1
|
The Effect of Aflatoxin B1 on Tumor-Related Genes and Phenotypic Characters of MCF7 and MCF10A Cells. Int J Mol Sci 2022; 23:ijms231911856. [PMID: 36233156 PMCID: PMC9570345 DOI: 10.3390/ijms231911856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
The fungal toxin aflatoxin B1 (AB1) and its reactive intermediate, aflatoxin B1-8, 9 epoxide, could cause liver cancer by inducing DNA adducts. AB1 exposure can induce changes in the expression of several cancer-related genes. In this study, the effect of AB1 exposure on breast cancer MCF7 and normal breast MCF10A cell lines at the phenotypic and epigenetic levels was investigated to evaluate its potential in increasing the risk of breast cancer development. We hypothesized that, even at low concentrations, AB1 can cause changes in the expression of important genes involved in four pathways, i.e., p53, cancer, cell cycle, and apoptosis. The transcriptomic levels of BRCA1, BRCA2, p53, HER1, HER2, cMyc, BCL2, MCL1, CCND1, WNT3A, MAPK1, MAPK3, DAPK1, Casp8, and Casp9 were determined in MCF7 and MCF10A cells. Our results illustrate that treating both cells with AB1 induced cytotoxicity and apoptosis with reduction in cell viability in a concentration-dependent manner. Additionally, AB1 reduced reactive oxygen species levels. Phenotypically, AB1 caused cell-cycle arrest at G1, hypertrophy, and increased cell migration rates. There were changes in the expression levels of several tumor-related genes, which are known to contribute to activating cancer pathways. The effects of AB1 on the phenotype and epigenetics of both MCF7 and MCF10A cells associated with cancer development observed in this study suggest that AB1 is a potential risk factor for developing breast cancer.
Collapse
|
2
|
Tahir H, Niculescu I, Bona-Casas C, Merks RMH, Hoekstra AG. An in silico study on the role of smooth muscle cell migration in neointimal formation after coronary stenting. J R Soc Interface 2016; 12:20150358. [PMID: 26063828 DOI: 10.1098/rsif.2015.0358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Excessive migration and proliferation of smooth muscle cells (SMCs) has been observed as a major factor contributing to the development of in-stent restenosis after coronary stenting. Building upon the results from in vivo experiments, we formulated a hypothesis that the speed of the initial tissue re-growth response is determined by the early migration of SMCs from the injured intima. To test this hypothesis, a cellular Potts model of the stented artery is developed where stent struts were deployed at different depths into the tissue. An extreme scenario with a ruptured internal elastic lamina was also considered to study the role of severe injury in tissue re-growth. Based on the outcomes, we hypothesize that a deeper stent deployment results in on average larger fenestrae in the elastic lamina, allowing easier migration of SMCs into the lumen. The data also suggest that growth of the neointimal lesions owing to SMC proliferation is strongly dependent on the initial number of migrated cells, which form an initial condition for the later phase of the vascular repair. This mechanism could explain the in vivo observation that the initial rate of neointima formation and injury score are strongly correlated.
Collapse
Affiliation(s)
- Hannan Tahir
- Computational Science Laboratory, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Ioana Niculescu
- Computational Science Laboratory, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands Life Sciences Group, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
| | - Carles Bona-Casas
- Computational Science Laboratory, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Roeland M H Merks
- Life Sciences Group, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Alfons G Hoekstra
- Computational Science Laboratory, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands National Research University ITMO, Saint Petersburg, Russia
| |
Collapse
|
3
|
Scolz M, Widlund PO, Piazza S, Bublik DR, Reber S, Peche LY, Ciani Y, Hubner N, Isokane M, Monte M, Ellenberg J, Hyman AA, Schneider C, Bird AW. GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration. PLoS One 2012; 7:e51259. [PMID: 23236459 PMCID: PMC3517537 DOI: 10.1371/journal.pone.0051259] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023] Open
Abstract
The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs) are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.
Collapse
Affiliation(s)
- Massimilano Scolz
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Per O. Widlund
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Silvano Piazza
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Debora Rosa Bublik
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Simone Reber
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Leticia Y. Peche
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Yari Ciani
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Nina Hubner
- Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Mayumi Isokane
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Martin Monte
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Jan Ellenberg
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (AWB); (AAH); (CS)
| | - Claudio Schneider
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
- * E-mail: (AWB); (AAH); (CS)
| | - Alexander W. Bird
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (AWB); (AAH); (CS)
| |
Collapse
|
4
|
Peyton KJ, Shebib AR, Azam MA, Liu XM, Tulis DA, Durante W. Bilirubin inhibits neointima formation and vascular smooth muscle cell proliferation and migration. Front Pharmacol 2012; 3:48. [PMID: 22470341 PMCID: PMC3309974 DOI: 10.3389/fphar.2012.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/04/2012] [Indexed: 12/11/2022] Open
Abstract
Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine Columbia, MO, USA
| | | | | | | | | | | |
Collapse
|
5
|
Peyton KJ, Yu Y, Yates B, Shebib AR, Liu XM, Wang H, Durante W. Compound C inhibits vascular smooth muscle cell proliferation and migration in an AMP-activated protein kinase-independent fashion. J Pharmacol Exp Ther 2011; 338:476-84. [PMID: 21566210 DOI: 10.1124/jpet.111.181784] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02-10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G(0)/G(1) phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease.
Collapse
Affiliation(s)
- Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, Zhang R, Wang Z, She ZG, Zhang R, Wei YS, Du GH, Liu DP, Liang CC. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res 2011; 108:1180-9. [PMID: 21474819 DOI: 10.1161/circresaha.110.237875] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown. OBJECTIVE The present study was designed to investigate the role of SIRT1 in the regulation of neointima formation and to elucidate the underlying mechanisms. METHODS AND RESULTS A decrease in SIRT1 expression was observed following carotid artery ligation. smooth muscle cell (SMC)-specific human SIRT1 transgenic (Tg) mice were generated. SIRT1 overexpression substantially inhibited neointima formation after carotid artery ligation or carotid artery wire injury. In the intima of injured carotid arteries, VSMC proliferation (proliferating cell nuclear antigen (PCNA)-positive cells) was significantly reduced. SIRT1 overexpression markedly inhibited VSMC proliferation and migration and induced cell cycle arrest at G1/S transition in vitro. Accordingly, SIRT1 overexpression decreased the induction of cyclin D1 and matrix metalloproteinase-9 (MMP-9) expression by treatment with serum and TNF-α, respectively, whereas RNAi knockdown of SIRT1 resulted in the opposite effect. Decreased cyclin D1 and MMP-9 expression/activity were also observed in injured carotid arteries from SMC-SIRT1 Tg mice. Furthermore, 2 targets of SIRT1, c-Fos and c-Jun, were involved in the downregulation of cyclin D1 and MMP-9 expression. CONCLUSIONS Our findings demonstrate the inhibitory effect of SIRT1 on the VSMC proliferation and migration that underlie neointima formation and implicate SIRT1 as a potential target for intervention in vascular diseases.
Collapse
Affiliation(s)
- Li Li
- National Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No 5 Dong Dan San Tiao, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Steven O Marx
- Division of Cardiology, Department of Medicine, Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
8
|
Goyal P, Behring A, Kumar A, Siess W. STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells. PLoS One 2011; 6:e16249. [PMID: 21283756 PMCID: PMC3024402 DOI: 10.1371/journal.pone.0016249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1) phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1) to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1) to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold) in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a) leading to G(1) arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear actin might be critical in the regulation of these fundamental endothelial functions.
Collapse
Affiliation(s)
- Pankaj Goyal
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum Innenstadt, Universität München, Munich, Germany.
| | | | | | | |
Collapse
|
9
|
Abstract
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chemical and functional families is presented, along with a summary of key signaling events mediating migration. Extracellular molecules that modulate migration include small biogenic amines, peptide growth factors, cytokines, extracellular matrix components, and drugs used in cardiovascular medicine. Promigratory stimuli activate signal transduction cascades that trigger remodeling of the cytoskeleton, change the adhesiveness of the cell to the matrix, and activate motor proteins. This review focuses on the signaling pathways and effector proteins regulated by promigratory and antimigratory molecules. Prominent pathways include phosphatidylinositol 3-kinases, calcium-dependent protein kinases, Rho-activated protein kinase, p21-activated protein kinases, LIM kinase, and mitogen-activated protein kinases. Important downstream targets include myosin II motors, actin capping and severing proteins, formins, profilin, cofilin, and the actin-related protein-2/3 complex. Actin filament remodeling, focal contact remodeling, and molecular motors are coordinated to cause cells to migrate along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. The result is recruitment of cells to areas where the vessel wall is being remodeled. Vessel wall remodeling can be antagonized by common cardiovascular drugs that act in part by inhibiting vascular smooth muscle cell migration. Several therapeutically important drugs act by inhibiting cell cycle progression, which may reduce the population of migrating cells.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Chen X, Kelemen SE, Autieri MV. AIF-1 Expression Modulates Proliferation of Human Vascular Smooth Muscle Cells by Autocrine Expression of G-CSF. Arterioscler Thromb Vasc Biol 2004; 24:1217-22. [PMID: 15117732 DOI: 10.1161/01.atv.0000130024.50058.de] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Allograft inflammatory factor-1 (AIF-1) is associated with vascular smooth muscle cell (VSMC) activation and vascular injury. The purpose of this study was to characterize the molecular mechanism of AIF-1 growth-enhancing effects in human VSMC.
Methods and Results—
Primary human VSMCs were stably transduced with AIF-1 retrovirus (RV). Impact on cell growth was evaluated by the increase in cell number, and the effects on gene expression were determined by cDNA microarray analysis. AIF-RV overexpressing cells grew significantly more rapidly than empty-RV control cells in growth medium and serum-reduced medium (
P
<0.01 and 0.02, respectively). cDNA microarray analysis and Western blotting on serum-starved AIF-1–transduced VSMCs identified increased mRNA expression of several cell cycle proteins and, surprisingly, the cytokine G-CSF. Addition of G-CSF caused a 75% increase in proliferation of VSMCs in the absence of serum growth factors. The proliferative effects of AIF-1 were abrogated by neutralizing antibodies to G-CSF (
P
<0.05), and AIF-1–transduced VSMCs are chemotactic for human monocytes. Increased expression of G-CSF and colocalization with AIF-1 positive cells were seen in diseased, not normal human coronary arteries.
Conclusions—
This study indicates that AIF-1 enhances VSMC growth by autocrine production of G-CSF, and AIF-1 expression may influence VSMC–inflammatory cell communication.
Collapse
Affiliation(s)
- Xing Chen
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Penn 19140, USA
| | | | | |
Collapse
|
11
|
|
12
|
Díez-Juan A, Andrés V. Coordinate control of proliferation and migration by the p27Kip1/cyclin-dependent kinase/retinoblastoma pathway in vascular smooth muscle cells and fibroblasts. Circ Res 2003; 92:402-10. [PMID: 12600894 DOI: 10.1161/01.res.0000059306.71961.ed] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have demonstrated a protective effect of the cyclin-dependent kinase (CDK) inhibitor p27Kip1 against atherosclerosis and restenosis, two disorders characterized by abundant proliferation and migration of vascular smooth muscle cells and adventitial fibroblasts. These therapeutic effects might result from p27Kip1-dependent suppression of both cell proliferation and migration. However, the interplay between cell growth and locomotion remains obscure. We show here that p27Kip1 inhibits cellular changes that normally occur during cell locomotion (eg, lamellipodia formation and reorganization of actin filaments and focal adhesions). Importantly, a p27Kip1 mutant lacking CDK inhibitory activity failed to inhibit vascular smooth muscle cell and fibroblast proliferation and migration. Moreover, a constitutively active mutant of the retinoblastoma protein (pRb) insensitive to CDK-dependent hyperphosphorylation inhibited both cell proliferation and migration. In contrast, inactivation of pRb by forced expression of the adenoviral oncogene E1A correlated with high proliferative and migratory activity. Collectively, these results suggest that cellular proliferation and migration are regulated in a coordinated manner by the p27Kip1/CDK/pRb pathway. These findings might have important implications for the development of novel therapeutic strategies targeting the fibroproliferative/migratory component of vascular occlusive disorders.
Collapse
Affiliation(s)
- Antonio Díez-Juan
- Laboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Spanish Council for Scientific Research, Valencia, Spain
| | | |
Collapse
|