3) was restricted to the expression of mitochondrial DNA subunits. Thus our data suggest that T(3) regulates the expression of COX subunits by both transcriptional and posttranscriptional mechanisms. The nature of this regulation differs between tissues possessing a high mitochondrial content, like liver and heart.
Collapse
Affiliation(s)
- Treacey E Sheehan
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Sirk DP, Zhu Z, Wadia JS, Mills LR. Flow cytometry and GFP: a novel assay for measuring the import and turnover of nuclear-encoded mitochondrial proteins in live PC12 cells. Cytometry A 2004; 56:15-22. [PMID: 14566935 DOI: 10.1002/cyto.a.10084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mitochondrial protein import is typically measured by adding radiolabeled precursor proteins to isolated mitochondria. We have developed a novel, high-throughput method for measuring protein import in live differentiated PC12 cells using a tetracycline (Tet) regulated, nuclear encoded, mitochondrially-targeted GFP fusion protein and flow cytometry. METHODS We generated a PC12 cell line stably transfected with an inducible GFP fusion protein (GFPmt) targeted to mitochondria. GFPmt PC12 cells were treated with NGF for one week to induce neuronal differentiation in the presence of Tet to silence GFP expression. On day seven GFPmt expression was induced by removal of Tet and these "GFP-on" cells were exposed to sublethal levels of CCCP (2 microM) for 24 h. At 24 h, the cells were harvested in Ca(++)-free PBS and the GFPmt signal in live intact cells was measured using flow cytometry. Since GFPmt is not fluorescent prior to being imported into mitochondria, the GFPmt signal reflected only GFPmt imported to mitochondria. PI was used to gate out contributions from dead cells. Turnover of GFPmt in mitochondria was also assessed; in this case, Tet was added to arrest GFPmt expression in GFP-on cells, and the subsequent decline of the fluorescent signal, in the absence of any new GFP synthesis, was measured by flow cytometry. RESULTS Exposure to 2 microM CCCP for 24 h caused a 61% +/- 0.4 decline in GFPmt fluorescence compared to controls. This decline corresponded to a 30% +/- 7 decrease in GFPmt protein levels measured by Western blot of mitochondrial fractions, and a 72% +/- 5 decline in the import of newly synthesized GFPmt to mitochondria over a 1 h period 24-h after addition of 2 microM CCCP measured by autoradiography. CCCP partially depolarized mitochondria but was not lethal for up to five days. CONCLUSIONS This novel GFP-based flow cytometry assay is a rapid and sensitive technique for quantifying protein import to mitochondria in live neuronal cells.
Collapse
Affiliation(s)
- Daniel P Sirk
- Cellular and Molecular Division, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario, M5T 2S8 Canada
| | | | | | | |
Collapse
|
35
|
Irrcher I, Adhihetty PJ, Joseph AM, Ljubicic V, Hood DA. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2004; 33:783-93. [PMID: 12959619 DOI: 10.2165/00007256-200333110-00001] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Behavioural and hereditary conditions are known to decrease mitochondrial volume and function within skeletal muscle. This reduces endurance performance, and is manifest both at high- and low-intensity levels of exertion. A programme of regular endurance exercise, undertaken over a number of weeks, produces significant adaptations within skeletal muscle such that noticeable improvements in oxidative capacity are evident, and the related decline in endurance performance can be attenuated. Notwithstanding the important implications that this has for the highly trained endurance athlete, an improvement in mitochondrial volume and function through regular physical activity also endows the previously sedentary and/or aging population with an improved quality of life, and a greater functional independence. An understanding of the molecular and cellular mechanisms that govern the increases in mitochondrial volume with repeated bouts of exercise can provide insights into possible therapeutic interventions to care for those with mitochondrially-based diseases, and those unable to withstand regular physical activity. This review focuses on the recent developments in the molecular aspects of mitochondrial biogenesis in chronically exercising muscle. Specifically, we discuss the initial signalling events triggered by muscle contraction, the activation of transcription factors involved in both nuclear and mitochondrial DNA transcription, as well as the post-translational import mechanisms required for mitochondrial biogenesis. We consider the importance and relevance of chronic physical activity in the induction of mitochondrial biogenesis, with particular emphasis on how an endurance training programme could positively affect the age-related decline in mitochondrial content and delay the progression of age- and physical inactivity-related diseases.
Collapse
Affiliation(s)
- Isabella Irrcher
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
36
|
Joseph AM, Rungi AA, Robinson BH, Hood DA. Compensatory responses of protein import and transcription factor expression in mitochondrial DNA defects. Am J Physiol Cell Physiol 2003; 286:C867-75. [PMID: 14656719 DOI: 10.1152/ajpcell.00191.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defects in mitochondrial DNA (mtDNA) evoke distinctive responses in the nuclear genome, leading to altered mitochondrial biogenesis. We used C(2)C(12) cells depleted of mtDNA (rho(-) cells) and fibroblasts from a mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) patient to examine adaptations of the protein import machinery and transcription factors involved in mitochondrial biogenesis. In rho(-) cells, Tom20 and Tim23 protein levels were reduced by 25% and 59%, whereas mtHSP70 was induced by twofold relative to control cells. These changes were accompanied by a 21% increase in enhanced yellow fluorescent protein (EYFP) import into mitochondria in rho(-) cells (P < 0.05). In contrast, in MELAS cells mtHSP70 was elevated by 70%, whereas Tom20 and Tom34 protein levels were increased by 45% and 112% relative to control values. EYFP import was not altered in MELAS cells. In rho(-) cells, protein levels of the transcription factors nuclear respiratory factor-1 (NRF-1) and transcription factor A (Tfam) declined by 33% and 54%, whereas no change was observed for the coactivator peroxisome proliferator receptor-gamma coactivator-1alpha (PGC-1alpha). In contrast, Tfam was increased by 40% in MELAS cells. Rho(-) cells displayed reduced oxygen consumption (Vo(2)) and ATP levels, along with a twofold increase in lactate levels (P < 0.05). In electrically stimulated C(2)C(12) cells, 109%, 78%, 60%, and 67% increases were observed in mtDNA, Vo(2), cytochrome-c oxidase (COX) activity, and Tom34 levels, respectively (P < 0.05). Our findings suggest that compensatory adaptations occurred to maintain normal rates of protein import in response to mtDNA defects and support a role for contractile activity in reducing pathophysiology associated with mtDNA depletion. Because the expression of nuclear-encoded transcription factors and protein import machinery components was dependent on the type of mtDNA defect, these findings suggest involvement of distinct signaling cascades, each dependent on the type of mitochondrial defect, resulting in divergent changes in nuclear gene expression patterns.
Collapse
|
37
|
Abstract
This review addresses the mechanisms by which mitochondrial structure and function are regulated, with a focus on vertebrate muscle. We consider the adaptive remodeling that arises during physiological transitions such as differentiation, development, and contractile activity. Parallels are drawn between such phenotypic changes and the pattern of change arising over evolutionary time, as suggested by interspecies comparisons. We address the physiological and evolutionary relationships between ATP production, thermogenesis, and superoxide generation in the context of mitochondrial function. Our discussion of mitochondrial structure focuses on the regulation of membrane composition and maintenance of the three-dimensional reticulum. Current studies of mitochondrial biogenesis strive to integrate muscle functional parameters with signal transduction and molecular genetics, providing insight into the origins of variation arising between physiological states, fiber types, and species.
Collapse
Affiliation(s)
- Christopher D Moyes
- Departments of Biology and Physiology, Queen's University, Kingston, Ontario Canada, K7L 3N6.
| | | |
Collapse
|
38
|
Scheller K, Seibel P, Sekeris CE. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:1-61. [PMID: 12503846 DOI: 10.1016/s0074-7696(02)22011-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article concerns the localization of glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. The receptors are discussed in terms of their potential role in the regulation of mitochondrial transcription and energy production by the oxidative phosphorylation pathway, realized both by nuclear-encoded and mitochondrially encoded enzymes. A brief survey of the role of glucocorticoid and thyroid hormones on energy metabolism is presented, followed by a description of the molecular mode of action of these hormones and of the central role of the receptors in regulation of transcription. Subsequently, the structure and characteristics of glucocorticoid and thyroid hormone receptors are described, followed by a section on the effects of glucocorticoid and thyroid hormones on the transcription of mitochondrial and nuclear genes encoding subunits of OXPHOS and by an introduction to the mitochondrial genome and its transcription. A comprehensive description of the data demonstrates the localization of glucocorticoid and thyroid hormone receptors in mitochondria as well as the detection of potential hormone response elements that bind to these receptors. This leads to the conclusion that the receptors potentially play a role in the regulation of transcription of mitochondrial genes. The in organello mitochondrial system, which is capable of sustaining transcription in the absence of nuclear participation, is presented, responding to T3 with increased transcription rates, and the central role of a thyroid receptor isoform in the transcription effect is emphasized. Lastly, possible ways of coordinating nuclear and mitochondrial gene transcription in response to glucocorticoid and thyroid hormones are discussed, the hormones acting directly on the genes of the two compartments by way of common hormone response elements and indirectly on mitochondrial genes by stimulation of nuclear-encoded transcription factors.
Collapse
Affiliation(s)
- Klaus Scheller
- Department of Cell and Developmental Biology, Biocenter of the University, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
39
|
Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA. PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol 2003; 284:C1669-77. [PMID: 12734114 DOI: 10.1152/ajpcell.00409.2002] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional coactivator the peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) has been identified as an important mediator of mitochondrial biogenesis based on its ability to interact with transcription factors that activate nuclear genes encoding mitochondrial proteins. The induction of PGC-1alpha protein expression under conditions that provoke mitochondrial biogenesis, such as contractile activity or thyroid hormone (T(3)) treatment, is not fully characterized. Thus we related PGC-1alpha protein expression to cytochrome c oxidase (COX) activity in 1) tissues of varying oxidative capacities, 2) tissues from animals treated with T(3), and 3) skeletal muscle subject to contractile activity both in cell culture and in vivo. Our results demonstrate a strong positive correlation (r = 0.74; P < 0.05) between changes in PGC-1alpha and COX activity, used as an index of mitochondrial adaptations. The highest constitutive levels of PGC-1alpha were found in the heart, whereas the lowest were measured in fast-twitch white muscle and liver. T(3) increased PGC-1alpha content similarly in both fast- and slow-twitch muscle, as well as in the liver, but not in heart. T(3) also induced early (6 h) increases in AMP-activated protein kinase (AMPKalpha) activity, as well as later (5 day) increases in p38 MAP kinase activity in slow-twitch, but not in fast-twitch, muscle. Contractile activity provoked early increases in PGC-1alpha, coincident with increases in mitochondrial transcription factor A (Tfam), and nuclear respiratory factor-1 (NRF-1) protein expression, suggesting that PGC-1alpha is physiologically important in coordinating the expression of the nuclear and mitochondrial genomes. Ca(2+) ionophore treatment of muscle cells led to an approximately threefold increase in PGC-1alpha protein, and contractile activity induced rapid and marked increases in both p38 MAP kinase and AMPKalpha activities. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) treatment of muscle cells also led to parallel increases in AMPKalpha activity and PGC-1alpha protein levels. These data are consistent with observations that indicate that increases in PGC-1alpha protein are affected by Ca(2+) signaling mechanisms, AMPKalpha activity, as well as posttranslational phosphorylation events that increase PGC-1alpha protein stability. Our data support a role for PGC-1alpha in the physiological regulation of mitochondrial content in a variety of tissues and suggest that increases in PGC-1alpha expression form part of a unifying pathway that promotes both T(3)- and contractile activity-induced mitochondrial adaptations.
Collapse
Affiliation(s)
- Isabella Irrcher
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
40
|
Hood DA, Adhihetty PJ, Colavecchia M, Gordon JW, Irrcher I, Joseph AM, Lowe ST, Rungi AA. Mitochondrial biogenesis and the role of the protein import pathway. Med Sci Sports Exerc 2003; 35:86-94. [PMID: 12544641 DOI: 10.1097/00005768-200301000-00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The importance of the mitochondrial protein import pathway, discussed relative to other steps involved in the overall biogenesis of the organelle, are reviewed. RESULTS Mitochondrial biogenesis is a product of complex interactions between the nuclear and mitochondrial genomes. Signaling pathways, such as those activated by exercise, initiate the activation of transcription factors that increase the production of mRNA from nuclear and mitochondrial DNA. Nuclear gene products are translated in the cytosol as precursor proteins with inherent targeting signals. These precursor proteins interact with molecular chaperones that direct them to the import machinery of the outer membrane (Tom complex). The precursor is unfolded and transferred through the outer membrane, across the intermembrane space to the mitochondrial inner membrane translocases (Tim complex). Intramitochondrial components (mtHSP70) pull the precursor into the matrix, cleave off the targeting sequence (mitochondrial processing peptidase), and refold the protein (HSP60, cpn10) into its mature conformation. Physiological stressors such as contractile activity and thyroid hormone accelerate protein import into the mitochondria, coincident with an increase in the expression of some components of the import machinery. This is important for the overall expansion of the mitochondrial reticulum. Conversely, impairments in the import process can be a cause of mitochondrial dysfunction and disease. CONCLUSIONS Efforts to further characterize the components of the import machinery, to define the role of specific machinery components on the import rate, and to examine protein import function in a variety of mitochondrial diseases are warranted.
Collapse
Affiliation(s)
- David A Hood
- School of Kinesiology and Health Science, Department of Biology, York University, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Colavecchia M, Christie LN, Kanwar YS, Hood DA. Functional consequences of thyroid hormone-induced changes in the mitochondrial protein import pathway. Am J Physiol Endocrinol Metab 2003; 284:E29-35. [PMID: 12388124 DOI: 10.1152/ajpendo.00294.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid hormone [3,5,3'-triiodo-l-thyronine (T(3))] induces phenotypic alterations in cardiac mitochondria, in part by influencing protein import and the expression of the import motor mitochondrial heat shock protein (mtHsp70). Here we examined the adaptability of translocases of the inner membrane (Tim) proteins, as well as the outer membrane receptor Tom34, to T(3). Administration of T(3) to rats for 5 days increased cardiac Tim23 and Tim44 mRNA levels by 55 and 50%, respectively, but had no effect on Tim17. T(3) treatment also induced a 45% increase in Tom34 mRNA, with no accompanying changes at the protein level, suggesting regulation at the posttranscriptional level. In H9c2 cardiac cells, Tim17 mRNA was elevated by 114% by 9 days of differentiation, whereas Tim23 and Tim44 declined by 25 and 29%, respectively. To determine the functional consequences of these T(3)-induced changes, malate dehydrogenase (MDH) import rates were measured in H9c2 cells stably overexpressing Tim44 and mtHsp70, either alone or in combination. MDH import remained unaltered in cells overexpressing Tim44 or in cells overexpressing both Tim44 and mtHsp70. However, when mtHsp70 was overexpressed alone, a 13% (P < 0.05) increase in MDH import rate was observed. These findings indicate that import machinery components are differentially regulated in response to stimuli that induce mitochondrial biogenesis, like T(3) and differentiation. In addition, the induction of an import machinery component in response to T(3) may not necessarily result in functional changes in protein import during mitochondrial biogenesis. Finally, mtHsp70 may play a regulatory role in the import process that is independent of its interaction with Tim44.
Collapse
Affiliation(s)
- Marco Colavecchia
- School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
42
|
Abstract
Mortalin, also known as mthsp70/PBP74/GRP75, resides in multiple subcellular sites including mitochondria, ER, plasma membrane, cytoplasmic vesicles and cytosol. It is differentially distributed in normal and cancerous cells; the latter, when reverted back to normal phenotype, also show change in mortalin staining pattern similar to normal cells. Depending on its different subcellular niche and binding partner therein, mortalin is expected to perform multiple functions relevant to cell survival, control of proliferation and stress response.
Collapse
Affiliation(s)
- Sunil C Kaul
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
43
|
Hoogenraad NJ, Ward LA, Ryan MT. Import and assembly of proteins into mitochondria of mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:97-105. [PMID: 12191772 DOI: 10.1016/s0167-4889(02)00268-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most of our knowledge regarding the process of protein import into mitochondria has come from research employing fungal systems. This review outlines recent advances in our understanding of this process in mammalian cells. In particular, we focus on the characterisation of cytosolic molecular chaperones that are involved in binding to mitochondrial-targeted preproteins, as well as the identification of both conserved and novel subunits of the import machineries of the outer and inner mitochondrial membranes. We also discuss diseases associated with defects in import and assembly of mitochondrial proteins and what is currently known about the regulation of import in mammals.
Collapse
|
44
|
Abstract
Mortalin/mthsp70/PBP74/Grp75 (called mortalin hereafter), a member of the Hsp70 family of chaperones, was shown to have different subcellular localizations in normal and immortal cells. It has been assigned to multiple subcellular sites and implicated in multiple functions ranging from stress response, intracellular trafficking, antigen processing, control of cell proliferation, differentiation, and tumorigenesis. The present article compiles and reviews information on the multiple sites and functions of mortalin in different organisms. The relevance of its differential distributions and functions in normal and immortal cell phenotypes is discussed.
Collapse
Affiliation(s)
- Renu Wadhwa
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari, Ibaraki 300-4101, Japan
| | | | | |
Collapse
|
45
|
Rungi AA, Primeau A, Nunes Christie L, Gordon JW, Robinson BH, Hood DA. Events upstream of mitochondrial protein import limit the oxidative capacity of fibroblasts in multiple mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1586:146-54. [PMID: 11959456 DOI: 10.1016/s0925-4439(01)00072-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To investigate whether protein import is defective in mitochondrial disease, we compared the rate of import and the expression of protein import machinery components in skin fibroblasts from control subjects and a patient with multiple mitochondrial disease (MMD). The patient exhibited a 35% decrease in cytochrome c oxidase activity and a 59% decrease in cellular oxygen consumption compared to control. Western blot analyses revealed that patient levels of MDH, mtHSP70, HSP60, and Tom20 protein were 57%, 20%, 75% and 100% of control cells, respectively. MDH and Tom20 mRNA levels were not different from control levels, whereas mtHSP70 mRNA were 50% greater than control. Radiolabeled MDH was imported into mitochondria with equal efficiency between patient (44% of total synthesized) and control (43%) cells, although the total MDH synthesized in patient cells was reduced by about 40%. The unaffected levels of mRNA and post-translational import into mitochondria, combined with reduced protein levels of MDH, mtHSP70, and HSP60 suggest a translational defect in this patient with MMD. This was verified by the 50% reduction in overall cellular protein synthesis in the patient compared to control. Further, the similar import rates between patient and control cells suggest an important role for Tom20, but a lesser role for mtHSP70 in regulating protein import into mitochondria.
Collapse
Affiliation(s)
- Arne A Rungi
- Department of Kinesiology, Toronto, ON, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|
46
|
Zoll J, Ventura-Clapier R, Serrurier B, Bigard AX. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle. J Muscle Res Cell Motil 2002; 22:141-7. [PMID: 11519737 DOI: 10.1023/a:1010521108884] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P < 0.001) in hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P < 0.01), while mitochondrial creatine kinase activity and sensitivity of mitochondrial respiration to creatine were not altered. The results of this study demonstrate that hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.
Collapse
Affiliation(s)
- J Zoll
- Unité de Bioénergétique et Environnement, Centre de Recherches du Service de Santé des Armies, La Tronche, France
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- P D Booker
- Paediatric Anaesthesia, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK.
| |
Collapse
|
48
|
Hood DA. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol (1985) 2001; 90:1137-57. [PMID: 11181630 DOI: 10.1152/jappl.2001.90.3.1137] [Citation(s) in RCA: 480] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic contractile activity produces mitochondrial biogenesis in muscle. This adaptation results in a significant shift in adenine nucleotide metabolism, with attendant improvements in fatigue resistance. The vast majority of mitochondrial proteins are derived from the nuclear genome, necessitating the transcription of genes, the translation of mRNA into protein, the targeting of the protein to a mitochondrial compartment via the import machinery, and the assembly of multisubunit enzyme complexes in the respiratory chain or matrix. Putative signals involved in initiating this pathway of gene expression in response to contractile activity likely arise from combinations of accelerations in ATP turnover or imbalances between mitochondrial ATP synthesis and cellular ATP demand, and Ca(2+) fluxes. These rapid events are followed by the activation of exercise-responsive kinases, which phosphorylate proteins such as transcription factors, which subsequently bind to upstream regulatory regions in DNA, to alter transcription rates. Contractile activity increases the mRNA levels of nuclear-encoded proteins such as cytochrome c and mitochondrial transcription factor A (Tfam) and mRNA levels of upstream transcription factors like c-jun and nuclear respiratory factor-1 (NRF-1). mRNA level changes are often most evident during the postexercise recovery period, and they can occur as a result of contractile activity-induced increases in transcription or mRNA stability. Tfam is imported into mitochondria and controls the expression of mitochondrial DNA (mtDNA). mtDNA contributes only 13 protein products to the respiratory chain, but they are vital for electron transport and ATP synthesis. Contractile activity increases Tfam expression and accelerates its import into mitochondria, resulting in increased mtDNA transcription and replication. The result of this coordinated expression of the nuclear and the mitochondrial genomes, along with poorly understood changes in phospholipid synthesis, is an expansion of the muscle mitochondrial reticulum. Further understanding of 1) regulation of mtDNA expression, 2) upstream activators of NRF-1 and other transcription factors, 3) the identity of mRNA stabilizing proteins, and 4) potential of contractile activity-induced changes in apoptotic signals are warranted.
Collapse
Affiliation(s)
- D A Hood
- Department of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
49
|
Wright G, Terada K, Yano M, Sergeev I, Mori M. Oxidative stress inhibits the mitochondrial import of preproteins and leads to their degradation. Exp Cell Res 2001; 263:107-17. [PMID: 11161710 DOI: 10.1006/excr.2000.5096] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrion depends upon the import of cytosolically synthesized preproteins for most of the proteins that comprise its structural elements and metabolic pathways. Here we have examined the influence of redox conditions on mitochondrial preprotein import and processing by mammalian mitochondria. Paraquat pretreatment of isolated mitochondria inhibited the subsequent import preornithine transcarbamylase (pOTC) in vitro. In intact cells oxidizing conditions led to decreased levels of mature OTC and accumulation of its preprotein. Implicating a mitochondrial import lesion, the fluorescence of pOTC-GFP (a protein in which the presequence of pOTC was fused to green fluorescent protein) transfected cells was decreased by paraquat treatment while cytosolic wild-type GFP remained largely unaffected. The accumulation of preproteins was enhanced by proteasome inhibitors. We observed that precursor proteins that failed to be imported, due to oxidizing conditions or an intrinsically slower import rate, are susceptible to degradation. Inhibition of the proteasome was also found to lead to higher levels of the translocase outer membrane protein 20 (Tom20) and to the perinuclear accumulation of mitochondria. These studies indicate that cellular redox conditions influence mitochondrial import, which, in turn, affects mitochondrial protein levels. A role for the proteasome in this process and in general mitochondrial function was also indicated.
Collapse
Affiliation(s)
- G Wright
- Department of Molecular Genetics, Kumamoto University School of Medicine, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | | | | | | | | |
Collapse
|
50
|
Grey JY, Connor MK, Gordon JW, Yano M, Mori M, Hood DA. Tom20-mediated mitochondrial protein import in muscle cells during differentiation. Am J Physiol Cell Physiol 2000; 279:C1393-400. [PMID: 11029287 DOI: 10.1152/ajpcell.2000.279.5.c1393] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial biogenesis is accompanied by an increased expression of components of the protein import machinery, as well as increased import of proteins destined for the matrix. We evaluated the role of the outer membrane receptor Tom20 by varying its expression and measuring changes in the import of malate dehydrogenase (MDH) in differentiating C2C12 muscle cells. Cells transfected with Tom20 had levels that were twofold higher than in control cells. Labeling of cells followed by immunoprecipitation of MDH revealed equivalent increases in MDH import. This parallelism between import rate and Tom20 levels was also evident as a result of thyroid hormone treatment. Using antisense oligodeoxynucleotides, we inhibited Tom20 expression by 40%, resulting in 40-60% reductions in MDH import. In vitro assays also revealed that import into the matrix was more sensitive to Tom20 inhibition than import into the outer membrane. These data indicate a close relationship between induced changes in Tom20 and the import of a matrix protein, suggesting that Tom20 is involved in determining the kinetics of import. However, this relationship was dissociated during normal differentiation, since the expression of Tom20 remained relatively constant, whereas imported MDH increased 12-fold. Thus Tom20 is important in determining import during organelle biogenesis, but other mechanisms (e.g., intramitochondrial protein degradation or nuclear transcription) likely also play a role in establishing the final mitochondrial phenotype during normal muscle differentiation.
Collapse
Affiliation(s)
- J Y Grey
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|