1
|
Yamaguchi M, Murata T, Ramos JW. The calcium channel agonist Bay K 8644 promotes the growth of human liver cancer HepG2 cells in vitro: suppression with overexpressed regucalcin. Mol Cell Biochem 2020; 472:173-185. [PMID: 32591915 DOI: 10.1007/s11010-020-03795-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
Hepatocellular carcinoma is one of the most prevalent malignant diseases and causes a third of cancer-related death. The consequences of altered calcium homeostasis in cancer cells may contribute to tumor progression. Regucalcin plays an inhibitory role in calcium signaling linked to transcription regulation. Regucalcin gene expression is downregulated in the tumor tissues of liver cancer patients, suggesting an involvement as a suppressor in hepatocarcinogenesis. We investigated whether Bay K 8644, an agonist of the L-type Ca2+ channel, promotes the growth of human liver cancer and if the effect of Bay K 8644 is suppressed by overexpressed regucalcin using the HepG2 cell model. The colony formation and growth of HepG2 cells were promoted by culturing with Bay K 8644 (0.1-10 nM). This effect was suppressed by inhibitors of signaling processes linked to cell proliferation, including PD98059 and wortmannin. Death of HepG2 cells was stimulated by Bay K 8644 with higher concentrations (25 and 100 nM). The effects of Bay K 8644 on cell growth and death were abolished by verapamil, an antagonist of calcium channel. Mechanistically, culturing with Bay K 8644 increased levels of mitogen-activated protein kinase (MAPK) and phospho-MAPK. Notably, overexpressed regucalcin suppressed Bay K 8644-promoted growth and death of HepG2 cells. Furthermore, overexpressed regucalcin prevented growth and increased death induced by thapsigargin, which induces the release of intracellular stored calcium. Thus, higher regucalcin expression suppresses calcium signaling linked to the growth of liver cancer cells, providing a novel strategy in treatment of hepatocellular carcinoma with delivery of the regucalcin gene.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/adverse effects
- Apoptosis
- Calcium Channel Agonists/adverse effects
- Calcium Channels, L-Type/chemistry
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Cell Proliferation
- Humans
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Liver Neoplasms/etiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya, 468-8503, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| |
Collapse
|
2
|
Fluorescence-Based Measurements of the CRAC Channel Activity in Cell Populations. Methods Mol Biol 2018. [PMID: 30203278 DOI: 10.1007/978-1-4939-8704-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytosolic Ca2+ plays an important role in cellular biology, and since its identification as a second messenger, a number of techniques and methods to analyze the changes in cytosolic Ca2+ concentration ([Ca2+]c) induced by physiological agonists have been developed. Changes in [Ca2+]c might be determined in single cells or in cell populations. Measurement in single cells allows to determine changes in [Ca2+]c at a subcellular level but often results in heterogeneous responses among cells. Determination of intracellular Ca2+ mobilization at the cell population level reduces this heterogeneity and allows [Ca2+]c measurements in small cells that load little amounts of indicator. Here, we describe the measurement of agonist-evoked changes in [Ca2+]c associated with Ca2+ influx in cell populations.
Collapse
|
3
|
Sauer M, Haubner C, Richter G, Ehler J, Mencke T, Mitzner S, Margraf S, Altrichter J, Doß S, Nöldge-Schomburg G. Impaired Cell Viability and Functionality of Hepatocytes After Incubation With Septic Plasma-Results of a Second Prospective Biosensor Study. Front Immunol 2018; 9:1448. [PMID: 29988573 PMCID: PMC6026797 DOI: 10.3389/fimmu.2018.01448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Liver dysfunction (LD) and liver failure are associated with poor outcome in critically ill patients. In patients with severe sepsis or septic shock, LD occurred in nearly 19% of patients. An early diagnosis of LD at time of initial damage of the liver can lead to a better prognosis of these patients because an early start of therapy is possible. We performed a second prospective study with septic patients to test a new cell-based cytotoxicity device (biosensor) to evaluate clinical relevance for early diagnosis of LD and prognostic capacity. In the clinical study, 99 intensive care unit patients were included in two groups. From the patients of the septic group (n = 51, SG), and the control (non-septic) group [n = 49, control group (CG)] were drawn 20 ml blood at inclusion, after 3, and 7 days for testing with the biosensor. Patients’ data were recorded for hospital survival, organ function, and demographic data, illness severity [acute physiology and chronic health evaluation (APACHE) II-, sepsis-related organ failure assessment (SOFA) scores], cytokines, circulating-free deoxyribonucleic acid/neutrophil-derived extracellular traps (cf-DNA/NETs), microbiological results, and pre-morbidity. For the developed cytotoxicity test, the human liver cell line HepG2/C3A was used. Patients’ plasma was incubated in a microtiter plate assay with the test cells and after 6 days incubation the viability (trypan blue staining, XTT-test) and functionality (synthesis of albumin, cytochrome 1A2 activity) was analyzed. An impairment of viability and functionality of test cells was only seen in the SG compared with the CG. The plasma of non-survivors in the SG led to a more pronounced impairment of test cells than the plasma of survivors at inclusion. In addition, the levels of cf-DNA/NETs were significantly higher in the SG at inclusion, after 3, and after 7 days compared with the CG. The SG showed an in-hospital mortality of 24% and the values of bilirubin, APACHE II-, and SOFA scores were markedly higher at inclusion than in the CG. Hepatotoxicity of septic plasma was already detected with the liver cell-based biosensor at inclusion and also in the course of disease. The biosensor may be a tool for early diagnosis of LD in septic patients and may have prognostic relevance.
Collapse
Affiliation(s)
- Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany.,Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
| | - Cristof Haubner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Georg Richter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Thomas Mencke
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Steffen Mitzner
- Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany.,Division of Nephrology, Department of Medicine, University Hospital of Rostock, Rostock, Germany
| | - Stefan Margraf
- Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
| | - Jens Altrichter
- Division of Nephrology, Department of Medicine, University Hospital of Rostock, Rostock, Germany
| | - Sandra Doß
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Gabriele Nöldge-Schomburg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Albarran L, Lopez JJ, Salido GM, Rosado JA. Historical Overview of Store-Operated Ca(2+) Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:3-24. [PMID: 27161222 DOI: 10.1007/978-3-319-26974-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium influx is an essential mechanism for the activation of cellular functions both in excitable and non-excitable cells. In non-excitable cells, activation of phospholipase C by occupation of G protein-coupled receptors leads to the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, initiate two Ca(2+) entry pathways: Ca(2+) release from intracellular Ca(2+) stores, signaled by IP3, leads to the activation of store-operated Ca(2+) entry (SOCE); on the other hand, DAG activates a distinct second messenger-operated pathway. SOCE is regulated by the filling state of the intracellular calcium stores. The search for the molecular components of SOCE has identified the stromal interaction molecule 1 (STIM1) as the Ca(2+) sensor in the endoplasmic reticulum and Orai1 as a store-operated channel (SOC) subunit. Furthermore, a number of reports have revealed that several members of the TRPC family of channels also take part of the SOC macromolecular complex. This introductory chapter summarizes the early pieces of evidence that led to the concept of SOCE and the components of the store-operated signaling pathway.
Collapse
Affiliation(s)
- Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Ginés M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
5
|
Sauer M, Haubner C, Mencke T, Nöldge-Schomburg G, Mitzner S, Altrichter J, Stange J. Impaired cell functions of hepatocytes incubated with plasma of septic patients. Inflamm Res 2012; 61:609-16. [PMID: 22370970 DOI: 10.1007/s00011-012-0451-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE AND DESIGN The development of liver failure is a major problem in septic patients. In this prospective clinical experimental study the hepatotoxicity of plasma from septic and non-septic patients was tested. METHODS AND SUBJECTS The basic test components consist of human liver cells (HepG2/C3A) used in a standardized microtiter plate assay. After incubation with patient's plasma viability of cells (XTT-test), the cytochrome 1A2 activity and synthesis of micro albumin were measured. Subjects (28) enrolled comprise the septic shock group (SSG, n=10), the non-septic group (NSG, n=5) and the healthy volunteers group (HVG, n=13). RESULTS The 28-day mortality was 30% in the SSG. The APACHE II-, SOFA-, and SAPS-scores and the values of bilirubin and prothrombin time as INR were significantly higher in the SSG than in the NSG. The cytochrome 1A2 activity and the release of albumin were significantly reduced in HepG2/C3A cells incubated with plasma of the SSG (p<0.05). The cytochrome 1A2 activities were higher in survivors compared to non-survivors at the time point 0 and were increasing in survivors and decreasing in non-survivors within 54 h in the SSG. In the SSG there was a significant decrease in IL-10 and IL-8 between inclusion and 54 h. Values of IL-6, TNF alpha and IL-10 were significantly lower in the NSG compared with the values of the SSG at inclusion and after 54 h. CONCLUSION The plasma of patients with septic shock impaired cellular functions of HepG2/C3A cells.
Collapse
Affiliation(s)
- Martin Sauer
- Department of Anaesthesiology and Intensive Care Medicine, University of Rostock, Schillingallee 35, 18055, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Woodard GE, Sage SO, Rosado JA. Transient Receptor Potential Channels and Intracellular Signaling. ACTA ACUST UNITED AC 2007; 256:35-67. [PMID: 17241904 DOI: 10.1016/s0074-7696(07)56002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The transient receptor potential (TRP) family of ion channels is composed of more than 50 functionally versatile cation-permeant ion channels expressed in most mammalian cell types. Considerable research has been brought to bear on the members of this family, especially with regard to their possible role as store-operated calcium channels, although studies have provided evidence that TRP channels exhibit a number of regulatory and functional aspects. Endogenous and transiently expressed TRP channels can be activated by different mechanisms grouped into four main categories: receptor-operated activation, store depletion-mediated activation, ligand-induced activation, and direct activation. This article reviews the biochemical characteristics of the different members of the TRP family and summarizes their involvement in a number of physiological events ranging from sensory transduction to development, which might help in understanding the relationship between TRP channel dysfunction and the development of several diseases.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
7
|
Morales S, Camello PJ, Rosado JA, Mawe GM, Pozo MJ. Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells. Cell Signal 2005; 17:635-45. [PMID: 15683738 DOI: 10.1016/j.cellsig.2004.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 10/11/2004] [Indexed: 11/23/2022]
Abstract
It has been proposed that cytoskeleton plays a key positive role in the activation of capacitative calcium entry (CCE), which supported the secretion-like hypothesis for the mechanisms underlying this process. However, its role on CCE in native smooth muscle is unknown. Here we demonstrate that CCE in isolated gallbladder myocytes was enhanced by cytochalasin D or latrunculin A treatments (agents that cause actin disassembly) whereas it was reduced by jasplakinolide treatment (which causes actin polymerization), suggesting that actin cytoskeleton acts as a barrier in CCE. In addition, we show for the first time that depletion of intracellular Ca2+ stores by thapsigargin and cholecystokinin in BAPTA-loaded cells induced a decrease in F-actin content that was consistent with a link between CCE and actin reorganization. In conclusion, these data suggest an active participation of actin reorganization in the implementation of CCE and support a conformational coupling model for this process in naive smooth muscle cells.
Collapse
Affiliation(s)
- Sara Morales
- Department of Physiology, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
8
|
Rosado JA, Redondo PC, Sage SO, Pariente JA, Salido GM. Store-operated Ca2+ entry: Vesicle fusion or reversible trafficking and de novo conformational coupling? J Cell Physiol 2005; 205:262-9. [PMID: 15880447 DOI: 10.1002/jcp.20399] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Store-operated Ca2+ entry (SOCE), a mechanism regulated by the filling state of the intracellular Ca2+ stores, is a major pathway for Ca2+ influx. Hypotheses to explain the communication between the Ca2+ stores and plasma membrane (PM) have considered both the existence of small messenger molecules, such as a Ca2+-influx factor (CIF), and both stable and de novo conformational coupling between proteins in the Ca2+ store and PM. Alternatively, a secretion-like coupling model based on vesicle fusion and channel insertion in the PM has been proposed, which shares some properties with the de novo conformational coupling model, such as the role of the actin cytoskeleton and soluble N-ethylmaleimide (NEM)-sensitive-factor attachment proteins receptor (SNARE) proteins. Here we review recent progress made in the characterization of the de novo conformational coupling and the secretion-like coupling models for SOCE. We pay particular attention into the involvement of SNARE proteins and the actin cytoskeleton in both SOCE models. SNAREs are recognized as proteins involved in exocytosis, participating in vesicle transport, membrane docking, and fusion. As with secretion, a role for the cortical actin network in Ca2+ entry has been demonstrated in a number of cell types. In resting cells, the cytoskeleton may prevent the interaction between the Ca2+ stores and the PM, or preventing fusion of vesicles containing Ca2+ channels with the PM. These are processes in which SNARE proteins might play a crucial role upon cell activation by directing a precise interaction between the membrane of the transported organelle and the PM.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain.
| | | | | | | | | |
Collapse
|
9
|
Rosado JA, Redondo PC, Salido GM, Sage SO, Pariente JA. Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+entry in mouse pancreatic acinar cells. Am J Physiol Cell Physiol 2005; 288:C214-21. [DOI: 10.1152/ajpcell.00241.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that store-operated Ca2+entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as “secretion-like coupling.” As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type.
Collapse
|
10
|
Rosado JA, López JJ, Harper AGS, Harper MT, Redondo PC, Pariente JA, Sage SO, Salido GM. Two Pathways for Store-mediated Calcium Entry Differentially Dependent on the Actin Cytoskeleton in Human Platelets. J Biol Chem 2004; 279:29231-5. [PMID: 15136566 DOI: 10.1074/jbc.m403509200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major pathway for stimulated Ca(2+) entry in non-excitable cells is activated following depletion of intracellular Ca(2+) stores. Secretion-like coupling between elements in the plasma membrane (PM) and Ca(2+) stores has been proposed as the most likely mechanism to activate this store-mediated Ca(2+) entry (SMCE) in several cell types. Here we identify two mechanisms for SMCE in human platelets activated by depletion of two independent Ca(2+) pools, which are differentially modulated by the actin cytoskeleton. Ca(2+) entry induced by depletion of a 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive pool is increased by disassembly of the actin cytoskeleton and that induced by a TBHQ-insensitive pool is reduced. Stabilization of the actin cytoskeleton prevented Ca(2+) entry by both mechanisms. We propose that the membrane-associated actin network prevents constitutive Ca(2+) entry via both pathways. Reorganization of the actin cytoskeleton permits the activation of Ca(2+) entry via both mechanisms, but only SMCE activated by the TBHQ-insensitive pool requires new actin polymerization, which may support membrane trafficking toward the PM.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, University of Extremadura, 10071 Cáceres, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Redondo PC, Harper AGS, Salido GM, Pariente JA, Sage SO, Rosado JA. A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets. J Physiol 2004; 558:99-109. [PMID: 15121806 PMCID: PMC1664928 DOI: 10.1113/jphysiol.2004.064899] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Store-mediated Ca2+ entry (SMCE) is a major mechanism for Ca2+ influx in non-excitable cells. Recently, a conformational coupling mechanism allowing coupling between transient receptor potential channels (TRPCs) and IP3 receptors has been proposed to activate SMCE. Here we have investigated the role of two soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs), which are involved in membrane trafficking and docking, in SMCE in human platelets. We found that the synaptosome-associated protein (SNAP-25) and the vesicle-associated membrane proteins (VAMP) coimmunoprecipitate with hTRPC1 in platelets. Treatment with botulinum toxin (BoNT) E or with tetanus toxin (TeTx), induced cleavage and inactivation of SNAP-25 and VAMPs, respectively. BoNTs significantly reduced thapsigargin- (TG) and agonist-evoked SMCE. Treatment with BoNTs once SMCE had been activated decreased Ca2+ entry, indicating that SNAP-25 is required for the activation and maintenance of SMCE. In contrast, treatment with TeTx had no effect on either the activation or the maintenance of SMCE in platelets. Finally, treatment with BoNT E impaired the coupling between naturally expressed hTRPC1 and IP3 receptor type II in platelets. From these findings we suggest SNAP-25 has a role in SMCE in human platelets.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Rosado JA, Redondo PC, Salido GM, Gómez-Arteta E, Sage SO, Pariente JA. Hydrogen Peroxide Generation Induces pp60 Activation in Human Platelets. J Biol Chem 2004; 279:1665-75. [PMID: 14581479 DOI: 10.1074/jbc.m307963200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reactive oxygen species, such as H2O2, have been recognized as intracellular messengers involved in several cell functions. Here we report the activation of the tyrosine kinase pp60(src) by H2O2, a mechanism required for the activation of store-mediated Ca2+ entry (SMCE) in human platelets. Treatment of platelets with H2O2 resulted in a time- and concentration-dependent activation of pp60(src). Incubation with GF 109203X, a protein kinase C (PKC) inhibitor, prevented H2O2-induced pp60(src) activation. In contrast, dimethyl-BAPTA loading did not affect this response, suggesting that activation of pp60(src) by H2O2 is independent of increases in [Ca2+](i). Cytochalasin D, an inhibitor of actin polymerization, significantly reduced H2O2-induced pp60(src) activation. We found that platelet stimulation with thapsigargin (TG) plus ionomycin (Iono) or thrombin induced rapid H2O2 production, a mechanism independent of elevations in [Ca2+](i). Treatment of platelets with catalase attenuated TG plus Iono- and thrombin-induced activation of pp60(src). In addition, catalase as well as the pp60(src) inhibitor, PP1, reduced both the activation of SMCE and the coupling between the hTrp1 and the IP(3)R type II without having any effect on the maintenance of SMCE. Consistent with the role of PKC in the activation of pp60(src) by H2O2, the PKC inhibitors GF 109202X and Ro-31-8220 were found to reduced SMCE in platelets. This study suggests that platelet activation with TG plus Iono or thrombin is associated with H2O2 production, which acts as a second messenger by stimulating pp60(src) by a PKC-dependent pathway and is involved in the activation of SMCE in these cells.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Cáceres 10071, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Redondo PC, Lajas AI, Salido GM, Gonzalez A, Rosado JA, Pariente JA. Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells. Biochem J 2003; 370:255-63. [PMID: 12423207 PMCID: PMC1223155 DOI: 10.1042/bj20021505] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 10/31/2002] [Accepted: 11/07/2002] [Indexed: 11/17/2022]
Abstract
Store-mediated Ca2+ entry (SMCE) is one of the main pathways for Ca2+ influx in non-excitable cells. Recent studies favour a secretion-like coupling mechanism to explain SMCE, where Ca2+ entry is mediated by an interaction of the endoplasmic reticulum (ER) with the plasma membrane (PM) and is modulated by the actin cytoskeleton. To explore this possibility further we have now investigated the role of the actin cytoskeleton in the activation and maintenance of SMCE in pancreatic acinar cells, a more specialized secretory cell type which might be an ideal cellular model to investigate further the properties of the secretion-like coupling model. In these cells, the cytoskeletal disrupters cytochalasin D and latrunculin A inhibited both the activation and maintenance of SMCE. In addition, stabilization of a cortical actin barrier by jasplakinolide prevented the activation, but not the maintenance, of SMCE, suggesting that, as for secretion, the actin cytoskeleton plays a double role in SMCE as a negative modulator of the interaction between the ER and PM, but is also required for this mechanism, since the cytoskeleton disrupters impaired Ca2+ entry. Finally, depletion of the intracellular Ca2+ stores induces cytoskeletal association and activation of pp60(src), which is independent on Ca2+ entry. pp60(src) activation requires the integrity of the actin cytoskeleton and participates in the initial phase of the activation of SMCE in pancreatic acinar cells.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, Faculty of Veterinary Sciences, Av. Universidad s/n, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Tumour necrosis factor-alpha (TNF alpha) is a multifunctional cytokine belonging to a family of ligands with an associated family of receptor proteins. The pleiotropic actions of TNF range from proliferative responses such as cell growth and differentiation, to inflammatory effects and the mediation of immune responses, to destructive cellular outcomes such as apoptotic and necrotic cell death mechanisms. Activated TNF receptors mediate the association of distinct adaptor proteins that regulate a variety of signalling processes including kinase or phosphatase activation, lipase stimulation, and protease induction. Moreover, the cytokine regulates the activities of transcription factors, heterotrimeric or monomeric G-proteins and calcium ion homeostasis in order to orchestrate its cellular functions. This review addresses the structural basis of TNF signalling, the pathways employed with their cellular consequences, and focuses on the specific role played by each of the two TNF receptor isotypes, TNFR1 and TNFR2.
Collapse
Affiliation(s)
- David J MacEwan
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
15
|
Xie Q, Zhang Y, Zhai C, Bonanno JA. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J Biol Chem 2002; 277:16559-66. [PMID: 11867616 DOI: 10.1074/jbc.m109518200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notwithstanding extensive efforts, the mechanism of capacitative calcium entry (CCE) remains unclear. Two seemingly opposed theories have been proposed: secretion-like coupling (Patterson, R. L., van Rossum, D. B., and Gill, D. L. (1999) Cell 98, 487-499) and the calcium influx factor (CIF) (Randriamampita, C., and Tsien, R. Y. (1993) Nature 364, 809-814). In the current study, a combinatorial approach was taken to investigate the mechanism of CCE in corneal endothelial cells. Induction of cytochrome P-450s by beta-naphthoflavone (BN) enhanced CCE measured by Sr(2+) entry after store depletion. 5,6-Epoxyeicosatrienoic acid (5,6-EET), a proposed CIF generated by cytochrome P-450s (Rzigalinski, B. A., Willoughby, K. A., Hoffman, S. W., Falck, J. R., and Ellis, E. F. (1999) J. Biol. Chem. 274, 175-182), induced Ca(2+) entry. Both BN-enhanced CCE and the 5,6-EET-induced Ca(2+) entry were inhibited by the CCE blocker 2-aminoethoxydiphenyl borate, indicating a role for cytochrome P-450s in CCE. Treatment with calyculin A (CalyA), which causes condensation of cortical cytoskeleton, inhibited CCE. The actin polymerization inhibitor cytochalasin D partially reversed the inhibition of CCE by CalyA, suggesting a secretion-like coupling mechanism for CCE. However, CalyA could not inhibit CCE in BN-treated cells, and 5,6-EET caused a partial activation of CCE in CalyA-treated cells. These results further support the notion that cytochrome P-450 metabolites may be CIFs. The vesicular transport inhibitor brefeldin A inhibited CCE in both vehicle- and BN-treated cells. Surprisingly, Sr(2+) entry in the absence of store depletion was enhanced in BN-treated cells, which was also inhibited by 2-aminoethoxydiphenyl borate. An integrative model suggests that both CIF from cytochrome P-450 metabolism and secretion-like coupling mechanisms play roles in CCE in corneal endothelial cells.
Collapse
Affiliation(s)
- Qiang Xie
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
16
|
MacEwan DJ. TNF ligands and receptors--a matter of life and death. Br J Pharmacol 2002; 135:855-75. [PMID: 11861313 PMCID: PMC1573213 DOI: 10.1038/sj.bjp.0704549] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 12/06/2001] [Accepted: 12/07/2001] [Indexed: 12/24/2022] Open
Affiliation(s)
- David J MacEwan
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD.
| |
Collapse
|
17
|
|